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ANALYSIS OF A RETRIAL QUEUE WITH MULTIPLE
VACATIONS AND STATE DEPENDENT ARRIVALS

V. Jailaxmi
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2

Abstract. This paper examines an M/G/1 retrial queueing system
with multiple vacations and different arrival rates. Whenever the sys-
tem is empty, the server immediately takes a vacation. At a vacation
completion epoch, if the number of customers in the orbit is at least
one the server remains in the system to activate service, otherwise the
server avails multiple vacations until at least one customer is recorded
in the orbit. The primary arrival rate is λ1 when the server in idle and
the primary arrival rate is λ2 when the server is busy or on vacation
(λ1 > λ2). The steady state queue size distribution of number of cus-
tomers in the retrial group, expected number of customers in the retrial
group and expected number of customers in the system are obtained.
Some special cases are also discussed. Numerical illustrations are also
provided.

Keywords. Retrial queue, single server, multiple vacations, state
dependent arrivals, generating function, orbit size.
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1. Introduction

A retrial queueing system consists of a primary service facility and an orbit.
Customers arrive at the service facility either from outside the system or from the
orbit. Upon arrival of a customer, if the server is busy or on vacation the arrival
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will join the retrial group in the orbit and request for service again at some later
time. Retrial queues have been widely used to model many problems in telephone
switching systems.

The detailed overviews of the related references with retrial queues can be found
in the book of Falin and Templeton [16] and the survey papers, of Artalejo [3, 4].
The single server retrial queue with priority calls have been studied by Choi
et al. [12–14] for many applications in telecommunication and mobile communica-
tion. Aissani and Artalejo [1] have analyzed single server retrial queue subject to
break downs. Artalejo and Gomez-Corral [7] have made a detailed study on retrial
queueing systems.Atentia et al. [9] have developed an M/G/1 retrial queue with
active breakdowns and Bernoulli schedule in the server. And also Efrosinin and
Sztrik [15] have done an analysis on the performance of a two server heterogeneous
retrial queue with threshold policy. Stochastic analysis of a single server retrial
queue with general retrial times was done by Gomez-Correl [17]. Moreno [24] has
done an analysis on the retrial queue with recurrent customers and general retrial
times. Artalejo [5] has studied the steady state analysis of the M/G/1 queueing
system with repeated attempts and two phase service Embedded Markov chain
method and generalize both the classical M/G/1 retrial queue and the M/G/1
queue with classical waiting line and second optional service. There are a number
of retrial queues in literature, that were investigated under the constant retrial
policy, for instance [6, 10].

Server vacation models are useful for the systems in which the server wants to
utilize the idle time for different purposes. Over the past two decades, queueing
systems with vacations have been studied by many researchers due to their wide
application in production inventory systems, communication systems, computer
systems, etc. A comprehensive and excellent study on the vacation models can
be found in Takagi [26]. For related literature of retrial queues with vacations,
Li and Yang [23] developed an M/G/1 retrial system with server vacations and
M independent identical input sources. Later Artalejo [2] analyzed an M/G/1
retrial queue with exhausted server vacations that is the server takes a vacation
only when there are no customers in the orbit. Batch arrival Markovian single
server queueing systems with multiple vacations were first studied by Baba [11].
Senthilkumar and Arumuganathan [25] have analyzed single server batch arrival
retrial queue with general vacation time under Bernoulli schedule and two phases
of heterogeneous service. Lee and Srinivas [20] have studied batch arrival queue
with control policy [N-Policy] and vacations. The variations and extensions of these
vacation models can be referred to Lee et al. [21,22] and Krishna Reddy et al. [18].
Later Arumuganathan and Jeyakumar [8] introduced control Policy on request for
re-service for a bulk queue with multiple vacations. They also proposed a cost
model for a practical situation and how the results would be useful in optimizing
the cost. Most of the retrial queueing papers with vacations have analyzed systems
with single type of arrival. However the study of retrial queueing system with
different arrival rates is interesting and not much work in this direction is found
in literature. Based on this observation, we have investigated a retrial queueing
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system with multiple vacations and state dependent arrivals. Here the arrival rates
are different when the system is idle and busy or on vacation.

