
RAIRO-Oper. Res. 49 (2015) 369–381 RAIRO Operations Research

DOI: 10.1051/ro/2014048 www.rairo-ro.org

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE
COMMUNICATION DELAYS ∗

E.M. Daoudi
1
, D. Trystram

2,3
and F. Wagner

2

Abstract. Most parallel and distributed platforms available today
show a large unbalance between slow communications and fast local
computations which makes the scheduling of tasks much harder to han-
dle efficiently. The so called scheduling with large communication delays
problem has been proved to be NP-hard even in some restricted cases.
Its status regarding approximation is still unknown. In this work, we
propose to study this challenging problem for graphs with a specific
structure of 2-dimensional grids. More precisely, we provide lower and
upper bounds for both sub-problems of unbounded number of proces-
sors and two processors. We show in both cases that the proposed
scheduling algorithms are close to lower bounds.

Keywords. Parallel processing, scheduling, large communication
delays.

Mathematics Subject Classification. 90B35.

1. Introduction

1.1. Context and motivation

The large scale parallel and distributed platforms available today are charac-
terized by several new features that highly influence the way resources should be
allocated. In particular, the communications between remote computing units are

Received 2 October, 2012. Accepted 26 September, 2014.

∗ Supported by the Mohammed I university in the frame of the PGR program

1 University Mohammed I, Faculty of Sciences, LaRI laboratory, Oujda, Morocco.
m.daoudi@fso.ump.ma

2 Grenoble Institute of Technology, France. trystram@imag.fr; Frederic.Wagner@imag.fr

3 Institut Universitaire de France

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2015

http://dx.doi.org/10.1051/ro/2014048
http://www.rairo-ro.org
http://www.edpsciences.org

370 E.M. DAOUDI ET AL.

very costly compared to the computations of elementary operations. Hence, one
crucial point is to deeply understand the impact of such large communications on
the performance of parallel algorithms. Let notice that this is a rather old problem
which focused regularly researches over the last decades (in the eighties when the
machines evolved from shared-memory to distributed memories, in the nineties
with the development of local clusters built with desk components linked by local
interconnection networks, around the change of the millennium with the appari-
tion of the computational grid paradigm and today this the target of very large
scale exa-scale systems). The problem of efficiently handling large communications
has still no satisfiable solution today and it becomes more and more important
with the increase of the number of nodes.

In the classical scheduling theory, a parallel program is usually represented
by a directed acyclic graph. The program is partitioned into elementary tasks
whose vertices are the instructions and the edges correspond to data movements
of intermediate results [6]. Two models have been proposed for handling large
communications [5]. First, the parallel tasks model [10] and all its variants (rigid,
moldable, malleable tasks) [24] which corresponds to an artificial increase of the
task granularity in order to reduce the unbalance. Here, the communications inside
the parallel tasks are implicitly hidden and thus, neglected. In the same category,
bottom-up approaches have been developed for clustering the tasks according to
some local criterion related to communications [17, 23]. The second model is an
extension of the delay model introduced in [21] where the communications between
tasks allocated in different processors are explicit and thus, can be optimized. This
delay is a function of amount of data to be transferred and network topology. The
start-up time of the communication is commonly dominant with regard to the size
of the messages.

The purpose of this paper is to study the scheduling problem with large com-
munication within the delay model for the specific structure of 2-dimensional grid.
We target the minimization of the maximum completion time (makespan). This
graph corresponds to a broad class of applications including linear algebra and
matrix computations or image processing [14]. It is an important theoretical sub-
ject since it may help in better understanding the frontier between polynomial and
hard problems. Moreover, the novel analysis of lower bounds provided here should
be useful for a broader class of task graphs for instance to guide exact exploration
algorithms [22]. Let us start with a review of the most important related works.

1.2. Related works

The problem of determining efficient scheduling algorithms with communication
delays has been initiated in the mid eighties with the emergence of distributed-
memory parallel architectures. Since then, a lot of studies have been devoted to the
complexity or analysis of scheduling algorithms for graphs with specific structures.
Most of these works focused on minimization of the makespan which corresponds to
the maximum completion time of an application. When the communication times

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE COMMUNICATION DELAYS 371

are small in regard to computations, the problem has more or less been solved:
several variants have been shown to be polynomial and those which are hard have
solutions with good approximation ratios. Some theoretical results lead to practical
implementations into compilers [23]. The problem with large communication is
much harder and has no satisfiable solution today.

