
RAIRO-Oper. Res. 49 (2015) 511–526 RAIRO Operations Research

DOI: 10.1051/ro/2014053 www.rairo-ro.org

VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV
MODELS WITH APPLICATION TO DNA ANALYSIS

Christina-Elisavet Pertsinidou
1,2

and Nikolaos Limnios
1

Abstract. In this paper we present a new Viterbi algorithm for Hidden
semi-Markov models and also a second algorithm which is a generaliza-
tion of the first. These algorithms can be used to decode an unobserved
hidden semi-Markov process and it is the first time that the complexity
is achieved to be the same as in the Viterbi for Hidden Markov mod-
els, i.e. a linear function of the number of observations and quadratic
function of the number of hidden states. An example in DNA Analysis
is also given.

Keywords. Viterbi algorithm, Hidden semi-Markov model, hidden
Markov model, DNA Analysis.

Mathematics Subject Classification. 68Q25, 68Q15, 60K15,
65K05.

1. Introduction

Hidden Markov models (HMMs) are important tools in estimation and analysis
of biological sequences and many other systems. Though, the main disadvantage is
that the sojourn times of the hidden process are geometrically distributed, which
is inappropriate for some applications. A hidden semi-Markov model (e.g., [1]),
(HSMM), which is a generalization of a HMM, is a solution to the problem be-
cause it allows arbitrary sojourn time distributions for the hidden process. In the
sequel, we will present a Viterbi algorithm for hidden semi-Markov models and a

Received March 3rd, 2013. Accepted October 8, 2014.

1 Université de Technologie de Compiègne, Laboratoire de Mathématiques Appliquées,
Centre de Recherches de Royallieu, CS 60319, 60203 Compiègne Cedex, France.
p.eli.christina@gmail.com

2 Aristotle University of Thessaloniki, School of Mathematics, 54124 Thessaloniki, Greece

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2015

http://dx.doi.org/10.1051/ro/2014053
http://www.rairo-ro.org
http://www.edpsciences.org


512 C.-E. PERTSINIDOU AND N. LIMNIOS

generalization of this new algorithm. To our knowledge this kind of algorithms for
HSMMs are proposed for the first time.

In the literature, (e.g. [4–6, 9, 11]), there exist algorithms named Viterbi for
HSMMs algorithms, but most of them, do not really relay on the definitions of
HSMMs ([1]) and some of them even if they do, they have a double (or even more)
maximization, which makes them very complicated and difficult to be used. We
recall that the Viterbi algorithm for HMMs (see appendix) has a single maximiza-
tion, for the hidden states. For example in [9], there is a double maximization,
one for the sojourn times and one for the hidden states, which leads to a higher
complexity. More precisely, if d represents the number of hidden states, T the
number of observations, Dmax the maximum time duration in any given state
and k the average number of states that can transition to a given state, then the
complexity of the algorithm in [9] is O(dTDmaxk). In [5] there is again a second
maximization as for the state duration and the complexity is O(d2TD) where D
represents the sum of the maximum duration in each hidden state. In [4] there is
a different definition concerning the emmision probabilities, than in [1] and also
again a double maximization. The complexity in this case is O(d2TL), where L is
the sum of durations of d states. In addition, in [6] there exists an algorithm with
two maximizations, which leads to a complexity that can become O(dT (d + T )),
in the worst case. Finally, in [11] though the algorithm is referred as Viterbi for
HSMMs, the definitions of the transition probabilities and the emission proba-
bilities differ a lot from those in [1]. Furthermore, in [11], there are presented
three specific cases of HSMMs with complexities of the form O((M2 + MD2)T ),
O((M2D)T ) and O((MD+M2)T ). We overcome these problems by working with
backward-recurrence times of the associated backward recurrence Markov chain
(Z, U), (defined in the sequel), instead of working with sojourn times. This allow
us to create an innovative algorithm for HSMMs, for the first time, with only one
maximization and the complexity is the same as in the Viterbi HMM algorithm,
i.e. O(Td2). There is a great importance of having such an algorithm because of
the wide range of fields that it can be applied, such as DNA analysis and speach
recognition.

The paper is organised as follows:

Section 2 presents some basic notions of the semi-Markov chains, the Markov
renewal chains and the hidden semi-Markov framework.

Section 3 presents the new Viterbi algorithm, analyzes its structure and provides
an application in a Poisson distributed HSMM.

Section 4 presents a generalisation of the new Viterbi algorithm and an appli-
cation in DNA Analysis.

Section 5 contains the conclusions.

Section 6 is the appendix, which presents the classical Viterbi algorithm for
HMMs, a pseudocode for the new algorithm, a pseudocode for the generalisation
of the new algorithm and further details about the complexity.



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 513

2. Hidden semi-Markov framework

Before presenting the Hidden semi-Markov framework, we will present at first
some basic notions concerning the semi-Markov chains and Markov renewal chains
(see [1]) required for the understanding of HSMMs.