Our retrial queue has applications in packet-switched network. The router is an
inter connection device that attaches two or more networks in a packet-switched
network, which takes charge of receiving packets and forwarding them to the next
hop, according to the routing information found in its routing table. The pack-
ets arrive at the router according to a Poisson stream. A packet receives service
immediately if the router is idle or it will queue up in the buffer (retrial group).
To keep the router functioning well, some maintenance activities, such as routing
information backup and virus scan is performed when the router is idle. Here two
types of packets arrive (urgent and regular) to the router. When the router is idle
more number of packets is processed, that is the arrival is more and when the sys-
tem is busy or on vacation the arrival is less. In this scenario, buffers in the router,
router retransmission policy and maintenance activities correspond to the queue
and orbit, the server, the retrial discipline and the vacation policy respectively.

2. The mathematical model

In this paper an M/G/1 retrial queueing system with multiple vacations and
different arrival rates is analyzed. The customers arrive according to Poisson pro-
cess with different arrival rates. If the server is busy or on vacation at the arrival
epoch, the customers join the orbit to repeat its request later, whereas if the server
is idle then the arriving customer begins its service immediately. The customers
in the orbit try for service one by one with retrial rate ‘γ’ when the server is idle.
Whenever the system is empty, the server immediately takes a vacation. If there is
at least one customer found waiting in the queue upon returning from a vacation,
the server will be immediately activated for service. The primary arrival rate is λ1

when the server is idle and the primary arrival rate is λ2 when the server is busy
or on vacation (λ1 > λ2).

Let S(x)(s(x)) {S̃ (θ)} [S0(x)] be the cumulative distribution function (proba-
bility density function) {Laplace transform} [remaining service time] of service.
V (x)(v(x)) {Ṽ (θ)} [V 0(x)] be the cumulative distribution function (probability
density function) {Laplace transform} [remaining vacation time] of vacation. N(t)
denotes the number of customers in the orbit at time t.

The server state is denoted as follows.

C(t) =

⎧⎪⎨
⎪⎩

0, if the server is idle

1, if the server is busy

2, if the server is on vacation.

Y (t) = j, if the server is on the jth vacation. The system state probabilities are
defined as follows.

(1) P0n(t) = Pr{N(t) = n, C(t) = 0}, n ≥ 1 is the probability that at time t the
server is idle and the orbit size is n.
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(2) P1n(x, t)dt = Pr{N(t) = n, C(t) = 1, x ≤ S0(t) ≤ x + dt}, n ≥ 0 is the prob-
ability that at time t the server is busy, the orbit size is n and the remaining
service time of the customer under service is between x and x + dt.

(3) Vjn(x, t)dt = Pr{N(t) = n, Y (t) = j, C(t) = 2, x ≤ V0(t) ≤ x + dt}, n ≥ 0,
j ≥ 1 is the probability that at time t the server is on jth vacation, the orbit
size is n and the remaining vacation time of a customer is between x and
x + dt.

3. Steady state queue size distribution

To derive the steady state queue size distribution, the following equations are
obtained using supplementary variable technique.

P0,j(t + Δt) = P0,j(t) (1 − λ1Δt − jγΔt) + P1,j(0, t)Δt

+
∞∑
l=1

Vl,j(0, t)Δt, j ≥ 1

P1,j(x − Δt, t + Δt) = P1,j(x, t) (1 − λ2Δt) + λ2P1,j−1(x, t)Δt

+ (j + 1)γP0,j+1(t)Δt s(x) + λ1P0,j(t) s(x)Δt, j ≥ 0

V1,0(x − Δt, t + Δt) = V1,0(x, t) (1 − λ2Δt) + P1,0(0, t)v(x)Δt

V1,j(x − Δt, t + Δt) = V1,j(x, t) (1 − λ2Δt) + λ2V1,j−1(x, t)Δt, j ≥ 1

Vl,0(x − Δt, t + Δt) = Vl,0(x, t) (1 − λ2Δt) + Vl−1,0(0, t)v(x)Δt, l ≥ 2

Vl,j(x − Δt, t + Δt) = Vl,j(x, t) (1 − λ2Δt) + λ2Vl,j−1(x, t)Δt, j ≥ 1, l ≥ 2.