The model of scheduling with communication delays has been introduced in [21].
The complexity was also studied in this paper and Rayward-Smith showed that
the problem is NP-hard for an arbitrary number of processors and unit processing
times and unit communication delays (this problem is denoted by P |prec, pj =
1, cij = 1|Cmax [6]). Later, this problem restricted to trees has also been proved to
be NP-hard by Lenstra et al. [15]. Assuming an unbounded number of processors
and any constant communication delays, we know from the study of Jakoby and
Reischuk on large delays that the problem P∞|prec, pj = 1, cij = c > 1|Cmax is
NP-hard [13]. It remains NP-hard for graphs structured in trees. For the restricted
problem with two processors, Afrati et al. proved that the problem is NP-hard in
the strong sense even when restricted to the class of binary trees [1]. In contrast,
they provide a polynomial-time algorithm for complete binary trees.

For large communication delays, the question of the existence of a polynomial-
time approximation algorithm for both cases of unbounded and bounded number
of processors is still open. Giannakos et al. proved that there is no hope to find
an approximation better than 1 + 1

c+3 for infinite number of processors [4] un-
less P = NP . The best known algorithms for any structure of graphs have an
approximation ratio which depends on c. The best known approximation ratio is
2(c+1)

3 , established by Giroudeau et al. in [11]. Since the lower bound is in O(1)
and the upper bound is linear in c, there is still a huge gap to solve the question.
We partially fill the gap here for 2-dimensional grids.

In order to be exhaustive in our presentation, let us mention that there is an al-
ternative to improve the previous results by allowing replication of some suitable
tasks. With duplication, the problem with an unbounded number of processors
remains NP-complete [19]. For an arbitrary number of processors, the best ratio
is in O(

√
c) [16]. However, for some specific structures of precedence, it is pos-

sible to obtain constant approximations. For instance, for trees, there exists a
2-approximation algorithm [18] with unbounded number of processors where du-
plication is allowed. As before, the question of the existence of an approximation
ratio that does not depend on c is still open. Moreover, such approaches based on
duplication are very costly from the view point of resource consumption.

Notice that many authors studied other methods without theoretical guarantees.
Several papers proposed solutions based on meta-heuristics, for instance the recent
genetic algorithm proposed in [20]. Another interesting approach is to use greedy
list policies like Earliest Task First [12].

1.3. Contributions

In this work, we propose an analysis of the problem of scheduling a 2-dimensional
grid graph and show almost-tight results. We target the minimization of the

372 E.M. DAOUDI ET AL.

n1

n2...
...

. . .

. . .

. .
.

T1,1

T1,2

T2,1

T2,2

Figure 1. Representation of a 2D-grid(n1, n2).

makespan (denoted by Cmax). Our goal within this work is to study the approx-
imation of this problem assuming large communication delays. Using the stan-
dard 3-fields notation of scheduling problems [6], we consider the following two
instances: the problem with unbounded number of processors P∞|2D-grid; pj =
1; cij = c > 1|Cmax and the problem restricted to two processors P2|2D-grid; pj =
1; cij = c > 1|Cmax.

For the first problem, we provide a lower bound on the optimal time C∗
max(n) ≥

65
81nc and then, we propose an algorithm that constructs a scheduling in time of
order nc. This analysis is based on a detailed study of the particular case of a
square c × c grid.

For the second problem, we derive a lower bound on the optimal time
C∗

max(n, 2) ≥ n2

2 + c + 1 and then, we show that the algorithm based on the
same principle as before is asymptotically optimal. More precisely, the graph is
scheduled in time n2

2 + 3c.

2. Description of the problem

We consider the scheduling problem with large communication delays of task
graphs structured as 2-dimensional grids on a multiprocessor system composed of
p identical processors. A 2-dimensional grid of size n1 by n2 (denoted in short by
2D-grid(n1, n2)) is defined as the set of tasks Ti,j , for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2,
which respect the following precedence constrains:

Ti,j � Ti+1,j, for all 1 ≤ i < n1 − 1
Ti,j � Ti,j+1 for all 1 ≤ j < n2 − 1
where the relation Ti,j � Ti′,j′ means that the execution of task Ti,j must be

completed before Ti′,j′ starts its execution.
We consider the UET-LCT model (which stands for Unit Execution Time –

Large Communication Times) where the tasks have unit execution times and the
communication delay (denoted by c) between two distinct processors is a constant
greater than the time for executing a task [8].

