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Introduction

Programming problems with linear fractional objectives (i.e., ratio of two affine
functions) are useful in production planning, financial and corporate planning,
healthcare and hospital planning and so on. They deal with the optimization of
ratio between two physical and/or economic quantities. Examples of fractional
objectives include inventory/sales, output/employee, earnings and dividends per
share etc. Isbell and Marlow [14] first proposed a method involving the solution of
a linear fractional programming (LFP) problem. Charnes and Cooper [8] presented
the variable transformation method; Bitran and Novaes [6] gave the updated ob-
jective function method; and a simplex like iterative procedure has also been devel-
oped by Swarup [22] – which has been employed in this paper. In contrast to LFP,
only a few approaches have appeared in the literature concerning multi objective
linear fractional programming (MLFP) problems. The method of using concepts
of fuzzy set theory for solving MLFP has also been explored earlier [7,9,15,18,21].
Li and Chen [17] established a linear fractional programming model with fuzzy
coefficients, and Sakawa [20] defined the concept of Pareto optimal solutions for
MLFP with fuzzy parameters in order to produce a solution algorithm.

The Set Covering problem (SCP) is one of the most important NP-complete
discrete optimization problems, whose applications are seen in the crew scheduling
problems in airline, railway and mass transit transportation companies; where a
given set of trips has to be covered by a minimum ratio of cost-to-utility set of
pairings; a pairing being a sequence of trips that can be performed by a single crew.
Other applications include facility location problems, resource allocation, vehicle
routing, assembly line balancing etc. The SCP with linear objective function was
first studied by Bellmore and Ratliff [5] who developed a cutting plane method for
solving this problem. Lemke et al. [17] developed an enumerative approach and,
Garfinkel and Nemhauser [12] also studied this problem. Arora et al. [1] were the
first to consider this problem with a linear fractional objective function. In this
and subsequent papers they developed various techniques like, the enumerative
technique involving the evaluation of extreme points of the problem using branch
and bound method [2] and, the cutting plane technique for finding the optimal
cover solution [4]. In [3, 13], an iterative cutting plane technique for finding the
efficient solutions of the multi objective integer LFP problem and, the SCP with
linear fractional objective functions (MOFSCP) respectively, has been developed.
This technique employs cuts developed by Verma et al. [27], which are deeper than
those given by Dantzig.

In the SCP, the parameters in the objective function are supplied according to
the decision makers’ requirements, who in most cases is unable to provide this
information precisely. In the crew scheduling problem for example, all the coeffi-
cients of the cost-to-utility ratio may not be available to the decision maker in a
crisp form. In such a case, we formulate them as fuzzy numbers; in other words
the objective function can be fuzzified and a leverage is provided to the decision
maker to operate. The enumerative algorithms for the single objective fuzzy SCP
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with a linear, a linear fractional and a quadratic fractional objective have been
developed [23–25] mainly using the concepts of vector ranking functions and the
weighted sums method. The case of the multi objective SCP with fuzzy linear ob-
jective functions has also been studied [26] but, to the authors’ knowledge, no work
has yet been done in developing a solution procedure for solving a multi objective
SCP with fuzzy linear fractional objective functions. In this paper we intend to
provide an algorithm and a fuzzy solution for the same. Preliminary concepts of
fuzzy numbers are studied in Section 1. The problem under discussion is formu-
lated and, related concepts of efficiency are defined in Section 2. The algorithm
developed in Section 3 is supported by a numerical example in Section 4.

1. Fuzzy numbers

In this section, we review some fundamentals of fuzzy numbers [19], which will
be used through the remainder of this paper.
Fuzzy set: A fuzzy set A of the referential set X is characterised by a membership
function μA which is valued in [0,1], that is μA: X → [0, 1] with μA(x) representing
the degree of membership of x ∈ X in A.
Note: Here we consider X = R, the real line.

The concept of fuzzy numbers is defined differently by different authors, but
the most common definition is the one given by Dubois and Prade [10].

Fuzzy number: A fuzzy number ã is a convex normalized fuzzy set of the real line
R such that:

(i) ∃ unique x0 ∈ R such that μã(x0) = 1; and
(ii) μã is piecewise continuous.

The α-cut of the fuzzy number ã is the ordinary set given by

ãα = {x ∈ R : μã(x) ≥ α}, α ∈]0, 1].

