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1. Introduction

In optimization theory, optimality conditions and duality results for differen-
tiable nonlinear constrained problems are important theoretically as well as com-
putationally. In the literature, most of the studies of such problems are established
involving the classical Karush–Kuhn–Tucker and/or Fritz John conditions. The
John criterion [17], known in the literature under the complete name Fritz John
criterion, is in a sense more general than the Karush–Kuhn–Tucker one which
is due to Karush [18] and Kuhn–Tucker [21]. From the Fritz John criterion, the
Karush–Kuhn–Tucker one is obtained by adding an assumption which is to impose
a suitable constraint-qualification [22] on the constraints of the problem. Thus, in
case of necessary optimality criteria, the only restriction on a constrained program
is that the constraints should satisfy certain qualification but for sufficient opti-
mality criteria and duality results to hold, the objective and constraints functions
are required to satisfy some convexity or generalized convexity requirements, see,
for example, Bazaraa et al. [5] and Mangasarian [22].

Among the different classes of functions introduced as generalizations of the con-
vexity, the concept of invexity has received more attention from the researchers,
especially the specialists in optimization. The concept of invexity is introduced by
Hanson [13] for the differentiable functions by generalizing the difference (x− x0)
in the definition of convex function to any function η(x, x0). He proved that if,
in a mathematical programming problem, instead of the convexity assumption,
the objective and constraint functions are invex with respect to the same vector
function η, then both the sufficiency of Karush-Kuhn-Tucker conditions and weak
and strong Wolfe duality still hold. Further, Ben Israel and Mond [7] considered
a class of functions called pre-invex and also showed that the class of invex func-
tions is equivalent to the class of functions whose stationary points are global
minima, see also Craven and Glover [9]. Hanson and Mond [14] introduced two
other classes of functions called type I and type II functions for the scalar optimiza-
tion problem, which were further generalized to pseudo-type I and quasi-type I by
Rueda and Hanson [30] and sufficient optimality conditions are obtained involving
these functions. Kaul and Kaur [19] showed that the Karush-Kuhn-Tucker (Fritz
John) necessary conditions are sufficient for optimality under the hypotheses of
the pseudo-invexity and the quasi-invexity (the invexity and the strict invexity)
with respect to the same function η for the objective and constraint functions re-
spectively. Martin [23] introduced a weaker invexity called Kuhn-Tucker invexity,
or KT-invexity, which is necessary and sufficient for every Kuhn-Tucker station-
ary point to be a global minimizer in the classical mathematical programming
problem. Further properties and applications of invexity for some more general
problems were studied by Antczak [1–4], Bector et al. [6], Craven [8], Fulga and
Preda [12], Jeyakumar and Mond [16], Kaul et al. [20], Mishra et al. [24,25], Osuna-
Gomez et al. [28], Pini and Singh [29], Soleimani-damaneh and Sarabi [35], and
others.
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However, one major difficulty in this extension of convexity is that invex prob-
lems require the same function η(x, x0) for the objective and constraint func-
tions. This requirement turns out to be a major restriction in applications. In
reference [31], a constrained nonlinear programming is considered and KT-invex,
weakly KT-pseudo-invex and type I problems with respect to different (ηi)i are
defined (each function occurring in the studied problem is considered with respect
to its own function ηi instead of the same function η). A new Kuhn-Tucker type
necessary condition is introduced for nonlinear programming problems and duality
results are obtained, for Wolfe and Mond-Weir type dual programs, under gener-
alized invexity assumptions. In [34], the invexity with respect to different (ηi)i is
used in the nondifferentiable case. Fritz John type necessary, Karush-Kuhn-Tucker
type necessary and sufficient optimality conditions and duality results are obtained
for nondifferentiable multiobjective programming (see also [32, 33]).

In parallel to all these developments and advances of the invexity and its ex-
tensions in theory, some applications in practice begin to take place. Recently,
Dinuzzo et al. [10] have obtained some kernel function in Machine Learning which
is not quasi-convex (and hence also neither convex nor pseudoconvex) but it is
invex. Nickisch and Seeger [27] have studied a multiple kernel learning problem
and have used the invexity to deal with the optimization which is nonconvex.

In this paper, we study Fritz John type optimality and duality for constrained
nonlinear programming with inequality constraints. We introduce a generalized
Fritz John condition which is necessary and sufficient for a feasible point to be an
optimal solution under weak invexity with respect to different (ηi)i. In particular,
we obtain optimality conditions of Fritz John type that extend previous condi-
tions of Kuhn-Tucker type presented in references [31–33], and generalize results
obtained in the literature on this topic. Moreover, we establish the equivalence be-
tween saddle points and optima, and a characterization of solutions under suitable
generalized invexity assumptions. The result characterizing the optimal solutions
is proved under weaker hypotheses than the one given in [32, 33], and it allows to
characterize optimal solutions which are not characterized by previously known
results using the concept of Kuhn-Tucker stationary point [3, 23]. Furthermore,
by using the introduced generalized Fritz John condition, we formulate a Mond-
Weir type dual for which we prove several duality results. These latter results are
more general than those obtained in references [31–33] because here we use the
generalized Fritz John condition instead of the generalized Kuhn-Tucher condition
introduced in reference [31]. By way of illustration, several examples are provided.

2. Preliminaries and definitions

Invex functions were introduced to optimization theory by Hanson [13], and
called by Craven [8], as a very broad generalization of convex functions.

Definition 2.1. [13] Let D be a nonempty open set of Rn and η : D×D → Rn be
a vector function. A function f : D → R is said to be (def) at x0 ∈ D on D with
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respect to η, if the function f is differentiable at x0 and for each x ∈ D, (cond)
holds.

(i) def: invex,
cond:

f(x) − f(x0) ≥ [�f(x0)]tη(x, x0). (2.1)

(ii) def: pseudo-invex,
cond:

[�f(x0)]tη(x, x0) ≥ 0 ⇒ f(x) − f(x0) ≥ 0. (2.2)

(iii) def: quasi-invex,
cond:

f(x) − f(x0) ≤ 0 ⇒ [�f(x0)]tη(x, x0) ≤ 0. (2.3)

If the inequality in (2.1) (resp. second (implied) inequality in (2.3)) is strict (x �=
x0), we say that f is strictly invex (resp. strictly quasi-invex) at x0 on D with
respect to η. f is said to be (strictly) invex (resp. pseudo-invex or (strictly) quasi-
invex) onD with respect to η, if f is (strictly) invex (resp. pseudo-invex or (strictly)
quasi-invex) at each x0 ∈ D on D with respect to the same η.

Remark 2.2. When the function η(x, x0) = x − x0, the definition of (strict)
invexity (resp. pseudo-invexity and quasi-invexity) reduces to the definition of
(strict) convexity (resp. pseudo-convexity and quasi-convexity).