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE COMMUNICATION DELAYS 373

Furthermore, we assume that the communications between two processors can
not be pipelined (classical 1-port half-duplex model) : each processor can at any
time receive one (and only one) communication or send one communication but
not receive and send simultaneously. It can however overlap communications with
computations (start new computations while sending previously computed results
for example).

3. Unbounded number of processors

We present in this section one of the main results of this paper: a new lower
bound on the optimal completion time for scheduling a 2D-grid(n,n). More pre-
cisely, we show that C∗

max >
⌊

n
c

⌋ × (
65
81c2 − 8

27c − 1
9

)
.

We start with the analysis of an intermediate result by proving a lower bound
for the particular case of a square 2D-grid(c,c).

3.1. Scheduling a 2D-grid(c,c)

We consider the restricted case of 2D-grid(c,c) (square grid of size c× c). As c is
the communication delay, it seems difficult to obtain a really parallel solution and
we are indeed going to show that most computations are processed sequentially
by a single processor.

First let us start by bounding the maximal number of communications executed
in a sequence by any processor in any optimal solution. For a given solution we
denote by γmax the maximal number of communications executed sequentially and
γ∗
max the maximum of γmax on any optimal solution.
It is clear that the sequential solution runs in time c2. Since any optimal solution

achieves at most this time and each communication takes a time c, no optimal
solution contains a sequence of more than c communications and γ∗

max < c.
In fact, any upper bound on C∗

max can be used to obtain an upper bound on
γ∗
max. In a first step we start by providing a better upper bound on C∗

max.

3.1.1. Upper Bound on C∗
max for 2D-grid(c,c)

Theorem 3.1. γ∗
max < 8c

9 + 2
3 .

Proof. The proof is constructive: we build a schedule that partitions the square
grid as illustrated on Figure 2 using two processors P1 and P2, where x is an
integer ≤ c to be determined later.

We parallelize the execution of the tasks between both processors P1 and P2. In
the resulting schedule, the communications do not generate any waiting time for
P1. We proceed as follows: first, P1 executes the tasks located on the left column
during a time equal to c− x (step 1). Then, it immediately starts communicating
with P2 which will be able to process tasks at time c − x + c. Then, P1 continues
columns by columns to generate as fast as possible all communications toward
P2 (step 2). After that, it spends some time doing all tasks independent from P2

374 E.M. DAOUDI ET AL.

x

x

1 2 3

4

c − 1

c − x

P1 tasks

P2 tasks

execution step

Figure 2. Tasks allocation for two processors.

in step 3. During this time, P2 will process all its tasks and issue all outgoing
communications. Finally, P1 will finish all the remaining tasks in step 4.

P2 will have completed all incoming communications at time c − x + c × x. It
will then process its bottom right task for one unit of time. Finally it executes all
outgoing communications taking a time c × x.

In order to avoid waiting times for P1 all the communications should be over-
lapped by computations. This means that the time spent for computing tasks in
steps 2 and 3 should be at least equal to the time required for communications
and thus, (c − 1)(c − x) ≥ (1 + 2(c × x)).

To minimize Cmax, x should be maximized. As x ≤ c2−c−1
3c−1 , we take x =⌊

c2−c−1
3c−1

⌋
and deduce that x > c

3 − 1.

We are now able to bound the makespan of this schedule: Cmax = c2 − x2 since
P1 never waits. Therefore Cmax < c2 − (c

3 − 1)2 and C∗
max ≤ Cmax < 8c2

9 + 2c
3 . We

obtain γ∗
max < 8c

9 + 2
3 as a direct result. �

3.1.2. Lower Bound

First, we start by introducing some additional useful notations. We consider
here any schedule with no particular restriction. π(i, j) is defined by the function
that returns the index of the processor assigned to execute task Ti,j within the
schedule.