In other words, for every α ∈]0, 1] the α-cut of ã is the finite closed interval
[aL

α, aR
α ] on R, called the α-interval of confidence of the fuzzy number ã. Let us

denote the set of fuzzy numbers by F (R). In order to compare two fuzzy numbers,
Dubois and Prade [11] defined a suitable ordering in F (R) by introducing the
possibility and necessity indices to rank the fuzzy numbers

Poss(ã � b̃) = sup
x
{inf

y
{min(μã(x), 1 − μb̃(y)) : x � y}}

Nece(ã � b̃) = inf
x
{sup y{max(1 − μã(x), μb̃(y), ) : x � y}}

where ã, b̃ ∈ F (R).
The condition that the degrees of these indices are equal to or greater than α

can be equivalently expressed as the usual constraints by using the α-cut sets of ã
and b̃.
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Proposition 1.1.

(1) Poss(ã � b̃) � α if and only if aR
α � bR

1−α.

(2) Nece(ã � b̃) � α if and only if aL
1−α � bL

α.

Throughout this paper, we shall take the ordering between two fuzzy numbers
ã, b̃ ∈ F (R) as follows

ã �α b̃ if and only if Poss(ã � b̃) � α and , Nece(ã � b̃) � α

Proposition 1.2.
ã �α b̃ if and only if aL

α � bL
α and aR

α � bR
α ∀α ∈ [0.5, 1].

Similarily, ã �α b̃ if and only if aL
α > bL

α and aR
α > bR

α∀α ∈ [0.5, 1]. It will be
understood that ã �α b̃ if and only if b̃ �α ã; and that ã ≺α b̃ if and only if b̃ �α ã.
The order relation between two fuzzy vectors ã, b̃ ∈ Fn(R) is defined as follows

ã �α b̃ if and only if aL
iα � bL

iα and aR
iα � bR

iα ∀i = 1, . . . , n ∀α ∈ [0.5, 1].

A fuzzy number ã is called a nonnegative fuzzy number i.e. ã ∈ F (R+) denoted
by ã �α 0, if for every α ∈ [0.5, 1] we have, [aL

α, aR
α ] ⊂ R+− the nonnegative real

orthant. Also, a fuzzy number ã is called a positive fuzzy number i.e. ã ∈ F (R++)
denoted by ã �α 0, if for every α ∈ [0.5, 1] we have, [aL

α, aR
α ] ⊂ R+ \ {0} ≡ R++.

Some basic operations using interval arithmetic for fuzzy numbers ã, b̃ ∈ F (R)
are:

(i) Addition: (ã + b̃)α = [aL
α + bL

α, aR
α + bR

α ].
(ii) Scalar Multiplication:

(k.ã)α =

{
[kaL

α, kaR
α ] if, k > 0

[kaR
α , kaL

α] if, k < 0
.

(iii) Division: If ã �α 0 and b̃ �α 0, then
(

ã

b̃

)
α

=
[
aL

α

bL
α

,
aR

α

bR
α

]
∀α ∈ [0.5, 1].

2. Theoretical development

In this section, we first present the concepts related to the multi objective Set
Covering problem with fuzzy linear fractional objectives, and later we formulate
this problem.
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2.1. Fuzzy fractional programming problem

Consider the following linear fractional programming problem (FFP) with fuzzy
parameters in the objective function

(FFP) Min z̃(x) =
c̃x + p̃

d̃x + q̃

subject to X ∈ S

where, S = {X ∈ R
n :

n∑
j=1

aijxj ≥ 1, xj ≥ 0, i ∈ I, j ∈ J}.

Based on the concept of α-cut sets, the optimal solution of FFP is shown to
be equivalent to the optimal solution of a corresponding crisp linear fractional
programming problem by Mehra et al. [19]. Let α ∈ [0, 1] be the grade of satisfac-
tion associated with the fuzzy objective function of FFP. Then the corresponding
optimal solution is defined as

α-Optimal solution: A vector x∗
α ∈ S is said to be an α-optimal solution of

FFP if and only if there does not exist any x ∈ S such that z̃(x∗
α) �α z̃(x).

In accordance with the operations defined in Section 1, we assume that α ∈ [0.5, 1].
Also, let

c̃x + p̃ ∈ F (R+) and d̃x + q̃ ∈ F (R++) ∀x ∈ S.