Consider a random system with finite state space E = {1, . . . , d}. We suppose
that the evolution in time of the system is described by the following chains:

The chain J = (Jn)n∈N with state space E, where Jn is the system state at the
nth jump time.

The chain S = (Sn)n∈N with state space N, where Sn is the nth jump time. We
suppose that S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . .

The chain X = (Xn)n∈N with state space N, Xn := Sn − Sn−1 for all n ∈ N
∗

and X0 := 0. Thus for all n ∈ N
∗, Xn is the sojourn time in state Jn−1, before the

nth jump. One fundamental notion for our work is that of the semi-Markov kernel
in discrete time.

Definition 2.1. (discrete-time semi-Markov kernel) A matrix-valued function q =
qij(k) is said to be a discrete semi-Markov kernel if it satisfies the following three
properties:

(1) 0 ≤ qij(k), i, j ∈ N,
(2) qij(0) = 0, i, j ∈ E,
(3)

∑∞
k=0

∑
j∈E qij(k) = 1, i ∈ E.

Definition 2.2. (Markov renewal chain) The chain (J, S) = (Jn, Sn)n∈N is said
to be a Markov renewal chain (MRC) if for all n ∈ N, for all i, j ∈ E, and for all
k ∈ N it satisfies almost surely

P(Jn+1 = j, Sn+1 − Sn = k | J0, . . . , Jn; S0, . . . Sn)
= P(Jn+1 = j, Sn+1 − Sn = k | Jn).

Moreover, if the above equation is independent of n, then (J,S) is said to be
homogeneous and the discrete-time semi-Markov kernel q is defined by

qij(k) := P(Jn+1 = j, Xn+1 = k | Jn = i).

We also denote, by p = (pij)i,j∈E the transition matrix of (Jn), defined by

pij := P(Jn+1 = j | Jn = i), i, j ∈ E, n ∈ N.

Definition 2.3. (conditional distribution of sojourn times) fij(·), the conditional
distribution of Xn+1, n ∈ N:

fij(k) := P(Xn+1 = k | Jn = i, Jn+1 = j), k ∈ N.

We would like to mention that the semi-Markov kernel verifies the relation
qij = fijpij , for all i, j ∈ E and k ∈ N such that pij �= 0.



514 C.-E. PERTSINIDOU AND N. LIMNIOS

Definition 2.4. (sojourn time distributions in a given state) For all i ∈ E, let us
denote by:

(1) hi(·) the sojourn time distribution in state i:

hi(k) := P(Xn+1 = k | Jn = i) =
∑
j∈E

qij(k), k ∈ N.

(2) Hi(·) the sojourn time cumulative distribution in state i:

Hi(k) := P(Xn+1 ≤ k | Jn = i) =
k∑

l=1

hi(l), k ∈ N.

We will also denote by H̄i := 1 − Hi(k) = P(X > k) the survival function of
Hi(k).

Definition 2.5. (semi-Markov chain)
Let (J, S) be a Markov renewal chain. The chain Z = (Zk)k∈N is said to be a

semi-Markov chain associated to the MRC (J, S) if

Zk := JN(k), k ∈ N,

where
N(k) := max{n ∈ N | Sn ≤ k}

is the discrete-time counting process of the number of jumps in [1, k].
We want to point out that it is only a matter of technical convenience that we

have chosen to define N(k) as the counting process of the number of jumps in [1, k]
instead of [0, k].

Let the row vector α = (α1, . . . αs) denote the initial distribution of the semi-
Markov chain Z = (Zk)k∈N, i.e., αi := P(Z0 = i) = P(J0 = i), i ∈ E.

In HSMMs now, the unobserved process is a semi-Markov chain and the ob-
served process is independent conditionally on the values of the semi-Markov
chain. Let E = {e1, . . . , ed} and A = {a1, . . . , as} be two finite sets. Consider
also the double chain (Zk, Yk)k≥0, where (Zk) is an E-valued semi-Markov chain,
with semi-Markov kernel q(k) = (qij(k); i, j ∈ E), k ∈ N, and initial probability
α̃. The process (Yk) is the observed process, with distribution depending on the
values of (Zk), i.e.,

P(Yk = y | Zk = z) =: R(z, y), (z, y) ∈ E × A. (2.1)

When the emission probability matrix is of the form (2.1) the hidden semi-
Markov model is denoted by SM1-M0. When relation (2.1) is replaced by the
following one

P(Yk = y | Zk = z, Yk−1 = x) =: R(z, x, y)

then the model is denoted by SM1-M1. The process (Zk, Yk)k≥0 is called a HSMM.



