
RAIRO-Oper. Res. 49 (2015) 569–588 RAIRO Operations Research

DOI: 10.1051/ro/2014056 www.rairo-ro.org

VIRTUAL PRIVATE NETWORK DESIGN
OVER THE FIRST CHVÁTAL CLOSURE

Ahmad Moradi
1
, Andrea Lodi

2
and S. Mehdi Hashemi

1

Abstract. In this paper we consider the virtual private network
(VPN) design problem. Given upper bounds on the amount of traf-
fic that an endpoint could send or receive, the problem needs to reserve
enough capacities in such a way that any demand matrix that respects
the upper bound could be routed without exceeding the reserved ca-
pacities and the total reservation cost is minimized. In On the difficulty
of virtual private network instances (Networks 63 (2014) 327–333),
we argued that the computational investigation on exact mathemat-
ical programming approaches for VPN needs to be revised after that
challenging instances have been exposed. To that end, we consider the
VPN design problem over the first Chvátal closure and demonstrate
that tight solutions could be found for the VPN design problem only
by optimizing over the closure. First, we perform theoretical investi-
gation on adding rank-1 Chvátal–Gomory cuts to the problem. Along
the way, an important property for such cuts is proved that omits a
large number of redundant rank-1 cuts. We then provide interesting
insights about the problem and reduce the existing MIP formulations
to a binary one. On the computational side, we investigate the idea of
adding rank-1 cuts more aggressively in order to computationally eval-
uate tightness of the first Chvátal closure for the VPN design problem.
Here, the binary reduction plays an important role allowing the use of
special cuts of the first closure, namely the zero-half cuts. We show that,
almost all the success of the first Chvátal closure of the VPN design
problem in raising dual bound is due to zero-half cuts. Our experiments
on the benchmark instances in this article show that a state-of-the-art
IP solver without using zero-half cuts could not even hit the challenging
benchmarks. As a results a cut-and-branch framework that aggressively

Received June 26, 2014. Accepted November 5, 2014.

1 Department of Mathematics and Computer Science, Amirkabir University of Technology,
No. 424, Hafez Avenue, Tehran, Iran. moradi@aut.ac.ir; hashemi@aut.ac.ir
2 DEI, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.
andrea.lodi@unibo.it

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2015

http://dx.doi.org/10.1051/ro/2014056
http://www.rairo-ro.org
http://www.edpsciences.org

570 A. MORADI ET AL.

adds such cuts at the root could solve the challenging VPN instances
to the extent of zero or small integrality gap in a reasonable amount of
time.

Keywords. Binary formulation, Chvátal-Gomory closure, cutting
planes, computational analysis, VPN design problem.

Mathematics Subject Classification. 90C10, 90C11, 90C57.

1. Introduction

As a business grows, it might expand to geographically diverse sites, offices and
remote employees that need to share information in a fast and secure way. One
popular technology to address this requirement is to use a virtual private network.
By means of this technology distant parts of the business could be connected into
a common network and communicate via secured tunnels.

A virtual private network (VPN) extends a private network across a public
network, such as the Internet. It enables a computer to send and receive data
across shared or public networks as if it were directly connected to the private
network, while benefiting from the functionality, security and management poli-
cies of the private network [22]. The base motivation for VPNs lies in the eco-
nomics of communications. Nowadays communications systems typically exhibit
the characteristic of a high fixed-cost component, and smaller variable-cost compo-
nents that vary with the transport capacity, or bandwidth, of the system. Within
this economic environment, it is generally financially attractive to bundle numerous
discrete communications services onto a common, high-capacity communications
platform, allowing the high fixed-cost component associated with the platform to
be amortized over a larger number of network clients [12].

In this paper, we consider a real-world network design problem that occurs
while provisioning virtual private networks. In a basic network design problem, we
are usually given a (traffic) demand matrix and we want to determine how much
capacity is needed and how to economically distribute it in the network to address
some routing/flow constraints [26]. Here, it is usually assumed that the demand
matrix is fixed and known. This simplification comes at a price as, in real world,
traffic demands may be uncertain or rapidly changing. A practical way to address
this issue is to overestimate demand values, at the price of network resources such
as the installed capacities being largely wasted. Fortunately, there is still other
more flexible way to address this issue through the so-called hose model. The hose
model is originally introduced in [9] in the context of virtual private networks.
In this model only upper bounds on the amount of traffic arriving/leaving each
endpoint is considered to be known in advance. Let us call the upper bounds
hose thresholds. The model allows for changes in demand matrix as the traffic on
an endpoint could be arbitrarily distributed over the other endpoints. Then, the
capacity reserved on the network must support any demand matrix that respects
the hose thresholds.

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 571

In the VPN design problem, given the hose thresholds on some endpoints, we
need to reserve enough capacities in such a way that any demand matrix that
respects the thresholds could be routed without exceeding the reserved capacities
and the total reservation cost is minimized. As customary in network design, the
VPN design problem is considered in many variants when different routing re-
strictions (splittable, unsplittable) are imposed or different cost structures (linear,
nonlinear) are considered. An interested reader is referred to [24] for a structured
review on different variants of the VPN design problem. The version we refer to
in this paper, called asymmetric VPN design problem, is formally defined below.

In the following we use the same notation used in [23]. In an instance of the
asymmetric VPN design problem, we are given an undirected graph G = (V, E)
and a nonempty terminal set T ⊂ V . Each edge {i, j} ∈ E has a per-unit capacity
reservation cost cij ≥ 0 and each terminal node s ∈ T has associated hose non-
negative thresholds b+

s and b−s specifying the maximum amount of traffic that the
terminal node may send and receive, respectively. Let S = {(s, t) : s, t ∈ T, s �= t}
be the set of all ordered pairs of distinct terminal nodes and dst be a nonnegative
demand assigned to a terminal pair (s, t).

• Let d = {dst ≥ 0 : ∀(s, t) ∈ S} be a traffic assignment over the underlying
network. Such a traffic assignment is called valid (e.g., [18]) if it respects hose
thresholds, i.e., ∑

(s,t)∈S

dst ≤ b+
s ,

∑
(t,s)∈S

dts ≤ b−s , ∀s ∈ T. (1.1)

• For every (s, t) ∈ S, the traffic dst is allowed to be routed only on a simple path
from s to t, say Pst. The set of such paths, P = {Pst : ∀(s, t) ∈ S}, is called a
path assignment over the network. When multiple path routing is allowed such
set is called multiple path assignment. In this paper we consider the problem
under single path routing restriction. The problem in the presence of multiple
path routing is polynomially solvable [24].

• Let x = {xij}{i,j}∈E be a capacity reservation over the underlying network. Hav-
ing x installed, we say a traffic assignment d could be feasibly routed along P , if
the amount of capacity needed on an edge {i, j} after sending traffic demands
(each along its corresponding path) does not exceed xij .

Given as input the underlying network G, the terminal set T and the capacity
reservation cost vector c, the task in the VPN design problem (e.g., [11]) is to
find a capacity reservation x and a path assignment P such that all possible valid
traffic assignments can be feasibly routed along P and the total cost, given by∑

{i,j}∈E cijxij , is minimized.
The asymmetric VPN design problem is NP-hard (e.g., [18]). We will omit the

world asymmetric whenever it causes no ambiguity. Most of the research on the
problem has been dedicated to design approximation algorithms among which we
mention [17]. As noted in [23], very little attempt has been made to tackle the prob-
lem with exact mathematical programming approaches. The only computational

572 A. MORADI ET AL.

attempt to solve the VPN design problem is carried out in [1], where a compact
mixed-integer linear programming (MIP) model is developed and claimed, through
computational experiments, to be practically tight. This perception had left mod-
erate interest in the research community for exact mathematical programming
approaches to VPN until a challenging family of benchmark instances with large
integrality gap and computationally hard for current mixed-integer programming
solvers has been proposed in [23].
Paper Contribution. In the present study, we are interested in rank-1 cutting
planes, i.e., cuts that can be derived applying a separation procedure to a sin-
gle constraint, often called base inequality, obtained by combining only the con-
straints in the original formulation (e.g., [6] for formal definitions and details).
More precisely, we are interested in the aggressive application of rank-1 cuts so as
to close a large fraction of integrality gap as shown in [3,4,8,14]. In particular, we
demonstrate that tight solutions could be found for the VPN design problem only
by optimizing over the first Chvátal closure [6, 15]. More precisely, we first study
the so-called Chvátal–Gomory (CG) separation problem formulated in [4, 14] as
a mixed-integer linear programming problem. Having the existing compact for-
mulation at hand, we then draw out an important property of a valid rank-1
Chvátal–Gomory cut for the VPN design problem. As a result of this property we
show that the associated CG separation problem of the existing compact formu-
lation can only produce redundant valid rank-1 inequalities. Finally, we tighten
the compact formulation and reduce it to a binary formulation. On that new for-
mulation CG separation is instead very effective and we perform a computational
investigation on the idea of adding rank-1 cuts more aggressively within a pure
cutting plane method. The computational investigation clearly shows that the
binary reduction plays an important role by allowing MIP solvers to effectively
separate and use special cuts of the first closure, namely the zero-half cuts [5].
Even more, we show that when a huge number of rank-1 cuts are allowed to be
added to the VPN binary formulation, it is enough to only add zero-half ones.
As a result a cut-and-branch framework that aggressively adds rank-1 cuts at the
root can successfully solve the challenging VPN instances to the extent of zero or
small integrality gap in a reasonable amount of time.
Paper Organization. In Section 2 the existing compact formulation for the VPN de-
sign problem is reviewed and the CG separation problem for it is discussed. In
Section 3 we show that the compact MIP formulation can be reduced to a pure
binary programming problem. This reduction makes the use of CG cutting planes
viable and leads to a generic cutting plane method for the VPN design problem.
In Section 4 we discuss adding rank-1 cuts more aggressively and finally in Sec-
tion 5 we computationally evaluate the strength of the first Chvátal closure for
the VPN design problem.

