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A RELAXED LOGARITHMIC BARRIER METHOD
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Abstract. Interior point methods applied to optimization problems
have known a remarkable evolution in the last decades. They are used
with success in linear, quadratic and semidefinite programming. Among
these methods, primal-dual central trajectory methods have a polyno-
mial convergence and are credited of a good numerical behavior. In this
paper, we propose a new central trajectory method where a relaxation
parameter is introduced in order to give more flexibility to the theo-
retical and numerical aspects of the perturbed problems and accelerate
the convergence of the algorithm. This claim is confirmed by numerical
tests showing the good behavior of the algorithm which is proposed in
this paper.
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1. Introduction

The problem of semidefinite programming (SDP ) is of paramount importance
for its involvement in various mathematical and practical problems of great inter-
est, namely, control theory, combinatorial optimization, nonlinear programming,
the maximum cut problem in graph theory and the problem of min-max eigenvalue.

Recently, SDP has known a remarkable evolution in theory as that of the
practice, after the revival of interior point methods from the investigations made
by Karmarkar [10] for linear programming problems. Then several algorithms
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including potential reduction methods and primal-dual methods of central trajec-
tory have been developed for linear and quadratic programming problems, comple-
mentarity problems. The extensions of these methods to SDP have been pioneered
by Alizadeh [1] and Monteiro [13]. The polynomial convergence of these algorithms
has been studied and proved by several researchers [6–8,14, 15, 18].

In this work, we are interested in one extension of the central trajectory type
method to semidefinite programming [13]. We relax the perturbed problem by a
new parameter in order to give more flexibility to the theoretical and numerical
study of the obtained perturbed problem and accelerate the convergence of the
algorithm.

The paper is organized as follows. In Section 2, we present the problem SDP
and we give weak and strong results of duality. In Section 3, we study and prove
the existence and uniqueness of the optimal solution of the perturbed problem
(SDP )μ and we give the corresponding algorithm. Section 4, is reserved to the
relaxed problem SDPW , where we relax the parameter μ by a diagonal semidefinite
matrix W and we discuss also the effective computation of direction and stepsize
of the obtained algorithm. In Section 5, we present some promising numerical tests
in a comparative framework. And lastly a conclusion is given.

1.1. Notation

• Mn is the set of real (n × n) matrices.
• Sn = {A ∈ Mn/ A is symmetric}.
• Sn

+ = {A ∈ Sn/ A is positive semidefinite}.
• Sn

++ = {A ∈ Sn/ A is positive definite}.
• Given X ∈ Mn, tr(X) =

n∑
i=1

Xii is the trace of the matrix X.

• Given X ∈ Mn, diag(X) is the n × n diagonal matrix with diagonal entries
Xii.

• Given x ∈ Rn, diag(x) is the n × n diagonal matrix with diagonal entries xi.
• Given X, Y ∈ Mn, the scalar product of X and Y is defined by

〈X, Y 〉 = tr
(
XtY

)
=

n∑
i,j=1

XijYij

and the norm of X is defined by ‖X‖ =
√〈X, X〉.

• Given f : Rn → R , ∇f denotes the gradient of f and ∇2f denotes its Hessian
matrix.

2. Statement of the problem

The standard form of a semidefinite program is:

min
X

[ tr(CX) : X ∈ Sn
+, tr(AiX) = bi for i = 1, . . . , m], (SDP )

where C, Ai , i = 1, . . . , m belong to Sn and b ∈ Rm.
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Its dual problem is:

max
y

[
bty : C −

m∑
i=1

yiAi = S, S ∈ Sn
+, y ∈ Rm

]
. (SDD)

We denote by:

R(P ) =
{
X ∈ Sn

+ : 〈Ai, X〉 = bi, i = 1, . . . , m
}

,

the set of feasible primal solutions of (SDP ), and

R◦(P ) =
{
X ∈ R(P ) : X ∈ Sn

++

}
,

the set of strictly feasible primal solutions of (SDP ).
Similarly,

R(D) =

{
(y, S) ∈ Rm × Sn

+ : C −
m∑

i=1

yiAi = S

}
,

the set of feasible dual solutions of (SDD), and

R◦(D) =
{
(y, S) ∈ R(D) : S ∈ Sn

++

}
,

the set of strictly feasible dual solutions of (SDD).
We denote by val(P ) and val(D) the optimal values of (SDP ) and (SDD)

respectively.