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 515

Starting from the initial hidden semi-Markov chain (Zk, Yk)k∈N, we have an as-
sociated hidden Markov chain ((Z, U), Y ) = ((Zk, Uk), Yk)k∈N with (Zk, Uk)k∈N a
Markov chain and (Yk)k∈N a sequence of conditionally independent random vari-
ables. The backward recurrence times (Uk)k∈N of the semi-Markov chain (Zk)k∈N

are given by the equation:
Uk = k − SN(k),

where N(k) is the number of transitions until time k. The associated backward
recurrence Markov chain (Z, U) transition probabilities are (see [3]) :

p̃(i,t1)(j,t2) =

⎧⎪⎨
⎪⎩

qij(t1 + 1)/H̄i(t1) if i �= j, t2 = 0

H̄i(t1 + 1)/H̄i(t1) if i = j, t2 − t1 = 1

0 elsewhere

,

where H̄i(·) is the survival function of sojourn time in state i,

H̄i(n) = 1 −
∑
j∈E

n∑
k=1

qij(k), n ∈ N
∗.

The aim is to observe a realisation of (Yk, 0 ≤ k ≤ n), i.e., yn
0 = (y0, . . . yn) ∈

An+1 and try to find out the corresponding hidden regime, i.e., zn
0 = (z0, . . . zn) ∈

En+1, a realisation of (Zk, 0 ≤ k ≤ n). The parameters of the discrete hidden
Markov model are (Pij , R, α̃), where α̃ is the initial probability of the Markov
chain. In HMMs in order to find the best hidden sequence we need to compute the
arg maxz P (z | y) which is equivalent to computing argmaxz P (z, y). The Viterbi
algorithm, (e.g., [8]) for HMMs maximizes for all k the joint probability

P (z1, . . . zk, y1, . . . yk) = P(Zk
1 = zk

1 , Y k
1 = yk

1 )

and computes in every step the arg maxzk
1
(P (z1, . . . zk, y1, . . . yk)). By backtrack-

ing we obtain the optimal hidden state sequence. The algorithm can be written in
a logarithmic mode (base 2) which is recommended in order to avoid an underflow
error. In the first step we have the initial conditions, in the second step the recur-
rence formula, in the third step we find the last hidden state and the probability
of the optimal path and in the fourth step by backtracking, we find the hidden
state sequence.

3. A Viterbi algorithm for a SM1-M0 model

3.1. Joint probability formulas

The proposed Viterbi algorithms for SM1-M0, (Sect. 3.2), and SM1-M1
(Sect. 3.3), are both forward-backward. The Viterbi algorithm for HMMs that
already exists in the literature can only be applied when the sojourn times are ge-
ometrically distributed. This is the basic drawback of HMMs compared to HSMMs,



516 C.-E. PERTSINIDOU AND N. LIMNIOS

where the distribution of sojourn times can be arbitrary. We overcome this problem
by proposing a new algorithm for a SM1-M0 model. The key feature of this new
algorithm is the use of the associated backward recurrence Markov chain, which
by definition allows the sojourn times to be arbitrarily distributed and at the same
time maintains the property of the HMM to be able to move step by step, which is
very important for the structure and the complexity of the new algorithm. One of
our goals is to remain as close as possible to the structure of the classical Viterbi
algorithm for HMMs in order to achieve the minimum complexity that we could,
but at the same time generalize this to the HSMM case. Thus, the proposed new
algorithm is a specification of the classical one to the HSMM context.

In the first step we have the initial conditions, in the second step the recurrence
formula, in the third step we find the last hidden state and the optimal path’s
probability and in the fourth step by backtracking we derive the hidden state
sequence. The following Proposition 3.1, help us to construct the algorithm.

Proposition 3.1. The joint probability uk = P
(
Zk

0 = ik0
)

is given by the following
recurrence formula

uk = ak

(
ik0

)
uk−1, k ≥ 1, u0 = α̃(i0), i−1 = i0−

where,

ak

(
ik0

)
=

k−1∑
l1=0

∑
l2∈{0,l1+1}

p̃(ik−1,l1)(ik,l2) × 1{ik−1=...=ik−l1−1 �=ik−l1−2}, k ≥ 1

and

1A(x) = 1{x∈A} :=
{

1 if x ∈ A
0 elsewhere

Proof. We have

uk = P
(
Zk

0 = ik0
)

=
k−1∑
l1=0

∑
l2∈{0,l1+1}

P(Zk−2
0 = ik−2

0 , Zk−1 = ik−1, Uk−1 = l1, Zk = ik, Uk = l2)

=
k−1∑
l1=0

∑
l2∈{0,l1+1}

P
(
Zk−1

0 = ik−1
0

)
P

(
Uk−1 = l1 | Zk−1

0 = ik−1
0

)

× P
(
Zk = ik, Uk = l2 | Zk−2

0 = ik−2
0 , Zk−1 = ik−1, Uk−1 = l1

)

=
k−1∑
l1=0

∑
l2∈{0,l1+1}

uk−1p̃(ik−1,l1)(ik,l2)1{ik−1=...=ik−l1−1 �=ik−l1−2}

= uk−1

k−1∑
l1=0

∑
l2∈{0,l1+1}

p̃(ik−1,l1)(ik,l2)1{ik−1=...=ik−l1−1 �=ik−l1−2},

which proves the claimed result. �



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 517

Proposition 3.2. The joint probability uk = P(Zk
0 = ik0) is also given by the

following equation:

uk = P
(
Zk

0 = ik0
)

= H̄i0(k) × 1{il0=i0,0≤l0≤k}

+
k∑

n=1

∑
0<s1<...<sn≤k

∑
J1,...,Jn∈E

qi0j1(s1)qj1j2(s2 − s1) . . . qjn−1jn(sn − sn−1)

× H̄jn(k − sn) × 1{il0=j0,0≤l0<s1,il1=j1,s1≤l1<s2,...,iln=jn,sn≤ln≤k}.

