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A CLASSIFICATION SCHEME FOR INTEGRATED STAFF
ROSTERING AND SCHEDULING PROBLEMS
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Abstract. In the last decades job scheduling, staff rostering and staff
assignment have received considerable attention, as have combinations
of these problems. However, given the wide range of variants of all three
basic problems, the number of combinations is immense. In this paper
we introduce a new classification scheme for integrated staff rostering
and job scheduling problems, extending existing schemes for project and
machine scheduling. We provide some elementary reductions and show
how problems studied in the literature fit into this new classification
scheme. Furthermore, some complexity results are presented.

Keywords. Scheduling, rostering, assignment, staff, classification
scheme, complexity.

Mathematics Subject Classification. 90B35, 68Q25.

1. Introduction

Companies often have to schedule jobs, roster their staff and assign employees
to jobs in such a way that all jobs can be executed and the employees receive
rosters they like. Additionally, several constraints have to be respected taking into
account demands of the company, legal restrictions, wishes of the employees, etc.
Since usually the whole problem is very complex, often decomposition approaches
are applied. In such approaches the problem is tackled in different stages. One pos-
sibility is to schedule the jobs first and to handle staff scheduling and assignment
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according to the fixed job schedule afterwards. Another possibility is to determine
a timetable for the staff first and to schedule the jobs according to the fixed staff
timetable afterwards. A third way is to consider staff and job scheduling in an
integrated way, i.e. to deal with all three problems simultaneously.

In job scheduling problems (cf. for example B�lażewicz et al. [11]), the task is
to determine start times for given jobs such that certain constraints are satisfied
and an objective function is optimized. The most common constraints deal with
the availability of resources (e.g. machines). For surveys on resource constrained
project scheduling problems (RCPSP) see Hartmann and Briskorn [31], Brucker
et al. [13] or Brucker and Knust [14].

Rostering problems try to assign employees to given shifts in accordance to dif-
ferent constraints. Constraints may be minimum demands for employees required
for a particular shift, unavailabilities of employees, or contractual and legal restric-
tions such as a minimum rest time between two consecutive shifts. Burke et al. [20],
Ernst et al. [24] and Van den Bergh et al. [43] give overviews of rostering problems.

Assignment problems combine the results of both scheduling and staffing. Given
is a set of employees with availabilities due to fixed staff rosters and different
qualifications. Furthermore, there are jobs with given start and completion times
having minimum demands for employees with certain qualifications. The task is to
find assignments of employees to jobs according to their qualifications such that
all demands are fulfilled and each employee is assigned to at most one job at a
time.

Since usually a lot of different constraints have to be respected, the number of
combined problems is rather high. Hence, a classification scheme may be useful to
describe problems in a standard way and to classify existing literature. Further-
more, such a scheme makes it easier to draw the borderline between polynomially
solvable and NP-hard problems.

Classification schemes have been proposed for different kinds of optimization
problems. For example, Desrochers et al. [22] provide a scheme for vehicle routing
and scheduling problems, Boysen et al. [12] give a classification of assembly line bal-
ancing. For machine scheduling a scheme was published by Graham et al. [28] and
for example extended by B�lażewicz et al. [10]. Classification schemes for project
scheduling were proposed by Brucker et al. [13] and by Herroelen et al. [34]. For
rostering problems, Causmaecker et al. [21] suggested a classification scheme, but
as its entries describe categories of constraints and not the constraints themselves,
this scheme is not regarded in this paper. All of these classification schemes use
a three-field notation. In this paper we introduce a notation with five fields for
classifying integrated problems.

The paper is structured as follows. In Section 2, we introduce the used nota-
tions as well as the constraints for a basic integrated staff rostering and scheduling
problem. Section 3 presents the classification scheme including elementary reduc-
tions. In Section 4, we give a literature review, in Section 5 complexity results are
presented. The paper concludes with some remarks.
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2. Problem formulation

In this section we introduce a basic integrated staff rostering and scheduling
problem as well as the used notations.

Let E = {1, . . . , E} be a given set of employees and Q = {1, . . . , Q} the set of
their qualifications. Each employee e possesses Qe qualifications, summarized in a
subset Qe ⊆ Q, and all employees with qualification q are combined in a set Eq.
Let J = {1, . . . , J} be a given set of jobs. Each job j ∈ J must be executed for pj
time units within a given time horizon T = {1, . . . , T}. While being executed,
job j requires at least bjq employees possessing qualification q ∈ Q. By mj we
denote the number of different qualifications job j requires. We generally assume
that preemption of jobs is not allowed, but we allow transition. Transition means
that an employee can change jobs at any time and can be replaced at a job without
loss of time.

The time horizon T is divided into D days d ∈ D = {1, . . . , D} and into S
shifts σ ∈ S = {1, . . . , S}. Each shift σ is characterized by its starting time sσ, its
ending time eσ and its length lσ := eσ − sσ. We assume that each shift is assigned
to exactly one day. The shifts of day d ∈ D are combined in the set Sd.

The objective of the integrated staff rostering and job scheduling problem is
to find a schedule for the jobs as well as a feasible assignment of employees to
shifts and jobs. An assignment of employees to shifts is called a staff roster, an
assignment of starting times to jobs is called a schedule, and an assignment of
employees to jobs and qualifications determines which employee executes which
job with which of his qualifications.

Such assignments have to respect the following basic constraints:

(1) Each job must be processed for its required processing time.
(2) For each job its demands for employees with certain qualifications must be

fulfilled.
(3) Each employee can be assigned to at most one shift per day.
(4) The qualifications of employees have to be respected, i.e. each employee can

only be scheduled for one qualification he offers.
(5) Each employee can only be assigned to at most one job at a time and only in

shifts he is assigned to.