2. Compact MIP formulation and CG separation

Following [1] the VPN design problem can be modeled as a mixed-integer linear
programming problem by using directed multicommodity flows. Let us orient the

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 573

undirected graph G = (V, E) by defining two arcs (i, j) and (j, i) for each edge
{i, j} ∈ E. Also, define the arc set A = {(i, j), (j, i) : {i, j} ∈ E} and let y = {yst

ij :
∀(s, t) ∈ S, ∀(i, j) ∈ A} be a set of binary variables where

yst
ij =

{
1 if arc (i, j) ∈ A is used to route demand dst

0 otherwise.

Note that any path assignment P is equivalent to a unique y satisfying the flow
conservation constraints∑

j:(i,j)∈A

yst
ij −

∑
j:(j,i)∈A

yst
ji =

⎧⎨
⎩

+1 i = s
−1 i = t
0 otherwise.

∀i ∈ V, ∀(s, t) ∈ S (2.1)

Imposing such constrains will ensure demand satisfaction by imposing a unit flow
between each oriented pair of terminals. Once a path assignment has been selected,
i.e., values for the corresponding y vector have been set, the required capacity xij

on an edge {i, j} could be computed by means of the linear program

xij = max

{ ∑
(s,t)∈S

dst

(
yst

ij + yst
ji

)
:

∑
(s,t)∈S

dst ≤ b+
s ,

∑
(t,s)∈S

dts ≤ b−s ∀s ∈ T and dst ≥ 0 ∀(s, t) ∈ S

}
. (2.2)

Then, the capacity xij installed on the edge {i, j} is sufficient to carry the total
traffic flowing through it. By strong duality this is equivalent to

xij = min
∑
s∈T

(
b+
s ωs+

ij + b−s ωs−
ij

)
(2.3)

yst
ij + yst

ji − ωs+
ij − ωt−

ij ≤ 0 ∀(s, t) ∈ S, (2.4)

where ωs+
ij , ωs−

ij are the dual variables associated with constraints (1.1). Putting all
together, we have the following compact formulation for the VPN design problem.
(The reader is referred to [1] for more details.)

(VPN) min
∑

{i,j}∈E

cij

∑
s∈T

(
b+
s ωs+

ij + b−s ωs−
ij

)
(2.5)

∑
(i,j)∈A

yst
ij −

∑
(j,i)∈A

yst
ji =

⎧⎨
⎩

+1 i = s
−1 i = t
0 otherwise

∀i ∈ V, ∀(s, t)∈S. (2.6)

yst
ij + yst

ji − ωs+
ij − ωt−

ij ≤ 0 ∀{i, j} ∈ E, ∀(s, t) ∈ S (2.7)

yst
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀(s, t) ∈ S (2.8)

ωs+
ij , ωs−

ij ≥ 0 ∀{i, j} ∈ E, ∀s ∈ T. (2.9)

Some effort (with limited success) to derive problem-specific inequalities to im-
prove the linear programming (LP) relaxation of the above model has been at-
tempted in [1]. In this situation where problem specific investigations have failed,

574 A. MORADI ET AL.

general mixed-integer programming techniques might still be helpful. One such
general and effective ideas, as discussed in [14], suggests optimizing a problem
over the first Chvátal closure. The closure could be obtained by adding all rank-1
Chvátal–Gomory cuts [6, 15] to the LP relaxation of the problem. This approach
was then extended to a mixed-integer program by projecting onto the space of
integer variables and then deriving CG cuts for the projected problem [4]. This
way the generated cuts are called projected Chvátal–Gomory (pro-CG) cuts. Ex-
periments reported in [14] for pure integer linear programming problems (IPs) and
in [4] for MIPs show that the first Chvátal closure often gives a surprisingly tight
approximation of the (mixed-)integer hull. Because the above formulation of VPN
is a MIP, we then concentrate on pro-CG cuts but, where no ambiguity exists, we
will use both CG and pro-CG indifferently.

Optimizing over the first Chvátal closure is equivalent to a separation problem
called CG-separation problem [14]. Given a point (ẏ, ω̇), the separation problem
asks for a CG cut that is (maximally) violated by (ẏ, ω̇) or a certificate that the
point is in the closure. In our case, separating any point in the LP relaxation is
enough since the LP relaxation is compact and any other point could be separated
by simple enumeration. In the following we will study the possibility of finding
effective rank-1 CG cuts by solving the CG-separation problem.

Let P be the feasible solution space of the above (VPN) MIP formulation.
Also let P ′ be the polytope obtained by projecting P onto the space of integer
variables. Then, any inequality valid for P ′ is also valid for P. Following the
general framework in [4, 14], one can add rank-1 CG cuts for the polytope P ′ by
solving the CG-separation problem (modeled) as a mixed-integer linear program.
It will be shown in the following that useful rank-1 inequalities for P ′ must use
ω variables unless they will be redundant. As a result, pro-CG cuts that have
null coefficients on the continuous ω variables are redundant for the classical MIP
formulation of VPN. To show that, first observe the following.

Lemma 2.1. P ′ is in an integral polyhedron.

Proof. It suffices to show that constraints (2.7) do not have any impact on the
projection of P onto the space of y variables. In fact, if y is taken as to satisfy (2.6)
and (2.8), then one can always choose ω as to satisfy (2.7) and (2.9) by just
taking ω big enough. This implies that the projection of P onto the y-space
coincides with (2.6) and (2.8). On the other hand, constraints from (2.6) defines
a totally unimodular system (it is simply a flow polytope). Then, the polytope
defined by (2.6) and nonnegativity is integral. �

As an important consequence of the above discussion, we have the following
fundamental property of pro-CG cuts, which shows that they are useless for VPN.

Corollary 2.2. A valid rank-1 CG-cut for the VPN design problem that only uses
flow variables is redundant.

The discussion in this section clearly shows that the classical (compact) MIP
formulation for the VPN design problem does not benefit from pro-CG cuts, i.e.,

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 575

the pro-CG closure does not close any integrality gap. In the next section we
prove that the (VPN) MIP formulation can be reduced to a pure IP one, thus
being in a position of reconsidering CG cuts. We further reduce the IP formulation
to a binary programming problem, which largely benefits from rank-1 cuts, and
especially zero-half cuts [5].

3. Binary formulation

In this section we study the (VPN) model and prove that it could be reduced
to a pure IP. More precisely, by substituting (2.9) with

ωs+
ij , ωs−

ij ∈ {0, 1}, ∀{i, j} ∈ E, ∀s ∈ T (3.1)

we will still contain any feasible solution. In the following we first prove that the
(VPN) model could be reduced to a pure integer program and then we show that
ω variables in this IP model could be further restricted to be in {0, 1}.

Let us start with an insightful and intuitive discussion. A feasible solution (ẏ, ω̇)
to the (asymmetric) VPN design problem is a set of simple paths each of which
corresponds exactly to an existing terminal pair. Now consider an edge {i, j} se-
lected by the solution, i.e., the capacity installed on the edge is strictly greater
than zero. Since the solution is feasible, the minimum amount of capacity installed
on it will be given by

(Capacity)max

⎧⎨
⎩

∑
(s,t)∈S

dst

{
ẏst

ij +ẏst
ji

}
: (1.1) and ∀(s, t) ∈ S dst≥0

⎫⎬
⎭ (3.2)

with which we maximize the amount of capacity needed on the edge when a valid
traffic is being routed. Note that the model (Capacity) above is written for a
fixed edge {i, j} ∈ E. The above model is a transportation problem and indeed has
totally unimodular coefficient matrix. Let hij be the cost vector of the (Capacity)
model, i.e., hst

ij = ẏst
ij + ẏst

ji , ∀(s, t) ∈ S, which is an integer vector. The LP given
by the (Capacity) model is bounded and then from linear programming theory,
optimal dual multipliers of the LP could be computed as

ωij = (h)BB−1, (3.3)

where B is an optimal basis of the LP. By unimodularity (of Capacity), B−1

is an integer matrix and so does the optimal multipliers vector. Furthermore, we
know that those multipliers are (by definition of dual) always nonnegative. Now
by setting the value of ω̇ := (ωij) the new solution is still feasible in (VPN) and
costs no more than the original solution.

By means of the above discussion, (VPN) model reduces to a pure integer
program as the capacity needed by the path assignment (given by the vector of
y variables) could be computed only using an integer vector of ω variables. This
observation is formally demonstrated below.

Lemma 3.1. The (VPN) MIP formulation could be reduced to a pure integer
formulation.