3.2. A Viterbi algorithm for a SM1-M0 model

The proposed new algorithm is the following one

Algorithm 3.3. Step 1. Initial conditions. For k = 0,

d0(i0) = log2(α̃(i0)) + log2(R(i0, y0)), b0(i0) = 0.

Step 2. For k ≥ 1

dk(ik) = max
ik−1∈E

[dk−1(ik−1) + log2(ak(ik0))] + log2(R(ik, yk))

bk(ik) = arg max
ik−1∈E

[dk−1(ik−1) + log2(ak(ik0))]

where

ak(ik0) =
k−1∑
l1=0

∑
l2∈{0,l1+1}

p̃{(ik−1,l1)(ik,l2)} × 1{ik−1=...=ik−l1−1 �=ik−l1−2}, k ≥ 1.

Step 3. Termination If k = T − 1 (T is the length of the observation sequence),

P = max
iT−1∈E

[dT−1(iT−1)], P ∗ = 2maxiT−1∈E [dT−1(iT−1)],

qT−1 = arg max
iT−1∈E

[dT−1(iT−1)].

Step 4. Sequence of states with backward-forward steps

qk−1 = bk(qk), k = T − 1, . . . , 1.

More precisely, in step 3, P maximizes the optimal path’s probability (in loga-
rithm base 2), P ∗ represents the optimal path’s probability and qT−1 is the last
decoded hidden state. All the previous hidden states are revealed by the backward-
forward technique in step 4.

The complexity of the Viterbi algorithm in HMM is O(T × d2), (see [10]).
The complexity of the proposed algorithms is also O(T × d2), where T is the
observation sequence length and d the number of hidden states. This is because,



518 C.-E. PERTSINIDOU AND N. LIMNIOS

we have only one maximization and this maximization (in every iteration), allow
us to know exactly which non-zero p̃{(ik−1,l1)(ik,l2)} probability we need to use from
the quantities

ak

(
ik0

)
=

k−1∑
l1=0

∑
l2∈{0,l1+1}

p̃{(ik−1,l1)(ik,l2)} × 1{ik−1=...=ik−l1−1 �=ik−l1−2}, k ≥ 1,

without needing to sum over all possible recurrence times.
The complexity will be better understood following the analysis of the algorithm

structure, provided in the sequel. In Appendix A.2. a pseudocode of the algorithm
and further information about the complexity are presented.

Remark 3.4. The algorithm was tested for the Markovian case, where the distri-
bution of the sojourn times is the geometric, the results were compared to those
of the classical Viterbi for HMMs and were found to be the same. A Markov chain
with transition matrix pij is a particular case of a Markov renewal chain. The
formula for computing the Markov chain’s semi-Markov kernel can be found in [1].

Remark 3.5. The algorithm was constructed for the case that the transition
probability matrix of the imbedded Markov chain is of the standard form. This is
the general case where all the diagonal elements are zero. Any transition probabil-
ity matrix can be transformed to this form, by setting the diagonal elements equal
to zero and replacing the other elements using the formula p

′
ij = pij/(1−pii). The

standard form is unique for every transition probability matrix. This should not be
confused with the transition probabilities of the associated backward recurrence
Markov chain, where transitions to the same state are allowed.

Remark 3.6. The discrete HSMM framework requires that for time k = 0 the
conditional distribution of the sojourn times is zero, fij(0) = 0, and therefore the
kernel probabilities at k = 0 are also zero, qij(0) = 0. This means that the probabil-
ity law of the sojourn times should be defined in N

∗. In case though the probability
law is defined in N and thus fij(0) > 0, and qij(0) > 0, before using the algorithm
one should proceed to the following transformation

f
′
ij(0) = 0, f

′
ij(k) = fij(k)/(1 − fij(0)), k ≥ 1. (3.1)

In order to see the correctness of the algorithm let us analyze, as an example,
the first three steps. By the definition of the problem we need to compute in each
step the joint probability P (Z0

k, Y0
k).

For k = 0 (in multiplication form)

d0(i0) = α̃(i0)R(i0, y0).

This is the trivial case, exactly the same as in the Viterbi algorithm for HMM.



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 519

For k = 1

P
(
Z1

0 = i10, Y
1
0 = y1

0

)
= R(i0, y0)R(i1, y1)u1

= R(i0, y0)R(i1, y1)a1(i01)u0

= R(i0, y0)R(i1, y1)a1(i01)α̃(i0)
d1(i1) = max[d0(i0)a1(i01)]R(i1, y1).