The steady state equations of the system is derived as

(λ + jγ)P0,j = P1,j(0) +
∞∑

l=1

Vl,j(0), j ≥ 1 (3.1)

− P ′
1,j = −λ2P1,j(x) + λ2P1,j−1(x) + (j + 1)γP0,j+1(0)s(x)

+ λ1P0,j(0)s(x), j ≥ 0 (3.2)

− V ′
1,0(x) = −λ2V1,0(x) + P1,0(0)v(x), (3.3)

− V ′
1,j(x) = −λ2V1,j(x) + λ2V1,j−1(x), j ≥ 1 (3.4)

− V ′
l,0(x) = −λ2V1,0(x) + Vl−1,0(0)v(x), l ≥ 2 (3.5)

− V ′
l,j(x) = −λ2Vl,j(x) + λ2Vl,j−1(x) j ≥ 1. (3.6)
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The Laplace transforms (LT) of P1,j(x), Vl,j(x) are defined as

LT (P1,j(x)) = P̃1,j(θ) =

∞∫
0

e−θxP1,j(x) dx;

LT (Vl,j(x)) = Ṽl,j(θ) =

∞∫
0

e−θxVl,j(x) dx.

Taking Laplace transform on steady state equations (3.2)–(3.6), we have

θP̃1,j(θ) − P1,j(0) = λ2P̃1,j(θ) − λ2P̃1,j−1(θ) − (j + 1)γP0,j+1(0)S̃(θ)

− λ1P0,j(0)S̃(θ) j ≥ 1 (3.7)

θṼ1,0(θ) − V1,0(0) = λ2Ṽ1,0(θ) − P1,0(0)Ṽ (θ) (3.8)

θṼ1,j(θ) − V1,j(0) = λ2Ṽ1,j(θ) − λ2Ṽ1,j−1(θ), j ≥ 1 (3.9)

θṼl,0(θ) − Vl,0(0) = λ2Ṽl,0(θ) − Vl−1,0(0)Ṽ (θ), l ≥ 2 (3.10)

θṼl,j(θ) − Vl,j(0) = λ2Ṽl,j(θ) − λ2Ṽl,j−1(θ), j ≥ 1, l ≥ 2. (3.11)

Lee [19] developed a technique to find the steady state probability generating
function (PGF) of the number of customers in the queue at an arbitrary time
epoch. To apply the technique, the following probability generating functions are
defined.

P0(z) =
∞∑

j=1

P0,j(0)zj

P̃1(z, θ) =
∞∑

j=0

P̃1,j(θ)zj ; P1(z, 0) =
∞∑

j=0

P1,j(0)zj ;

Ṽl(z, θ) =
∞∑

j=0

Ṽl,j(θ)zj ; Vl(z, 0) =
∞∑

j=0

Vl,j(0)zj where |z| ≤ 1. (3.12)

Multiplying equations (3.1), (3.8) and (3.9) by Z0, equations (3.7), (3.9) and (3.11)
by Zn, taking summation from n = 0 to ∞ and using (3.12), we get

λ1P0(z) + γzP ′
0(z) = P1(z, 0) − P1,0(0) +

∞∑
l=1

(Vl(z, 0)− Vl,0(0)) , (3.13)

(θ − λ2 + λ2z) P̃1(z, θ) = P1(z, 0) − γP ′
0(z)S̃(θ) − λ1P0(z)S̃(θ), (3.14)

(θ − λ2 + λ2z) Ṽ1(z, θ) = V1(z, 0) − P1,0(0)Ṽ (θ), (3.15)

(θ − λ2 + λ2z) Ṽl(z, θ) = Vl(z, 0) − Vl−1,0(0)Ṽ (θ). (3.16)
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3.1. Probability generating function of the orbit size

Theorem 3.1. The probability generating function P (z) of number of customers
in orbit is given by

P (z) =
P0(z)

[
λ2

(
z − S̃ (λ2 − λ2z)

)
+ λ1

(
S̃ (λ2 − λ2z) − 1

)]
λ2

[
z − S̃ (λ2 − λ2z)

]

+

[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=1

Vl,0(0) + P1,0(0)
]

λ2

[
z − S̃ (λ2 − λ2z)

] ,

where

P0(z) = P0(1)K(z) + K(z)

z∫
1

g(t)

K(t)γ
[
t − S̃ (λ2 − λ2t)

]dt,

and

K(z) = exp

[
−λ1

γ

∫ z

1

[
S̃ (λ2 − λ2u) − 1
u − S̃ (λ2 − λ2u)

]
du

]
,

g(z) =
[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=1

Vl,0(0) + P1,0(0)

]
.