576 A. MORADI ET AL.

Proof. For a fixed integral ẏ, the system in the ω variables is totally unimodular
as it could be simply observed by using the classical Ghouila-Houri technique [19],
where one puts all ω+ variables in one set, and all ω− in the other. Totally uni-
modularity of the system in turn shows that for the given integral ẏ, the optimum
could always be achieved at an integral ω̇. �

Now, we could state the main result.

Theorem 3.2. The model (VPN) could be reduced to a 0 − 1 integer program
where ω ∈ {0, 1}.
Proof. Let the IP version of (VPN) model be denoted by (VPN-I). Consider a
feasible solution (ẏ, ω̇) to the (VPN-I) formulation, then ω̇ is an integer vector and
it remains only to prove that ω̇ ∈ {0, 1}. We observe that the vector y represents
a path assignment containing only simple paths. Thus,

ẏst
ij + ẏst

ji ∈ {0, 1}, ∀{i, j} ∈ E, ∀(s, t) ∈ S (3.4)

and, because of (2.7), any entry of ω̇ with value more than 1 could be decreased
to 1 without destroying feasibility. This operation does not also increase the cost
as the hose thresholds are assumed to be nonnegative. �

As a simple consequence, integrality of ω variables (as we proved through
Lem. 3.1 and Thm. 3.2) together with (2.3) simply shows that when the hose
thresholds are integer, the optimal solution reserves integer capacities on any edge.
This proves parts of the observations in [1].

Corollary 3.3. When hose thresholds are integer, the VPN design problem always
admits an integer optimal capacity reservation.

The binary formulation of the VPN problem is stronger than the previous MIP
formulation because the domain of ω variables is reduced from [0,∞] to {0, 1}.
Then, the linear programming relaxation of the binary formulation is (strictly)
included in the linear relaxation of the original MIP formulation. However, note
that any solution of the LP relaxation of the MIP formulation corresponds to
a multiple path assignment. In the presence of multiple path routing, the right-
hand-side of (3.4) (the term ẏst

ij + ẏst
ji) still remains less than or equal to 1. Now,

by using (2.7) one can simply reduce a solution of the LP relaxation of the MIP
formulation to a solution of the LP relaxation of the binary formulation at no
more cost. Therefore, the LP relaxation of both MIP and BP formulations have
the same optimal value.

We note that theoretical results in this paper are heavily depended to unimodu-
larity property inside the VPN design problem. To the best of our knowledge, this
is the first time that the role of totally unimodularity for the VPN design problem
is addressed. This naturally calls for further attempts to specially concentrate on
this property and its consequences for the VPN design problem.

Let the binary formulation of the VPN problem be denoted by (VPN-B). Here,
given a point (ẏt, ω̇t) to be separated, feasible space of the CG-separation MIP

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 577

(see [14]) associated with the (VPN-B) model will contain valid inequalities like
αẏ+βω̇ ≤ λ that could have nonzero β coefficients. Then, for the (VPN-B) formu-
lation, solving the CG-separation MIP could generate valid inequalities and tighten
the LP relaxation of the formulation. This fact will be immediately translated into
the generic pure cutting plane algorithm given below.

Algorithm 1. The algorithm (iteratively) adds rank-1 valid CG-cuts to the
initial LP relaxation of the (VPN-B) problem in order to eliminate non-integral
optimal solutions of the LP relaxation. More precisely, after solving the underlying
LP relaxation, if the optimal is integral, then an optimal solution was found and
we are done. Otherwise, the CG separation problem is solved to find an additional
inequality (defining a hyperplane) that could cut the non-integral optimal solution
off and tighten the relaxation. Then, the inequality is added to the LP relaxation
and the procedure is continued. In case the CG-separation problem could not find
such an inequality, the algorithm terminates without finding an integral solution
for the (VPN-B) problem and outputs an improved formulation. The improved
formulation can be the input to a branch-and-bound algorithm. The stopping
criterion in this algorithm is set to an overall time limit.

Exactly solving the separation subproblem in Algorithm 1 would ensure gener-
ating more violated cuts, potentially leading to tighter bounds in a smaller num-
ber of iterations. However, as the subproblem needs to solve a MIP each time,
the algorithm is computationally very expensive in practice. To reduce separation
overhead in Algorithm 1, one could limit the MIP in each subproblem to be solved
to a pre-specified number of branching node explored. This criterion could even
be dynamically updated. Following [14], the MIP solving process in a separation
problem can be stopped when a pre-specified number of branching node has been
explored after the last update of an incumbent solution. Note that any MIP feasible
solution corresponds to a violated cutting plane.

4. More aggressive rank-1 cut separation

As we discussed above, separating CG cuts through a MIP is very time con-
suming. Accordingly, Algorithm 1 based on CG cuts will not provide a strong tool
to computationally investigate how tight the first closure is for the VPN design
problem instances. Fortunately, there are good heuristic algorithms in the litera-
ture for generating general rank-1 as well as zero-half cuts. Two of those heuristics
are used in our computational evaluation in Section 5 and are described in the
following.

Rank-1 GMI heuristic [7]

A heuristic to generate general rank-1 Gomory mixed-integer cuts (GMIs, [16])
was recently designed in [7]. The heuristic has the ability to quickly generate a large
number of rank-1 GMI cuts from many tableaus. More precisely, in a separation
round the LP relaxation of the current formulation (likely augmented by rank-1
GMI cuts) is solved to obtain an optimal solution as well as an optimal LP basis.
This optimal basis is most likely not a basis for the LP relaxation of the initial
formulation. Then, the heuristic looks for a basis of the initial LP that is “close

578 A. MORADI ET AL.

enough” to the current optimal basis. It is always possible to find such a basis of
the initial LP from the current optimal basis by removing all the columns that
are nonbasic with respect to the current optimal solution and restricting the new
basis of the initial LP relaxation to be a submatrix of current optimal basis. (Of
course, the more modifications/cancelations are done, the more the new basis is
“far” from the starting one.) Then, rank-1 cuts associated with the new basis of
the initial LP are generated in the hope of cutting the current optimal solution.

Rank-1 zero-half heuristic [2]

The second heuristic we employ was originally described in [2] and it is designed
to separate zero-half cuts for pure IPs. The separation heuristic is based on the
property that, for any IP, zero-half cuts can be separated in polynomial time if
any row of the IP has at most two odd coefficients. For an IP with this property
separating zero-half cuts is equivalent to finding a special Eulerian cycle on a
large multigraph, called separation graph, in which nodes (resp. edges) correspond
to columns (resp. rows) of the given IP. More precisely, given a point ẋ to be
separated, the heuristic first builds a relaxation of the given IP to get the property
of having at most two odd coefficient on each row. The relaxation together with the
given point ẋ is then used to build the separation graph. Finally, the heuristic finds
proper Eulerian cycles on the separation graph and transforms them into zero-half
cuts. Generated cuts are then added to the original IP and the process iterated.

In general, the separation graph could have any structure and in the heuristic
in [2] it is treated as a complete graph. Then, for middle to large VPN instances,
the heuristic needs a huge amount of memory while building the separation graph
in each round. However, in the VPN binary program a variable appears on at
most |T | rows. This fact is used in the computation of the next section to effectively
bound the degree of the corresponding node in the separation graph and therefore
reduce the memory needed in each separation round. Moreover, in the original
implementation of the heuristic finding proper Eulerian cycles is not diversified.
Precisely, the heuristic simply considers nodes of the separation graph (i.e., IP vari-
ables) in the order of their index and tries to find as many proper Eulerian cycles,
containing the node, as possible. Then, as soon as “enough” Eulerian cycle (i.e.,
enough cuts) are found, the algorithm stops the search and outputs the cuts. We
added a simple mechanism that limits the number of cycles found that contain a
special node. This mechanism diversifies the cycles (i.e., the cuts) generated and
has a nice computational effect on the dual bound improvement.

5. Computational study

In this section, the goal is to investigate how beneficial is, in practice, to optimize
over the (first) Chvátal closure associated with the problem. Here, we perform
extensive experiments and computationally demonstrate that the CG closure of
the binary formulation is effective and that the most effective way to solve the
problem is by adding special cuts of the Chvátal closure, namely (non-necessarily
rank-1) zero-half cuts.

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 579

Test problems considered in this section are the challenging instances introduced
in [23]. We performed all experiments on a single core of an Intel Core i5 with
2.53 GHz processor, under Linux with 4 GB of RAM. We coded cut-and-branch
algorithms in C++, and Cplex 12.5 has been used for directly solving mixed-
integer or binary formulations as well as solving LP relaxations. We also set a
time limit of 10 000 s for solving each benchmark instances. For all instances that
cannot be solved to optimality within the time limit, we report the gap between
the best known upper bound and the lower bound obtained. In this section, we
use the term MIP (BP) instances to refer to the VPN problem instances modeled
by the Mixed integer (Binary) formulation.

In the computational experiments we shed light on two main issues.
• First, we consider the effect of the reformulation of VPN problem as a binary

IP with respect to the classical MIP formulation. This is done by both running
Cplex as a black-box solver and by giving special emphasis to the separation of
rank-1 cuts for both formulations by measuring the percentage gap closed. This
experiment is discussed in Section 5.1.