We also introduce a set of boxes Bk for the analysis of the schedule. Informally,
each box is a rectangular shaped subset of tasks. Let Pt denote the processor
executing the top right task of the box. We call Pt the box processor (even if all
the tasks in the box are not necessarily executed on Pt). We also denote by (is, js)
the coordinates of the bottom left task of the box and (ie, je) the coordinates of the
top right task of the box. Figure 3 illustrates the notion of box on a non-optimal
schedule.

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE COMMUNICATION DELAYS 375

P1

P1

P3

P2

P3

P1

P2

P3

P1

P3

P3

P3

P2

P2

P2

P1

P3

P2

P1

P1

P3

P2

P1

P3

P3

B1

B2

B3

ie, je

is, js

Figure 3. Left: non-optimal allocation π of tasks to processors.
Right: three corresponding boxes. Bottom: top-right and bottom-
left tasks in box 2.

Definition 3.2.
A box is a rectangular set of tasks defined by (is, js), (ie, je) which respects the

following constraints :

• ∀i|is ≤ i ≤ ie, ∃j|js ≤ j ≤ je and π(i, j) = t
• ∀j|js ≤ j ≤ je, ∃i|is ≤ i ≤ ie and π(i, j) = t
• ∀i|is − 1 ≤ i ≤ ie, π(i, js − 1) �= t
• ∀j|js − 1 ≤ j ≤ je, π(is − 1, j) �= t

The set of boxes is built iteratively starting from the first box containing the top
right task Tn,n and continuing with the box just below and to the left as depicted
in Figure 3. The tasks outside B1 and on its bottom left boundary are all assigned
to a different processor than P1. The top right task in B2 is then chosen below and
to the left of the bottom left task of B1 and the process iterates building B2 until
all tasks across the bottom left boundary are assigned to a different processor than
P2. This process of building boxes is repeated until reaching a border of the grid.

Finally, we denote by r the number of boxes in the schedule. wk and hk denote
respectively the width and height of Bk.

376 E.M. DAOUDI ET AL.

Note that since this algorithm is fully deterministic it will yield to a unique de-
composition into boxes.

Lemma 3.3. For any box Bk with k �= r, the execution of the top right task in
the box will require a sequence of wk + hk communications after the end of the
predecessor box.

Proof. The networking model implies that all incoming communications to the box
processor are issued sequentially. Therefore, we only need to bound the number
of incoming communications for each box. Now, the top right task of the box
depends on all other tasks of the box being completed. Moreover, by construction,
any task across the bottom left border will generate a communication: for any task
under the bottom line, it is not executed in the box processor and there exists a
task on the same column which is requiring a communication. For any task on
the left, there is for the same reason a task on the same line which requires a
communication. Therefore, we need a sequence of wk + hk communications. �

Note: We emphasize that the communications are not always taking place with
the edges crossing the edge of the box. For example, in Figure 3, task Tie,je of B2

will require (at least) three communications for the bottom edge of its box. From
left to right : Tie−2,je−2 to compute Tie−2,je−1 (P1 to P2); Tie−1,je−1 to compute
Tie−1,je (P3 to P2); Tie,je−1 to compute Tie,je (P3 to P2). Computing Tie−1,je−1

requires no communication from Tie−1,je−2 since both tasks are done on P3.

Lemma 3.4. The last box contains the first task: T1,1 ∈ Br.

Proof. The proof is by contradiction. Assume without loss of generality that the
box building process reaches i = 1 (the left edge) before reaching j = 1. Now,
we start by executing T1,1. Later, we will go on the box Br and then Br−1, . . . ,
and finally B1. Each box Bk requires a sequence of at least wk communications.
Moreover as the boxes are processed in a sequence (because of the dependencies) we
have a total number of communications which is larger or equal to

∑r
k=1 wk = c.

There is a contradiction because this cannot happen in any optimal schedule. �

Lemma 3.5. In any optimal schedule, the half-perimeter of the bottom left box
Br is strictly larger than c:

wr + hr > c

Proof. As all the boxes are executed in sequence, we clearly need to issue a se-
quence of

∑r−1
k=1(wk + hk) communications by Lemma 3.3. Moreover Lemma 3.4

implies that
∑r

k=1 wk =
∑r

k=1 hk = c. Combining these two equations, we deduce
that there exists a sequence of 2c−wr−hr communications. Since we cannot have
c communications in an optimal solution, we conclude that wr + hr > c. �

Theorem 3.6.