Craven and Glover [9] and Ben-Israel and Mond [7] stated that the class of
invex functions are all those functions whose stationary points are global minima.
Moreover, Ben-Israel and Mond [7] proved that the class of invex functions coin-
cides with the one of pseudoinvex functions, and every function f , with �f ≡/ 0, is
invex.

Proposition 2.3. [7] Any differentiable function f : D ⊆ Rn → R at a point
x0 ∈ D, with �f(x0) �= 0, is invex at x0 on D with respect to η(x, x0) = [f(x) −
f(x0)]

[�f(x0)]
[�f(x0)]t[�f(x0)]

, ∀ x ∈ D.

Now, we give others η for which a given scalar function is pseudo-invex.

Proposition 2.4. Any differentiable function f : D ⊆ Rn → R at a point x0 ∈ D,
with �f(x0) �= 0, is pseudo-invex at x0 on D with respect to η(x, x0) = [f(x) −
f(x0)][�f(x0)], ∀ x ∈ D or η(x, x0) = [f(x)− f(x0)]t(x0), ∀ x ∈ D where t(x0) ∈
Rn with ti(x0) =

{
1, if ∂f

∂xi
(x0) ≥ 0,

−1, otherwise,
for all i = 1, . . . , n.

Example 2.5. The function f : R2 → R defined by f(x) = −x2
1 − 2x2 is

pseudo-invex on R2 with respect to η(x, x̃) = (−x2
1 − 2x2 + x̃2

1 + 2x̃2)(−2x̃1,−2)t.
Furthermore, f is pseudo-invex at each x0 ∈ [R+ × R] on R2 with respect to
η1(x, x̃) = (−x2

1 − 2x2 + x̃2
1 + 2x̃2)(−1,−1)t and it is pseudo invex at each

x0 ∈ [(R−\{0})×R] on R2 with respect to η2(x, x̃) = (−x2
1−2x2+x̃2

1+2x̃2)(1,−1)t.
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In Slimani and Radjef [31], a new concept of weak KT-pseudo-invexity is intro-
duced and duality results have been obtained for a constrained nonlinear program-
ming. Now, we define a concept of (semi strictly) weak pseudo-invexity for scalar
functions given as follows.

Definition 2.6. Let D be a nonempty open set of Rn and η : D ×D → Rn be a
vector function. A function f : D → R is said to be weakly pseudo-invex at x0 ∈ D
on D with respect to η, if the function f is differentiable at x0 and for each x ∈ D:

f(x) − f(x0) < 0 ⇒ ∃ x̄ ∈ D, [�f(x0)]tη(x̄, x0) < 0. (2.4)

f is said to be weakly pseudo-invex on D with respect to η, if f is weakly pseudo-
invex at each x0 ∈ D on D with respect to the same η.
In the relation (2.4), if we have f(x)−f(x0) ≤ 0 (x �= x0), instead of f(x)−f(x0) <
0, we say that f is semi strictly weakly pseudo-invex at x0 on D with respect to η.

Remark 2.7. Note that, in Definition 2.6, x̄ depends on x and x0, i.e. x̄ =
x̄(x, x0). As particular case, if x̄ = x, we obtain the pseudo-invexity (resp. the
strict quasi-invexity for the second case) of a scalar function f , given in Defini-
tion 2.1.

If a function f is pseudo-invex at x0 with respect to η, then it is weakly pseudo-
invex at x0 with respect to the same η (take x̄ = x). However, if f is weakly
pseudo-invex at x0 with respect to η, then f may not be pseudo-invex at x0 with
respect to the same η but it will be pseudo-invex at x0 with respect to η̃ with
η̃(x, x0) = η(x̄(x, x0), x0), ∀ x ∈ D. Note that also, we can use Proposition 2.4
to obtain a function η̂ for which f to be pseudo-invex (and then weakly pseudo-
invex) at x0. Thus the classes of pseudo-invex functions and weakly pseudo-invex
functions coincide.

Example 2.8. The function f : R2 → R defined by f(x) = −2x3
1 − x2 is weakly

pseudo-invex at x0 = (0, 0) on R2 with respect to η(x, x0) = (x−x0) ∈ R2 (take x̄ =
[(0, f(x0)− f(x))t +x0] ∈ R2). But f is not pseudo-invex at x0 on R2 with respect
to the same η because for x = (1,−1), f(x)−f(x0) < 0 and [�f(x0)]tη(x, x0) > 0.
However, f is pseudo-invex at x0 on R2 with respect to η̃(x, x0) = (0, f(x0)−f(x))t.
Note that if we use Proposition 2.4, we obtain η̂(x, x0) = (f(x) − f(x0))(1,−1)t

for which f is pseudo-invex (and then weakly pseudo-invex) at x0 on R2.

Definition 2.9. [11] A function f : D → RN is a convexlike function if for any
x, y ∈ D and 0 ≤ λ ≤ 1, there exists z ∈ D such that

f(z) ≤ λf(x) + (1 − λ)f(y).

Consider the following constrained nonlinear programming problem (P):

(P ) Minimize f(x),
subject to gj(x) ≤ 0, j ∈ K = {1, . . . , k},
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where f, gj : D → R, j ∈ K, D is an open set of Rn; X = {x ∈ D : gj(x) ≤
0, j ∈ K} is the set of all feasible solutions for (P). For x0 ∈ D, we denote by
J(x0) the set {j ∈ K : gj(x0) = 0} and by J̃(x0) (resp. J̄(x0)) the set {j ∈
K : gj(x0) < 0 (resp. gj(x0) > 0)}. We have J(x0) ∪ J̃(x0) ∪ J̄(x0) = K and
if x0 ∈ X, J̄(x0) = ∅. J0 = |J(x0)| is the cardinal of the set J(x0), gJ is the
semi-vector of g composed of the active constraints at the point x0.

The concept of Kuhn-Tucker (Fritz John) stationary point for (P) is very used
in the literature for establishing optimality conditions for the problem (P). It is
defined as follows.

Definition 2.10. [22] A feasible point x0 ∈ X is said to be a Kuhn-Tucker (resp.
Fritz John) stationary point for (P), if the functions f and g are differentiable at
x0 and there exists λ ∈ RJ0

+ (resp. (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0) such that:

�f(x0) +
∑

j∈J(x0)

λj�gj(x0) = 0, (2.5)

(resp. μ�f(x0) +
∑

j∈J(x0)

λj�gj(x0) = 0). (2.6)

The problem (P) is said to be HC-invex at x0 ∈ X if f and gj, j ∈ K are invex
at x0 (with respect to the same function η). Thus, if the problem (P) is HC-invex,
then every Kuhn-Tucker stationary point is a minimizer of (P) [13]. Martin [23]
remarked that the converse is not true in general, and he proposed a weaker notion,
called KT-invexity, which assures that every Kuhn-Tucker stationary point is a
minimizer of problem (P) if and only if problem (P) is KT-invex.