Theorem 2.1 (Weak duality [17]). If X ∈ R(P ) and (y, S) ∈ R(D) then:

〈C, X〉 − bty = 〈S, X〉 ≥ 0.

And, in case where 〈S, X〉 = 0, X is one optimal solution of (SDP ) and (y, S) is
one optimal solution of (SDD).

Theorem 2.2 (Strong duality [17]).

1. If val(P ) > −∞ and R◦(P ) 
= φ, then the set of optimal solutions of (SDD)
is nonempty and bounded and we have:

val(P ) = val(D).

2. If val(D) < +∞ and R◦(D) 
= φ, then the set of optimal solutions of (SDP )
is nonempty and bounded and we have:

val(P ) = val(D).

3. If R◦(P ) 
= φ and R◦(D) 
= φ, then the sets of optimal solutions of (SDP ) and
(SDD) are nonempty and bounded and we have:

val(P ) = val(D).



558 K. SAMIA AND B. DJAMEL

Moreover, for all X optimal solution of (SDP ) and (y, S) optimal solution of
(SDD) one has: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
C −

m∑
i=1

yiAi = S

〈Ai, X〉 = bi, i = 1, . . . , m

XS = 0

(2.1)

Throughout the remaining of the paper, we assume that both R◦(P ) and R◦(D)
are nonempty.

3. The logarithmic penalization

Given μ > 0, we consider the problem

min
X∈Sn

[ fμ(X) : 〈Ai, X〉 = bi, i = 1, . . . , m] (SDP )μ

where fμ is defined by

fμ(X) =
{ 〈C, X〉 − μ ln detX if X ∈ Sn

++

+∞ otherwise.

3.1. Study of the problem (SDP )μ

We start with a lemma.

Lemma 3.1. {Y ∈ Sn
+ : 〈C, Y 〉 ≤ 0, 〈Ai, Y 〉 = 0, i = 1, . . . , m } = {0}.

Proof. We know that the set of optimal solutions of (SDP ) (Sol(SDP )) is convex
closed bounded and nonempty. Therefore its recession cone Sol(SDP )∞ is reduced
to the singleton {0}. But

Sol(SDP )∞ = {Y ∈ Sn
+ : 〈C, Y 〉 ≤ 0, 〈Ai, Y 〉 = 0, i = 1, . . . , m }. �

Theorem 3.2. The problem (SDP )μ admits one unique optimal solution.

Proof. Existence: It is sufficient to prove that the recession cone of the closed
convex set

Sλ = {X : 〈Ai, X〉 = bi ∀ i, fμ(X) ≤ λ}
is reduced to {0}. One has

S∞
λ = {Y : 〈Ai, Y 〉 = 0, i = 1, . . . , m } ∩ {Y : f∞

μ (Y ) ≤ 0 }.

Let us compute the recession function f∞
μ . Let some X ∈ Sn

++. Then, for Y ∈ Sn,

f∞
μ (Y ) = lim

t→∞
fμ(X + tY ) − fμ(X)

t
.
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It is clear that if Y /∈ Sn
+, for t large enough, X + tY does not belong to Sn

++ and
therefore fμ(Y ) = +∞. Assume that Y ∈ Sn

+. Then,

f∞
μ (Y ) = 〈C, Y 〉 − μ lim

t→∞
ln det(X + tY ) − ln det(X)

t
·

Recall that X is positive definite, there is a symmetric positive definite matrix
Z such that X = Z2. Next, there exists a matrix P and a positive semidefinite
diagonal matrix D such that Z−1Y Z−1 = P tDP and P tP = I. It follows that

det(X + tY ) = det(ZP t(I + tD)PZ) = det(X)
n∏

i=1

(1 + tdi)

where the dis are the diagonal entries of D. Therefore,

f∞
μ (Y ) = 〈C, Y 〉 − μ

n∑
i=1

lim
t→∞

ln(1 + tdi)
t

= 〈C, Y 〉 .