This is exactly the first step of our algorithm, if we take the logarithm. The
ak(i0k), as mentioned above, is always only one non-zero p̃ probability.

For k = 2 by definition we need to compute the probability

P
(
Z0

2 = i0
2, Y0

2 = y0
2
)
.

It is

P
(
Z2

0 = i20, Y
2
0 = y2

0

)
= R(i0, y0)R(i1, y1)R(i2, y2)u2

= R(i0, y0)R(i1, y1)R(i2, y2)a2

(
i20

)
u1

= R(i0, y0)R(i1, y1)R(i2, y2)a2

(
i20

)
a1

(
i10

)
α̃(i0)

d2(i2) = max
[
d1(i1)a2

(
i20

)]
R(i2, y2),

which is the second step of our algorithm, if we take the logarithm, and so on.
Some other questions that may arise: is the algorithm really that fast? And how
do we derive immediately which non-zero p̃ probability corresponds each time to
the ak(ik0) quantity?

We will try to answer these questions by assuming, as an example, that we have
two hidden states 1 and 2 (for simplicity reasons). We will present the first three
steps of the algorithm so as to show how it works.

For k = 0

d0(1) = log2(α̃(1)) + log2(R(1, Y0)), d0(2) = log2(α̃(2)) + log2(R(2, Y0)).

This is the trivial step exactly as in the Viterbi HMM algorithm.
For k = 1

d1(1) = max[d0(1) + log2(p̃(1,0)(1,1)), d0(2) + log2(p̃(2,0)(1,0))] + log2(R(1, Y1))
d1(2) = max[d0(1) + log2(p̃(1,0)(2,0)), d0(2) + log2(p̃(2,0)(2,1))] + log2(R(2, Y1)).

For a better understanding of the quantities dk(ik) and bk(ik) we mention as an
example that the quantity d1(1) evaluates which trajectory is more likely to have
occured, by maximizing the probability. For example, if we have maximum for the
first part of d1(1) this means that it is more likely that at k = 0, we started from
state 1, in order to visit state 1 at k = 1 (d1(1)).

The quantity b1(1) reveals the state for which we had the maximum, here state 1.
Though, we need to recall that the optimal trajectory will be entirely revealed only



520 C.-E. PERTSINIDOU AND N. LIMNIOS

in the end of the process by backtracking (step 4), as in the classical Viterbi for
HMMs.

For a better understanding of the way that the algorithm works we mention
as an example that in d1(1), in the first term of the maximum, we derive the
probability p̃, from the structure of the algorithm. Since we have d0(1) in the first
term this gives the first index of the probability, thus p̃(1,0). By the structure of the
algorithm we assume that for k = 1 we have d1(1), which gives the second index,
since i2 is now the hidden state 1. The backward-reccurence time l2 is always
derived by the definition of the probabilities p̃. Therefore, the probability of the
first term of d1(1) is p̃(1,0)(1,1). In the same way we can find all the p̃ probabilities
of that step.

Let assume that the maximum of d1(1) is given by its first term (we accept the
trajectory k = 0, hidden state = 1, k = 1, hidden state = 1) and the maximum
of d1(2) is given by the second term (we accept the trajectory k = 0, hidden
state = 2, k = 2, hidden state = 2. From step k = 2 and on, all the p̃ probabilities
will be derived in the following way.

d2(1) = max[d1(1) + log2(p̃(1,1)(1,2)), d1(2) + log2(p̃(2,1)(1,0))] + log2(R(1, Y2))
d2(2) = max[d1(1) + log2(p̃(1,1)(2,0)), d1(2) + log2(p̃(2,1)(2,2))] + log2(R(2, Y2)).

In d2(1), the first term is d1(1)+log2(p̃(1,1)(1,2)). The d1(1) probability provides
the information (by the previous maximization) that at k = 1 we assumed to be
at hidden state 1 and the backward-reccurence time was 1, (the probability of the
maximum was p̃(1,0)(1,1)), therefore the second index of the previous maximum
probability (1,1) becomes the first index of the next probability, related to d1(1),
p̃(1,1)(1,2). Since we are now computing d2(1) this means that the next hidden state
is assumed to be i2 = 1 and l2 = 2 by the definition of p̃. Thereby, the first term’s
d2(1) probability is now p̃(1,1)(1,2). The same way we can find all the p̃ probabilities
from now and on. It is obvious that the calculations are very simple and using a
programming language the algorithm is very fast, due to the fact that there is only
one maximization for each dk(ik). A few examples are presented in the sequel.

Example 3.7. An application of the Viterbi SM1-M0 algorithm in a Poisson dis-
tributed HSMM.