C∗
max >

65c2

81
− 8c

27
− 1

9

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE COMMUNICATION DELAYS 377

Br

tasks in S1

tasks which might be S2

on each line and column at least one task in S1

Figure 4. Constraints on S1.

Proof. Without loss of generality let P1 be the box processor of Br. The set of
tasks is partitioned into two subsets, namely, the set S1 of tasks executed on P1

and the set S2 of tasks executed on any other processor.

We consider only the communications taking place between S1 and S2 and
intend to maximize the area (i.e. the number of tasks) in S2 while still validating
the γ∗

max constraint of Theorem 3.1.

We now use Lemma 3.5. Since wr + hr is larger than c, the communications
constraint implies that in at least wr +hr−c lines or columns, there is a continuous
set of tasks on P1 up to the top or right border of the grid (where no communication
is needed anymore). Without loss of generality, we assume that there is a line of
S1 tasks reaching the right border. Since there is now at least a S1 task on each
x coordinate, these tasks generate c communications upwards unless at least the
end of one column also consists in S1 tasks. Figure 4 illustrates these constraints.

Now, we know that there is at least one S1 task on each line and on each
column. Any line or column not consisting entirely of S1 tasks generates at least
one communication. Since there are c lines, c columns and the number of allowed
communications is less than c we deduce that more than c lines or columns are
entirely filled with S1 tasks. This directly implies that |S1| > |S2|.

Without considering communications nor the processors involved in S2 we can
deduce that C∗

max ≥ |S1| since all tasks of S1 are executed on the same proces-
sor. In order to minimize this bound we therefore need to maximize |S2| since
|S1| + |S2| = c2.

We know from Theorem 3.1 that γ∗
max < 8c

9 + 2
3 . Now we maximize the area of

S2 while validating this constraint on the number of communications which is itself
depending on the perimeter of S2. The ideal configuration for S2 (which cannot
be reached) is therefore as a square which is the best way to maximize the area of
a shape while keeping its perimeter below a given limit. Let x be the side of this
square, we have 2x < 8c

9 + 2
3 and thus, a maximal surface of x2 < 16c2

81 + 8c
27 + 1

9 .

From here we conclude that the area of S1 is greater than c2− (16c2

81 + 8c
27 + 1

9) =
65c2

81 − 8c
27 − 1

9 . Since this is more than half of the total area it is also a lower bound
of C∗

max. �

378 E.M. DAOUDI ET AL.

3.2. Extension to an arbitrary 2D-grid(n1, n2)

Theorem 3.7. For any rectangle grid of size (n1, n2):

C∗
max > min

(⌊n1

c

⌋
,
⌊n2

c

⌋)
×

(
65c2

81
− 8c

27
− 1

9

)
.

Proof. We build a set of min
(⌊

n1
c

⌋
,
⌊

n2
c

⌋)
sub-grids of size c × c aligned on the

diagonal. All these grids are completed in sequence because in each grid the bottom
left task depends on the result of the top right task of the previous grid. We
conclude the proof by applying Theorem 3.6 on each sub-grid. �

Corollary 3.8. For any square grid of size (n, n) :

C∗
max >

⌊n

c

⌋
×

(
65c2

81
− 8c

27
− 1

9

)
.

3.3. Approximation algorithm for unbounded number of processors

In this section we propose a parallel algorithm which provides an upper bound
of the optimal execution time. We assume a multiprocessor system composed of
an unbounded number of processors, denoted each by Pk, with k ≥ 1.

If 2c does not divide n we complete the grid by adding rows of virtual tasks
until a new total of n′ =

⌈
n
2c

⌉ × 2c.
We subdivide the grid into n′

2c slices and we allocate each slice Sk to processor

Pk. Each slice Sk, for 1 ≤ k ≤ n′

2c
is composed of 2c consecutive rows of the grid.

The algorithm is then pretty straightforward. Each processor executes all tasks
from its slice. All tasks or communications are executed as soon as possible. If at
any time the processor has the choice between several tasks, it executes in priority
the task Ti,j with minimal i. Figure 5 illustrates the execution of the algorithm on
a (6, 6) grid with c = 1.