Apply lemma 1, we obtain
S∞

λ = {0}.
Uniqueness: Since fμ is strictly convex, it follows that the optimal solution of
(SDP )μ is unique. �

3.1.1. Optimality conditions for (SDP)μ

The problem is convex. Applying the KKT conditions, we have that X ∈ Sn
++

is an optimal solution of problem (SDP )μ if and only if there exists y ∈ Rm such
that: ⎧⎨

⎩ C − μX−1 −
m∑

i=1

yiAi = 0

〈Ai, X〉 = bi, i = 1, . . . , m.
(3.1)

Set S = μX−1, the system (3.1) can be written as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∑
i=1

yiAi + S = C , S ∈ Sn
++

〈Ai, X〉 = bi, i = 1, . . . , m , X ∈ Sn
++

XS = μI , μ > 0.

(3.2)

The system (3.2) is the parameterized system of (2.1). We denote by
(X(μ), y(μ), S(μ)) one solution of the system. We already know that X(μ) (and
thereby also S(μ)) is uniquely defined. From to now, we add the additional as-
sumption: the matrices Ai, i = 1, . . . , m are linearly independent. Then, y(μ) is
also uniquely defined.

Definition 3.3. The set

Tc(μ) = {(X(μ), y(μ), S(μ)) / μ > 0}
is called the central trajectory associated to our penalization.
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3.2. Central trajectory method

If (X(μ), y(μ), S(μ)) is an optimal solution of (SDP )μ with μ > 0 then

lim
μ→0

(X(μ), y(μ), S(μ)) = (X, y, S)

is an optimal solution of (SDP ), see [12].
To facilitate the study, we consider in the following the notation (X, y, S) instead

of (X(μ), y(μ), S(μ)).
To solve the problem (SDP )μ, we use the primal-dual central trajectory method.

The strategy of this method is to find at each iteration an approximate solution
for the nonlinear system (3.2), in the neighborhood of the central trajectory, i.e.,
by obtaining a decreasing sequence of the matrix duality gap XkSk (or in an
equivalent manner, the convergence of the parameter μk to 0).

Newton’s method is considered as one of the best methods for solving the sys-
tem (3.2). At the iteration k, assume Uk = (Xk, yk, Sk) ∈ R◦(P ) × R◦(D), we
search a new iterate Uk+1 = (Xk+1, yk+1, Sk+1) defined by:

⎧⎪⎪⎨
⎪⎪⎩

Xk+1 = Xk + ΔXk

yk+1 = yk + Δyk

Sk+1 = Sk + ΔSk.

Then, (Xk+1, yk+1, Sk+1) satisfies the nonlinear system (3.2) and we have:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∑
i=1

(yk
i + Δyk

i )Ai + (Sk + ΔSk) = C, Sk ∈ Sn
++〈

Ai, X
k + ΔXk

〉
= bi, i = 1, . . . , m, Xk ∈ Sn

++

(Xk + ΔXk)(Sk + ΔSk) = μkI, μk > 0,

(3.3)

where (ΔXk, Δyk, ΔSk) is the solution of the linear system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∑
i=1

Δyk
i Ai + ΔSk = 0, Sk ∈ Sn

++〈
Ai, ΔXk

〉
= 0, i = 1, . . . , m, Xk ∈ Sn

++

Xk�Sk + Sk�Xk = μkI − XkSk, μk > 0.