Additional constraints occuring in the literature will be discussed in Section 3.

3. Classification scheme

In this section, we introduce a scheme for classifying integrated staff roster-
ing and job scheduling problems based on the basic model from the previous
section. Additionally, we discuss further constraints studied in the literature. In
this scheme we use the existing scheduling classification schemes to describe the
scheduling environment. The remaining parts of the scheme are the rostering and
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assignment environment, parameters considering employees and qualifications, pa-
rameters concerning the shifts, and the objective function for the rostering and
assignment problem.

The proposed classification scheme consists of a tuple (α)+(β | γ | δ | ε), where

• α describes the scheduling problem including a scheduling objective function;
• β gives a description of the rostering and assignment environment;
• γ describes parameters for employees and qualifications;
• δ describes parameters for the shifts; and
• ε gives the objective function of the rostering and assignment part.

Both fields γ, δ may consist of more than one entry. Each entry can be the empty
symbol (◦) which can be omitted. If both parts γ and δ only consist of empty
symbols, β | ◦| ◦ | ε can be reduced to β || ε. Similarly, β | ◦ | δ can be reduced
to β | δ and γ | ◦ | ε to γ | ε.

The α-field is used as in known scheduling classification schemes. If the job
schedule is already fixed and has not to be calculated, the part (α)+ is omitted.
In the following we describe the five fields α, β, γ, δ, ε in more detail.

3.1. The α-field: Scheduling part

The α-field gives information about the scheduling part in the integrated prob-
lem. For this, we use existing classification schemes, e.g. the classification schemes
by Graham et al. [28] for machine scheduling or Brucker et al. [13] for project
scheduling. Both classification schemes consist of three fields α′ | β′ | γ′ with a
description of the environment (machines or resources) in α′, a job parameter de-
scription in β′ and the objective function in γ′. Examples (which also occur in
Tab. 1 in Sect. 4) are:

• PS | prec | Cmax denotes the classical RCPSP where (renewable) resources
have to be considered, precedence constraints between the jobs may be given,
and the objective is to minimize the makespan.

• PS | rj , dj | − denotes the feasibility problem of the RCPSP taking into
account given time windows [rj , dj ] for each job j. The objective is to find a
feasible RCPSP schedule respecting the time windows and resource constraints.

• PS,∞ | pmtn, rj , dj | − denotes the same problem but without any resource
constraints (PS,∞ indicates that there are sufficient resources). Additionally,
preemption of the jobs is allowed.

• J || Cmax denotes the classical job-shop problem minimizing the makespan.
• · | rj , tmp | − denotes a problem with dedicated machines (i.e. each job has

to be processed on a preassigned machine) and release dates rj . Additionally,
tmp means that general timing constraints in form of time-lags dij for the
differences between the starting times of jobs j and i have to be respected. The
objective is to find a feasible solution satisfying all release dates and time-lags.

In addition to the usual scheduling entries, we use two further ones in connection
with employees: the entry pj(e) denotes that the durations pj of the jobs are not
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fixed, but depend on the executing employees. The entry sejk denotes the presence
of setup times between jobs j, k which are consecutively executed by the same
employee e.

3.2. The β-field: Rostering and assignment environment

The description of the environment β ∈ {A,R,RA} gives information about the
kind of problem considered apart from scheduling:

• β = A denotes job assignment problems with given staff rosters and given start
times for the jobs, i.e. only employees have to be assigned to jobs.

• β = R denotes staff rostering problems without any jobs, i.e. only the assign-
ment of employees to shifts has to be done.

• β = RA denotes integrated staff rostering and job assignment problems.

3.3. The γ-field: Employees and qualifications

The first parameter γ1 ∈ {Q = 1, Qe = 1, ◦} gives information about the
number of qualifications and their distribution to the employees:

γ1 =

⎧⎪⎨
⎪⎩
Q = 1 the total number of qualifications is equal to 1,
Qe = 1 each employee has only one qualification,
◦ arbitrary distribution of qualifications to employees.

The parameters γ2 and γ3 give further information about the demands of the
jobs. Each job may require several qualifications or just a single one. For the
correponding numbers mj we distinguish between the following alternatives:

γ2 =

{
mj = 1 each job requires only one qualification,
◦ jobs may require arbitrary numbers of qualifications.

The parameter γ3 considers the demands of jobs for employees with
qualification q.

γ3 =

⎧⎪⎨
⎪⎩
bjq ≤ 1 all demands of jobs are at most 1,
bjq(t) the demands of the jobs are time dependent,
◦ the demands are arbitrary integers, but not time dependent.

In the basic model presented in Section 2, we assume that every employee can
be replaced by any other with the same qualification when performing a job (tran-
sition allowed). If this assumption is omitted, two variants are common. In the
first variant, an employee assigned to a job may only be replaced by another if his
shift ends. The second (more strict) assumption forbids changes of the executing
employees at all (i.e. an employee may only be assigned to a job if he is avail-
able for the whole processing time). The parameter γ4 ∈ {notrans, trans(σ), ◦}
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distinguishes these situations:

γ4 =

⎧⎪⎨
⎪⎩

notrans no changes of employees during the execution of jobs are allowed,
trans(σ) transition is only allowed at the end of shifts,
◦ transition is allowed.

It may occur that employees are unavailable in some shifts due to vacations,
consultations, or skill enhancement. In this case sets Ue are defined, containing all
shifts σ in which employee e is unavailable (i.e. cannot be assigned to any shift
in Ue). For denoting the presence of unavailabilities the parameter γ5 ∈ {Ue, ◦} is
used where

γ5 =

{
Ue employees may be unavailable for certain shifts,
◦ unavailabilities of employees are not considered.