Proof. The probability generating function P (z) of number of customers in orbit
at an arbitrary epoch can be expressed as follows,

P (z) = P0(z) + P̃1(z, 0) +
∞∑
l=1

Ṽl(z, 0) (3.17)

Using equation (3.13)–(3.16) we derive the expressions for P0(z), P̃1(z, 0), Ṽl(z, 0)
as (complete derivation is given in appendix),

P0(z) = P0(1)K(z) + K(z)

z∫
1

g(t)

K(t)γ
[
t − S̃ (λ2 − λ2t)

]dt (3.18)

where K(z) = exp

[
−λ1

γ

z∫
1

[
S̃ (λ2 − λ2u) − 1
u − S̃ (λ2 − λ2u)

]
du

]
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and g(z) =
[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=1

Vl,0(0) + Pl,0(0)
]
.

P̃1(z, 0) =

[
S̃ (λ2 − λ2z) − 1

]
[λ1P0(z) + γP ′

0(z)]

(−λ2 + λ2z)
, (3.19)

Ṽ1(z, 0) =

[
Ṽ (λ2 − λ2z) − 1

]
P1,0(0)

(−λ2 + λ2z)
, (3.20)

Ṽl(z, 0) =

[
Ṽ (λ2 − λ2z) − 1

]
Vl−1,0(0)

(−λ2 + λ2z)
· l ≥ 2 (3.21)

Substituting (3.18)–(3.21) in equation (3.17) we get

P (z) =
P0(z)

[
λ2

(
z − S̃ (λ2 − λ2z)

)
+ λ1

(
S̃ (λ2 − λ2z) − 1

)]
λ2

[
z − S̃ (λ2 − λ2z)

]

+

[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=1

Vl,0(0) + P1,0(0)
]

λ2

[
z − S̃ (λ2 − λ2z)

] (3.22)

where P0(z) is given by equation (3.18). �

3.2. Stability condition

The probability generating function P (z) has to satisfy the condition
lim
z→1

P (z) = 1. In order to satisfy this condition L’Hospitals rule is applied to equa-

tion (3.22). Since P1,0(0) and
∑∞

l=1 Vl,0(0) are probabilities the numerator of P (z)
is positive when z → 1. So lim

z→1
P (z) = 1 is satisfied only if ρ = λ2E(s) < 1. Thus

ρ < 1 is the condition to be satisfied for the existence of steady state for the model
under consideration.

3.3. Computational aspects of unknown constant

In this section the unknown constant is expressed in terms of known constant.
Since the model under consideration is an M/G/1 retrial queue it should have
only one unknown constant in P (z), but it has two unknowns. So to express the
unknown constant namely q0 in terms of known constant p0, the following theorem
is used.

Theorem 3.2. If αn is the probability of n customers arriving during a vacation
then, q0 = α0p0

1−α0
where q0 =

∑∞
l=1 Vl,0(0) and p0 = p1,0(0).
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Proof. Using
∞∑
l=1

Vl,0 = q0, p1,0(0) = p0 equations (A.4), (A.6), simplifies to

∞∑
l=1

Vl(z, 0) =
∞∑
l=1

∞∑
n=0

Vl,n(0)zn

= Ṽ (λ2 − λ2z)

[ ∞∑
l=1

Vl,0(0) + P1,0(0)

]

=
∞∑

n=0

αnzn [q0 + p0] .

Equating the constant terms on both sides of the above equation we have

q0 = α0 (p0 + q0) .

∴ q0 =
α0p0

1 − α0
. (3.23)

Hence the theorem. �

4. Performance characteristics

In this section, some useful performance measures of the proposed model like,
expected number of customers in the orbit, expected number of customers in the
system, probability that the server is idle, probability that the server is busy and
the probability that the server is on vacation are derived.

4.1. The mean number of customers in the orbit

The expected number of customers in the orbit is derived using probability
generating function (3.22) and LQ = E(N(t)) = lim

z→1

d
dz P (z),

LQ =
S2 [P0(1) (λ2 (1 − λ2E(s)) + λ1λ2E(s)) + (q0 + p0)λ2E(v)]

2λ2 [1 − λ2E(s)]2

+
[1 − λ2E(s)]

[
2P ′

0(1) (λ2 (1 − λ2E(s)) + λ1λ2E(s))