(3.4)

A point is said near the central trajectory if it belongs to the following set:

Sσ(μ) =
{
(X, y, S) ∈ R◦(P ) × R◦(D) /

∥∥∥X1/2SX1/2 − μI
∥∥∥ ≤ σμ

}
,

with 0 < σ < 1.
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3.2.1. Algorithm of central trajectory

Begin of the algorithm
Initialization:

Choose ε > 0 and 0 < σ < 1, such that (X0, y0, S0) ∈ Sσ(μ0),

with μ0 = 〈X0,S0〉
n , k = 0.

• While μk > ε do
– Compute (�Xk,�yk,�Sk) by solving the linear system (3.4).
– Take (Xk+1, yk+1, Sk+1) = (Xk, yk, Sk) + (�Xk,�yk,�Sk).

– Take μk+1 = 〈Xk+1,Sk+1〉
n and k = k + 1.

• End While.

End of the algorithm.

Remark 3.4. The major difficult in central trajectory methods is the obtention of
one feasible solution. Once this point obtained, the convergence of the algorithm
is guaranteed as soon as the point is in some neighborhood of the central tra-
jectory [4, 9, 11, 16, 20, 21]. In this sense, several studies have been conducted to
answer this question. Besides, introducing a weight factor in barrier function,
many researchers have proved the convergence results of the algorithm. See for
instance [5, 25].

In the other hand, the iterates are infeasible because the found direction is
not in general symmetric. Several families of symmetrized direction are proposed,
namely HAO direction [1], NT direction [21], H.K.M direction [8, 12, 13] and the
Monteiro family of direction [13–15].

Remark 3.5. The parameterized nonlinear equation XS = μI of system (3.2),
limited the theoretical and numerical study of the algorithm. In order to give more
flexibility to the equation XS = μI, we relax the parameter μ by the spectral
radius of a diagonal positive definite matrix.

4. Relaxation of parameter µ

We propose in this section a generalization of the primal-dual central trajectory
method by replacing the parameter μ in the system (3.2) by the spectral radius
ρ(W ) of the diagonal positive definite matrix W .

The parameterized problem associated to SDP becomes:

min
X∈Sn

[ fW (X) : 〈Ai, X〉 = bi, i = 1, . . . , m]. (SDP )W

Where fW is defined by

fW (X) =
{ 〈C, X〉 − ρ(W ) ln detX if X ∈ Sn

++

+∞ otherwise.
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For the same reasons than in (SDP )μ, the problem (SDP )W also admits a
unique optimal solution. Consequently, the optimality conditions are necessary
and sufficient. It follows that X is an optimal solution of (SDP )W if there exists
y ∈ Rm such that: ⎧⎨

⎩C − ρ(W )X−1 −
m∑

i=1

yiAi = 0

〈Ai, X〉 = bi, i = 1, . . . , m.

Let S = ρ(W )X−1, then we obtain:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∑
i=1

yiAi + S = C, S ∈ Sn
++

〈Ai, X〉 = bi, i = 1, . . . , m, X ∈ Sn
++

XS = ρ(W )I, W ∈ Sn
++.

(4.1)

We denote by (X(W ), y(W ), S(W )) one solution of the system (4.1). We already
know that X(W ) (and thereby also S(W )) is uniquely defined. Recall that the
matrices Ai, i = 1, . . . , m are linearly independent. Then, y(W ) is also uniquely
defined.

Definition 4.1. The set

Tc(W ) =
{
(X(W ), y(W ), S(W )) / W ∈ Sn

++

}
is called the central trajectory associated to our penalization.

Here, we consider also (X, y, S) instead of (X(W ), y(W ), S(W )) to facilitate the
study.