We assume that we have two hidden states 1 and 2. The transition matrix
is of the standard form and the distributions of the sojourn times are q12(k) =
(e−55k)/k!, k ≥ 0 and q21(k) = (e−33k)/k!, k ≥ 0 respectively, where by qij we
denote the semi-Markov kernel. We recall that for this example the transformation
in equation (3.1) needs to be done before using the algorithm. The observations H
and T are emitted from the hidden states 1,2 with emission probabilities R(1, H) =
0.2, R(1, T ) = 0.8, R(2, H) = 0.7 and R(2, T ) = 0.3. We use the Viterbi algorithm
for hidden semi-Markov models, as described above, to define the most likely
sequence of hidden states for the observed sequence TTTTTTTHHHTHHTTT .
Thus, we obtain the probabilities dk(ik) and the quantities bk(ik) in Table 1, the
optimal hidden state sequence and the optimal path probability. Hidden state



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 521

Table 1. Quantities dk(ik) and bk(ik) for the example 3.7.

k dk(1) dk(2) bk(1) bk(2)
0 −1.3219 −2.7369 0 0
1 −1.6936 −4.7206 1 2
2 −2.1481 −6.9310 1 2
3 −2.7221 −6.5256 1 1
4 −3.4376 −6.5256 1 1
5 −4.3024 −6.8475 1 1
6 −5.3158 −7.4325 1 1
7 −8.4721 −7.0175 1 1
8 −11.7639 −7.7787 1 2
9 −11.9385 −8.7668 2 2
10 −10.4531 −11.2131 2 2
11 −12.8248 −12.661 1 2
12 −15.2792 −14.314 1 2
13 −15.3712 −17.3754 2 2
14 −15.7429 −20.6054 1 2
15 −16.1973 −20.9899 1 1

Table 2. Performance of the algorithm.

observation segment Algorithm 3.3 Algorithm in [6]
1 650/814 637/814
2 634/817 615/817
3 650/841 648/841
4 672/867 657/867
5 616/823 593/823
6 581/803 572/803
7 585/773 574/773
8 626/815 624/815
9 641/831 631/831
10 576/752 567/752

sequence:
q15
0 = {1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1}

with probability P ∗
15 = 1.3308 × 10−5.

Using the same parameters as in example 3.7 we simulated 10 differents seg-
ments of the observations T and H emitted from hidden states 1 and 2, in order
to test the performance of the algorithm. The results were compared to those ob-
tained from the implementation of the algorithm in [6]. The implementation of
the algorithm in [6] was done using the R programming language (see [2]). The
score shown in Table 2 represents the hidden states decoded correctly/observation
sequence length. We would like to remind though, the much lower complexity of
Algorithm 3.3 compared to the one in [6].



522 C.-E. PERTSINIDOU AND N. LIMNIOS

4. A Viterbi algorithm for a SM1-M1 model

For (Z, Y ) a hidden semi-Markov chain of type SM1-M1 let us define the emis-
sion probability matrix of the conditional Markov chain Y as

Rik;yk−1,yk
= P(Yk = yk | Zk = ik, Yk−1 = yk−1).

The only difference from the Viterbi algorithm for a SM1-M0 model, presented
above, is that in the second step we replace the emission probability matix R(ik, yk)
with the emission probability matrix of the form R(ik, yk−1, yk) The proposed
algorithm is the following one

Algorithm 4.1. Step 1. Initial conditions. For k = 0,

d0(i0) = log2(α̃(i0)) + log2(R(i0, y0)), b0(i0) = 0.

Step 2. For k ≥ 1,

dk(ik) = max
ik−1∈E

[dk−1(ik−1) + log2(ak(ik0))] + log2(R(ik, yk−1, yk)),

bk(ik) = arg max
ik−1∈E

[dk−1(ik−1) + log2(ak(ik0))].

where

ak(ik0) =
k−1∑
l1=0

∑
l2∈{0,l1+1}

p̃{(ik−1,l1)(ik,l2)} × 1{ik−1=...=ik−l1−1 �=ik−l1−2}, k ≥ 1.

Step 3. Termination If k = T − 1 (T is the length of the observation sequence),

P = max
iT−1∈E

[dT−1(iT−1)], P ∗ = 2maxiT−1∈E [dT−1(iT−1)],

qT−1 = arg max
iT−1∈E

[dT−1(iT−1)].

Step 4. Sequence of states with backward-forward steps

qk−1 = bk(qk), k = T − 1, . . . , 1.

In Appendix A.3 we provide a pseudocode for Algorithm 4.1. Remarks 3.4–3.6
hold true for this algorithm too.

Example 4.2. An application of the Viterbi SM1-M1 algorithm in DNA Analysis
(for DNA Analysis examples, see also [7]).