Definition 2.11. [23] Let η : X × X → Rn be a vector function. The problem
(P) is said to be KT-invex on the feasible set X with respect to η, if the functions
f and g are differentiable on X and for each x, x0 ∈ X :

f(x) − f(x0) ≥ [�f(x0)]tη(x, x0), (2.7)
−[�gj(x0)]tη(x, x0) ≥ 0, ∀ j ∈ J(x0). (2.8)

The following result established by Martin [23] is considered as an optimality
criterion for problem (P) and as a characterization of the KT-invexity notion with
respect to η.

Theorem 2.12. [23] Every Kuhn-Tucker stationary point of problem (P) is a
global minimizer if and only if (P) is KT-invex on X with respect to η.

Antczak [3] showed that the result in Theorem 2.12 remains true under a general-
ized KT-invexity called KT-(0, r)-invexity with respect to η.

Hayashi and Komiya [15] have proved the following alternative lemma which will
be used to prove Fritz John type necessary optimality conditions and to establish
a characterization of optimal solutions for (P).
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Lemma 2.13. Let S be a nonempty set in Rn and let ψ : S → Rm be a convexlike
function. Then either

ψ(x) < 0 has a solution x ∈ S,

or
pTψ(x) ≥ 0 for all x ∈ S, for some p ∈ Rm

+ , p �= 0,

but both alternatives are never true (Here the symbol T denotes the transpose of
matrix).

Now, before establishing optimality conditions for (P), we give the following simple
propositions that we will use.

Proposition 2.14. Let S be a nonempty subset of Rn. If a function ϕ : S →
]−∞, 0] is strictly quasi-invex at x0 ∈ S on S with respect to θ : S ×S → Rn and
ϕ(x0) = 0, then [�ϕ(x0)]tθ(x, x0) < 0, ∀ x ∈ S.

Proof. For x ∈ S, we have ϕ(x) ≤ 0 = ϕ(x0), which by strict quasi-invexity of ϕ
at x0 on S with respect to θ implies [�ϕ(x0)]tθ(x, x0) < 0. �

Corollary 2.15. Let x0 ∈ X be a feasible solution of (P). For each j ∈ J(x0),
if gj is strictly quasi-invex at x0 on X with respect to θj : X × X → Rn, then
[�gj(x0)]tθj(x, x0) < 0, ∀ x ∈ X.

Proposition 2.16. Let x0 be a feasible solution of (P). For each j ∈ K, if
�gj(x0) �= 0 and the components of θj : X ×X → Rn are defined by θl

j(x, x0) ={
gj(x) − δ, if ∂gj

∂xl
(x0) ≥ 0,

−gj(x) + δ, otherwise,
for all l = 1, . . . , n with δ ∈ R, δ > 0, then

[�gj(x0)]tθj(x, x0) < 0, ∀ x ∈ X.

Proof. We have [�gj(x0)]tθj(x, x0) =
n∑

l=1

∂gj

∂xl
(x0)s

j
l (x0)[gj(x) − δ] < 0, ∀ x ∈ X ,

∀ j ∈ K with sj
l (x0) =

{
1, if ∂gj

∂xl
(x0) ≥ 0,

−1, otherwise,
for all l = 1, . . . , n. �

3. Optimality conditions

In this section, we give Fritz John type necessary and sufficient optimality con-
ditions for a feasible point to be an optimal solution of (P). For the sufficiency
conditions, we use the weak invexity with respect to different functions η and (θj)j .
Moreover, we prove that the equivalence between saddle points and optima is held
under semi strictly weak pseudo-invexity.

To prove necessary conditions for the problem (P), we need to prove the follow-
ing lemma.
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Lemma 3.1. Suppose that

(i) x0 is a (local) optimal solution for (P);
(ii) gj is continuous at x0 for j ∈ J̃(x0), the functions f, gj , j ∈ J(x0) are

differentiable at x0 and there exist vector functions η : X × D → Rn and
θj : X ×D → Rn, j ∈ J(x0) which satisfy at x0 the following inequalities,

[�gj(x0)]tη(x, x0) ≤ [�gj(x0)]tθj(x, x0), ∀ x ∈ X, ∀ j ∈ J(x0), (3.1)

Then the system of inequalities

[�f(x0)]tη(x, x0) < 0, (3.2)

[�gj(x0)]tθj(x, x0) < 0, j ∈ J(x0), (3.3)

has no solution x ∈ X.

Proof. Let x0 ∈ X be a local optimal solution for (P) and suppose there ex-
ists x̃ ∈ X such that the inequalities (3.2)-(3.3) are true. Let ϕf (x0, x̃, τ) =
f(x0 + τη(x̃, x0)) − f(x0). We observe that this function vanishes at τ = 0 and
lim

τ→0+
τ−1[ϕf (x0, x̃, τ) − ϕf (x0, x̃, 0)] = lim

τ→0+
τ−1[f(x0 + τη(x̃, x0)) − f(x0)] =

[�f(x0)]tη(x̃, x0) < 0 using (3.2).
It follows that, ϕf (x0, x̃, τ) < 0 if τ is in some open interval (0, δf ), δf > 0. Thus,

f(x0 + τη(x̃, x0)) < f(x0), τ ∈ (0, δf ).

Similarly, by using (3.1) with (3.3), we get

gj(x0 + τη(x̃, x0)) < gj(x0) = 0, τ ∈ (0, δgj ), ∀ j ∈ J(x0),

where for all j ∈ J(x0), δgj > 0.
Now, since for j ∈ J̃(x0), gj(x0) < 0 and gj is continuous at x0, therefore, there
exists δj > 0 such that

gj(x0 + τη(x̃, x0)) < 0, τ ∈ (0, δj), ∀ j ∈ J̃(x0).

Let δ0 = min{δf , δgj , j ∈ J(x0), δj, j ∈ J̃(x0)}. Then

(x0 + τη(x̃, x0)) ∈ Nδ0(x0), τ ∈ (0, δ0), (3.4)

where Nδ0(x0) is a neighborhood of x0. Now, for all τ ∈ (0, δ0) we have

f(x0 + τη(x̃, x0)) < f(x0), (3.5)

gj(x0 + τη(x̃, x0)) < 0, j ∈ K. (3.6)

By (3.4) and (3.6), we get (x0 + τη(x̃, x0)) ∈ Nδ0(x0) ∩ X , for all τ ∈ (0, δ0).
Hence (3.5) is a contradiction to the assumption that x0 is a (local) optimal so-
lution for (P). Thus, there exists no x ∈ X satisfying the system (3.2)-(3.3), and
the lemma is proved. �
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In the next theorem, we obtain Fritz John type necessary optimality conditions
with different functions η and (θj)j associated to the objective and constraints
functions of (P).