The system (4.1) is nonlinear which can be written as

FW (X, y, S) = 0, such that X, S, W ∈ Sn
++,

where

FW (X, y, S) =

⎡
⎢⎢⎢⎣

m∑
i=1

yiAi + S − C

〈Ai, X〉 − bi, i = 1, . . . , m

XS − ρ(W )I

⎤
⎥⎥⎥⎦

By applying Newton’s method and linearization, the resolution of the nonlinear
system

FW (X + �X, y + �y, S + �S) = 0, such that X, S, W ∈ Sn
++

returns to the following linear system:

FW (X, y, S) + (�X,�y,�S)T∇FW (X, y, S) = 0, such that X, S, W ∈ Sn
++
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which is equivalent to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m∑
i=1

�yiAi + ΔS = 0, S ∈ Sn
++

〈Ai,�X〉 = 0 , i = 1, . . . , m, X ∈ Sn
++

X�S + S�X = ρ(W )I − XS, W ∈ Sn
++.

(4.2)

Hence, the new iterate is given by:

(X+, y+, S+) = (X, y, S) + (�X,�y,�S).

A point is said near the central trajectory if it belongs to the following set:

Sσ(W ) =
{

(X, y, S) ∈ R◦(P ) × R◦(D) /
∥∥∥X1/2SX1/2 − ρ(W )I

∥∥∥ ≤ σρ(W )
}

,

with 0 < σ < 1.

4.1. Computing of the direction

Recall that the computation of the direction (�X,�y,�S) requires at each
iteration, the resolution of system (4.2). Then, the new iterate

(X+, y+, S+) = (X, y, S) + (�X,�y,�S)

must be strictly feasible i.e., X+ ∈ R◦(P ) and (y+, S+) ∈ R◦(D).
Unfortunately, X+ and S+ are not always symmetrical. To remedy these dif-

ficulties, Zhang [24] proposed an alternative to guarantee the symmetrization of
the iterates as follows:

We consider the linear transformation:

HP (M) =
1
2
[
PMP−1 + P−T MT PT

]
,

where P is an invertible matrix and P−T is the inverse matrix of PT .
Zhang showed that if M is a positive definite matrix, then:

HP (M) = μI ⇔ M = μI.

Therefore, we can replace the matrix XS in the systems (3.2) and (4.1) by
HP (XS).

Remark 4.2. If P = I, the direction obtained coincides with (HAO) direction of
Alizadeh, Haeberly and Overton [1].

If P = [X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2 ]

1
2 , we obtain the NT direction of Nesterov and

Todd [21].
If P = X− 1

2 or P = S
1
2 , we obtain the H.K.M direction of Helmberg et al.,

Kojima et al. and Monteiro [8, 12, 13].
In the practice, the HAO direction is the most used thanks to its simplicity.
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To solve the system (4.2), we apply the HAO alternative. For this, we define
the operator:

A : Sn → R
m

A(X) = (〈Ai, X〉)m
i=1

The associate adjoint operator of A is defined by:

A∗ : R
m → Sn

A∗(y) =
m∑

i=1

yiAi

Replacing the matrix XS by
XS + SX

2
, the system (4.2) becomes:

⎧⎪⎨
⎪⎩

A∗(Δy) + ΔS = 0, S ∈ Sn
++

A(ΔX) = 0, X ∈ Sn
++

�(ΔX) + £(ΔS) = 2ρ(W )I − (XS + SX), W ∈ Sn
++

(4.3)

where:

�,£ : Sn → Sn

�P =
1
2
(SP + PS)

£P =
1
2
(XP + PX)

Theorem 4.3 [25]. Let �,£: Sn → Sn two operators, such as � invertible and
�
−1£ positive definite operator, then the solution of system (4.3) is unique and

given by:

⎧⎪⎨
⎪⎩

Δy = (A�
−1£A∗)−1(−A�

−1(2ρ(W )I − (XS + SX)))

ΔS = −A∗(Δy), X, S ∈ Sn
++

ΔX = �
−1(2ρ(W )I − (XS + SX)− £(ΔS)), W ∈ Sn

++.