Real DNA sequences can be described by a hidden semi-Markov model with
hidden states representing different types of nucleotide composition. Consider
a SM1-M1 that includes two hidden states 1 for higher and 2 for lower C + G
content, respectively. The transition probability matrix is of the standard form and



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 523

Table 3. Quantities dk(ik) and bk(ik) for the example 4.2.

k dk(1) dk(2) bk(1) bk(2)
0 −2.3219 −3.3219 0 0
1 −3.5977 −7.9302 1 1
2 −4.9072 −8.2540 1 1
3 −9.3252 −6.1392 1 1
4 −8.0016 −9.6131 2 2
5 −10.0848 −12.0249 1 1
6 −12.8094 −12.8343 1 1
7 −14.0187 −17.3632 2 1
8 −15.2945 −19.6269 1 1
9 −21.3410 −16.8216 1 1
10 −20.0060 −19.9736 2 2
11 −23.0891 −24.0676 1 2
12 −27.3987 −27.4236 1 1
13 −31.6080 −28.6306 2 1
14 −31.8150 −31.5196 2 2
15 −35.8982 −37.9355 1 2

the probability density functions of the holding times t12 and t21 are q12(k) =
0.59(k−1)1.2 −0.59k1.2

and q21(k) = 0.45(k−1)0.74 −0.45k0.74
(discrete Weibull distri-

bution). Nucleotides T (thymine), C (cytosine), A (adenine), G (guanine) are emit-
ted from states 1 and 2 for k=0 with probabilities 0.1,0.4,0.3,0.2 and 0.5,0.2,0.2,0.1
respectively and for k ≥ 1 from the following emission probability matrices (emit-
ted from state 1 and state 2, respectively)

R1 =

⎛
⎜⎜⎝

T C A G

T 0.1 0.2 0.5 0.2
C 0.1 0.1 0.1 0.7
A 0.2 0.1 0.4 0.3
G 0.1 0.8 0.03 0.007

⎞
⎟⎟⎠, R2 =

⎛
⎜⎜⎝

T C A G

T 0.4 0.1 0.2 0.3
C 0.8 0.1 0.05 0.05
A 0.25 0.3 0.15 0.3
G 0.02 0.08 0.7 0.2

⎞
⎟⎟⎠.

We use the Viterbi algorithm for SM1-M1 to define the most likely sequence
of hidden states for the observed sequence CGCTAAGCGATCCTGT . Thus, we
obtain the probabilities dk(ik) and the quantities bk(ik) in Table 3, the optimal
hidden state sequence and the optimal path’s probability. Hidden state sequence:

q15
0 = {1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1}

with probability P ∗
15 = 1.5616 × 10−11.

5. Conclusions

These algorithms are original and have an innovative and useful form. They
can be used in a lot of applications, so as to decode an unobserved hidden semi-
Markov process, via an observed process. Furthermore, their complexity is the



524 C.-E. PERTSINIDOU AND N. LIMNIOS

same as in the Viterbi HMMs case, i.e. O(Td2), which has not been achieved until
now. Their only difference from the Viterbi in the HMM case is that instead of the
transition probabilities of the embedded Markov chain, now we use the p̃(i,t1)(j,t2),
the transition probabilities of the associated backward recurrence Markov chain
(Z, U).

Appendix A

A.1 Viterbi algorithm for HMMs [8]

Algorithm A.1. Step 1. Initial conditions. For k = 1,

d1(i1) = log2(α̃(i1)) + log2(R(i1, y1)), b1(i1) = 0.

Step 2. For k > 1,

dk(ik) = max
ik−1∈E

[dk−1(ik−1) + log2(pik−1,ik
)] + log2(R(ik, yk)),

bk(ik) = arg max
ik−1∈E

[dk−1(ik−1) + log2(pik−1,ik
)]

Step 3. Termination If k = T (T is the number of observations),

P = max
iT ∈E

[dT (iT )], P ∗ = 2maxiT ∈E [dT (iT )], qT = arg max
iT ∈E

[dT (iT )],

where pik−1,ik
is the transition probability matrix. Step 4. Sequence of states with

backward-forward steps

qk = bk+1(qk+1), k = T − 1, . . . , 1.

A.2 A pseudocode for the new algorithm of type SM1-M0

Input
The observation sequence Y T−1

0 of length T. The emission probabilities R[i, Yk]
for all hidden states i, i ∈ {1, . . . d}. The kernel probabilities qij [n]. The survival
functions of the sojourn times, H̄i[n], for all i. The p̃(i,l)(j,m) probabilities of the
form p̃(i,l)(j,m) = qij(l + 1)/H̄i(l), if i �= j, or p̃(i,l)(j,m) = H̄i(l + 1)/H̄i(l) if i = j.
The initial probabilities α̃[i] for all i.

// Algorithm, Step 1 (k = 0)
For j = 1 to d Do

d0[j] = Log2[α̃[j]] + Log2[R[j, Y0]]
End For
//Step 2 (first for k = 1)
For j = 1 to d Do

For i = 1 to d Do
l[1, i, j] = 0 //1 since k = 1

If(i = j) Then



VITERBI ALGORITHMS FOR HIDDEN SEMI-MARKOV MODELS 525

m[1, i, j] = 1
Else (i �= j)

m[1, i, j] = 0
End If
a[i, j] = d0[i] + Log2[p̃(i,l[1,i,j])(j,m[1,i,j])] + Log2[R[j, Y1]]
d1[j] = max(of quantities a[i, j] )
b1[j] = argmax[d1[j]]