2λ2 [1 − λ2E(s)]2

+
P0(1) (−λ2S2 + λ1S2) + (q0 + p0)V2

]
2λ2 [1 − λ2E(s)]2

, (4.1)
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where

S2 = λ2E(s) + λ2
2E

(
s2

)
,

V2 = λ2E(v) + λ2
2E

(
v2

)
,

q0 =
∞∑
l=1

Vl,0(0), p0 = p1,0(0),

P0(1) =
1 − λ2E(s) − E(v) (q0 + p0)

[1 + E(s) (λ1 − λ2)]
, (4.2)

P ′
0(1) =

λ1λ2E(s) + λ2E(v) (q0 + p0)
γ [1 + E(s) (λ1 − λ2)]

· (4.3)

4.2. Expected number of customers in the system

The probability generating function of the numbers of customers in the system
is obtained as follows using equations (3.18)–(3.21).

π(z) = P0(z) + Z
(
P̃1(z, 0)

)
+

∞∑
l=1

Ṽl(z, 0),

=
P0(z)

[
λ2

(
z − S̃ (λ2 − λ2z)

)
+ λ1z

(
S̃ (λ2 − λ2z) − 1

)]
λ2

[
z − S̃ (λ2 − λ2z)

]

+

[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=1

Vl,0(0) + P1,0(0)
]

λ2

[
z − S̃ (λ2 − λ2z)

] · (4.4)

Using equation (4.4) the mean number of customers in the system is derived as

Ls = lim
z→1

d
dz

π(z)

= LQ +
P0(1)λ1ρ

2 (1 − ρ)
, (4.5)

where P0(1) is given by equation (4.2).

4.3. Probability that the server is idle

Let I be the idle period random variable and let P (I) be the probability that
the server is idle at time t. Using equation (3.18) and applying lim z → 1, we get
the probability that the server is idle at time t as,

P (I) =
1 − ρ − E(v) (q0 + p0)
[1 + E(s) (λ1 − λ2)]

· (4.6)
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4.4. Probability that the server is busy

Let B be the busy period random variable and P (B) be the probability that
the server is busy at time t. Using equation (3.19) and applying lim z → 1, we get
the probability that the server is busy at time t as

P (B) =
E(s) [λ1 + (λ2 − λ1)E(v) (q0 + p0)]

[1 + E(s) (λ2 − λ1)]
· (4.7)

4.5. Probability that the server is on vacation

Let V be the random variable for multiple vacations and P (V ) be the probability
that the server is on multiple vacations at time t. Using equations (3.20) and (3.21)
and applying limit z → 1, we get the probability that the server is on vacation at
time t as,

P (V ) =
E(v) (q0 + p0)

[1 + E(s) (λ1 − λ2)]
· (4.8)

5. Particular case

In this section, a particular case of the proposed model is presented. If theserver
does not avail multiple vacations and arrival rates are same, that is Ṽ (λ2−λ2z) = 1
and λ1 = λ2 = λ, then equation (3.22) reduces to

P (z) =
P0(z)(z − 1)[

z − S̃ (λ2 − λ2z)
] · (5.1)

This equation exactly coincides with the result of orbit size distribution of Mx/G/1
retrial queueing system by Falin and Templeton [16] when the arrival is not batch
arrival.

6. Special cases

Further, by specifying service time random variables as Exponential, Erlang
and Hyper Exponential distribution, some special cases of the proposed model are
discussed below:

Case (i): Single server retrial queue with Exponential service time, multiple vaca-
tions and different arrival rates.

If the service time is assumed to be exponential with probability density function
s(x) = ue−ux, where u is the parameter, then

S̃ (λ2 − λ2z) =
(

u

u + λ2(1 − z)

)
. (6.1)
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Substituting (6.1) in (3.22), the PGF of the retrial queue size distribution for the
single server retrial queue with multiple vacations and different arrival rates is
given by

P (z) =
P0(z) [λ2 {z − (u/ (u + λ2(1 − z)))} + λ1 {(u/ (u + λ2(1 − z))) − 1}]

λ2 [z − (u/ (u + λ2(1 − z)))]

+

[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=0

Vl,0(0) + P1,0(0)
]

λ2 [z − (u/ (u + λ2(1 − z)))]
, (6.2)

where

P0(z) = P0(1)K(z) + K(z)

z∫
1

g(t)
K(t)γ [t − (u/ (u + λ2(1 − t)))]

dt,

K(z) = exp

⎧⎨
⎩−λ1

γ

z∫
1

[
(u/ ((u + λ2(1 − z)) − 1))
z − (u/ (u + λ2(1 − z)))

]
dz

⎫⎬
⎭ ,

and g(z) =
[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=1

Vl,0(0) + P1,0(0)
]
.