Remark 4.4. The convergence speed of the algorithm depends largely on the
manner of computing the direction (�X,�y,�S) and the stepsize along the di-
rection. Thus, the current iterate is defined by:

⎧⎪⎨
⎪⎩

X+ = X + α�X

y+ = y + β�y

S+ = S + β�S
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4.2. Computation of the stepsize

It means to search (α, β) which guaranteed the positivity definiteness of the
matrices X+, S+ and improves the convergence speed of the algorithm. For this,
we set:

αX =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

⎛
⎝

n∑
i�=j=1

|Xij |−Xii

ΔXii−
n∑

i�=j=1
|ΔXij |

⎞
⎠ if I0 
= φ

1 if I0 = φ

βS =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min

⎛
⎝

n∑
i�=j=1

|Sij |−Sii

ΔSii−
n∑

i�=j=1
|ΔSij |

⎞
⎠ if I1 
= φ

1 if I1 = φ,

where

I0 =

⎧⎨
⎩i ∈ {1, . . . , n} / ΔXii −

n∑
i�=j=1

|ΔXij | < 0

⎫⎬
⎭

I1 =

⎧⎨
⎩i ∈ {1, . . . , n} / ΔSii −

n∑
i�=j=1

|ΔSij | < 0

⎫⎬
⎭ .

Lemma 4.5 [23]. If α∗ = min(αX , βS), then

X+ = X + α∗�X ∈ Sn
++ and S+ = S + α∗�S ∈ Sn

++.

4.3. Description of the algorithm

Begin of the algorithm
Initialization:

Choose ε > 0 and 0 < σ < 1, such that (X0, y0, S0) ∈ Sσ(W 0),

with W 0 =
diag(X0S0)

n
, k = 0.

• While ρ(W k) > ε do
– Compute (�Xk,�yk,�Sk) by solving the linear system (4.3).
– Take (Xk+1, yk+1, Sk+1) = (Xk, yk, Sk) + αk(�Xk,�yk,�Sk),

where αk = min(αXk , βSk).

– Take W k+1 =
diag(Xk+1Sk+1)

n
and k = k + 1.

• End While.

End of the algorithm.
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5. Numerical tests

The following examples are taken from the literature see for instance [2,23]. The
tests were done using Matlab 10. We have taken ε = 10−7 and σ = 0.1.

In the table of results, (ex (m, n)) represents the size of the example, (Itr)
represents the number of iterations necessary to obtain the optimal solution and
(time (s)) represents the time of computation.

• Examples with fixed size

parameter μ parameter ρ(W )
ex (m, n) Itr time (s) Itr time (s)
ex (2, 3) 4 0.017895 3 0.011789
ex (3, 5) 7 0.018817 5 0.012493
ex (3, 6) 7 0.022879 6 0.018049

• Examples with variable size

Recall that the considered problem is

min
X

[ tr(CX) : X ∈ Sn
+, tr(AiX) = bi for i = 1, . . . , m], (SDP )

where
C = −I, b (i) = 2, i = 1, . . . , m, n = 2m, and the matrices Ak, k = 1, . . . , m are

defined as follows

Ak (i, j) =

⎧⎨
⎩

1 if i = j = k
1 if i = j and i = m + k
0 Otherwise.

parameter μ parameter ρ(W )
ex (m, n) Itr time (s) Itr time (s)
(10, 20) 7 0.031858 3 0.029764
(30, 60) 8 0.163532 3 0.090465
(50, 100) 8 0.458340 3 0.181330
(100, 200) 8 1.579016 3 0.640606
(200,400) 8 7.010987 3 2.837008

5.1. Comments

Through the numerical tests and for different dimension of the examples, we
remark that the results show the importance of the introduced modification, ex-
pressed by significant reduction in the number of iteration and computation time.
Generally, the choice of the parameter ρ(W ) is much better than the parameter μ.
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Conclusion

In this paper, we have introduced a relaxation in the perturbed problem of
SDP . This modification led to improving the behavior of algorithm, and provided
a flexibility in the theoretical study. Furthermore, the numerical tests confirm the
theoretical propositions and open the way to other modifications which aim to
lead a more effective algorithm.

Acknowledgements. The authors are grateful to the referee whose detailed comments
greatly improve the presentation of the paper.
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