The height of 2c of each slice enables us to overlap most communications by
some computations. Consider any a processor Pk executing the column i of Sk.
During the first c tasks of the column, Pk sends all data needed by Pk+1 for the
first task of column i− 1. During the last c tasks of column i, Pk receives the data
needed for the execution of the first task of the next column. Taking for example
column 3 in S2 in Figure 5 we can see that between t = 7 and t = 8, P2 sends the
data from T2,4 to P3 while between t = 8 and t = 9 it receives data from T4,2.

This implies that once a slice starts it executes all its tasks without interruption.
The last slice is starting at time t = (n′

2c − 1)× 3c = (
 n
2c� − 1)× 3c and ending

therefore at no more than (
 n
2c� − 1) × 3c + 2cn < n(2c + 3/2).

Since the last task of the last slice depends on all others, it is also the last to
be executed and we deduce immediately that Cmax < n(2c + 3/2).

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE COMMUNICATION DELAYS 379

2c S1(P1)

2c S2(P2)

2c S3(P3)

1

2

3

4

5

6

7

8

9

10

11

12

4

5

6

7

8

9

10

11

12

13

14

15

7

8

9

10

11

12

13

14

15

16

17

18

Figure 5. Tasks-Partitioning into Slices (c = 1) ; the labels de-
note the execution times.

4. Algorithm for 2 processors

In this section, we study the complexity of the 2D-grid(n,n) scheduling problem
in the case where the number of processors is restricted to 2 and propose an
asymptotically optimal scheduling.

4.1. A lower bound for p = 2

Proposition 4.1. Let C∗
max(n, 2) be the optimal execution time of the 2D-

grid(n,n) using 2 identical processors, then C∗
max(n, 2) satisfies:

n2

2
+ c + 1 ≤ C∗

max(n, 2).

Proof. According to the tasks precedence graph, it is clear that at least two com-
munications are necessary:

• at least, one communication is necessary after the execution of the task T1,1

which precedes all tasks. So, during the 1 + c first steps, at most only one
processor is busy to execute at most 1 + c tasks;

• at least, one communication is necessary before the beginning of execution of
task Tn,n which succeeds all tasks. So, during the 1+ c last steps, at most only
one processor is busy to execute at most 1 + c tasks.

Since there are two processors, we deduce that :

n2 − 2(1 + c)
2

+ 2(1 + c) =
n2

2
+ 1 + c ≤ C∗

max(n, 2). �

380 E.M. DAOUDI ET AL.

2c S1(P1)

2c S2(P2)

2c S3(P1)

2c S4(P2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Figure 6. 2-processors Algorithm (c = 1).

4.2. An asymptotically optimal algorithm for p = 2

We start by the same decomposition into slices as in Section 3.3: with n′ rows
cut into n′

2c slices of height 2c.
The slices are then distributed to the processors in a cyclic manner.
Execution is kept the same as in the previous algorithm: slice by slice, columns

by columns.
The example of Figure 6 describes the execution steps of the algorithm for n = 8

and c = 1.
If n is larger than 2c no processor is ever waiting between start and end

of its execution. Processor P1 executes
n′
4c� slices and starts at t = 0. Pro-

cessor P2 executes �n′
4c slices and starts at t = 3c. We directly derive that

Cmax < max(2cn(
n′
4c �), 3c+2cn(�n′

4c)) < max(2cn(n
4c +3/2), 3c+2cn(n

4c +1/2)) <

max(n2

2 + 3cn, n2

2 + cn + 3c) < n2

2 + 3cn

5. Concluding remarks

We have presented in this paper several results for scheduling 2-dimensional
grids with large communication times. For an unbounded number of processors (at
least greater than n

2c), we introduced a new lower bound analysis on the optimal
completion time together with an upper bound. The ratio between both bounds is
close to 1 and asymptotically optimal for two processors. While the complexity of
our problem is still an open question, we proved that our restricted graph structure
leads to a better significantly performance guarantees than the general scheduling
problem with arbitrary graphs.

SCHEDULING 2-DIMENSIONAL GRIDS WITH LARGE COMMUNICATION DELAYS 381

Moreover, we believe that the analysis provided in this paper may be used in a
broader context. First it may be easily extended to grids of higher dimensions or
to more complex networking models like full-duplex. Secondly, it clarifies the key
graph properties which restrict the parallel execution. We may thus expect the
analysis to extend to more general classes of graphs.