Due to their contracts employees may have maximum and minimum work-
ing times H+

e , H
−
e over the whole time horizon. We introduce parameters γ6 ∈

{H+
e , ◦} and γ7 ∈ {H−

e , ◦} with:

γ6 =

{
H+
e maximum working times for the employees have to be respected,

◦ maximum working times are not considered.

γ7 =

{
H−
e minimum working times for the employees have to be respected,

◦ minimum working times are not considered.

Figure 1 shows elementary (polynomial-time) reductions between the entries of
the parameters γ1 to γ7. In this graph there is an arc between two possible entries
γ′i, γ

′′
i of one parameter γi if γ′i reduces to γ′′i (i.e. γ′i is a special case of γ′′i ). Note

that the entries for γ1 and γ2 were joined in the first graph since the combination
Q = 1,mj = 1 is superfluous (if only one qualification exists, all jobs need this
qualification).

From the reduction graphs and known complexity results we can derive further
complexity results. If on the one hand, a problem is polynomially solvable, also all
special cases are polynomially solvable. If on the other hand, a problem is NP-
hard, then also all generalizations according to the reduction graphs are NP-hard.
Hence, the reduction graphs help in finding generalizations and special cases.

3.4. The δ-field: Information on the shifts

In some rostering problems a set of feasible shift patterns is given. A shift pattern
is a sequence of shifts determining the working shifts and the days off for one
employee for the whole time horizon. These patterns usually have to respect some
constraints, e.g. that they contain at most one shift per day. Each employee must
be assigned to one of these shift patterns with respect to the demands of shifts
and employee dependent factors, e.g. his qualifications, minimum or maximum
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Figure 1. Reduction graphs for parameters γ1 to γ7.

working times or unavailabilities. Whether such shift patterns are considered or
not, is stated by δ1 ∈ {shp, ◦} with

δ1 =

{
shp shift patterns have to be assigned to the employees,
◦ no shift patterns are considered.

Two shifts σ, σ′ ∈ S are called overlapping if (sσ, eσ] ∩ (sσ′ , eσ′ ] �= ∅. The
parameter δ2 ∈ {no-ol, ◦} states whether shifts may overlap or not:

δ2 =

{
no-ol shifts may not overlap,
◦ shifts may overlap.

In some companies, employees are not allowed to work in two specific shifts
on consecutive days. For example, an employee working in a late shift of one day
is not allowed to work in a morning shift on the following day. More generally,
sets may be given containing pairs of shifts which may not be assigned to the
same employee. Such restrictions are called forbidden shift changes. We use the
parameter δ3 ∈ {fch, ◦} with

δ3 =

{
fch forbidden shift changes have to be taken into account,
◦ forbidden shift changes are not considered.

Parameter δ4 gives information about the maximum number of shifts per day.

δ4 =

{
sd ≤ f the number of shifts per day is at most f,
◦ no limits on the numbers of shifts per day are considered.

Another information about shifts is their length. For this parameter, we dis-
tinguish between the case that all shifts have the same length and the case that
all shifts have arbitrary lengths. This information is provided by the parameter
δ5 ∈ {lσ = l, ◦} with

δ5 =

{
lσ = l all shifts σ have the same length l,
◦ the shifts have arbitrary lengths.
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Figure 2. Reduction graphs for parameters δ1 to δ9

In most companies, shifts are separated into shifts of different types ψ (e.g.
morning, late and night shifts), so-called shift types. Due to fairness aspects or
contract regulations, the number of shifts of one type assigned to an employee in
the planning horizon may be restricted (by upper or lower bounds). Parameters
δ6 ∈ {μ+

eψ, ◦} and δ7 ∈ {μ−
eψ , ◦} are introduced with

δ6 =

{
μ+
eψ UBs for number of shifts per type and employee are given,

◦ no UBs for number of shifts per type and employee are given,

δ7 =

{
μ−
eψ LBs for number of shifts per type and employee are given,

◦ no LBs for number of shifts per type and employee are given.

Associated with each shift, σ ∈ S may be a set of breaks in which the employees
working in shift σ are not available for executing jobs. We introduce a parameter
δ8 ∈ {break, ◦} to indicate the consideration of breaks.

δ8 =

{
break breaks have to be considered,
◦ breaks are not considered.

In some companies, the shifts of employees depend on the assigned jobs and their
starting and ending times are not fixed beforehand. In this case the shifts are called
flexible, indicating that their starting and ending times have to be determined. We
have the parameter δ9 ∈ {flexSh, ◦} with

δ9 =

{
flexSh shifts are flexible,
◦ starting and ending times of all shifts are fixed.

Elementary reductions between the entries of parameters δ1 to δ9 are shown in
Figure 2.

3.5. The ε-field: The objective function

The parameter ε denotes the objective function concerning the rostering and
assignment part and sometimes also its relation to the objective function of the
scheduling part.

Examples for studied objective functions are:

• −: only the feasibility problem has to be solved. If there is a scheduling part
in α and an objective function f is defined for this part, then the function f is
the objective of the whole problem.
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• AC(e, σ), AC(e, σ, σ′), AC(e, j, q), . . . : the objective is to minimize assign-
ment costs (AC) for employees and shifts, for employees and shift changes of
consecutive days, for employees, jobs and qualifications, etc. This denotes the
minimization of the sum of all costs for assigning an employee e to a shift σ etc.
In this context e means employees, j means jobs, σ, σ′ mean shifts, q means
qualifications, t means time periods, and π means shift patterns.