Theorem 3.2. (Fritz John type necessary optimality conditions) Suppose that

(i) x0 is a (local) optimal solution for (P);
(ii) gj is continuous at x0 for j ∈ J̃(x0), the functions f, gj , j ∈ J(x0) are

differentiable at x0 and there exist vector functions η : X × D → Rn and
θj : X ×D → Rn, j ∈ J(x0) which satisfy at x0 the inequalities (3.1);

(iii) H(x) = ([�f(x0)]tη(x, x0), [�gj(x0)]tθj(x, x0), j ∈ J(x0)) ∈ R1+J0 is a
convexlike function of x on X.

Then there exists (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0 such that (x0, μ, λ) satisfies the

following generalized Fritz John condition

μ[�f(x0)]tη(x, x0) +
∑

j∈J(x0)

λj [�gj(x0)]tθj(x, x0) ≥ 0, ∀ x ∈ X. (3.7)

Furthermore, if gj , j ∈ J̃(x0) are also differentiable at x0, the condition (3.7) can
be written in the following equivalent form, where λ = (λ1, . . . , λk) ∈ Rk

+:

μ[�f(x0)]tη(x, x0) +
k∑

j=1

λj [�gj(x0)]tθj(x, x0) ≥ 0, ∀ x ∈ X, (3.8)

λtg(x0) = 0. (3.9)

Proof. If the conditions (i) and (ii) are satisfied, then, by Lemma 3.1 the sys-
tem (3.2)-(3.3) has no solution for x ∈ X . Since, by hypothesis (iii), H(x) =
([�f(x0)]tη(x, x0), [�gj(x0)]tθj(x, x0), j ∈ J(x0)) is a convexlike function of x
on X , therefore, by Lemma 2.13, there exists (μ, λ) ∈ R1+J0

+ , (μ, λ) �= 0 such that
the relation (3.7) is satisfied.
The equivalent form of the necessary conditions is readily obtained by setting for
all j ∈ J̃(x0) = K − J(x0), λj = 0 and θj any function. �

Now, using the generalized Fritz John condition (3.7), we establish sufficient con-
ditions for a feasible point to be an optimal solution of (P) under weak invexity
with respect to different η and (θj)j .

Theorem 3.3. Let x0 ∈ X and suppose that:

(i) f is weakly pseudo-invex at x0 on X with respect to η : X ×X → Rn;
(ii) gJ is differentiable at x0 and for all j ∈ J(x0), there exists a function θj :

X ×X → Rn such that [�gj(x0)]tθj(x, x0) < 0, ∀ x ∈ X.

If there exists a vector (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0 such that the generalized Fritz

John condition (3.7) is satisfied, then the point x0 is an optimal solution of (P).
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Proof. Let us suppose that x0 is not an optimal solution of (P). Then there exists
a feasible point x such that f(x) − f(x0) < 0.
Since f is weakly pseudo-invex at x0 on X with respect to η, it follows that

∃ x̄ ∈ X, [�f(x0)]tη(x̄, x0) < 0. (3.10)

By hypothesis, we have

[�gj(x0)]tθj(x̄, x0) < 0, ∀ j ∈ J(x0). (3.11)

As (μ, λ) ≥ 0, (μ, λ) �= 0 and from (3.10) and (3.11), it follows that

μ[�f(x0)]tη(x̄, x0) +
∑

j∈J(x0)

λj [�gj(x0)]tθj(x̄, x0) < 0,

which contradicts (3.7), and therefore, x0 is an optimal solution of (P). �

Remark 3.4. According to Corollary 2.15, we can replace in the above theorem
the hypothesis (ii) by ∀ j ∈ J(x0), gj is strictly quasi-invex at x0 on X with
respect to θj : X ×X → Rn.

Although the classical Fritz John necessary optimality condition is more re-
duced than the generalized Fritz John necessary optimality condition, this latter,
combining with the invexity with respect to different (ηi)i, has its usefulness in
the sufficient optimality conditions. For illustration, in the following example, we
consider a feasible point x0 which is not a Kuhn-Tucker stationary point of prob-
lem and hence all the sufficient optimality conditions using this concept are not
applicable to conclude on its optimality. Furthermore, we show that there exists no
function η for which the objective and constraint functions are both (generalized)
invex. Thus, we can not also use the sufficient optimality conditions using the (gen-
eralized) invexity with respect to the same η (in particular for η(x, x0) = x − x0)
and the classical Fritz John conditions. Therefore, we appeal to the invexity with
respect to different (ηi)i, the generalized Fritz John condition and by using The-
orem 3.3, we conclude on optimality of the point x0.

Example 3.5. We consider the following nonlinear programming problem

Minimize f(x) = −x1,

subject to g1(x) = x3
1 − x2 ≤ 0, (3.12)

g2(x) = x2 ≤ 0,

where f : R2 → R and g = (g1, g2) : R2 → R2. The set of all feasible solutions of
problem is X = {x = (x1, x2) ∈ R2 : x3

1 − x2 ≤ 0 and x2 ≤ 0}.
For this problem, we have x0 = (0, 0) ∈ X is not a Kuhn-Tucker stationary point
of problem (3.12), because the condition (2.5) of Kuhn-Tucker at x0 takes a form
�f(x0)+λ1�g1(x0)+λ2�g2(x0) = (−1,−λ1 +λ2) �= (0, 0), ∀ (λ1, λ2) ≥ 0. Thus,
all the sufficient optimality conditions using this concept, for example from [1,3–
5,13, 14, 19, 22, 23], are not applicable.
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Furthermore, we have x0 is a Fritz John stationary point for (P) with respect
to (μ0, λ0) ∈ R1+J0

+ , but it is not difficult to prove that there exists no a func-
tion η : X × X → R2 for which the functions g1 and g2 are both (strictly)
(pseudo)-invex at x0 (take x = (−2,−1) ∈ X). Also, the Lagrangian L(., μ0, λ0)
is not strictly B − (p, r)-invex at x0 with respect to η and b on X (where
b(x, x0) > 0, x �= x0) [1] because μ0 = 0, L(x, μ0, λ0) ≯ L(x0, μ

0, λ0), ∀ x ∈ X
and “L(x, μ0, λ0) ≥ L(x0, μ

0, λ0), ∀ x ∈ X” is not true. Hence, the sufficient op-
timality conditions using the (generalized) invexity with respect to the same η (in
particular for η(x, x0) = x − x0) with the classical Fritz John conditions are not
applicable, for example Theorem 25 of Antczak [1], Theorem 4.2.12 of Bazaraa
et al. [5], page 187, Theorem 3.2 of Kaul and Kaur [19] and Theorem 7.2.3 of
Mangasarian [22], page 96.
However, by using the invexity with respect to different (ηi)i and the generalized
Fritz John condition (3.7), we obtain

• f is pseudo-invex at x0 on D (and then on X) with respect to η(x, x0) =
(x1,−x1) using Proposition 2.4;

• g is differentiable at x0, g1 and g2 are active constraints at x0 and by using
Proposition 2.16, for θ1(x, x0) = (x3

1 − x2 − 1,−x3
1 + x2 + 1) and θ2(x, x0) =

(x2−1, x2−1), we obtain that [�gj(x0)]tθj(x, x0) < 0, ∀ x ∈ X, ∀ j ∈ J(x0) =
{1, 2}.