• Second, we compare the impact of the two heuristics discussed in the previous
section so as to state how much zero-half cuts alone are enough to close the gap
within a cutting plane approach with respect to the larger and stronger family
of GMI cuts. This experiment is discussed in Section 5.2.
We report computational experiments of the following various methods.

(A) MIP: The MIP formulation, (VPN), is solved with Cplex as a black-box
solver.

(B) MIP Agg. GMI: The MIP formulation is solved with Cplex, where all built-in
cutting planes are turned off except GMIs, which are separated aggressively
as they are the only cutting planes appearing to be useful in experiments
with (A).

(C) MIP Agg. ZH: The MIP formulation is solved with Cplex, where all built-in
cutting planes are turned off except zero-half (ZH) cuts, which are separated
aggressively.

(D) BP: The BP formulation, (VPN-B), is solved with Cplex as a black-box
solver.

(E) BP ZH: The BP formulation is solved with Cplex, where all built-in cutting
planes are turned off except zero-half (ZH) cuts as they are the most effective
cuts in the experiments with (D).

(F) BP Agg. ZH: The BP formulation is solved with Cplex, where all built-in cut-
ting planes are turned off except zero-half cutting planes, which are separated
aggressively.

(G) MIP Heur.1: The MIP formulation is solved with the heuristic in [7]. The
heuristic is employed in a cut-and-branch framework, i.e., the heuristic keeps
iterating at the root node of the search tree until a specific condition is met.
Then, (if necessary) branching starts on the tightened formulation.

(H) BP Heur.1: The BP formulation is solved with the heuristic in [7]. The heuris-
tic is employed as in (G).

580 A. MORADI ET AL.

While using the rank-1 heuristic in [7] a dynamic termination condition is im-
posed. We forced the heuristic to stop cutting at the root after a specified num-
ber Nh of consecutive separation rounds with less than εh percent improvement in
the dual bound. For the heuristic, we also let Mh denote the maximum number of
cuts generated per separation round. We set Mh = 1000, Nh = 5 and εh = 0.005
because preliminary testing and tuning have shown that the heuristic achieves its
best performance on the VPN challenging instances under this settings. In the
experiments reported for Heur.1, GMI cuts are generated at the root node and
then, before branching, we ask Cplex to choose among the cuts. Our experiments
show that in this way Cplex is always able to quickly reach almost the same dual
bound by adding considerably less number of generated cuts. However, in case the
cutting phase takes all the given time limit, we report dual bounds obtained by
adding all the violated cuts. Here, the number of cuts reported is that of all the
violated ones found by the heuristic in [7].

Finally, the zero-half heuristic in [2] is not used in MIP versus BP comparison
as it is intended to only work with pure IPs. We employ the heuristic, denoted
by Heur.2, to perform a comparison between general rank-1 CG cuts and zero-half
cuts over the BP instances and to prove our claim on competitiveness of zero-half
cuts in Section 5.2.

5.1. MIP versus binary formulations

Tables 1 and 2 summarize the results of running the methods discussed above at
the root node, so as to test the impact of cutting planes on both MIP and BP for-
mulations. For each of the methods (A)–(H) the following information is reported.

• gapi: Initial percentage gap that is the gap between the LP solution value
(LP) and the best known integer solution value (BN) of an instance
computed as (BN − LB)/BN × 100.

• gapr: Percentage gap at the root node. It represents the gap between the val-
ues of the best known integer solution and the linear relaxation strength-
ened by cuts.

• # cuts: The number of cuts applied. We also briefly provide types of the cuts
as “GMI” and “ZH”. Whenever other kinds of cuts appear we report
them as “Other”.

• tr: Time spent on the root.

According to the results in Tables 1 and 2, we note that reducing the original
compact formulation to a binary program significantly enhances effectiveness of a
black-box solver. For all the ring instances, this effect can be seen by comparing
column %gapr obtained by methods (A) and (B) with the same results reported
in (D). Comparing the gaps obtained by methods (D) and the gaps obtained by (E)
and (F) also shows that the reason behind superiority of the binary formulation
is only due to generating a special kind of rank-1 cuts, i.e., zero-half cuts. Gaps
obtained by methods (G) and (H) also show that adding general rank-1 cuts is
not much affected by the binary reduction.

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 581

T
a
b
l
e

1
.

R
es

ul
ts

on
th

e
ro

ot
fo

r
M

IP
in

st
an

ce
s.

(A
)

M
IP

(B
)

M
IP

:
A

g
g
.
G

M
I

(C
)

M
IP

:
A

g
g
.
Z
H

(G
)

M
IP

:
H

eu
r.
1

N
a
m

e
%

g
a

p
i

%
g

a
p

r
#

c
u

t
s

t
r

%
g

a
p

r
#

c
u

t
s

t
r

%
g

a
p

r
#

c
u

t
s

t
r

%
g

a
p

r
#

c
u

t
s

t
r

(G
M

I,
O

th
er

)
G

M
I

Z
H

R
a
n
k
1

ri
n
g
-2

0
-1

5
4
7
.3

2
3
4
.8

9
(5

8
,
0
)

2
.1

5
1
7
.0

5
9
0

4
.4

0
4
7
.3

2
0

1
.5

6
1
.0

8
3
0
2
1

1
6
1
.0

8

ri
n
g
-2

0
-2

0
6
1
.5

2
5
3
.8

5
(2

2
,
0
)

6
.9

5
3
7
.1

4
4
8

1
9
.3

6
6
1
.5

2
0

4
.1

6
9
.2

9
2
9
2
8

6
9
9
.7

9

ri
n
g
-5

0
-1

0
5
9
.9

0
5
4
.5

2
(4

2
,
0
)

3
.1

6
4
2
.2

5
7
0

5
.4

7
5
9
.9

0
0

1
.9

1
4
.3

8
7
7
4
9

1
4
7
.0

0

ri
n
g
-5

0
-1

5
4
9
.6

9
4
7
.5

0
(3

1
,
0
)

1
0
.8

3
4
0
.5

6
7
1

3
9
.4

2
4
9
.6

9
0

1
0
.0

1
8
.8

6
5
0
7
0

1
0
7
8
.4

9

ri
n
g
-5

0
-2

0
3
5
.3

6
3
2
.4

8
(7

9
,
0
)

3
2
.5

6
2
7
.6

0
9
7

7
6
.3

2
3
5
.3

6
0

3
9
.0

5
8
.9

6
5
9
6
6

2
3
7
5
.9

2

ri
n
g
-5

0
-2

5
2
9
.6

3
2
7
.1

1
(7

9
,
0
)

8
4
.6

5
2
4
.3

7
1
1
2

2
9
3
.8

6
2
9
.6

3
0

6
0
.0

2
4
.4

8
3
3
9
5

7
8
3
8
.7

3

ri
n
g
-5

0
-3

0
2
5
.8

8
2
3
.7

1
(9

6
,
0
)

1
9
2
.7

7
1
9
.6

3
1
0
4

4
3
4
.7

8
2
5
.8

8
0

2
3
6
.7

8
4
.0

1
1
4
6
0
8

T
im

e
L
im

it

ri
n
g
-8

0
-1

0
2
4
.8

1
2
3
.6

4
(1

8
,
0
)

3
.8

8
1
8
.3

9
4
6

9
.3

3
2
4
.8

1
0

4
.4

7
3
.0

8
7
2
2
2

3
4
0
.4

8

ri
n
g
-8

0
-1

5
4
9
.7

4
4
6
.6

3
(4

0
,
0
)

2
3
.1

9
3
9
.6

4
8
5

4
0
.2

6
4
9
.7

4
0

2
8
.9

6
1
1
.2

5
7
4
6
7

2
8
0
7
.8

0

ri
n
g
-8

0
-2

0
4
9
.5

9
4
5
.8

2
(3

1
,
0
)

9
7
.8

1
4
3
.0

1
7
9

1
2
7
.6

0
4
9
.5

9
0

7
3
.1

6
6
.5

9
5
4
5
8

6
3
4
8
.3

1

ri
n
g
-8

0
-2

5
3
2
.2

6
3
1
.2

9
(9

2
,
0
)

2
1
7
.6

2
2
8
.5

5
1
1
5

6
3
6
.0

8
3
2
.2

6
0

1
7
9
.7

2
8
.0

9
1
7
5
0
0

T
im

e
L
im

it

ri
n
g
-8

0
-3

0
2
8
.4

2
2
7
.1

3
(6

7
,
0
)

4
9
1
.0

0
2
3
.4

2
1
1
1

8
7
7
.5

1
2
8
.4

2
0

5
5
4
.4

6
8
.1

9
1
2
8
1
6

T
im

e
L
im

it

ri
n
g
-1

0
0
-7

4
9
.8

3
4
7
.8

3
(1

0
,
0
)

1
.7

1
3
9
.2

5
4
4

2
.9

3
4
9
.8

3
0

1
.0

4
1
2
.2

0
1
9
2
2
6

1
6
3
.0

6

ri
n
g
-1

0
0
-1

0
4
0
.8

6
3
8
.1

1
(3

3
,
0
)

6
.3

6
3
1
.5

5
4
9

1
1
.5

4
4
0
.8

6
0

4
.7

8
.1

6
1
4
3
8
4

9
1
5
.2

9

ri
n
g
-1

0
0
-1

4
2
7
.3

4
2
6
.3

0
(1

6
,
0
)