• Coverstaff , Cunderstaff : the objective is to minimize costs for overstaffing or un-
derstaffing of the jobs (or shifts). In this situation desired numbers of staff
for jobs (or shifts) are given and the deviations from these values have to be
minimized.

• Covertime, Cundertime: the objective is to minimize costs for overtime or under-
time of the employees. In this situation, a desired working time for each em-
ployee is given and the deviations from these values have to be minimized.

• Cuse(e): the objective is to minimize the staff needed.
• Cext: the objective is to minimize costs for hiring external staff if the given

employees can not execute all jobs.
• Cidle: the objective is to minimize costs for idle time of employees, i.e. the time

an employee is working due to the rosters, but having no job to perform.
• Ctravel: the objective is to minimize travel costs which arise if two jobs executed

by the same employee take place at different locations. Often they are related
to travel times, which may be indicated as setup times sejk in the scheduling
part.

• f(AC(e, π), ·): the objective is to minimize the value of a function f includ-
ing assignment costs AC(e, π) and the scheduling objective function from α,
indicated by the ·.

• Lex(·, AC(e, π)): the lexicographic objective is to first minimize the objective
of the scheduling part, indicated by the ·, and afterwards to minimize the
assignment costs AC(e, π).

4. Literature review on integrated problems

In this section, we classify existing literature for integrated problems in the
proposed scheme. In Table 1, the authors, the problem and the used methods are
listed using the abbreviations from Table 2. In the first part of Table 1, integrated
scheduling and assignment problems are presented, while the second part lists
papers considering rostering and assignment problems. The third part contains
integrated scheduling, rostering and assignment problems. Within each part, the
papers are ordered according to the authors.

The papers listed in the first section all deal with scheduling and assignment
problems. Roberts and Escudero [41] tackle a rather simple form of the problem.
A set of jobs has to be assigned to a set of employees, each with one qualifica-
tion, minimizing the idle time of employees. In this problem, the jobs have time-
dependent demands and are broken down to one-hour jobs. Drexl [23] slightly
changes this model. He makes two different assumptions: first he assumes that
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Table 1. Summary of literature dealing with integrated problems.

Authors Problem Method

Bellenguez and Neron [7] (PS,∞ | prec | Cmax) +(A | notrans | sd = 1, LB

lσ = 1 | −)

Bellenguez and Neron [8] (PS,∞ | prec | Cmax) +(A | notrans | sd = 1, B&B

lσ = 1 | −)

Brucker and Qu [17] (PS,∞ | pmtn, rj , dj | −) +(A | mj = 1, NF

bjq ≤ 1 | f(Covertime, AC(e, t)))

Drexl [23] (PS,∞ | prec, pj(e) | −) +(A | Q = 1, bjq ≤ 1, notrans, H,DP,B&B

H+
e | sd ≤ 1, lσ = 1 | AC(e, j))

Ferreira and Bazzan [25] (PS,∞ | prec | Cmax) +(A | notrans | sd ≤ 1, H

lσ = 1 | −)

Heimerl and Kolisch [32] (PS,∞ | rj , dj | −) +(A | mj = 1 | f(Cext, MIP

AC(t, e, j, q))

Roberts (PS,∞ | pj = 1 | −) +(A | Qe = 1, IP

and Escudero [41] bjq(t) | Cidle)

Awad and Chinneck [6] RA | trans(σ), Ue | sd ≤ 6 | f(Cext, H + GA

AC(e, σ), AC(e, j), AC(e, σ, σ′), Coverstaff)

Brunner et al. [18] RA | trans(σ) | flexSh | f(Covertime, AC(e, t), Cext) MIP

Brunner et al. [19] RA | trans(σ), Ue | break, flexSh | f(Cext, AC(e, j, q, t), Covertime) B&P

Kilby [35] RA | mj = 1, bjq ≤ 1, H+
e | no-ol, fch, sd ≤ 3 | f(Cundertime, H

Cuse(e), AC(e, σ, σ′))

Loucks and Jacobs [40] RA | flexSh | f(Cuntertime, Covertime, Coverstaff) H

Alfares et al.[1] (PS,∞ | prec | Cmax) +(RA | Q = 1 | shp, no-ol, sd ≤ 1, DP

lσ = 1 | f(AC(e, π), · ))

Alfares et al. [2] (PS,∞ | prec, pj(e) | Cmax) +(RA | Qe = 1 | shp, sd ≤ 1, H

lσ = 1 | f(AC(e, π, q), · ))

Artigues et al. [4] (· | rj, dj , tmp | −) +(RA | no-ol | f(AC(j, t), CP + LP

AC(e, q, t)))

Artigues et al. [5] (J || Cmax) +(RA | trans(σ), Ue | no-ol, CP + LP

fch, lσ = l | Lex(·,AC(e, q, σ)))

Bertels and Fahle [9]
(
PS,∞ | rj , dj, sejk | f(AC(j, t)

)
+ (RA | mj = 1, bjq ≤ 1, notrans,

Ue, H
+
e , H

−
e | flexSh

| f(Covertime, AC(e, t), AC(e, j), H

Ctravel, ·))
Guyon et al. [29] (PS,∞ | pmtn, rj , dj | −) +(RA | mj = 1, D,D + CG

bjq ≤ 1 | shp | AC(e, π))

Guyon et al. [30] (J || −) +(RA | mj = 1, D + CG,

bjq ≤ 1, trans(σ), Ue

| no-ol, fch, sd ≤ 3, CG + B&B

lσ = l | AC(e, q, σ))

Herbers [33]
(
PS,∞ | rj , dj, sejk | −

)
+(RA | trans(σ) | μ+

eψ
, D + B&P

μ−
eψ , break | AC(e, σ))
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Table 2. Abbreviations used for the methods in Table 1.