Now the FFP can be written as

(α-FFP) Min
X∈S

zα(x) =

n∑
j=1

[cL
jα, cR

jα]xj + [pL
α, pR

α ]

n∑
j=1

[dL
jα, dR

jα]xj + [qL
α , qR

α ]

where, zα(x) = [zL
α (x), zR

α (x)] is the α-cut set of z̃(x). Using the division operation
of fuzzy numbers, the objective of α-FFP transforms into the following

Min[zL
α (x), zR

α (x)] =

⎡
⎢⎢⎢⎢⎣

n∑
j=1

cL
jαxj + pL

α

n∑
j=1

dR
jαxj + qR

α

,

n∑
j=1

cR
jαxj + pR

α

n∑
j=1

dL
jαxj + qL

α

⎤
⎥⎥⎥⎥⎦ ·

We further reduce it to an equivalent bi-objective programming problem

(α-BOP) Min
X∈S

(zL
α (x), zR

α (x)) =

⎛
⎜⎜⎜⎜⎝

n∑
j=1

cL
jαxj + pL

α

n∑
j=1

dR
jαxj + qR

α

,

n∑
j=1

cR
jαxj + pR

α

n∑
j=1

dL
jαxj + qL

α

⎞
⎟⎟⎟⎟⎠ ·
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For α ∈ [0.5, 1], x∗
α is said to be an α-optimal solution of FFP if and only if

there does not exist any x ∈ S such that z̃(x∗
α) �α z̃(x) or,

zL
α (x) < zL

α (x∗
α) and zR

α (x) < zR
α (x∗

α) or,

(zL
α (x), zR

α (x)) < (zL
α (x∗

α), zR
α (x∗

α))

i.e. x∗
α is a weakly efficient solution of the bi-objective programming problem α-

BOP.
Now for every α ∈ [0.5, 1], two (crisp) linear fractional programming problems

namely, α-LFP and α-RFP are associated with α-FFP.

(α-LFP) Min
X∈S

zL
α (x) =

n∑
j=1

cL
jαxj + pL

α

n∑
j=1

dR
jαxj + qR

α

(α-RFP) Min
X∈S

zR
α (x) =

n∑
j=1

cR
jαxj + pR

α

n∑
j=1

dL
jαxj + qL

α

·

Let xL
α and xR

α be the optimal solutions of α-LFP and α-RFP respectively. Then
they are both weakly efficient solutions of α-BOP. Moreover, we also have

zL
α (xL

α) � zL
α (xR

α ) � zR
α (xR

α ) � zR
α (xL

α).

Since the α-interval of confidence of FFP evaluated at xR
α , i.e. [zL

α (xR
α ), zR

α (xR
α )], is a

subset of the α-interval of confidence of FFP evaluated at xL
α, i.e. [zL

α (xL
α), zR

α (xL
α)],

we solve the problem α-LFP in order to provide the decision maker with more
flexibility. Thus, in order to obtain an α-acceptable solution of FFP, we need only
solve the problem α-LFP and obtain xL

α.

2.2. Problem formulation

Consider a set I = {1, 2, . . . , m} and a set P = {P1, P2, . . . Pn}, where Pj ⊆
I, j ∈ J = {1, 2, . . . n}. A subset J∗ of J is said to be a cover of I if

⋃
j∈J∗

Pj = I.

The multi objective Set Covering problem having fuzzy linear fractional functionals
as objective functions is then formulated below as

(FMCP) Minimize (Z̃1, Z̃2, . . . , Z̃p)

subject to
n∑

j=1

aijxj ≥ 1, i ∈ I (2.1)
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xj = 0 or 1, j ∈ J (2.2)

where, xj =
{

1, if j is in the cover
0, otherwise and aij =

{
1, if i∈ Pj

0, otherwise .

Here, p is the number of objectives and

Z̃r =
C̃rX + α̃r

D̃rX + β̃r

, r ∈ R = {1, 2, . . . , p}

where, C̃r = {c̃r1, c̃r2, . . . , c̃rn} ∈ F (R+) and D̃r = {d̃r1, d̃r2, . . . , d̃rn} (r ∈ R),
are nx1 vectors with entries from the set F (R), and α̃r, β̃r ∈ F (R) (r ∈ R). It
is further assumed that the numerator C̃rX + α̃r is a nonnegative fuzzy number
and that the denominator D̃rX + β̃r is a positive fuzzy number for each r ∈ R
in the feasible region of the problem. In other words, C̃rX + α̃r ∈ F (R+) and
D̃rX + β̃r ∈ F (R++) (r ∈ R), for all X in the feasible region.