2
3
.2

6
2
2
.8

6
5
4

7
0
.3

1
2
7
.3

4
0

1
7
.6

2
4
.4

0
8
2
3
2

2
4
4
8
.5

4

ri
n
g
-1

0
0
-2

0
6
1
.6

2
6
0
.0

3
(5

2
,
0
)

2
1
6
.8

4
5
5
.2

8
1
5
6

4
0
9
.9

8
6
1
.6

2
0

1
8
3
.9

8
2
7
.3

2
2
5
6
9
1

T
im

e
L
im

it

ri
n
g
-1

0
0
-2

5
6
0
.2

8
5
8
.7

0
(7

8
,
0
)

4
5
9
.3

3
5
5
.5

9
9
7

1
4
4
0
.8

8
6
0
.2

8
0

4
2
1
.1

9
3
3
.9

1
1
4
9
5
4

T
im

e
L
im

it

ri
n
g
-1

0
0
-3

0
5
0
.3

8
4
9
.1

1
(2

1
,
0
)

7
5
1
.1

8
4
7
.1

7
8
4

2
4
0
3
.2

0
5
0
.3

8
0

5
5
8
.0

8
4
7
.5

8
1
9
9
8

T
im

e
L
im

it

A
v
er

a
g
e

4
3
.5

8
4
0
.4

8
(5

0
.7

5
,
0
)

1
4
4
.0

2
3
4
.0

7
8
6
.1

2
3
8
3
.0

5
4
3
.5

8
0

1
3
2
.2

7
1
2
.3

2
9
8
7
1
.3

9
4
7
4
0
.2

5

582 A. MORADI ET AL.

T
a
b
l
e

2
.

R
es

ul
ts

on
th

e
ro

ot
fo

r
B

P
in

st
an

ce
s.

(D
)

B
P

(E
)

B
P
:
Z
H

(F
)

B
P
:
A

g
g
.
Z
H

(H
)

B
P
:
H

eu
r.
1

N
a
m

e
%

g
a

p
i

%
g

a
p

r
#

c
u

t
s

t
r

%
g

a
p

r
#

c
u

t
s

t
r

%
g

a
p

r
#

c
u

t
s

t
r

%
g

a
p

r
#

c
u

t
s

t
r

(Z
H

,
O

th
er

)
Z
H

Z
H

R
a
n
k
1

ri
n
g
-2

0
-1

5
4
7
.3

2
0
.0

0
(5

6
2
,
2
3
)

2
3
.0

8
0
.0

0
4
7
3

1
8
.9

1
0
.0

0
4
7
3

1
6
.1

9
1
.8

6
3
0
5
9

1
6
7
.7

8

ri
n
g
-2

0
-2

0
6
1
.5

2
4
.1

7
(1

5
5
5
,
3
3
)

1
7
2
.2

3
4
.3

1
7
5
6

1
8
0
.4

6
4
.3

1
2
5
1
0

1
6
4
.8

4
1
0
.5

1
2
9
7
5

6
9
0
.6

7

ri
n
g
-5

0
-1

0
5
9
.9

0
4
.9

1
(9

9
1
,
3
)

1
5
2
.1

8
4
.0

2
6
3
6

1
3
1
.6

4
4
.0

2
1
2
1
9

1
1
3
.2

8
1
4
.1

5
7
7
4
9

3
6
6
.8

0

ri
n
g
-5

0
-1

5
4
9
.6

9
2
.0

9
(1

2
2
0
,
1
7
)

5
4
7
.0

4
2
.2

3
1
0
0
0

5
8
0
.5

5
2
.8

3
1
6
1
5

4
9
0
.4

6
1
1
.4

1
5
2
7
1

9
6
4
.0

0

ri
n
g
-5

0
-2

0
3
5
.3

6
0
.6

9
(1

0
1
5
,
3
4
)

6
1
0
.5

3
0
.0

0
1
2
2
8

6
1
3
.1

0
0
.0

0
1
1
8
9

4
0
1
.8

9
5
.2

7
4
0
8
6

2
9
7
3
.4

7

ri
n
g
-5

0
-2

5
2
9
.6

3
0
.0

0
(2

0
0
5
,
4
3
)

7
9
7
.2

7
0
.0

0
2
3
3
0

7
2
6
.4

3
0
.0

0
2
3
3
0

7
5
0
.7

0
3
.4

9
3
5
8
5

5
5
3
3
.7

0

ri
n
g
-5

0
-3

0
2
5
.8

8
0
.0

0
(3

2
9
1
,
6
3
)

1
2
1
2
.0

0
0
.0

0
2
9
3
8

1
1
2
7
.4

9
0
.0

0
2
9
3
8

1
1
1
4
.0

3
4
.5

6
4
3
5
3

9
3
8
3
.3

2

ri
n
g
-8

0
-1

0
2
4
.8

1
0
.0

0
(1

0
4
4
,
1
3
)

6
7
.3

3
0
.0

0
1
2
3
1

7
3
.4

8
0
.0

0
1
2
3
1

4
0
.3

9
4
.4

1
1
1
5
6
0

5
6
8
.7

6

ri
n
g
-8

0
-1

5
4
9
.7

4
0
.0

0
(1

5
2
0
,
1
9
)

1
5
2
6
.5

9
0
.0

0
1
5
3
4

1
7
3
3
.7

9
0
.0

0
1
6
7
8

1
2
4
5
.9

9
1
1
.2

2
8
7
9
6

3
0
9
7
.2

3

ri
n
g
-8

0
-2

0
4
9
.5

9
0
.0

0
(3

0
5
0
,
5
6
)

2
8
1
5
.6

2
0
.0

0
2
5
2
3

2
5
5
7
.7

6
0
.0

0
2
2
4
9

2
1
5
1
.8

8
6
.9

3
1
5
8
3
7

T
im

e
L
im

it

ri
n
g
-8

0
-2

5
3
2
.2

6
0
.0

0
(2

4
6
5
,
3
0
)

4
2
3
4
.5

4
0
.0

0
2
1
2
0

3
4
3
7
.7

8
0
.0

0
3
3
6
3

3
1
6
5
.4

5
1
2
.6

3
6
2
1
8

T
im

e
L
im

it

ri
n
g
-8

0
-3

0
2
8
.4

2
0
.0

9
(4

3
3
3
,
9
0
)

5
0
9
7
.1

7
0
.1

3
2
9
9
2

6
7
5
4
.1

1
0
.0

0
3
7
8
8

5
3
9
2
.3

2
1
1
.8

9
7
9
2
6

T
im

e
L
im

it

ri
n
g
-1

0
0
-7

4
9
.8

3
1
.6

9
(9

2
3
,
1
)

1
5
0
.3

2
0
.0

0
1
0
3
2

1
4
9
.6

4
0
.2

5
8
6
4

8
8
.2

1
1
2
.8

9
2
2
1
4
9

5
8
5
.9

4

ri
n
g
-1

0
0
-1

0
4
0
.8

6
0
.6

5
(1

3
2
3
,
4
)

4
6
6
.6

0
0
.0

0
1
2
9
7

3
9
4
.7

3
0
.0

0
1
3
0
6

2
2
8
.2

5
1
0
.7

8
1
8
7
7
3

1
0
9
2
.5

4

ri
n
g
-1

0
0
-1

4
2
7
.3

4
0
.0

0
(3

1
2
1
,
1
2
)

3
4
3
.2

1
0
.0

0
3
4
4
6

3
1
0
.0

0
0
.0

0
3
4
4
6

2
8
1
.0

3
5
.1

2
9
6
6
8

2
8
1
8
.8

7

ri
n
g
-1

0
0
-2

0
6
1
.6

2
6
.4

9
(4

3
6
2
,
3
8
)

T
im

e
L
im

it
6
.1

6
5
5
8
0

T
im

e
L
im

it
6
.1

4
5
2
4
3

T
im

e
L
im

it
3
1
.4

3
9
4
1
5

8
7
4
9
.5

7

ri
n
g
-1

0
0
-2

5
6
0
.2

8
1
8
.6

8
(2

5
0
4
,
3
2
)

T
im

e
L
im

it
1
8
.1

0
2
4
6
4

T
im

e
L
im

it
1
8
.1

0
2
4
6
4

T
im

e
L
im

it
4
0
.5

6
5
5
3
4

9
1
7
2
.7

4

ri
n
g
-1

0
0
-3

0
5
0
.3

8
1
8
.7

7
(6

8
5
2
,
4
2
)

T
im

e
L
im

it
1
8
.6

0
6
5
4
7

T
im

e
L
im

it
1
8
.6

0
6
5
4
7

T
im

e
L
im

it
3
3
.4

8
8
9
8
7

T
im

e
L
im

it

A
v
er

a
g
e

4
3
.5

8
3
.2

3
(2

3
4
0
.8

9
,
3
0
.7

2
)

2
6
7
8
.6

5
2
.9

7
2
2
2
9
.2

8
2
7
1
0
.5

5
3
.0

1
2
4
6
9
.6

1
2
5
3
5
.8

3
1
2
.9

2
8
6
6
3
.3

9
4
7
8
6
.9

7

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 583

Comparing gap obtained by (G) and (H) with the gap reached by (D) and (E)
clearly points out the effectiveness of zero-half cuts. However, note that since zero-
half cuts generated by Cplex are not necessarily of rank-1, we need to externally
examine the effect of rank-1 zero-half cuts and compare them with general rank-1
CG cuts. This motivates the experiments reported in Section 5.2.