Case (ii): Single server retrial queue with Erlang service time, multiple vacations
and different arrival rates.

If the service time is assumed to be Erlang with probability density function
s(x) = (k u)kxk−1e−k u x

(k−1)! , k > 0 where u is the parameter then,

S̃ (λ2 − λ2z) = [u k/ (u k + (λ2 − λ2z))]k . (6.3)

Substituting (6.3) in (3.22), the PGF of the retrial queue size distribution for single
server retrial queue with multiple vacations and different arrival rates is given by

P (z) =
P0(z)

[
λ2

{
z−[u k/(u k+(λ2−λ2z))]k

}
+λ1

{
[ u k/(u k+(λ2−λ2z))]k−1

}]
λ2

{
z − [u k/ (u k + (λ2 − λ2z))]k

}

+

[
Ṽ (λ2 − λ2z) − 1

] [ ∞∑
l=0

Vl,0(0) + Pl,0(0)
]

λ2

{
z − [u k/ (u k + (λ2 − λ2z))]k

} · (6.4)

Case (iii): Single server retrial queue with Hyper Exponential service time, multiple
vacations and different arrival rates.

If the service time is assumed to be Hyper Exponential with probability density
function s(x) = c u e−u x + (1 − c)c u e−w x then

S̃ (λ2 − λ2z) = [u c/ (u + (λ2 − λ2z))] + [w(1 − c)/ (w + (λ2 − λ2z))] . (6.5)

Substituting (6.5) in (3.22), the PGF of the retrial queue size distribution for single
server retrial queue with multiple vacations and different arrival rates is obtained.
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Table 1. Retrial rate γ verses mean orbit size LQ. (λ1 = .8, λ2 = .4).

γ
Exponential Erlang-2 Hyper exponential

LQ LQ LQ

1 0.7081 0.8469 0.8820
2 0.4575 0.5345 0.5586
3 0.3740 0.4304 0.4508
4 0.3322 0.3783 0.3969
5 0.3072 0.3471 0.3646
6 0.2905 0.3263 0.3430
7 0.2785 0.3114 0.3276
8 0.2696 0.3002 0.3161
9 0.2626 0.2915 0.3071
10 0.2570 0.2846 0.2999
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Figure 1. Retrial rate γ verses mean orbit size LQ.

7. Numerical results

In this section, to justify the theoretical results obtained, we present some nu-
merical results. Here the effects of the arrival rates λ1, λ2 and retrial rate γ on the
mean orbit size LQ are analyzed with the following assumptions and notations:
(i) average arrival rate when the system is idle λ1;
(ii) average arrival rate when the system is busy or on vacation λ2;
(iii) service rate μ;
(iv) vacation duration is exponential with parameter η;
(v) retrial rate γ.

Table 1 and Figure 1 represent the effect of retrial rate γ on the mean orbit size.
The service times are considered as exponential, Erlang-2 and hyper exponential
with parameters λ1 = .8, λ2 = .4, μ = 7 and η = 2 it is observed that the mean
orbit size is decreasing when the retrial rate increases.
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Table 2. Arrival rate λ1 verses mean orbit size LQ. (γ = 5, λ2 = .1).

λ1
Exponential Erlang-2 Hyper exponential

LQ LQ LQ

.2 0.0716 0.0737 0.0746

.3 0.0727 0.0762 0.0777

.4 0.0738 0.0789 0.0809

.5 0.0750 0.0816 0.0842

.6 0.0762 0.0845 0.0877

.7 0.0774 0.0875 0.0913

.8 0.0787 0.0906 0.0951

.9 0.0799 0.0939 0.0989
1.0 0.0812 0.0972 0.1030
1.1 0.0826 0.1007 0.1072
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Figure 2. Arrival rate λ1 verses mean orbit size LQ.

Table 2 and Figure 2 represent the effect of arrival rate λ1 (when the system is
idle). Considering the service times as exponential, Erlang-2 and hyper experiential
with parameters γ = 5, μ = 7, η = 2 and λ2 = .1 it is observed that the mean
orbit size is increasing when the arrival rate λ1 increases.