Let γ ∈ [0, 1] be the grade of satisfaction associated with each of the fuzzy ob-
jective function Z̃r. For consistency with the ranking relations defined in Section 1,
we assume that the grade of satisfaction γ ∈ [0.5, 1]. Then we have,

(Cr)L
γ X + (αr)L

γ � 0, (Dr)L
γ X + (βr)L

γ > 0, ∀γ ∈ [0.5, 1], r ∈ R.

A few definitions in this respect are:
Cover solution: A solution of FMCP which satisfies both (1) and (2) is called

a cover solution.
Redundant column: A column corresponding to j belonging to the cover J∗

is said to be a redundant column if J∗ − {j} is also a cover. Then the cover J∗ is
termed as a redundant cover.

Prime cover:A cover J∗ is said to be a prime cover if none of the columns
j ∈ J∗ is redundant.

γ-Efficient cover solution: [20] A solution X∗ of FMCP is said to be a γ-
efficient cover solution if and only if there does not exist another cover solution X
such that Z̃i(X) �γ Z̃i(X∗) ∀i ∈ I and Z̃k(X) ≺γ Z̃k(X∗) for at least one k ∈ I.
Also, the corresponding nondominated criterion vector, or objective function value
is (Z̃1(X∗), Z̃2(X∗), . . . , Z̃p(X∗)).
The relaxed multi objective fractional program with fuzzy objectives, associated
with FMCP is obtained by replacing (2.2) with xj ≥ 0, j ∈ J. We thus study the
following program and obtain its γ-efficient cover solutions of the form 0-1 [3].

(FMFP) Min (Z̃1, Z̃2, ..., Z̃p)

subject to X ∈ S

where S = {X ∈ R
n :

n∑
j=1

aijxj ≥ 1, xj ≥ 0, i ∈ I, j ∈ J}.
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Consider the problem FMFP above with the first objective function as

(FMFP-Z̃1) Min
X∈S

Z̃1 =
C̃1X + α̃1

D̃1X + β̃1

·

Solve FMFP-Z̃1 by solving the crisp problem γ-LFP, and let X = {xj} be its
γ-acceptable optimal solution with the corresponding objective value of Z̃1 as
Z̃1(X) = [(Z1)L

γ (X), (Z1)R
γ (X)]. If {xj} is of the form 0-1, take X = X1 and find

the value of the other objective functions at X1. If {xj} is not of the form 0-1,
then apply Gomory cut to find an integer solution of 0-1 form; let it be X1. Find
the value of the other objective functions at X1. The vector (Z̃1

1 , Z̃1
2 , . . . , Z̃1

p) is
then a criterion vector corresponding to the first efficient cover solution of FMCP,
where Z̃1

r = Z̃r(X1), r ∈ R.

Before we proceed with the solution procedure, we note a few concepts regarding
the linear fractional set covering problem (LFCP) equivalent to γ-LFP.

Remark 2.1. Consider the following linear fractional set covering problem

(LFCP) Min
X∈S

Z(X) =

∑
j∈J

cjxj + α

∑
j∈J

djxj + β
·

It is required to find the optimal cover J∗ which minimizes the ratio

∑
j∈J∗

cj + α

∑
j∈J∗

dj + β
,

where J∗ ⊆ I and
⋃

j∈J∗
Pj = I.

Theorem 2.2 ([3]). Every optimal cover is a prime cover, if either

(a) all dj’s are negative; or
(b) any ratio of the partial sums of cj’s and dj’s is greater than the value of the

objective function at the cover solution and, the latter partial sum is positive.

Given the first efficient solution X1, the other integer feasible solutions of the
crisp linear fractional program γ-LFP are obtained and ranked in an increasing
order of the values of its objective function. In order to do so, a cut – which
is a more generalized form of the Dantzig cut – is introduced. But first, various
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notations employed in defining the special cut are given below:
Xk: The kth efficient solution of the 0-1 form obtained after applying the

cut ∑
j∈Nk−1\{jk−1}

xj ≥ 1, jk−1 ∈ T k−1

Bk: Basis corresponding to the solution Xk

ak
j : The activity vector of Xk, j ∈ J

Ik: {j ∈ J : ak
j ∈ Bk}

Nk: {j ∈ J : ak
j /∈ Bk}

Uk
rj: (Ck

Br
)T yk

j , j∈J , r∈R, where Ck
Br

is the vector having its components
as the coefficients associated with the basic variables in the numerator
of the rth objective function.