In terms of the number of cuts applied the binary program allows a black-
box solver to apply much more (effective) cuts being able to close most of the
integrality gap only at the root. Comparing the number of cuts applied by the
methods (E) and (F) with the same numbers obtained by (D) and (G) one could
observe that limiting to only generate zero-half cuts carefully guides the cutting
phase to produce more effective cuts at no more computational costs. Here, almost
the same amount of gap (on average) could be closed with less (but more effective)
zero-half cuts. An instance by instance comparison of the results obtained by (D)
and (E) also emphasizes this fact. Furthermore, aggressive use of zero-half cuts,
as in (F), improves time spent on the root in average. We also mention that Cplex
does not separate zero-half cuts in the MIP case as it could be seen from results
obtained by (A), (B) and (C).

In terms of the time spent on the root, methods (A) and (B) spend much less
time at the root because in the MIP case none of the separation procedures seems
to be effective. On the MIP instances, a black-box solver tends to leave almost all
the computational burden to branching phase resulting in a weak performance.
This fact is exaggerated in (C) as it will do nothing on the root and only performs
pure branching. In BP case, on the other hand, extensive but careless use of rank-1
cuts might be partly effective but not efficient. Here, using zero-half cuts at the
root clearly addresses the trade-off as revealed by results of the methods (D), (E)
and (F).

The results on running the full cut-and-branch approach are summarized in
Tables 3 and 4. That is, we allow an algorithm to continue solving the tightened
MIP/BP instances by performing standard branch and bound. For each of the
methods the following information is displayed.

• gapf : Percentage gap after time limit. It represents the gap between the integer
optimal solution and the final dual bound.

• nBB: The number of branch and bound nodes explored.
• tf : Total time spent.

Note that, appearance of the character “M” in Table 4 means a memory limit
happened while branching (see Tab. 3). Then, the corresponding number reported
there is the time spent by the method before the memory limit is reached.

Similarly to the results at the root, we observe that methods (E) and (F) also
outperform other methods within the time limit both in terms of final gap reached
and the total time spent as it is clear from comparing results in Tables 3 and in 4.

In terms of number of branch-and-bound nodes explored, comparing results
over MIP instances and results over BP instances one can observe that the less
cutting performed at the root, the more branch-and-bound nodes needed to be
explored. On the other hand, aggressive cutting on the root could have side effects

584 A. MORADI ET AL.

T
a
b
l
e

3
.

R
es

ul
ts

af
te

r
ti

m
e

lim
it

fo
r

M
IP

in
st

an
ce

s.

(A
)

M
IP

(B
)

M
IP

:
A

g
g
.
G

F
(C

)
M

IP
:
A

g
g
.
Z
H

(p
u
re

b
ra

n
ch

in
g
)

(G
)

M
IP

:
H

eu
r.
1

N
a
m

e
%

g
a

p
i

%
g

a
p

f
n

B
B

t
f

%
g

a
p

f
n

B
B

t
f

%
g

a
p

f
n

B
B

t
f

%
g

a
p

f
n

B
B

t
f

ri
n
g
-2

0
-1

5
4
7
.3

2
0
.0

0
1
8
9
7

6
2
.9

0
0
.0

0
3
2
3
7

9
4
.2

9
0
.0

0
1
3
6
9
9

3
5
9
.9

6
0
.0

0
6

1
6
4
.7

9

ri
n
g
-2

0
-2

0
6
1
.5

2
1
0
.8

6
7
1
6
6
2

2
9
3
7
.5

6
(M

)
7
.7

0
6
2
4
4
1

2
2
1
7
.7

1
(M

)
2
3
.2

8
9
8
4
8
8

4
2
0
3
.3

2
(M

)
0
.0

0
9
7
6
9

6
6
8
3
.9

0

ri
n
g
-5

0
-1

0
5
9
.9

0
0
.0

0
2
6
8
0
3

4
4
3
.4

8
0
.0

0
4
0
7
6
0

1
0
1
9
.9

3
0
.0

0
2
6
8
1
6

6
2
6
.2

2
0
.0

0
3
3
9
5

5
9
7
.9

6

ri
n
g
-5

0
-1

5
4
9
.6

9
0
.0

0
8
6
1
2
4

9
1
2
9
.2

1
0
.0

0
3
2
9
4
2

3
5
8
0
.6

0
0
.0

0
3
0
0
7
9

4
0
1
4
.8

5
0
.0

0
7
2
9

2
5
7
3
.1

0

ri
n
g
-5

0
-2

0
3
5
.3

6
6
.2

3
1
1
6
5
8

T
im

e
L
im

it
0
.0

0
5
4
8
3

5
2
1
5
.4

9
3
.6

9
1
4
3
5
9

T
im

e
L
im

it
0
.0

0
8
7
6

6
4
8
7
.4

1

ri
n
g
-5

0
-2

5
2
9
.6

3
9
.3

3
7
1
8
1

T
im

e
L
im

it
8
.3

5
3
4
3
5

T
im

e
L
im

it
1
4
.9

6
1
7
2
2
5

T
im

e
L
im

it
4
.2

0
1
1
1

T
im

e
L
im

it

ri
n
g
-5

0
-3

0
2
5
.8

8
1
4
.0

3
1
0
7
3

T
im

e
L
im

it
1
0
.4

9
2
1
3
8

T
im

e
L
im

it
1
9
.4

9
1
7
0
9

T
im

e
L
im

it
4
.0

1
1

T
im

e
L
im

it

ri
n
g
-8

0
-1

0
2
4
.8

1
0
.0

0
3
3
0

2
2
.8

0
0
.0

0
4
8
0

3
1
.6

4
0
.0

0
1
7
0

1
8
.7

1
0
.0

0
2
2

3
5
3
.8

3

ri
n
g
-8

0
-1

5
4
9
.7

4
2
.0

7
3
0
0
6
1

T
im

e
L
im

it
4
.7

8
3
5
4
5
9

T
im

e
L
im

it
2
0
.3

7
4
8
9
5
9

6
9
9
5
.7

7
(M

)
3
.8

9
2
6
7
6

T
im

e
L
im

it

ri
n
g
-8

0
-2

0
4
9
.5

9
2
3
.9

4
2
5
0
2
5

7
0
8
2
.6

9
(M

)
1
0
.1

4
1
2
3
8
4

T
im

e
L
im

it
1
2
.3

4
1
2
3
9
4

T
im

e
L
im

it
6
.1

8
4
2
8

T
im

e
L
im

it

ri
n
g
-8

0
-2

5
3
2
.2

6
2
0
.0

5
2
7
9
8

T
im

e
L
im

it
1
7
.8

8
1
3
7
0

T
im

e
L
im

it
2
3
.0

8
7
7
1
0

T
im

e
L
im

it
8
.0

9
1

T
im

e
L
im

it

ri
n
g
-8

0
-3

0
2
8
.4

2
1
9
.0

3
9
7
9

T
im

e
L
im

it
1
6
.3

6
9
8
1

T
im

e
L
im

it
1
6
.4

8
1
1
5
4

T
im

e
L
im

it
8
.1

9
1

T
im

e
L
im

it

ri
n
g
-1

0
0
-7

4
9
.8

3
0
.0

0
6
3
0

1
1
.9

4
0
.0

0
8
4
7

1
8
.7

0
0
.0

0
1
1
0
6

1
7
.7

6
0
.0

0
1
9
0

2
2
5
.6

2

ri
n
g
-1

0
0
-1

0
4
0
.8

6
0
.0

0
2
0
0
9
3

1
2
4
1
.5

3
0
.0

0
1
3
7
3

1
0
1
.9

0
0
.0

0
6
8
2
8

5
6
7
.1

6
0
.0

0
7
2
0

1
5
6
0
.7

2

ri
n
g
-1

0
0
-1

4
2
7
.3

4
0
.0

0
1
0
0
0

5
1
1
.2

5
0
.0

0
1
2
3
0

9
4
8
.9

6
0
.0

0
1
0
5
2

6
8
1
.1

1
0
.0

0
3
9
2

4
6
3
4
.1

5

ri
n
g
-1

0
0
-2

0
6
1
.6

2
4
9
.1

5
8
8
9
0

T
im

e
L
im

it
4
4
.2

5
1
0
1
0
7

T
im

e
L
im

it
5
1
.9

4
1
5
7
9
8

T
im

e
L
im

it
2
7
.3

2
1

T
im

e
L
im

it

ri
n
g
-1

0
0
-2

5
6
0
.2

8
5
2
.6

9
1
8
5
0

T
im

e
L
im

it
4
7
.9

6
1
1
2
2

T
im

e
L
im

it
5
5
.8

9
4
0
8
8

T
im

e
L
im

it
3
3
.9

1
1

T
im

e
L
im

it

ri
n
g
-1

0
0
-3

0
5
0
.3

8
4
4
.6

3
4
9
7

T
im

e
L
im

it
4
2
.5

8
1
3
0
4

T
im

e
L
im

it
4
5
.5

9
5
7
0

T
im

e
L
im

it
4
7
.5

8
1

T
im

e
L
im

it

A
v
er

a
g
e

4
3
.5

8
1
4
.0

0
1
6
5
8
6
.1

7
6
1
9
1
.3

0
1
1
.6

9
1
2
0
6
0
.7

2
5
7
3
4
.9

6
1
5
.9

5
1
6
7
8
9
.1

1
5
9
7
1
.3

8
7
.9

7
1
0
7
3
.3

3
6
2
9
3
.4

1

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 585

T
a
b
l
e

4
.