End For
End For
//Step 2 (continue for k ≥ 2)
For k = 2 to T − 1 Do

For j = 1 to d Do
For i = 1 to d Do

l[k, i, j] = m[k − 1, bk−1[i], i]
If i = j Then

m[k, i, j] = m[k − 1, bk−1[i], i] + 1
Else i �= j

m[k, i, j] = 0
End If
a[i, j, k] = dk−1[i] + Log2[p̃(i,l[k,i,j])(j,m[k,i,j]) + Log2[R[j, Yk]]
dk[j] = max(of the quantities a[i, j, k])
bk[j] = argmax[dk[j]]

End For
End For

End For
//Step 3, quantities dT−1[j] already evaluated, for all j, in the previous step
Do

QuantityP = max[dT−1[j]]
P ∗ = 2P // Optimal path probability
QT−1 = argmax[dT−1[j]] // last hidden state

//Backward procedure to reveal the hidden states Qk

For k = T − 1 to 1 Do
Qk−1 = bk[Qk]

End For

Complexity As it can be seen in the above pseudocode, there exist four dif-
ferent loops, two of which are nested. Therefore it is,

O
(
d + d2 + (T − 2)d2 + (T − 1)

)
= O

(
(T − 1)d2

)
< O

(
Td2

)
.

Hence, the complexity is O(Td2).
The term (T − 2)d2 results from the third nested loop, since the length of the

observation sequence is T and we start from k = 2. The analysis of the algorithm
presented before the Example 3.4, provides an easier way to understand the struc-
ture of the algorithm and derive the complexity. For example in this analysis, we



526 C.-E. PERTSINIDOU AND N. LIMNIOS

realize that for two hidden states, for k = 1 we need to performe 22 computations.
The same holds for k = 2,. . . Taking into consideration the initial step and assum-
ing that the observation sequence length is T then we can understand why the
complexity is O(Td2).

A.3 A pseudocode for the new algorithm of type SM1-M1

Input The same as before. The only difference is that we need to define the
emission probabilities R[i, Yk], which will be used only in the initial step, and
furthermore the emission probabilities R[i, Yk−1, Yk].

//Algorithm, Step 1 (k = 0), the same as in A.2
//Step 2 (first for k = 1), the same as in pseudocode A.2, replace only R[j, Y1]

by R[j, Y0, Y1], in quantities a[i, j].
//Step 2 (continue for k ≥ 2), the same as in pseudocode A.2, replace only

R[j, Yk] by R[j, Yk−1, Yk], in quantities a[i, j, k].
//Step 3, from now and on the pseudocode is exactly the same as in A.2.

Acknowledgements. The authors appreciate the comments of the anonymous reviewer
which contributed to improve the quality of the publication and would like to thank the
reviewer for the thorough and helpful review. They would also like to thank Jan Bulla
who was always very willing to provide his software about the paper in [2], which helped
us compare the performance of the Algorithm 3.3 to that one in [6].

References

[1] V.S. Barbu and N. Limnios, Semi-Markov chains and hidden semi-Markov models toward
applications. Springer, New York (2008).

[2] J. Bulla, I. Bulla and O. Nenadić, An R package for analyzing hidden semi-Markov models.
Comput. Stat. Data Anal. 54 (2010) 611–619.

[3] O. Chryssaphinou, M. Karaliopoulou and N. Limnios, On discrete time semi-Markov chains
and applications in words occurrences. Commun. Stat. Theory Methods 37 (2008) 1306–
1322.

[4] N.A. Dasu, Implementation of hidden semi-Markov models. Th.D. Thesis, University of
Nevada, Las Vegas (2011).

[5] M. Dong and D. He, Hidden semi-Markov model-based methodology for multi-sensor equip-
ment health diagnosis and prognosis. Eur. J. Oper. Res. 178 (2011) 858–878.

[6] Y. Guédon, Estimating hidden semi-Markov chains from discrete sequences. J. Comput.
Graph. Stat. 12 (2003) 604–639.

[7] T. Koski, Hidden Markov models for bioinformatics. Kluwer, Dordrecht (2001).
[8] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech

recognition. Proc. IEEE 77 (1989) 257–286.
[9] A. Taghva, Hidden semi-Markov models in the computerized decoding of microelectrode

recording data for deep brain stimulator placement. World Neurosurg. 75 (2011) 758–763.
[10] M. Tang and P. Di Cristo, Backward Viterbi beam search for utilizing dynamic task com-

plexity information, in Proc. Conference International Speech Communication Association
(2008) 2090–2093.

[11] S.Z. Yu, Hidden semi-Markov models. Artif. Intell. 174 (2010) 215–243.


	Introduction
	Hidden semi-Markov framework
	A Viterbi algorithm for a SM1-M0 model
	Joint probability formulas
	A Viterbi algorithm for a SM1-M0 model

	A Viterbi algorithm for a SM1-M1 model

	Conclusions
	 
	Viterbi algorithm for HMMs (see [8])
	A pseudocode for the new algorithm of type SM1-M0
	A pseudocode for the new algorithm of type SM1-M1

	References