B&B = Branch-and-bound GA = Genetic algorithm
B&P = Branch-and-price H = Heuristic approach

CP = Constraint programming LB = Lower bounds
CG = Cut generation LP = Linear programming

D = Decomposition (M)IP = (Mixed-) Integer programming
DP = Dynamic programming NF = Network flow problem

each jobs requires only one employee, and second that the duration of a job de-
pends on the employee assigned to the job. Bellenguez and Neron [7] tackle the
multi-skill project scheduling problem with hierarchical levels of skills. For each
employee not only a set of qualifications is given, but also the level of his experi-
ence. They introduce two destructive lower bounds, one of them based on energetic
reasoning. A similar problem is considered by Ferreira and Bazzah [25]. They call
this problem the distributed RCPSP and apply a swarm intelligence approach to
the problem. Bellenguez and Neron [8] investigate another kind of the multi-skill
project scheduling problem. For this problem they present a branch-and-bound
algorithm and use two destructive lower bounds, one of them again based on en-
ergetic reasoning. Heimerl and Kolisch [32] schedule and assign jobs with time
windows. Additionally, they allow the use of external staff to meet all demands.
Brucker and Qu [17] deal with a preemptive scheduling problem. They extend a
network flow model for integrated scheduling and assignment problems with one
qualification to the case of several qualifications.

In the second part of the table, integrated rostering and assigment problems
are listed. All problems investigated are very different, reaching from problems
with fixed shifts and one qualification to problems with flexible shifts and several
qualifications which are arbitrarily distributed. Loucks and Jacobs [40] tackle a
problem with hardly any constraints, but with flexible shifts. For this problem
they present a heuristic consisting of several steps. Awad and Chinneck [6] in-
vestigate the problem of assigning proctors to fixed exams. Within their problem
employees can carpool, which has to be respected in the rostering part. For solv-
ing this problem, a genetic algorithm in combination with another heuristic is
proposed. Kilby [35] presents an algorithm based on augmented regrets, which he
applies on a rostering and assignment problem with a large number of constraints.
Brunner et al. [18, 19] deal with the rostering and assignment of physicians. In
both problems, the shifts are flexible; in [19] additionally breaks have to be con-
sidered. For solving these problems, a MIP-formulation [18] and a branch-and-price
algorithm [19] were proposed.

The last section of the table lists integrated scheduling, rostering and assignment
problems. Alfares et al. [1] published a paper dealing with an integrated problem
with shift patterns. Each day consists of one shift with a length of one time pe-
riod, and the employees are equally skilled. A similar problem is tackled by Alfares
et al. [2]. The main differences are the use of labour classes, where each employee
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Table 3. Known complexity results for pure assignment or rostering problems.

Problem Complexity Ref. Reduction/model

A | mj = 1 | no-ol, sd ≤ 1 | AC(e, j) P [16] transshipment problem
A | Q = 1 | sd ≤ S | − P [16, 42] min cost flow problem
A | Q = 1, bjq ≤ 1, notrans | no-ol, sd ≤ 1 | Cuse(e) P [38] min cost flow problem

A | mj = 1, bjq ≤ 1, notrans | no-ol, sd ≤ 1 | − NP-hard [3] 3-SAT
A | mj = 1, bjq ≤ 1, notrans | Cuse(e) NP-hard [36] circular arc coloring

A | mj = 1, bjq ≤ 1, notrans | no-ol, sd ≤ 1 | Cuse(e) NP-hard [38] 3D-matching

A | mj = 1, bjq ≤ 1 | no-ol, sd ≤ 1 | Cuse(e) NP-hard [38] 3D-matching

R | Q = 1 | fch | − P [37] min cost flow problem

R | fch | − NP-hard [39] 3-SAT

R | Q = 1, bσq ≤ 1 | shp, sd ≤ 1, lσ = 1 | Cuse(e)
2 NP-hard [16, 26] exact covering by 3-sets

possesses one of several qualifications, and that the durations of the jobs depend on
the executing employee. Another paper dealing with an integrated problem with
given shift patterns was published by Guyon et al. [29]. In their problem, the jobs
additionally have time windows and preemption is allowed. Time windows for jobs
are also considered by Herbers [33]. Additionally, upper and lower bounds for the
number of shifts per type and employee are introduced. He additionally considers
breaks and groups of employees (called crews), which should be scheduled as par-
allel as possible. Bertels and Fahle [9] deal with the home health care problem,
i.e. the problem of assigning nurses to jobs at different clients taking into account
travel times. Additionally, hard and soft time windows are given; the shifts are flex-
ible. Artigues et al. [4] tackle a problem with dedicated machines and arbitrary
time-lags between jobs. Artigues et al. [5] consider the job-shop problem as the
underlying scheduling environment. Additional constraints concern forbidden shift
changes and the restriction of non-overlapping shifts. All these assumptions are
also present in Guyon et al. [30] with the additional constraint of unavailabilities
of employees.

5. Complexity results

In this section, we present some complexity results. Known complexity results
for pure assignment or rostering problems are summarized in Table 3. Complexity
results for pure machine scheduling problems can be found at the website [15].
If a pure problem is already NP-hard, an integrated problem containing it as a
subproblem is also NP-hard. On the other hand, polynomially solvable special
cases may be useful in decomposition algorithms for integrated problems.