Table 3 and Figure 3 represent the effect of arrival rate λ2 (when the server
is busy or on vacation) on the mean orbit-size. Considering the service times as
exponential, Erlang-2 and hyper exponential with parameters γ = 5, μ = 7, η = 2
and λ1 = 1.1, it is observed that mean orbit size is increasing when the arrival
rate λ2 increases.

8. Conclusion

In this paper a single server retrial queue with multiple vacations and different
arrival rates is analyzed under the condition of stability. Some system performance
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Table 3. Arrival rate λ2 verses mean orbit size LQ. (γ = 5, λ1 = 1.1).

λ2
Exponential Erlang-2 Hyper exponential

LQ LQ LQ

.1 0.0826 0.1007 0.1072

.2 0.1638 0.1986 0.2115

.3 0.2438 0.2938 0.3132

.4 0.3225 0.3865 0.4125

.5 0.3999 0.4768 0.5095

.6 0.4762 0.5650 0.6045

.7 0.5512 0.6510 0.6979

.8 0.6252 0.7353 0.7897

.9 0.6980 0.8179 0.8804
1.0 0.7697 0.8990 0.9703
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Figure 3. Arrival rate λ2 verses mean orbit size LQ.

measures, such as mean orbit size, mean system size, probability that the server
is idle, probability that the server is busy and the probability that the server is on
vacation are obtained. The effect of the parameters on the performance measures
are illustrated graphically. Numerical illustrations are also presented.

Appendix A

The derivation of equations (3.18)–(3.21).
From equation (3.13) we have

P ′
0(z) =

λ1

γ
P0(z)

[
S̃ (λ2−λ2z)−1

]
[
z−S̃ (λ2−λ2z)

] +
1
γ

[
Ṽ (λ2−λ2z)−1

]
[
z−S̃ (λ2−λ2z)

]
[ ∞∑

l=1

Vl,0(0)+P1,0(0)

]
.
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This is a linear type of equation. On solving this equation for P0(z) we have

P0(z) = P0(1)K(z) + K(z)

z∫
1

g(t)

K(t)γ
[
t − S̃ (λ2 − λ2t)

]dt, (A.1)

where

K(z) = exp

⎧⎨
⎩−λ1

γ

z∫
1

[
S̃ (λ2 − λ2u) − 1
u − S̃ (λ2 − λ2u)

]
du

⎫⎬
⎭ .

g(z) = [Ṽ (λ2 − λ2z) − 1][
∞∑
l=1

Vl,0(0) + Pl,0(0)] which is equation (3.18).

From equation (3.14) we have

(θ − λ2 − λ2z) P̃1(z, θ) = P1(z, 0)− γP ′
0(z)S̃(θ) − λP0(z)S̃(θ).

Substituting θ = λ2 − λ2z in the above equation we have

P1(z, 0) = λ1P0(z)S̃ (λ2 − λ2z) + γP ′
0(z)S̃ (λ2 − λ2z) . (A.2)

Substituting for P1(z, 0) from (A.2) into equation (3.14) we have

P̃1(z, 0) =

[
S̃ (λ2 − λ2z) − 1

]
[λ1P0(z) + γP ′

0(z)]

(−λ2 + λ2z)
(A.3)

which is equation (3.19).
From equation (3.15) we have

(θ − λ2 + λ2z) Ṽ1(z, θ) = V1(z, 0) − P1,0(0)Ṽ (θ).

Substituting θ = λ2 − λ2z in the above equation we have

V1(z, 0) = P1,0(0)Ṽ (λ2 − λ2z) . (A.4)

Substituting for V1(z, 0) from (A.4) into equation (3.15) we have

Ṽ1(z, 0) =

[
Ṽ (λ2 − λ2z) − 1

]
P1,0(0)

(−λ2 + λ2z)
(A.5)

which is equation (3.20).
From equation (3.16) we have

(θ − λ2 + λ2z) Ṽl(z, θ) = Vl(z, 0)− Vl−1,0(0)Ṽ (θ).

Substituting θ = λ2 − λ2z in the above equation we have

Vl(z, 0) = Vl−1,0(0)Ṽ (λ2 − λ2z) . (A.6)

Substituting for Vl(z, 0) from (A.6) into equation (3.16) we have

Ṽl(z, 0) =

[
Ṽ (λ2 − λ2z) − 1

]
Vl−1,0(0)

(−λ2 + λ2z)
(A.7)

which is equation (3.21).
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