Lk
rj: (Dk

Br
)T yk

j , j∈J , r∈R, where Dk
Br

is the vector having its components
as the coefficients associated with the basic variables in the
denominator of the rth objective function.

yk
j : (Bk)−1ak

j , j ∈ J

uk
r : Ck

r Xk + αr, r ∈ R

lkr : Dk
r Xk + βr, r ∈ R

δk
rj: uk

r(Lk
rj − dk

rj) − lkr (Uk
rj − ck

rj)

T k: {j ∈ J : j ∈ Nk, δk
rj ≥ 0 and δk

rj < 0 for at least one r ∈ R′},

where R′ = {2, 3, ..., p}

Jk: {j ∈ J : j ∈ Nk, δk
rj ≥ 0, r ∈ R}.

Edge Ek
jk

incident at solution Xk for jk ∈ T k is defined as:

Ek
jk

=

⎧⎨
⎩X = (x1, x2, . . . , xn) :

xi = xk
i − φjk

yk
ijk

, i ∈ Ik

xjk
= φjk

xν = 0, ν ∈ Nk \ jk

where φjk
≤ min

i∈Ik

{
xk

i

yk
ijk

, yk
ijk

> 0
}

.

The following theorem justifies the cut which is used to find the efficient cover
solutions of FMCP.
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Theorem 2.3 ([13]). An efficient solution of FMFP not on an edge Ek
jk

, jk ∈ Tk

through Xk in the truncated region of S lies in the closed half space
∑

j∈Nk\{jk}
xj≥ 1.

Proof. Let X̄ = (x̄1, x̄2, ..., x̄n) be an efficient solution of FMFP not on the edge
Ek

jk
through Xk , and let if possible

∑
j∈Nk\{jk}

x̄j < 1

⇒ x̄j = 0 for all j ∈ Nk \ {jk}
i.e. x̄j = 0 for all j ∈ Nk, j �= {jk}.
Now either x̄jk

= 0 or x̄jk
= 1

Case (i): x̄jk
= 0

Since x̄j = 0 for all j ∈ Nk \ {jk}, therefore x̄j = 0 for all j ∈ Nk

Case (ii): x̄jk
= 1

such that x̄jk
≤ min

i∈Ik

{
xk

i

yk
ijk

, yk
ijk

> 0
}

then X̄ lies on the edge Ek
jk

, which is a contradiction. Therefore,
x̄j = 1 for at least one j ∈ Nk \ {jk}.

Hence in both the cases, x̄j = 1 for at least one j ∈ Nk \ {jk}.
Hence

∑
j∈Nk\{jk}

x̄j≥ 1 for X̄ = (x̄1, x̄2, ..., x̄n) which is an efficient solution

of FMFP. �

Note: The algorithm terminates after a finite number of steps because the
feasible region is truncated at each step by repeated application of the cuts of the
form

∑
j∈Nk\{jk}

xj≥ 1. An edge or a point once deleted cannot reappear. In turn,

the entire set of efficient p-tuples is obtained.

3. Algorithm

Step 1. Given the fuzzy multi objective linear fractional Set Covering problem
FMCP, relax the conditions on the decision variables to obtain an equivalent fuzzy
multi objective linear fractional programming problem FMFP. Then solve FMFP-
Z̃1 and, consequently solve the crisp linear fractional problem by the simplex
method of Swarup [22].

Step 2. If the solution X1 is of the 0-1 form, then it is the first efficient cover
solution of FMCP otherwise, apply Gomory cut to obtain X1 in 0-1 form. Form
the corresponding sets I1, N1, T 1 and F 1 = (Z̃1(X1), Z̃2(X1), . . . , Z̃p(X1)).
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Step 3. Choose j1 ∈ T 1, find the corresponding minimum ratio φj1 .

(a) If φj1 = 0, no alternate efficient solution on edge E1
j1 exists. Choose another

j1 ∈ T 1 and find φj1 .
(b) If φj1 = 1 , determine the alternate solution X1

1 along the edge E1
j1

. Introduce
the corresponding p-tuple in F 1. Remove all dominated p-tuples from F 1.

Step 4. Truncate the edge E1
j1

by the cut
∑

j∈Nk−1\{jk−1}
xj ≥ 1, jk−1 ∈ T k−1.

Solve the problem as mentioned above in Step 1 and use the Dual Simplex method
and Gomory cut (if necessary), to get a second efficient cover solution X2 of 0-1
form in the truncated region.