R
es

ul
ts

af
te

r
ti

m
e

lim
it

fo
r

B
P

in
st

an
ce

s.

(D
)

B
P

(E
)

B
P

:
Z
H

(F
)

B
P

:
A

g
g
.
Z
H

(H
)

B
P

:
H

e
u
r.

1

N
a
m

e
%

g
a
p

i
%

g
a
p

f
n

B
B

t f
%

g
a
p

f
n

B
B

t f
%

g
a
p

f
n

B
B

t f
%

g
a
p

f
n

B
B

t f

ri
n
g
-2

0
-1

5
4
7
.3

2
0
.0

0
1

2
3
.0

8
0
.0

0
1

1
8
.9

1
0
.0

0
1

1
6
.1

9
0
.0

0
3
0

1
8
7
.4

4

ri
n
g
-2

0
-2

0
6
1
.5

2
0
.0

0
1
4
9
1

1
7
2
8
.7

2
0
.0

0
1
7
2
0

1
4
5
5
.7

9
0
.0

0
5
9
4

1
0
9
0
.6

1
1
.0

6
1
0
5
1
9

T
im

e
L
im

it

ri
n
g
-5

0
-1

0
5
9
.9

0
0
.0

0
2
0
9

3
7
0
.1

0
0
.0

0
1
2
2

2
4
7
.7

0
0
.0

0
6
9

2
0
2
.5

2
0
.0

0
1
2
1
9

7
3
6
.0

9

ri
n
g
-5

0
-1

5
4
9
.6

9
0
.0

0
3
5

9
0
5
.2

3
0
.0

0
4
6

9
4
3
.3

6
0
.0

0
1
6

7
1
9
.6

2
0
.0

0
1
3
4
0

3
2
2
0
.9

4

ri
n
g
-5

0
-2

0
3
5
.3

6
0
.0

0
4

6
7
0
.7

8
0
.0

0
1

6
1
3
.1

0
0
.0

0
1

4
0
1
.8

9
0
.0

0
2
3
5

4
6
8
8
.1

0

ri
n
g
-5

0
-2

5
2
9
.6

3
0
.0

0
1

7
9
7
.2

7
0
.0

0
1

7
2
6
.4

3
0
.0

0
1

7
5
0
.7

0
1
.2

7
5
8
5

T
im

e
L
im

it

ri
n
g
-5

0
-3

0
2
5
.8

8
0
.0

0
1

1
2
1
2
.0

0
0
.0

0
1

1
1
2
7
.4

9
0
.0

0
1

1
1
1
4
.0

3
4
.0

8
7

T
im

e
L
im

it

ri
n
g
-8

0
-1

0
2
4
.8

1
0
.0

0
1

6
7
.3

3
0
.0

0
1

7
3
.4

8
0
.0

0
1

4
0
.3

9
0
.0

0
2
4
9

9
2
0
.4

6

ri
n
g
-8

0
-1

5
4
9
.7

4
0
.0

0
1

1
5
2
6
.5

9
0
.0

0
1

1
7
3
3
.7

9
0
.0

0
1

1
2
4
5
.9

9
2
.8

6
1
8
1
7

T
im

e
L
im

it

ri
n
g
-8

0
-2

0
4
9
.5

9
0
.0

0
1

2
8
1
5
.6

2
0
.0

0
1

2
5
5
7
.7

6
0
.0

0
1

2
1
5
1
.8

8
0
.0

0
1

T
im

e
L
im

it

ri
n
g
-8

0
-2

5
3
2
.2

6
0
.0

0
1

4
2
3
4
.5

4
0
.0

0
1

3
4
3
7
.7

8
0
.0

0
1

3
1
6
5
.4

5
0
.0

0
1

T
im

e
L
im

it

ri
n
g
-8

0
-3

0
2
8
.4

2
0
.0

0
2

5
1
7
7
.1

1
0
.0

0
2

6
7
9
8
.4

6
0
.0

0
1

5
3
9
2
.3

2
0
.0

0
1

T
im

e
L
im

it

ri
n
g
-1

0
0
-7

4
9
.8

3
0
.0

0
1
0

1
6
5
.3

5
0
.0

0
1

1
4
9
.6

4
0
.0

0
2

9
0
.1

1
0
.0

0
3
2
3

8
0
8
.9

2

ri
n
g
-1

0
0
-1

0
4
0
.8

6
0
.0

0
8

4
9
8
.9

9
0
.0

0
1

3
9
4
.7

3
0
.0

0
1

2
2
8
.2

5
0
.0

0
6
6
4

2
0
8
3
.6

9

ri
n
g
-1

0
0
-1

4
2
7
.3

4
0
.0

0
1

3
4
3
.2

1
0
.0

0
1

3
1
0
.0

0
0
.0

0
1

2
8
1
.0

3
0
.0

0
1
7
9

4
0
1
1
.4

5

ri
n
g
-1

0
0
-2

0
6
1
.6

2
6
.4

9
1

T
im

e
L
im

it
6
.1

6
1

T
im

e
L
im

it
6
.1

4
1

T
im

e
L
im

it
3
0
.3

4
1
2

T
im

e
L
im

it

ri
n
g
-1

0
0
-2

5
6
0
.2

8
1
8
.6

8
1

T
im

e
L
im

it
1
8
.1

0
1

T
im

e
L
im

it
1
8
.1

0
1

T
im

e
L
im

it
4
0
.1

2
5

T
im

e
L
im

it

ri
n
g
-1

0
0
-3

0
5
0
.3

8
1
8
.7

7
1

T
im

e
L
im

it
1
8
.6

0
1

T
im

e
L
im

it
1
8
.6

0
1

T
im

e
L
im

it
3
3
.4

8
1

T
im

e
L
im

it

A
v
e
ra

g
e

4
3
.5

8
2
.4

4
9
8
.3

3
2
8
0
7
.5

5
2
.3

8
1
0
5
.7

8
2
8
1
0
.4

7
2
.3

8
3
8
.6

1
2
6
0
5
.0

5
6
.2

9
9
5
4
.8

9
6
4
8
0
.9

5

586 A. MORADI ET AL.

as it usually makes branching subproblems more difficult. This could be seen by
comparing average time needed per subproblem over the MIP instances with the
same value over the BP instances.

5.2. General rank-1 GMIs vs. zero-half cuts

In this section we perform experiments to show the fact that when a huge
number of rank-1 CG cuts are allowed to be added to the VPN Binary Program,
it is enough to only add zero-half ones. Note that results obtained by (D), (E)
and (F) in Table 2 could not clearly address this fact as zero-half cuts generated
by Cplex are not necessarily of rank-1. To externally examine rank-1 zero-half cuts
against general rank-1 CG cuts we run both Heur.1 and Heur.2 in the following
two settings. Here no time limit/dynamic termination condition is imposed.
• set.1 We run both heuristics for a maximum number of 10 separation rounds

with maximum number of 1000 cuts generated and added per separation round.
The setting is considered as Heur.1 has its best performance with this number
of cuts generated per round.

• set.2 We run both heuristics for a maximum number of 10 separation rounds
with maximum number of 5000 cuts generated and added per separation round.
The motivation behind this setting is that by adding a large number of cuts
one could assure that good cuts of each type (general rank-1 or zero-half) are
generated and added to the underlying IP.

Table 5 reports results obtained by Heur.1 and Heur.2 over the above two settings
on the BP instances.

The effectiveness of zero-half cuts is clear by the results. An instance by instance
comparison shows that, when enough of rank-1 CG cuts are allowed to be generated
at the root node of VPN instances, almost all power of such cuts in tightening the
LP relaxation and reducing the integrality gap can be obtained by adding zero-half
cuts.

For large instances, adding zero-half cuts aggressively makes the underlying LP
more and more difficult. In this case it is not needed to add all the generated
zero-half cuts to the LP. For the VPN instances, some preliminary experiments
we performed show that if we only add “sparse” cuts, as also suggested in [2], we
would generally be able to reach good dual bound in smaller amount of time.

We also note that, results obtained by methods that only add zero-half cuts
are strong enough to close most of the integrality gap on the root. This naturally
suggests that additional investigation on the facial properties of zero-half cuts for
VPN could lead to a much better understanding of the structure of the associ-
ated polyhedron as it already happened for several combinatorial optimization
problems [10, 13, 20, 21, 25].

Acknowledgements. We are indebted to Matteo Fischetti and Sanjeed Dash for provid-
ing the computer codes implementing the heuristics in [2] and [7], respectively. The
second author acknowledges the support of MIUR under the PRIN2012 grant. We are
also indebted to two anonymous referees for very useful comments that led to an elegant
simplification of some of the theoretical results in the paper.

VIRTUAL PRIVATE NETWORK DESIGN OVER THE FIRST CHVÁTAL CLOSURE 587

T
a
b
l
e

5
.