The results for assignment problems with mj = 1, bjq ≤ 1 and the objective
function Cuse(e) are derived from the class of fixed interval scheduling problems
(see Kolen et al. [36]). In these problems, jobs with fixed start and completion

2Here, bσq denotes the demand of shift σ for employees with qualification q (only used for
pure rostering)
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times have to be assigned to machines with different capabilities (i.e. each job can
only be executed by a subset of the machines). While in some problems preemp-
tion is allowed (i.e. the processing of a job may be interrupted and continued by
another machine), in other problems preemption is forbidden. The basic interval
scheduling problem is to process all jobs using a minimum number of machines. If
we interpret the employees as machines, minimizing the number of used employees
is the same kind of problem. Each job can be processed by all machines having the
required qualification. The possibility of transition is equivalent to allowing pre-
emption. Usually, in interval scheduling problems it is assumed that all machines
are available for the whole time horizon. In order to indicate this in our classifica-
tion scheme, we use the entries no-ol and sd ≤ 1 in the δ-field. This means that
employees are present during the whole time horizon, since shifts do not overlap
and there is only one shift per day.

More generally, if demands bjq ≥ 1 for employees with qualification q are given,
we can introduce bjq jobs, each demanding for one machine corresponding to em-
ployees with qualification q. As all these jobs have to be processed within a fixed
time window, they can not be executed by the same machine. This equivalence
can be used to show the complexity of more general assignment problems.

In the following, we present new complexity results for two integrated problems.
Both problems combine a rostering and an assignment problem, each of them being
polynomially solvable. For the first problem, we give a polynomial algorithm, for
the second problem we prove NP-completeness.

5.1. The problem RA | Qe = 1, trans(σ) | no-ol, fch | −

In this problem, the schedule from the scheduling part is already fixed and
jobs j ∈ J with fixed starting times Sj and completion times Cj are given. Each
employee offers only one qualification and transition is only allowed at the end of
a shift. There are no overlapping shifts, but some forbidden shift changes have to
be taken into account. The objective is to find a feasible asignment of employees
to shifts and jobs. This problem can be solved by considering Q feasible flow
problems, one for each qualification q. Within each of the flow problems, we use a
slightly adapted graph from [38].

As each employee offers only one qualification, the qualifications can be consid-
ered independently from each other. The main idea is to construct Q graphs, one
for each qualification, in the following way: for each shift a subgraph is constructed,
containing all jobs that have to be scheduled in that shift. Each subgraph consists
of a chain of vertices and therefore has a first and a last vertex. Two subgraphs
are connected by a directed arc from the last vertex of one subgraph to the first
vertex of the next subgraph if the two corresponding shifts belong to consecutive
days and if it is allowed to work in both shifts (i.e. there is no forbidden shift
change for them). In order to resemble a day off, for each day a free shift is added
to the graph. Additionally, minimum and maximum capacities for the arcs are
defined. Then a feasible flow is computed for this graph, indicating consecutive
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Figure 3. Example for a graph Gq,σ. There are three jobs which
have to be executed by four employees. The vertices correspond
to time periods where jobs starts or end. Here, these time periods
are 0, 3, 6 and 10. Job 1 starts at time 0, finishes at time 6 and
has a demand for 3 employees. Therefore, an arc from vertex 0
to vertex 6 with minimum capacity 3 and maximum capacity 4
is added (labeled by (1)). Job 2 starts at time 3, ends at time 10
and requires one employee. Job 3 starts at time 6, finishes at time
10 and must be executed by at least 3 employees. Finally, the arcs
between the vertices without any labeling represent idle time of
employees.

assignments to jobs and shifts for employees (without looking at specific employ-
ees). Afterwards, this flow is split up into several paths and these are assigned to
specific employees.

For each qualification q and each shift σ, a set Jq,σ is computed, containing all
jobs j ∈ J with bjq > 0 and (Sj , Cj ] ∩ (sσ, eσ] �= ∅. Based on these sets, graphs
Gq,σ are constructed as follows. We consider all time periods t ∈ [sσ, eσ] when a
job starts or ends as well as the start and the end time of the shift (sσ = t0 < . . . <
ti < . . . < tkσ = eσ with ti = min{t ∈ (ti−1, eσ] | ∃ j ∈ Jqσ : t = Sj ∨ t = Cj}, i =
1, . . . , kσ−1). For each time period ti, a vertex v(ti) is added. Between two vertices
v(ti), v(ti+1), an arc is introduced, representing idle time of employees. For each
job j ∈ Jqσ, an arc (v(max{sσ, Sj}), v (min{eσ, Cj})) with minimum capacity bjq
and maximum capacity |Eq| is added. An example for such a graph is shown in
Figure 3. Afterwards, the graphs can be reduced as described in Kroon [38].

These graphs Gq,σ are connected to form a graph Gq in the following manner:
The graph has D levels, each representing a day d ∈ D. In level d, there are
|Sd| + 1 subgraphs Gq,σ, σ ∈ Sd ∪ {fd} where fd indicates a free shift on day d.
Two subgraphs Gq,σ and Gq,σ′ of shifts σ, σ′ belonging to two consecutive days
are connected by an arc from the last vertex in Gq,σ (representing time eσ) to
the first vertex in graph Gq,σ′ (representing time sσ′ ) if there is no forbidden
shift change between these two shifts. Afterwards, a source-vertex S, an auxiliary
vertex A and a target T are added. The source is linked to the auxiliary vertex with
maximum capacity |Eq|, as we can only schedule |Eq| employees for qualification q.
Furthermore, the auxiliary vertex is connected to all first vertices in the graphs
representing a shift of day 1, and the final vertices in the graphs representing shifts
of the last day are connected to the target. An example for such a graph Gq is
shown in Figure 4.
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Figure 4. Example for a graph Gq where each day has three
shifts: a morning, a late, and a night shift. The graph has D levels,
in level d, there are |Sd| + 1 = 4 subgraphs Gq,σ, σ ∈ Sd ∪ {fd}
where fd indicates a free shift. We assume that it is not allowed
to work in two shifts σ, σ′ of two consecutive days if σ′ < σ + 3.
For example, it is not allowed to work in the late shift of day 1
(σ = 3) and in the morning shift of day 2 (σ′ = 4), i.e. no arc
exists between the corresponding vertices. On the other hand,
since it is allowed to have a free shift at day 1 and to work in any
shift of day 2, the corresponding arcs exist.