Step 5. If the corresponding p-tuple is nondominated, then augment the p-tuple
to F 1 and name it F 2. Find I2, N2, T 2 and go to Step 3. The process terminates
after the sth stage when either

(a) T s = φ; or
(b) T s �= φ; with

(i) any js ∈ T s yields dominated edge only; or
(ii) the application of the cut

∑
j∈Ns\{js}

xj ≥ 1 leads to an infeasible solution in

the truncated region for some js ∈ Ns.

4. Numerical example

Consider the following FMCP

(FMCP) Min Z̃1(X) =
c̃11x1 + c̃12x2 + c̃13x3

d̃11x1 + d̃12x2 + d̃13x3 + β̃1

Min Z̃2(X) =
c̃21x1 + c̃22x2 + c̃23x3

d̃21x1 + d̃22x2 + d̃23x3 + β̃2

subject to
3∑

j=1

aijxj ≥ 1, i ∈ I (4.1)

xj = 0 or 1, j ∈ J (4.2)

where xj =

{
1, if j is in the cover

0, otherwise
and aij =

{
1, if i∈ Pj

0, otherwise
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where the membership functions of the fuzzy numbers in the objective are

μc̃11 = max
{

1 − |x − 13.5|
3

, 0
}

, μc̃12 = max
{

1 − |x − 3|
2

, 0
}

μc̃13 = max
{

1 − |x − 6|
2

, 0
}

, μc̃21 = max {1 − |x − 9.5|, 0}

μc̃22 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < 10
x − 10

6
, 10 ≤ x < 16

23 − x

7
, 16 ≤ x < 23

0, x ≥ 23

, μc̃23 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < 0
x

2
, 0 ≤ x < 2

5 − x

3
, 2 ≤ x < 5

0, x ≥ 5

μd̃11
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < −6

216 + x3

7
, −6 ≤ x < −3

1, −3 ≤ x < −2

x2

4
, −2 ≤ x < 0

0, x ≥ 0

, μd̃12
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < −14

1 −
(

x+14
3

)2

, −14 ≤ x < −11

1, −11 ≤ x < −5

1 −
(

x + 5
2

)2

, −5 ≤ x < −3

0, x ≥ −3

μd̃13
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, x < −6
x + 6

3
, −6 ≤ x < −3

1, −3 ≤ x < −2

−1 − x, −2 ≤ x < −1

0, x ≥ −1

, μd̃21
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, x < −13
x + 13

7
, −13 ≤ x < −9

1, −9 ≤ x < −7

−5 − x, −7 ≤ x < −5

0, x ≥ −5

μβ̃1
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 1

x − 1, 1 < x ≤ 2

3 − x, 2 < x ≤ 3

0, x > 3

, μβ̃2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ 14

x − 14, 14 < x ≤ 15

16 − x, 15 < x ≤ 16

0, x > 16.

On converting the problem FMCP into FMFP by relaxing the condition on the
decision variables we have the following problem

(FMFP) Min
X∈S

Z̃1(X) =
c̃11x1 + c̃12x2 + c̃13x3

d̃11x1 + d̃12x2 + d̃13x3 + β̃1

Min
X∈S

Z̃2(X) =
c̃21x1 + c̃22x2 + c̃23x3

d̃21x1 + d̃22x2 + d̃23x3 + β̃2

where S = {X ∈ R
3 :

3∑
j=1

aijxj ≥ 1, xj ≥ 0, i = 1, 2, 3, j = 1, 2, 3}.
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Let γ ∈ [0.5, 1] be the specified grade of satisfaction associated with the objective
functions of FMFP. The γ-cut sets of the corresponding fuzzy coefficients are given
as follows

[c11]γ = [10.5 + 3γ, 16.5− 3γ], [c12]γ = [1 + 2γ, 5 − 2γ],

[c13]γ = [4 + 2γ, 8 − 2γ], [c21]γ = [8.5 + γ, 10.5− γ],
[c22]γ = [10 + 6γ, 23 − 7γ], [c23]γ = [2γ, 5 − 3γ],

[d11]γ = [−3 + γ,−2γ
1
2 ], [d12]γ = [3(1 − γ)

1
2 − 6, 2(1 − γ)

1
2 − 5],

[d13]γ = [γ − 3,−1 + γ], [d21]γ = [7γ − 13,−5− γ],

[d22]γ = [13γ − 27,−7γ
1
2 ], [d23]γ = [17γ − 40,−(128γ + 16)

1
2 ],

[β1]γ = [9 + γ, 11 − γ], [β2]γ = [74 + γ, 76 − γ].