The generalized Fritz John condition (3.7) at x0 for μ = 1 and λ1 = λ2 = 0 takes
the form μ[�f(x0)]tη(x, x0) = −x1 ≥ 0, ∀ x ∈ X . It follows that, by Theorem 3.3,
x0 is an optimal solution for the given nonlinear programming problem.

As particular case of Theorem 3.3, if the functions θj are equal to η, ∀ j ∈ J(x0)
and by using the classical Fritz John condition, we obtain the following theorem.

Theorem 3.6. Let x0 ∈ X and suppose that:

(i) f is weakly pseudo-invex at x0 on X with respect to η : X ×X → Rn;
(ii) gJ is differentiable at x0 and ∀ j ∈ J(x0), [�gj(x0)]tη(x, x0) < 0, ∀ x ∈ X.

If there exists a vector (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0 such that the Fritz John condi-

tion (2.6) is satisfied, then the point x0 is an optimal solution of (P).

Proof. It suffices to multiply the relation (2.6) by η(x, x0) and use
Theorem 3.3. �
Remark 3.7. Kaul and Kaur [19], Theorem 3.2, proved that the Fritz John con-
dition (2.6) is sufficient for x0 to be an optimal solution of (P), if the objective
and active constraint functions, f and gj , j ∈ J(x0), are invex and strictly invex,
respectively, at x0 on X with respect to the same η. It is shown, in Theorem 3.6
(see Remark 3.4), that the result is also true under weak hypothesis, when f is
weakly pseudo-invex and ∀ j ∈ J(x0), gj is strictly quasi-invex at x0 on X with
respect to η.

Using Proposition 2.14 and proceeding in the same manner as in the proof of
Theorem 3.3, we can prove the following result.
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Theorem 3.8. Let x0 ∈ X and suppose that f is weakly pseudo-invex at x0 on X
with respect to η : X ×X → Rn. If there exists a vector (μ, λ) ∈ R1+J0

+ , (μ, λ) �= 0
such that the scalar function Ψ(x) =

∑
j∈J(x0)

λjgj(x) is strictly quasi-invex at x0 on

X with respect to θ : X ×X → Rn and

μ[�f(x0)]tη(x, x0) +
∑

j∈J(x0)

λj [�gj(x0)]tθ(x, x0) ≥ 0, ∀ x ∈ X, (3.13)

then the point x0 is an optimal solution of (P).

Remark 3.9. In the above theorem, the strict quasi-invexity assumption of the
scalar function Ψ(x) =

∑
j∈J(x0)

λjgj(x) at x0 on X with respect to θ can be replaced

by the relation
∑

j∈J(x0)

λj [�gj(x0)]tθ(x, x0) < 0, ∀ x ∈ X .

Remark 3.10. Note that we have not used any alternative theorem to prove the
Fritz John type sufficient optimality conditions (Thms. 3.3, 3.6 and 3.8), unlike
to the usual procedure used in the literature where alternative theorems (Gordan,
Motzkin, etc.) are used to prove Fritz John sufficient optimality conditions for non-
linear scalar and multiobjective programming problems, see for example Bazaraa
et al. [5], Kaul and Kaur [19] and Mangasarian [22].

Now, we give sufficient optimality conditions for existence of optima and saddle
points by using the generalized Fritz John conditions (3.8) and (3.9) and the semi
strict weakly pseudo-invexity of the Lagrangian.

Definition 3.11. [22] The Lagrange function, or Lagrangian, associated with the
constrained minimization problem (P) is the function L : D×R×Rk → R defined
by L(x, μ, λ) = μf(x) + λtg(x).

Theorem 3.12. (Generalized Fritz John saddle point conditions) Let x0 ∈ X.
Moreover, we assume that x0 satisfies the generalized Fritz John conditions (3.8)
and (3.9) with respect to μ0, λ0 and η : X ×X → Rn, i.e.

μ0[�f(x0)]tη(x, x0) +
k∑

j=1

λ0
j [�gj(x0)]tη(x, x0) ≥ 0, ∀ x ∈ X, (3.14)

λ0t
g(x0) = 0, (3.15)

and the Lagrangian L(., μ0, λ0) is semi strictly weakly pseudo-invex at x0 on X
with respect to the same η. Then, x0 is an optimal solution of (P) and (x0, μ

0, λ0)
is a saddle point of the Lagrangian; thus

L(x0, μ
0, λ) ≤ L(x0, μ

0, λ0) ≤ L(x, μ0, λ0), ∀ x ∈ X, ∀ λ ∈ Rk
+. (3.16)
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Proof. Let us suppose that x0 is not an optimal solution of (P). Then there exists
a feasible point x such that f(x) − f(x0) < 0.
It follows from here, by (μ0, λ0) ≥ 0, the definition of J(x0) and X , that

μ0f(x) + λ0
J

t
gJ(x) ≤ μ0f(x0) + λ0

J
t
gJ(x0). (3.17)

From (3.15), we get λ0
j = 0, ∀ j ∈ K − J(x0), and the relation (3.17) becomes

μ0f(x) + λ0t
g(x) ≤ μ0f(x0) + λ0t

g(x0). (3.18)

From (3.18) and the semi strictly weak pseudo-invexity of L(., μ0, λ0) at x0 on X
with respect to η, we obtain

∃ x̄ ∈ X, [�(μ0f + λ0t
g)(x0)]tη(x̄, x0) < 0,

i.e.

∃ x̄ ∈ X, μ0[�f(x0)]tη(x̄, x0) +
k∑

j=1

λ0
j [�gj(x0)]tη(x̄, x0) < 0,

which contradicts (3.14), and therefore, x0 is an optimal solution of (P).
For the saddle point of the Lagrangian, we proceed by contradiction. Suppose that
there exists x ∈ X (x �= x0) such that μ0f(x0) + λ0t

g(x0) > μ0f(x) + λ0t
g(x). By

the semi strictly weak pseudo-invexity of L(., μ0, λ0) at x0 on X with respect to η,
we obtain

∃ x̄ ∈ X, μ0[�f(x0)]tη(x̄, x0) +
k∑

j=1

λ0
j [�gj(x0)]tη(x̄, x0) < 0,

which contradicts (3.14), and therefore

μ0f(x0) + λ0t
g(x0) ≤ μ0f(x) + λ0t

g(x), ∀ x ∈ X. (3.19)

From the feasibility of x0 and the relation (3.15), we obtain

μ0f(x0) + λtg(x0) ≤ μ0f(x0) + λ0t
g(x0), ∀ λ ∈ Rk

+. (3.20)

Using (3.19) and (3.20), we obtain, by the definition of Lagrangian, that the rela-
tion (3.16) is satisfied. �

It is known that, for the constrained mathematical programming problem (P),
the equivalence of saddle points of the Lagrangian and minima is held under the
convexity assumption (and constraint qualification). Antczak [1] showed that the
result is still held for optimization problems with B − (p, r)-invex functions. In
the following theorem, we prove that such equivalence between saddle points and
minima remains true under semi strictly weak pseudo-invexity.
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Theorem 3.13. (Equivalence of saddle points and minima) For problem (P), we
assume that the Lagrangian is semi strictly weakly pseudo-invex at x0 on X with
respect to η : X ×X → Rn and for all j ∈ K, [�gj(x0)]tη(x, x0) ≥ 0, ∀ x ∈ X.
Then, x0 is an optimal solution of (P) if and only if there exists (μ0, λ0) ∈ R1+k

+

such that (x0, μ
0, λ0) satisfies the saddle point condition (3.16).