References

[1] F. Afrati, E. Bampis, L. Finta and I. Milis, Scheduling trees with large communication delays
on two identical processors. J. Scheduling 8 (2005) 179–190.

[2] R.J. Anderson, P. Beame and W. Ruzzo, Low overhead parallel schedules for task graphs,
in Proc. of SPAA (1990).

[3] E. Bampis, J-C. König and D. Trystram, A low overhead schedule for a 3D-grid graph.
Parallel Proces. Lett. 2 (1992).

[4] E. Bampis, A. Giannakos and J-C. König, On the complexity of scheduling with large
communication delays. EJOR 94 (1996).

[5] E. Bampis, F. Guinand and D. Trystram, Some models for scheduling parallel programs
with communication delays. Discrete Appl. Math. 72 (1997).

[6] J. Blazewicz, K. Ecker, E. Pesh, G. Schimdt and J. Weglarz, Handbook on Scheduling – from
theory to applications. Springer (2007).

[7] E.G. Coffman and P.J. Denning, Operating system theory. Prentice Hall (1972).
[8] P. Chrétienne and C. Picouleau, Scheduling with communication delays: A survey, in

Scheduling Theory and its Applications. Wiley (1995).
[9] M. Cosnard and D. Trystram, Algorithmes et architectures parallèles. Inter Editions (1993).

[10] M. Drozdowski, Scheduling for Parallel Processing. Springer (2009).
[11] R. Giroudeau, JC. Konig, F. Moulai and J. Palaysi, Complexity and approximation for

the precedence constrained scheduling problem with large communication delays, in Proc.
EuroPar, LNCS, Springer (2005).

[12] J. Hwang, Y. Chow, F. Anger and C. Lee, Scheduling precedence graphs in systems with
interprocessor communication times. SIAM J. Comput. 18 (1989) 244–257.

[13] A. Jakoby and R. Reischuk, The complexity of scheduling problems with communication
delays for trees, in Proc. Scandinavian workshop on Algorithmic Theory (1992).

[14] V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to parallel computing: design

and analysis of algorithms. The Benjamin/Cummings Publishing company (1994).
[15] J. Lenstra, M. Veldhorst and B. Veltman, The complexity of scheduling trees with commu-

nication delays. J. Algorithms 20 (1996).
[16] R. Lepere and C. Rapine, An asymptotic O(lnn/ ln lnn)-approximation algorithm for the

scheduling problem with duplication on large communication delay graphs, in Proc. STACS
(2002).

[17] R. Lepère and D. Trystram, A new clustering algorithm for large communication delays, in
Proc. of IPDPS (2002).

[18] A. Munier, Approximation algorithms for scheduling trees with general communication de-
lays. Parallel Computing (1999).

[19] C. Papadimitriou and M. Yannakakis, Towards an Architecture-Independent Analysis of
Parallel Algorithms. SIAM J. Comput. 19 (1990) 322–328.

[20] J. Pecero, D. Trystram and A. Zomaya, A new genetic algorithm for scheduling for large
communication delays, in Proc. EuroPar, LNCS, Springer (2009).

[21] V. Rayward-Smith, UET scheduling with unit interprocessor communication delays. Discrete
Appl. Math. 18 (1987) 55–71.

[22] A. Semar Shahul and O. Sinnen, Scheduling task graphs optimally with A*. J. Supercom-
puting 51 (2010) 310–332.

[23] T. Yang and A. Gerasoulis, List scheduling with and without communication delays. Parallel
Computing 19 (1993) 1321–1344.

[24] D. Trystram, Scheduling parallel applications using malleable tasks on clusters, in Proc. of
IPDPS (2001).

	Introduction
	Context and motivation
	Related works
	Contributions

	Description of the problem
	Unbounded number of processors
	Scheduling a 2D-grid(c,c)
	Upper Bound on Cmax* for 2D-grid(c,c)
	Lower Bound

	Extension to an arbitrary 2D-grid(n1,n2)
	Approximation algorithm for unbounded number of processors

	Algorithm for 2 processors
	A lower bound for p=2
	An asymptotically optimal algorithm for p=2

	Concluding remarks
	References