G
en

er
al

R
an

k-
1

C
G

vs
.
Z
er

o-
H

al
f
cu

ts
.

se
t.
1
:
1
0
0
0

cu
ts

p
er

ro
u
n
d
s

se
t.
2
:
5
0
0
0

cu
ts

p
er

ro
u
n
d
s

B
P

:
H

eu
r.
1

B
P

:
H

eu
r.
2

B
P

:
H

eu
r.
1

B
P

:
H

eu
r.
2

N
a
m

e
%

g
a
p

i
%

g
a
p

r
t r

%
g
a
p

r
t r

%
g
a
p

r
t r

%
g
a
p

r
t r

ri
n
g
-2

0
-1

5
4
7
.3

2
7
.8

5
5
2

2
.7

5
7
6

6
.9

1
2
4
3

2
.7

5
3
4
6

ri
n
g
-2

0
-2

0
6
1
.5

2
1
8
.7

4
1
5
3

1
3
.1

9
1
4
7

1
6
.0

2
4
6
3

9
.9

1
1
2
1
6

ri
n
g
-5

0
-1

0
5
9
.9

0
2
8
.4

6
4
2

9
.5

1
1
6
6

3
0
.2

2
2
3
8

7
.0

3
6
9
3

ri
n
g
-5

0
-1

5
4
9
.6

9
2
0
.4

3
1
4
7

1
0
.1

0
6
1
6

2
1
.0

6
6
5
2

1
.7

3
1
7
3
8

ri
n
g
-5

0
-2

0
3
5
.3

6
1
0
.7

0
7
3
6

9
.1

0
1
3
0
8

9
.3

2
1
9
1
1

3
.2

8
1
5
1
7

ri
n
g
-5

0
-2

5
2
9
.6

3
1
2
.1

9
7
2

0
.8

1
2
5
0

1
0
.3

4
3
5
0

0
.0

0
1
8
5

ri
n
g
-5

0
-3

0
2
5
.8

8
2
7
.4

4
4
1
9

2
4
.6

0
9
3
7

2
8
.5

6
8
1
5

4
.7

9
2
7
2
3

ri
n
g
-8

0
-1

0
2
4
.8

1
2
6
.6

4
1
0
7
9

3
0
.3

2
2
0
4
6

2
3
.4

1
1
6
4
6

1
5
.5

7
3
3
5
4

ri
n
g
-8

0
-1

5
4
9
.7

4
3
6
.2

0
2
5

2
0
.7

7
8
6

3
5
.7

9
9
9

1
4
.1

7
2
4
7

ri
n
g
-8

0
-2

0
4
9
.5

9
2
6
.3

2
1
3
4

1
5
.7

1
2
8
5

2
6
.0

3
1
7
2

0
.0

0
1
2
4
1

ri
n
g
-8

0
-2

5
3
2
.2

6
1
3
.6

9
4
1
8

1
1
.4

4
9
3
7

1
3
.1

8
7
9
6

0
.0

0
1
4
8
6

ri
n
g
-8

0
-3

0
2
8
.4

2
3
8
.3

2
1
9
5
6

4
7
.3

5
2
8
6
8

3
9
.6

9
3
7
2
5

3
0
.3

2
1
3
1
4
8

ri
n
g
-1

0
0
-7

4
9
.8

3
6
.1

3
2
0
4
0

1
6
.8

8
2
0
3
9

6
.0

5
4
1
1
6

2
.2

3
2
8
7
1

ri
n
g
-1

0
0
-1

0
4
0
.8

6
4
.9

2
4
7
3
4

1
6
.2

1
3
3
2
3

5
.3

8
1
4
1
7
8

0
.0

0
6
0
7
7

ri
n
g
-1

0
0
-1

4
2
7
.3

4
1
5
.1

2
4
3
7
4

2
3
.6

2
4
0
1
2

1
2
.1

5
5
4
4
5

8
.4

4
1
3
1
0
0

ri
n
g
-1

0
0
-2

0
6
1
.6

2
1
1
.9

0
1
0
8
1
9

2
2
.1

3
8
0
6
5

9
.6

1
1
2
3
3
3

(M
)

–

ri
n
g
-1

0
0
-2

5
6
0
.2

8
4
0
.3

6
7
9
6
4

5
2
.0

3
6
2
5
5

3
7
.2

9
5
8
6
0

3
9
.1

3
1
3
4
5
5

ri
n
g
-1

0
0
-3

0
5
0
.3

8
3
1
.8

8
9
2
7
6

4
4
.1

7
1
2
5
0
5

4
7
.3

1
1
2
9
3
2

(M
)

–

A
v
er

a
g
e

4
3
.5

8
2
0
.9

6
2
4
6
8
.8

8
2
0
.5

9
2
5
5
1
.1

6
2
1
.0

2
3
6
6
5
.3

6
8
.7

1
3
9
6
2
.3

9

588 A. MORADI ET AL.

References

[1] A. Alın, E. Amaldi, P. Belotti and M.C. Pınar, Provisioning virtual private networks under
traffic uncertainty. Networks 49 (2007) 100–115.

[2] G. Andreello, A. Caprara and M. Fischetti, Embedding cuts in a branch and cut framework:
a computational study with {0, 1

2
}-cuts. INFORMS J. Comput. 19 (2007) 229–238.

[3] E. Balas and A. Saxena, Optimizing over the split closure. Math. Program. 113 (2008)
219–240.

[4] P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti and A. Lodi, Projected Chvátal-Gomory
cuts for mixed integer linear programs. Math. Program. 113 (2008) 241–257.

[5] A. Caprara and M. Fischetti, {0, 1
2
}-Chvátal–Gomory cuts. Math. Program. 74 (1996) 221–

235.
[6] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems. Disc. Math. 4

(1973) 305–337.
[7] S. Dash and M. Goycoolea, A heuristic to generate rank-1 GMI cuts. Math. Program. Com-

put. 2 (2010) 231–257.
[8] S. Dash, O. Günlük and A. Lodi, MIR closures of polyhedral sets. Math. Program. 121

(2010) 33–60.
[9] N. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. Ramakrishnan and J.E. van der Merive, A

flexible model for resource management in Virtual Private Networks, in Proc. of ACM Special
Interest Group on Data Communication (SIGCOMM), Cambridge, MA (1999) 95–108.

[10] J. Edmonds and E.L. Johnson, Matching: a well-solved class of integer linear programs. In
Combinatorial Structures and Their Applications, edited by R.K. Guy, H. Hanani, N. Sauer.
Gordon and Breach, New York (1970) 80–92.

[11] F. Eisenbrand, F. Grandoni, G. Oriolo and M. Skutella, New approaches for virtual private
network design. SIAM J. Comput. 37 (2007) 706–721.

[12] P. Ferguson and G. Huston, What Is a VPN? – Part I. The Internet Protocol J. 1 (1998).
[13] S. Fiorini, {0, 1

2
}-cuts and the linear ordering problem: Surfaces that define facets. SIAM J.

Disc. Math. 20 (2006) 893–912.
[14] M. Fischetti and A. Lodi, Optimizing over the first Chvátal closure. Math. Program. 110

(2007) 3–20.
[15] R.E. Gomory, Outline of an algorithm for integer solutions to linear programs. Bull. Amer.

Math. Soc. 64 (1958) 275–278.

[16] R.E. Gomory, An algorithm for integer solutions to linear programs. In Recent Advances
in Mathematical Programming, edited by R.L. Graves, P. Wolfe. McGraw-Hill, New York
(1963) 269–302.

[17] F. Grandoni, T. Rothvoß and L. Sanitá, From uncertainty to nonlinearity: Solving virtual
private network via single-sink buy-at-bulk. Math. Oper. Res. 36 (2011) 185–204.

[18] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi and B. Yener, Provisioning a virtual private
network: a network design problem for multicommodity flow, in Proc. of the 33rd Annual
ACM Symposium on Theory of Computing (STOC) (2001) 389–398.

[19] B. Korte and J. Vygen, Combinatorial optimization: Theory and algorithms, 4th ed. Springer
Publishing Company, Incorporated (2007).

[20] A.M.C.A. Koster and A. Zymolka, Stable multi-sets. Math.Meth.Oper. Res.56 (2002) 45–65.
[21] A.M.C.A. Koster and A. Zymolka, On cycles and the stable multi-set polytope. Discret.

Optim. 2 (2005) 241–255.
[22] A.G. Mason, Cisco secure virtual private network. Cisco Press 7 (2002).
[23] A. Moradi, A. Lodi and S.M. Hashemi, On the difficulty of virtual private network instances.

Networks 63 (2014) 327–333.
[24] N.K. Olver, Robust Network Design. Ph.D. thesis, McGill University (2010).
[25] M. Padberg, On the facial structure of set packing polyhedra. Math. Program. 5 (1973)

199–215.
[26] M. Pioro and D. Medhi, Routing, flow and capacity design in communication and computer

networks. San Francisco, CA, Morgan Kaufmann (2004).

	Introduction
	Compact MIP formulation and CG separation
	Binary formulation
	More aggressive rank-1 cut separation
	Rank-1 GMI heuristic [7]
	Rank-1 zero-half heuristic [2]

	Computational study
	MIP versus binary formulations
	General rank-1 GMIs vs. zero-half cuts

	References