Proof. (Necessary condition) Suppose that x0 is an optimal solution of (P). Then
x0 is a Fritz John stationary point, i.e. there exists (μ0, λ0) ∈ R1+J0

+ , (μ0, λ0) �= 0
such that

μ0�f(x0) +
k∑

j=1

λ0
j�gj(x0) = 0, (3.21)

λ0t
g(x0) = 0. (3.22)

Multiplying the relation (3.21) by η(x, x0), we obtain that x0 satisfies the general-
ized Fritz John conditions (3.8) and (3.9) with respect to μ0, λ0 and η. From Theo-
rem 3.12, it follows that the saddle point condition (3.16) is satisfied at (x0, μ

0, λ0).
(Sufficient condition) Suppose that there exists (μ0, λ0) ∈ R1+k

+ such that
(x0, μ

0, λ0) is a saddle point of the Lagrangian of (P). From the inequality
L(x0, μ

0, λ) ≤ L(x0, μ
0, λ0), which holds for any λ ∈ Rk

+, we have

λtg(x0) ≤ λ0t
g(x0). (3.23)

If we put λ = 0 in (3.23), we obtain λ0t
g(x0) ≥ 0, and since also x0 ∈ X , hence

λ0t
g(x0) = 0. Let x be any feasible point for (P), then λ0t

g(x) ≤ 0. Now, by using
L(x0, μ

0, λ0) ≤ L(x, μ0, λ0), we conclude that the inequality

μ0f(x0) ≤ μ0f(x0) + λ0t
g(x0) ≤ μ0f(x) + λ0t

g(x) ≤ μ0f(x),

holds for all x ∈ X , i.e.

μ0f(x0) ≤ μ0f(x), ∀ x ∈ X. (3.24)

Now, suppose that μ0 = 0. Then we have μ0f(x) + λ0t
g(x) ≤ μ0f(x0) +

λ0t
g(x0), ∀ x ∈ X (x �= x0), and by semi strictly weak pseudo-invexity of La-

grangian at x0 on X with respect to η, we obtain

∃ x̄ ∈ X, [�(μ0f + λ0t
g)(x0)]tη(x̄, x0) < 0,

i.e.

∃ x̄ ∈ X,

k∑
j=1

λ0
j [�gj(x0)]tη(x̄, x0) < 0,

which contradicts the hypotheses of theorem. Thus, μ0 > 0 and hence, by (3.24),
we obtain f(x0) ≤ f(x), ∀ x ∈ X . It follows that x0 is an optimal solution
of (P). �
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4. Characterization of solutions

In Example 3.5, we have seen that there exist optimal solutions which, on the
one hand, are not Kuhn-Tucker stationary points and, on the other hand, even if
they are Fritz John stationary points some generalized convexities do not allow to
conclude on their optimality. In order to characterize such optimal solutions, we
need to define a new wide class of stationary points with an appropriate gener-
alized invexity. Thus, using the generalized Fritz John condition (3.7), we define
a new class of Fritz John type stationary points for (P) and we establish a new
characterization of solutions under suitable generalized invexity requirement.

Definition 4.1. Let x0 be a feasible point of (P ) and η : X × X → Rn, θj :
X ×X → Rn, j ∈ J(x0) be vector functions. x0 is said to be a generalized Fritz
John stationary point with respect to η and (θj)j∈J(x0), if the functions f and g

are differentiable at x0 and there exists a vector (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0 such

that (x0, μ, λ, η, (θj)j∈J(x0)) satisfies the generalized Fritz John condition (3.7) of
Theorem 3.3.

Remark 4.2. The concept of generalized Kuhn-Tucker stationary point can be
defined by setting μ = 1 and λ ∈ RJ0

+ in Definition 4.1.

Martin [23] has characterized the optimal solutions for (P) associated with the
Kuhn-Tucker stationary points by using the concept of KT-invexity with respect
to η. Antczak [3] showed that this characterization is still true under KT-(0, r)-
invexity with respect to η. Now we characterize the optimal solutions for (P) by
using the concept of generalized Fritz John stationary point and new kind of invex
functions which we define as follows.

Definition 4.3. Let x0 ∈ D and η : X ×D → Rn, θj : X ×D → Rn, j ∈ J(x0)
be vector functions. The problem (P) is said to be weakly Fritz John-pseudo-invex
(or weakly FJ-pseudo-invex) at x0 on X with respect to η and (θj)j∈J(x0), if the
functions f and g are differentiable at x0 and for each x ∈ X :

f(x) − f(x0) < 0 ⇒ ∃ x̄ ∈ X,

{
[�f(x0)]tη(x̄, x0) < 0,
[�gj(x0)]

t θj(x̄, x0) < 0, ∀ j ∈ J(x0).
(4.1)

If x̄ = x, in the relation (4.1), we say that (P) is FJ-pseudo-invex at x0 on X with
respect to η and (θj)j∈J(x0). The problem (P) is said to be (weakly) FJ-pseudo-
invex on D with respect to η and (θj)j , if it is (weakly) FJ-pseudo-invex at each
x0 ∈ D on X with respect to the same η and (θj)j∈J(x0). In the relation (4.1),
if we have f(x) − f(x0) ≤ 0 (x �= x0), instead of f(x) − f(x0) < 0, we say that
(P) is semi strictly (weakly) FJ-pseudo-invex at x0 on X with respect to η and
(θj)j∈J(x0).

The following result is proved under weaker hypotheses than Theorem 2.4.6 given
in [32,33]. The result remains true by using the concept of convexlikeness instead
of the concepts of invexity and preinvexity. Thus, to prove the result we use the
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alternative Lemma 2.13 of Hayashi and Komiya [15] instead of the one given by
Weir and Mond [36], Theorem 2.1.