ForGq a feasible flow is computed if it exists. This flow is split up into paths from
the start vertex to the end vertex. These paths are then assigned to employees,
saying which jobs and shifts an employee performs. More specifically, if P is a
path, e is the employee assigned to P and JP are all jobs represented by an arc
in P , then e is assigned to all jobs in JP and to the corresponding shifts. In the
remaining shifts e does not have to work.

Due to the construction of the network, a feasible solution exists if and only if
a feasible flow for each graph Gq, q ∈ Q exists. Each graph Gq has O(SJ) vertices
and O(S(J+S)) arcs. In order to compute a feasible flow, we may use the algorithm
of Goldberg and Tarjan [27], which has a running time of O(nm log n2

m ) for a graph
with n vertices and m arcs. Therefore, for one qualification, we need O(S2J(J +
S) · log( SJ

2

S+J )) time to compute a feasible flow. Additionally, O(|Eq| · S · (J + S))
time is needed to split the flow for qualification q into paths. Since

∑
q∈Q |Eq| = E,

the complexity of the whole algorithm is O(QS2J(J +S) · log( SJ
2

S+J ) +ES(J+S)),
which is polynomial.

By a slight modification, not only the feasibility problem but also the problem
minimizing the objective function Cuse(e) can be solved. For this purpose, we only
have to introduce costs of 1 on the arc from the source S to the auxiliary vertex A
and to solve a minimum cost flow problem (all other arcs get cost zero). Then a
feasible flow with minimum costs corresponds to an assignment with a minimum
number of employees.
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5.2. The problem RA | no-ol | −

In this problem again the objective is to find a feasible assignment of employees
to shifts and jobs respecting a fixed job schedule. In contrast to the previous
problem, each employee may have more than one qualification. On the other hand,
transition is allowed, but there are no forbidden shift changes. This problem is a
combination of the problems R || − and A | no-ol | −, which are both polynomially
solvable.

In the rostering problem R || − we have to assign employees to shifts such that
demands bσq for qualifications q in shifts σ are satisfied. Since there are no forbid-
den shift changes, the days are independent from each other and can be treated
separately. For each day, we get a transshipment problem (cf. Brucker et al. [16])
on a bipartite graph with the employees on one side and shift-qualification pairs
(σ, q) on the other side. An employee e and a shift-qualification pair (σ, q) are con-
nected by an arc if e ∈ Eq. Each employee has a supply of 1, each shift-qualification
pair (σ, q) has a demand of bσq. A feasible solution of this transshipment problem
defines a feasible assignment of employees to shifts and qualifications.

On the other hand, in the assignment problem A | no-ol | −, employees are
already assigned to shifts and now have to be assigned to jobs such that demands
bjq for qualifications q and jobs j are satisfied. Since the shifts do not overlap,
each shift σ can be considered separately. The start and completion times of jobs
processed in σ are sorted such that sσ = t1 < . . . < tτσ = eσ is the sequence of these
time periods. For each interval (ti, ti+1], i = 1, . . . , τσ − 1 again a transshipment
problem on a bipartite graph is solved with the working employees having a supply
of 1 on one side and job-qualification pairs (j, q) with a demand of bjq on the other
side. An employee e and a job-qualification pair (j, q) are connected by an arc
if e ∈ Eq. Obviously, a feasible solution of this transshipment problem defines a
feasible assignment of employees to jobs and qualifications.

For the combination of these problems, we will prove NP-completeness. This
problem is an example for the situation that combining a polynomially solvable
assignment problem with a polynomially solvable rostering problem can result in
an NP-complete integrated problem.

Since there are no forbidden shift changes, we can consider each day indepen-
dently. The jobs define demand profiles, i.e. values b̂qt =

∑
j∈J {bjq | t ∈ (Sj , Cj ]}

for each time period t ∈ T and each qualification q ∈ Q. In the following we will
prove NP-completeness for the problem of assigning employees to shifts such that
the demand profiles are respected. Since shifts do not overlap, we can consider
each shift separately. Assume we are given an interval I in shift σ, in which the
demands for employees for the different qualifications do not change. A demand
vector bI = (bIq)q∈Q for interval I is determined by the demands bIq for employees
with qualification q in interval I. Since jobs and hence demand profiles are given,
we can divide the time covered by a shift σ into intervals with constant demands.
Let sσ = t1 < . . . < tνσ = eσ be the points of time when the demands of at least
one qualification change. For each interval I of the form (ti, ti+1], the demand



INTEGRATED STAFF ROSTERING AND SCHEDULING 409

vector bI can be computed. Then we have to assign the employees to the shifts
such that all demand vectors for all intervals can be fulfilled.

This rostering and assignment problem is NP-complete as 3-SAT can be re-
duced to it. In an instance of 3-SAT, there are m clauses and n variables, each
clause containing three literals of the set {x1, x1, . . . , xn, xn}. In a feasible solution
each variable xj is set either to the value true (then xj = false) or false (then
xj = true) in such a way that each clause contains at least one true-value.