Consider the objective function Z̃1, then the corresponding problem FMFP-Z̃1 is

(FMFP-Z̃1) Min
X∈S

Z̃1(X) =
c̃11x1 + c̃12x2 + c̃13x3

d̃11x1 + d̃12x2 + d̃13x3 + β̃1

·

In order to find a γ-acceptable solution of FMFP-Z̃1, we need to solve the
following crisp linear fractional program

γ-(LFP-Z̃1) Min
X∈S

(Z1)L
γ (X) =

(c11)L
γ x1 + (c12)L

γ x2 + (c13)L
γ x3

(d11)R
γ x1 + (d12)R

γ x2 + (d13)R
γ x3 + (β1)R

γ

=
(10.5 + 3γ)x1 + (1 + 2γ)x2 + (4 + 2γ)x3

−2γ
1
2 x1 + (2(1 − γ)

1
2 − 5)x2 + (−1 + γ)x3 + (11 − γ)

·

The objective functions corresponding to the problems γ-(RFP-Z̃1),
γ-(LFP-Z̃2), and γ-(RFP-Z̃2) are as follows:

Min (Z1)R
γ (X) =

(16.5 − 3γ)x1 + (5 − 2γ)x2 + (8 − 2γ)x3

(γ − 3)x1 + (3(1 − γ)
1
2 − 6)x2 + (γ − 3)x3 + (9 + γ)

Min (Z2)L
γ (X) =

(8.5 + γ)x1 + (10 + 6γ)x2 + 2γx3

(−5 − γ)x1 − 7γ
1
2 x2 − (128γ + 16)

1
2 x2 + (76 − γ)

Min (Z2)R
γ (X) =

(10.5 − γ)x1 + (23 − 7γ)x2 + (5 − 3γ)x3

(7γ − 13)x1 + (13γ − 27)x2 + (17γ − 40)x3 + (74 + γ)
·

For γ = 0.5, the problem γ-(LFP-Z̃1) reduces to

Min
X∈S

(Z1)L
0.5(X) =

12x1 + 2x2 + 5x3

−1.4x1 − 3.6x2 − 0.5x3 + 10.5
·

The initial basic feasible solution obtained is used to solve the above problem
by simplex method [22], the optimal solution of which is given by Table 1. Note
that, here D1

B2
and C1

B2
correspond to the objective function (Z2)L

γ (X).
Thus, X1 = (0, 1, 1) is an optimal 0-1 integer solution of the problem

0.5-(LFP-Z̃1), and hence the first efficient cover solution of FMFP, with the crite-
rion vector (Z̃1(X1), Z̃2(X1)) as ([ 7

5.4 , 11
3.1 ], [ 14

61.6 , 23
22.5 ]).
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Table 1.

D1
B2 C1

B2 D1
B1 C1

B1 XB x1 x2 x3 x4 x5 x6 x7 x8 x9

0 0 0 0 x6 = 1 2 0 0 −1 −1 1 0 0 0

−9 −1 −1.5 −5 x3 = 1 1 0 1 0 −1 0 0 0 0

−4.9 −13 −3.6 −2 x2 = 1 1 1 0 −1 0 0 0 0 0

0 0 0 0 x7 = 1 1 0 0 0 0 0 1 0 0

0 0 0 0 x8 = 0 −1 0 0 1 0 0 0 1 0

0 0 0 0 x9 = 0 −1 0 0 0 1 0 0 0 1

l11 = 5.4 u1
1 = −7 U1

1j − c1
j = 5 0 0 2 5 0 0 0 0

L1
1j − d1

j = −3.7 0 0 3.6 1.5 0 0 0 0

δ1
1j = −1.1 0 0 −36 −7.5 0 0 0 0

l12 = 61.6 u1
2 = −14 U1

2j − c2
j = −5 0 0 13 1 0 0 0 0

L1
2j − d2

j = −8.4 0 0 4.9 9 0 0 0 0

δ1
2j = 425.6 0 0 −869.4 −187.6 0 0 0 0

Table 2.