Theorem 4.4. Suppose that the functions f and g are differentiable on X and
let η : X ×X → Rn and θj : X ×X → Rn, j ∈ K be functions such that for all
x0 ∈ X, H(x, x0) = ([�f(x0)]tη(x, x0), [�gj(x0)]tθj(x, x0), j ∈ J(x0)) ∈ R1+J0

is a convexlike function of x on X. Then, every generalized Fritz John stationary
point with respect to η and (θj)j of problem (P) is a global minimizer if and only
if (P) is weakly FJ-pseudo-invex on X with respect to η and (θj)j.

Proof. (1) (Sufficient condition) Let x0 ∈ X be a generalized Fritz John stationary
point with respect to η and (θj)j∈J(x0) for (P). If (P) is weakly FJ-pseudo-invex
at x0 on X with respect to η and (θj)j∈J(x0), then, in the same manner as in
Theorem 3.3, we obtain that x0 is a global minimizer of (P).
(2) (Necessary condition) For the converse, suppose that every generalized Fritz
John stationary point with respect to η and (θj)j of problem (P) is a global
minimizer.
Let us suppose that there exist two feasible points x̃ and x0 such that

f(x̃) − f(x0) < 0. (4.2)

This means that x0 is not a global minimizer of (P), and by using the initial
hypothesis, x0 is not a generalized Fritz John stationary point with respect to η
and (θj)j∈J(x0) for (P), i.e.

⎛
⎝μ[�f(x0)]tη(x, x0) +

∑
j∈J(x0)

λj [�gj(x0)]tθj(x, x0) ≥ 0, ∀ x ∈ X.

⎞
⎠

is not satisfied for all (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0. Therefore, by Lemma 2.13, the

system
{

[�f(x0)]tη(x, x0) < 0,
[�gj(x0)]

t
θj(x, x0) < 0, ∀ j ∈ J(x0).

has a solution x = x̄ ∈ X . In consequence, (P) is weakly FJ-pseudo-invex on X
with respect to η and (θj)j . �

Remark 4.5. Note that the hypothesis “for all x0 ∈ X, H(x, x0) =
([�f(x0)]tη(x, x0), [�gj(x0)]tθj(x, x0), j ∈ J(x0)) ∈ R1+J0 is a convexlike func-
tion of x on X” is needed just to prove the necessary optimality condition of
Theorem 4.4.

In the following examples, we show that there exist optimal solutions of (P) which
are not characterized neither by Theorem 2.12, established by Martin [23], nor by
Theorem 5 of Antczak [3], but they are characterized by Theorem 4.4.
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Example 4.6. We reconsider the problem given in Example 3.5.

Minimize f(x) = −x1,
subject to g1(x) = x3

1 − x2 ≤ 0,
g2(x) = x2 ≤ 0,

(4.3)

where f : R2 → R and g = (g1, g2) : R2 → R2. The set of all feasible solutions of
problem is X = {x = (x1, x2) ∈ R2 : x3

1 − x2 ≤ 0 and x2 ≤ 0}.
We have x0 = (0, 0) ∈ X is not a Kuhn-Tucker stationary point of problem (4.3).
Thus, the point x0 does not belong to the set of optimal solutions characterized
by Theorem 2.12 (Thm. 2.1 in Martin [23]) or by Theorem 5 of Antczak [3],
even if the problem (4.3) is KT-invex and KT-(0, r)-invex on X with respect to
η̂(x, x̃) = (x1 − x̃1, 0).
However, the problem (4.3) is weakly FJ-pseudo-invex on X with respect to
η(x, x̃) = (η′(x, x̃), 0), θ1(x, x̃) = (−1, x2x̃2) and θ2(x, x̃) = (0, θ′2(x, x̃)) such
that η′ (resp. θ′2) can be any positive (resp. negative) function on X × X (take
x̄(x, x̃) = ( 3

√
a, a) ∈ X , with a ∈ ] −∞, 0[). Furthermore, x0 is a generalized Fritz

John stationary point with respect to η and (θj)j=1,2 (take μ = 0, λ1 = 1 and
λ2 = 0), it follows that, by using the sufficient condition of Theorem 4.4, x0 is an
optimal solution of problem (4.3).

Example 4.7. We consider the following nonlinear programming problem

Minimize f(x) = −x4,
subject to g(x) = (x− 2)3 ≤ 0, (4.4)

where f, g : ]0,+∞[→ R. The set of feasible solutions of problem is X = ]0, 2].
We have x0 = 2 ∈ X is not a Kuhn-Tucker stationary point of problem (4.4),
because the condition of Kuhn-Tucker at x0 takes a form �f(x0) + λ�g(x0) =
−32 < 0, ∀ λ ≥ 0. Thus, the point x0 does not belong to the set of optimal
solutions characterized by Theorem 2.12 (Thm. 2.1 in Martin [23]) or by Theorem
5 of Antczak [3], even if the problem (4.4) is KT-invex and KT-(0, r)-invex at x0

on X with respect to η̂(x, x̃) = 1
32 (x4 − 16).

However, the problem (4.4) is weakly FJ-pseudo-invex onX with respect to η(x, x̃)
and θ(x, x̃) such that η (resp. θ) can be any positive (resp. negative) function on
X × X (take x̄(x, x̃) = x+x̃

2 ∈ X). Furthermore, x0 is a generalized Fritz John
stationary point with respect to η and θ (take μ = 0 and λ = 1), it follows
that, by using the sufficient condition of Theorem 4.4, x0 is an optimal solution of
problem (4.4).

5. Mond-Weir type duality

In relation to (P) and using the generalized Fritz John condition (3.7), we
formulate the following dual problem which is in the format of Mond-Weir [26].

(MWD) Maximize f(y),
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subject to

μ[�f(y)]tη(x, y) +
∑

j∈J(y)

λj [�gj(y)]tθj(x, y) ≥ 0, ∀ x ∈ X,

y ∈ D, (μ, λ) ∈ R
1+|J(y)|
+ , (μ, λ) �= 0,

η : X ×D → Rn, θj : X ×D → Rn, ∀ j ∈ J(y).

Let Y = {(y, μ, λ, η, (θj)j∈J(y)) : μ[�f(y)]tη(x, y) +
∑

j∈J(y) λj [�gj(y)]tθj(x, y) ≥
0, ∀ x ∈ X ; y ∈ D, (μ, λ) ∈ R

1+|J(y)|
+ , (μ, λ) �= 0; η : X×D → Rn, θj : X×D → Rn,

∀ j ∈ J(y)} be the set of all feasible solutions of problem (MWD). We denote by
PrDY the projection of the set Y on D, that is, by definition PrDY = {y ∈ D :
(y, μ, λ, η, (θj)j∈J(y)) ∈ Y }.

In what follows, we establish some duality results between (P) and (MWD) by
using the concept of weak FJ-pseudo-invexity with respect to different η and (θj)j .
Note that, we proceed in the same way as in [31] to prove the following results.