An instance I of 3-SAT can be transformed into an instance I ′ of our
problem as follows. The number of shifts is set to two. The set E =
{e(x1), e(x1), . . . , e(xn), e(xn)} contains an employee for each literal. The set Q
contains m + n entries. Each clause Ci, i = 1, . . . ,m, of 3-SAT is transformed
into a qualification q(Ci), and each variable xj , j = 1, . . . , n, into a qualification
q(xj). Two types of demand vectors are introduced. The first type contains m
demand vectors v1, . . . , vm for the first shift. Vector vi demands for one employee
with qualification q(Ci). The other type contains one demand vector vm+1 for both
shifts, demanding for one employee of each qualification q(xj), j = 1, . . . , n. The
set Eq contains employee e if either q is the qualification of a variable q(xj) and
e corresponds to one of the literals xj , xj , or q is the qualification of a clause Ci
and the literal corresponding to e appears in Ci.

Let ei be the ith unit vector. We can summarize:

• S := {σ1, σ2};
• E := {e(x1), e(x1), . . . , e(xn), e(xn)};
• Q := {q(C1), . . . , q(Cm), q(x1), . . . , q(xn)};

• e ∈ Eq if

{
q = q(xj) and e ∈ {xj , xj}; or
q = q(Ci) and e appears in Ci;

• demand vectors for shift σ1: e1, ..., em, vm+1 =
∑m+n
i=m+1 ei;

• demand vector for shift σ2: vm+1 =
∑m+n
i=m+1 ei.

This transformation can obviously be done in polynomial time. We now show that
I has a feasible solution if and only if I ′ has a feasible solution.

Let a feasible solution for I be given. This solution can be transformed into a
solution of the transformed instance I ′. Let L+ be the set of true literals. W.l.o.g.
we can assume that L+ contains n literals, where each literal comes from another
variable. We can assign the corresponding employees to shift σ1 and the remaining
n employees to shift σ2. The resulting solution for I ′ is feasible: as the literals
in L+ cover all variables (or their negation), the demand vectors

∑m+n
i=m+1 ei are

fulfilled for both shifts. As the solution for 3-SAT is feasible, the remaining demand
vectors for shift σ1 are also fulfilled.

Assume conversely that a feasible solution for the instance I ′ is given. This so-
lution can be transformed into a feasible solution for I. Let Eσ1 be the employees
working in shifts σ1 and Eσ2 the employees working in shift σ2. The literals cor-
responding to the employees in set Eσ1 are set to true, the other ones are set to
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false. As the demand profiles
∑m+n
i=m+1 ei are fulfilled by the sets Eσ1 , Eσ2 , the

employees corresponding to the literals xj , xj are assigned to different shifts for
j = 1, . . . , n. Since the set Eσ1 also fulfills the remaining demand vectors, for each
qualification there is at least one employee who can be assigned to that qualifi-
cation. Therefore, in the solution for 3-SAT there is at least one literal with the
value true in each clause.

Example 5.1. The instance I given by (x1 ∨x3 ∨x5)∧ (x2 ∨x4 ∨x5)∧ (x1 ∨x2 ∨
x3)∧(x1∨x2∨x4) of 3-SAT with m = 4 clauses and n = 5 variables is transformed
into the following instance I ′:

• S := {σ1, σ2},
• E := {e(x1), e(x1), . . . , e(x5), e(x5)},
• Q := {q(C1), . . . , q(C4), q(x1), . . . , q(x5)},
• Eq(x1) = {e(x1), e(x1)}, Eq(x2) = {e(x2), e(x2)}, Eq(x3) = {e(x3), e(x3)},

Eq(x4) = {e(x4), e(x4)}, Eq(x5) = {e(x5), e(x5)},
Eq(C1) = {e(x1), e(x3), e(x5)}, Eq(C2) = {e(x2), e(x4), e(x5)},
Eq(C3) = {e(x1), e(x2), e(x3)}, Eq(C4) = {e(x1), e(x2), e(x4)}

• demand vectors for shift σ1:
(1, 0, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1, 1, 1, 1)

• demand vector for shift σ2: (0, 0, 0, 0, 1, 1, 1, 1, 1).

A feasible solution for I is x = (true, true, false, false, false), with L+ =
{x1, x2, x3, x4, x5}. The corresponding solution for I ′ assigns employees e(x1),
e(x2), e(x3), e(x4), e(x5) to shift σ1 and e(x1), e(x2), e(x3), e(x4), e(x5) to shift
σ2. The demand vectors for shift σ1 are fulfilled: employee e(x1) offers qualifi-
cations q(C1) and q(C4), employee e(x2) offers q(C2) and q(C3). Furthermore,
e(xj) ∈ Eq(xj) for q = 1, 2 and e(xj) ∈ Eq(xj) for q = 3, 4, 5. The demand vector for
shift σ2 is also fulfilled: e(xj) ∈ Eq(xj) for q = 1, 2 and e(xj) ∈ Eq(xj) for q = 3, 4, 5.

6. Concluding remarks

In this paper, we introduced a classification scheme for integrated staff rostering
and scheduling problems, consisting of five fields (α) + (β | γ | δ | ε). We gave a
survey on problems studied in the literature and showed how they can be classified
according to this scheme. Additionally, we summarized known complexity results
and provided two new results.

Future research concerning complexity could be helpful to determine the border
between polynomially solvable and NP-hard problems. Additionally, polynomially
solvable special cases may be useful in decomposition algorithms for integrated
problems. Based on these results more efficient algorithms for integrated problems
in practice could be developed.
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