D1
B1 C1

B1 XB x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 x6 = 1 2 0 0 −1 −1 1 0 0 0 0

−1.5 −5 x3 = 1 1 0 1 0 −1 0 0 0 0 0

−3.6 −2 x2 = 1 1 1 0 −1 0 0 0 0 0 0

0 0 x7 = 1 1 0 0 0 0 0 1 0 0 0

0 0 x8 = 0 −1 0 0 1 0 0 0 1 0 0

0 0 x9 = 0 −1 0 0 0 1 0 0 0 1 0

0 0 x10 = −1 0 0 0 −1 −1 0 0 0 0 1

l11 = 5.4 u1
1 = −7 U1

1j − c1
j = 5 0 0 2 5 0 0 0 0 0

L1
1j − d1

j = −3.7 0 0 3.6 1.5 0 0 0 0 0

δ1
1j = −1.1 0 0 −36 −7.5 0 0 0 0 0

Now using Table 1, we have F 1 = {([ 7
5.4 , 11

3.1 ], [ 14
61.6 , 23

22.5 ])}, I1 = {2, 3, 6, 7, 8, 9},
N1 = {1, 4, 5}, T 1 = {1}.

For efficient solutions of FMFP on the edge E1
j1

, take j1 = 1 ∈ T 1 , so edge E1
1

is to be scanned. Here 0 < θ1 ≤ 1
2 , i.e. θ1 < 1. Thus no integer feasible solution can

be obtained on edge E1
1 . Next, truncate the edge E1

1 by introducing the generalized
cut ∑

j∈N1\{j1}
xj ≥ 1, i.e.x4 + x5 ≥ 1, or − x4 − x5 + x10 = −1.

This cut appended to Table 1 gives us Table 2.
As x10 = −1 the solution is infeasible and, by then applying the dual simplex

algorithm to Table 2 we get the next efficient cover solution X2 = (1, 0, 1) which
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Table 3.

D2
B2 C2

B2 D2
B1 C2

B1 XB x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 x8 = 1 0 0 0 0 0 1 0 1 1 0

−9 −1 −1.5 −5 x3 = 1 0 0 1 0 0 0 0 0 1 0

−4.9 −13 −3.6 −2 x2 = 0 0 1 0 0 0 −1 0 0 −1 0

0 0 0 0 x7 = 0 0 0 0 0 0 − 1
2

1 0 0 1
2

0 0 0 0 x5 = 1 0 0 0 0 1 1
2

0 0 1 − 1
2

−5.5 −9 −1.4 −12 x1 = 1 1 0 0 0 0 1
2

0 0 0 − 1
2

0 0 0 0 x4 = 0 0 0 0 1 0 − 1
2

0 0 −1 − 1
2

l21 = 7.6 u2
1 = −17 U2

1j − c2
j = 0 0 0 0 0 −4 0 0 −3 6

L2
1j − d2

j = 0 0 0 0 0 2.9 0 0 2.9 0.7

δ2
1j = 0 0 0 0 0 −18.9 0 0 −12.9 −57.5

l22 = 61 u2
2 = −10 U2

2j − c2
j = 0 0 0 0 0 8.5 0 0 12 4.5

L2
2j − d2

j = 0 0 0 0 0 2.15 0 0 −4.1 2.75

δ2
2j = 0 0 0 0 0 −540 0 0 −727.9 −302

is given by Table 3. Here, X2 = (1, 0, 1) is an efficient cover solution of FMFP,
with the criterion vector (Z̃1(X2), Z̃2(X2)) as

([
17
7.6 , 22

4.5

]
,
[

10
61 , 13.5

33.5

])
.

From Table 3 we have, F 2 =
{([

7
5.4 , 11

3.1

]
,
[

14
61.6 , 23

22.5

])
,
([

17
7.6 , 22

4.5

]
,
[
10
61 , 13.5

33.5

])}
,

I2 = {1, 2, 3, 5, 7, 8, 9}, N2 = {6, 9, 10}, T 2 = φ.

Thus the algorithm terminates here, giving the decision maker various efficient
covers X1 = (0, 1, 1) and X2 = (1, 0, 1) of the given problem MCP and corre-
sponding fuzzy non dominated 2-tuple F 2.

5. Conclusion

The method proposed in this paper attempts to not only solve the multi objec-
tive Set Covering problem with fuzzy linear fractional objective functions, but also
to provide the decision maker with a fuzzy solution for the same. This algorithm
obtains the complete set of efficient cover solutions of the problem. The generalized
cut employed here is better than the Dantzig cut in the sense that the former cuts
off an entire edge, whereas the latter only cuts off a point. Fuzzy solutions of the
problem offer a set of good alternatives and encompass the more precise solutions
obtained using other methods. In future, we intend to look into the complexity
and performance of this algorithm in terms of the processing time, and possibly
study the scenario when the size of the problem becomes very large, in which case
this algorithm will be less suited.
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