Theorem 5.1. (Weak duality) Suppose that

(i) x ∈ X;
(ii) (y, μ, λ, η, (θj)j∈J(y)) ∈ Y ;
(iii) ] the problem (P) is weakly FJ-pseudo-invex at y on X with respect to η and

(θj)j∈J(y).

Then f(x) ≮ f(y).

Proof. We proceed by contradiction. Suppose that f(x) < f(y).
Since (P) is weakly FJ-pseudo-invex at y on X with respect to η and (θj)j∈J(y),
it follows that

∃ x̄ ∈ X,

{
[�f(y)]t η(x̄, y) < 0,
[�gj(y)]

t
θj(x̄, y) < 0, ∀ j ∈ J(y).

(5.1)

As (μ, λ) ≥ 0, (μ, λ) �= 0 and from (5.1), we obtain

μ[�f(y)]tη(x̄, y) +
∑

j∈J(y)

λj [�gj(y)]tθj(x̄, y) < 0,

which contradicts (ii), and the conclusion follows. �

Now, we establish the following strong duality result between (P) and (MWD)
without using any constraint qualification.

Theorem 5.2. (Strong duality) Suppose that

(i) x0 is a (local) optimal solution for (P);
(ii) gj is continuous at x0 for j ∈ J̃(x0), the functions f, gj , j ∈ J(x0) are

differentiable at x0 and there exist vector functions η : X × D → Rn and
θj : X ×D → Rn, j ∈ J(x0) which satisfy at x0 the inequalities (3.1);
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(iii) H(x) = ([�f(x0)]tη(x, x0), [�gj(x0)]tθj(x, x0), j ∈ J(x0)) ∈ R1+J0 is a
convexlike function of x on X.

Then there exists (μ, λ) ∈ R1+J0
+ , (μ, λ) �= 0 such that (x0, μ, λ, η, (θj)j∈J(x0)) ∈ Y

and the objective functions of (P) and (MWD) have the same values at x0 and
(x0, μ, λ, η, (θj)j∈J(x0)), respectively. If, further, the problem (P) is weakly FJ-
pseudo-invex at any ȳ ∈ PrDY on X with respect to η̄ and (θ̄j)j∈J(ȳ) (with
(ȳ, μ̄, λ̄, η̄, (θ̄j)j∈J(ȳ)) ∈ Y ), then (x0, μ, λ, η, (θj)j∈J(x0)) ∈ Y is an optimal so-
lution of (MWD).

Proof. By Theorem 3.2, there exist a vector (μ, λ) ∈ R1+J0
+ with (μ, λ) �= 0 such

that
μ[�f(x0)]tη(x, x0) +

∑
j∈J(x0)

λj [�gj(x0)]tθj(x, x0) ≥ 0, ∀ x ∈ X.

It follows that (x0, μ, λ, η, (θj)j∈J(x0)) ∈ Y .
Trivially, the objective function values of (P) and (MWD) are equal.
Next, suppose that (x0, μ, λ, η, (θj)j∈J(x0)) ∈ Y is not an optimal solu-
tion of (MWD). Then there exists (y∗, μ∗, λ∗, η∗, (θ∗j )j∈J(y∗)) ∈ Y such
that f(x0) < f(y∗), which violates the weak duality Theorem 5.1. Hence
(x0, μ, λ, η, (θj)j∈J(x0)) ∈ Y is indeed an optimal solution of (MWD). �

Following the same lines as in Theorem 3.3, we prove the converse duality theorem
to the problems (P) and (MWD) under weak FJ-pseudo-invexity with respect to
η and (θj)j .

Theorem 5.3. (Converse duality) Suppose that

(i) (y, μ, λ, η, (θj)j∈J(y)) ∈ Y ;
(ii) y ∈ X;
(iii) the problem (P) is weakly FJ-pseudo-invex at y on X with respect to η and

(θj)j∈J(y).

Then y is an optimal solution for (P).

For a strict duality to hold between (P) and (MWD), we need to use the concept
of semi strictly weakly FJ-pseudo-invex with respect to η and (θj)j .

Theorem 5.4. (Strict duality) Suppose that

(i) x ∈ X and (y, μ, λ, η, (θj)j∈J(y)) ∈ Y such that f(x) = f(y);
(ii) the problem (P) is semi strictly weakly FJ-pseudo-invex at y on X with respect

to η and (θj)j∈J(y).

Then x = y.

Proof. We proceed by contradiction. Suppose that x �= y.
By hypothesis we have f(x) = f(y) and since (P) is semi strictly weakly FJ-
pseudo-invex at y on X with respect to η and (θj)j∈J(y), it follows that

∃ x̄ ∈ X,

{
[�f(y)]t η(x̄, y) < 0,
[�gj(y)]

t θj(x̄, y) < 0, ∀ j ∈ J(y).
(5.2)
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As (μ, λ) ≥ 0, (μ, λ) �= 0 and from (5.2), we obtain

μ[�f(y)]tη(x̄, y) +
∑

j∈J(y)

λj [�gj(y)]tθj(x̄, y) < 0,

which contradicts the fact that (y, μ, λ, η, (θj)j∈J(y)) ∈ Y . Hence x = y. �

6. Conclusion

In this paper, we have considered new concepts of (semi strictly) weak pseudo-
invexity and weak FJ-pseudo-invexity to study Fritz John type optimality and du-
ality for nonlinear programming with inequality constraints. To realize this study,
we have introduced a generalized Fritz John condition which is both necessary and
sufficient for a feasible point to be an optimal solution under weak invexity with
respect to different η and (θj)j . The sufficient optimality conditions are obtained
without using of any alternative theorem unlike the usual procedure. We have
established simple propositions which helped us to construct easily these differ-
ent functions (η and (θj)j) to verify the optimality of a feasible point (Ex. 3.5).
Besides, we have shown that the equivalence between saddle points and minima
remains true under semi strictly weak pseudo-invexity. Moreover, a new concept of
Fritz John type stationary point is used to establish a characterization of solutions
under suitable generalized invexity assumption. This allows to characterize opti-
mal solutions which are not characterized by previously known results using the
concept of Kuhn-Tucker stationary point. Furthermore, a Mond-Weir type dual is
formulated and weak, strong, converse and strict duality results are proved.

In this contribution, it is shown by examples that the introduced generalized
Fritz John condition combining with the invexity with respect to different (ηi)i

are especially easy in application and useful in the sense of sufficient optimality
conditions and of characterization of solutions. They give good results for noncon-
vex programming when many results in the literature, including the Kuhn-Tucker
sufficient optimality conditions and the Fritz John ones combining with the (gen-
eralized) invexity with respect to the same η, are not applicable. In this way,
previously known results in this area are generalized and extended.

Acknowledgements. The authors are grateful to the anonymous referee for his/her valu-
able suggestions and comments which have helped to improve the final version of the
paper.
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optimalité, caractérisations, dualité et applications. Editions Universitaires Européennes,
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