
RAIRO-Oper. Res. 49 (2015) 297–312 RAIRO Operations Research

DOI: 10.1051/ro/2014038 www.rairo-ro.org

A NETWORK DESIGN PROBLEM WITH TWO-EDGE
MATCHING FAILURES
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Abstract. In this paper, we introduce a network design problem with
two-edge matching failures. Given a graph, any two edges non-incident
to the same node form a two-edge matching. The problem consists in
finding a minimum-cost subgraph such that, when deleting any two-
edge matching of the graph, every pair of terminal nodes remains con-
nected. We give mixed integer linear programming formulations for the
problem and propose a heuristic algorithm based on the Branch-and-
Bound method to solve it. We also present computational results.
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1. Introduction

In this paper, we consider a network design problem that consists in finding a
minimum-cost network which must contain at least one path connecting any pair
of terminal nodes when two-edge matching failures occur. A two-edge matching
can be defined as a matching that has only two edges. In order to formulate the
problem, we use some terminology from graph theory that will be presented in
what follows.

Let G = (V, E) be an undirected simple graph without parallel edges and loops,
where V is the node set and E is the edge set. In V is given a subset of particular
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nodes called terminals. For any pair of distinct vertices s and t in V , a path between
these nodes is the sequence of nodes and edges s = v0, e1, v1, . . . , vl−1, el, vl = t,
where each ei is incident to nodes vi−1 and vi, (i = 1, . . . , l) and such that no node
or edge appears more than once in this sequence. If s = t, then the path is called
a cycle in graph G. A subgraph G′ = (V ′, E′) of G is a connected graph with the
node set V ′ ⊆ V and the edge set E′ ⊆ E. In order to distinguish between directed
and undirected edges, we use edge to refer to an undirected edge and arc to refer
to a directed edge. We also use parentheses to denote an edge between nodes i
and j, i.e., (i, j), and arrow to denote an arc from node i to node j, i.e., (i→ j).

For each edge e in E, we denote a given cost on edge e by ce ≥ 0. The cost of
any subgraph G′ = (V ′, E′) of graph G is the sum of all costs of the edges in the
set E′.

The network design problem with two-edges matching failures (NDP2EM) con-
sists in finding a minimum cost subgraph G∗ under the condition that in G∗, there
exists at least one path between every distinct pair of terminal nodes in N after
deleting any two non-incident edges in G.

This problem has a strong interest in the field of network connectivity and fail-
ure detection [11,12,18]. In [11], the authors consider the packet recovery problem
from dual-links failures in Internet Protocol (IP) networks. They perform simula-
tion experiments with a variety of network topologies to assess the effectiveness of
three-edge connected networks for two arbitrary link failures. In [18], the authors
present an integer linear program for the minimum monitoring cost problem for
fast two link failures localization in a given optical network. They use the Euler
cycle (non-simple loop-back cycles) technique to locate these type of failures and
propose a heuristic solution to the problem. The effectiveness of using non-simple
cycles instead of using edge-disjoint simple cycles is shown for graph topologies
with triangular faces. Many real-world networks, U.S. National Network [12], for
example, have same topologies. In addition to the communication network, this
type of topologies arises in lattices of different crystal structures (see [15, 17], for
example). Crystal lattice nodes represent atoms and each atom is connected to its
neighbor atoms by an edge. In [17], it is shown that the instability of the local crys-
talline lattice around a vacancy occurs only when at least two neighboring atoms
are active enough, that is, they have some big energies in the result of line disloca-
tion. The line dislocation of two atoms can be considered as two non-parallel edges
deletion in the lattice. In order to characterize instability of crystal structures, the
problem of determining whether a crystal lattice contains a connected sublattice
after deleting any two non-parallel edges can be formulated as NDP2EM with unit
edge costs.

Obviously, NDP2EM is an NP -hard problem in general since it includes some
well-known NP -hard problems such as two-edge connected (when one edge fails)
and (1,2)-survivable problems. These and other related network design problems
such as the Steiner problem can be solved as minimum cost s− r flow problems in
the case N = {s, r} (|N | = 2). However, in this case, it is not clear whether a solu-
tion to NDP2EM can be found using well-known polynomial time flow algorithms.
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Figure 1. An optimal graph for NDP2EM.

To illustrate this, first we give the following characterizations for a feasible solution
to NDP2EM.

Property 1. Any planar graph with inner triangular faces is a feasible solution
to NDP2EM.

Indeed, since just one edge can be deleted in any of the triangular faces, then
there are paths between any pair of the nodes of these faces after deleting one of
their edges. This means that a planar graph with inner triangular faces remains
connected after deleting any two-edge matching.

Property 2. A feasible solution to NDP2EM is characterized by a graph which is
between two-edge and three-edge connected graphs.

From Property 1, it follows that any connected planar graph with edge-disjoint
triangular faces is a feasible solution to NDP2EM. This type of graph is a minimal
two-edge connected graph such that after deleting any edge, it becomes one-edge
connected. On the other hand, any three-edge connected graph is also a feasible
solution to NDP2EM since after deleting any two-edge matching, if the graph does
not contain a path between any pair of terminal nodes, then it contradicts that the
graph is three-edge connected. However, in many cases of a network, an optimal
solution to NDP2EM is characterized by a graph which is between two-edge and
three-edge connected graphs.

To show that an optimal solution to NDP2EM is characterized by a graph which
is between two-edge and three-edge connected graphs, let us consider NDP2EM for
the graph in Figure 1. According to Properties 1 and 2, it is a feasible solution to
NDP2EM. It can be easily verified that after deleting any two-edge matching from
the graph, there is a path between nodes s and r and NDP2EM has no solution on
any subgraph with an edge set E′ ⊂ E. This shows that the graph in Figure 1 is
the optimal graph for NDP2EM. Clearly, this graph remains two-edge connected
even after deleting both bold edges. On the other hand, the graph in Figure 1
is not a three-edge connected graph. Thus, the optimal graph to NDP2EM is
between two-edge and three-edge connected graphs. These observations show that
NDP2EM is harder than the above-mentioned problems. The graph in Figure 1 is
a planar graph with triangular inner faces. It seems that using planar graphs with
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triangular inner faces is a basic tool in finding a solution to NDP2EM. In [16], it
was shown that if a graph G = (V, E) contains a planar subgraph G0 where all
inner faces are triangular and N ⊆ V (G0), then after deleting the edges of any
k-edge matching in graph G, it contains at least one path between any pair of
nodes in N . Based on this fact, we can attempt first to find some minimum cost
connected planar graph with a node set N and convert this planar graph to a
solution to NDP2EM using local three-edge connected graph heuristics. However,
the problem of defining a minimum cost planar subgraph with a node set N is
NP -hard as well as NDP2EM since the well-known Steiner problem is a special
case of the former.

There are a lot of examples illustrating non-triangular of several facets of opti-
mal graphs. This means that a graph with triangular inner faces is not an optimal
one for many cases of NDP2EM. The following property is an accurate character-
ization more than Properties 1 and 2 for a feasible solution to NDP2EM.

Property 3. If the edges of any cut do not induce a two-edge matching in a graph,
then it is a feasible solution to NDP2EM.

The proof of this property follows from the following fact. Consider the edges of
a cut and assume that they do not induce two-edge matching. If any two edges of
the cut do not have common nodes then the cut contains more than two edges. In
this case, some nodes may be connected by more than three-edge disjoint paths.
That is, some subgraph of the graph is at least three-edge connected. When some
two edges of the cut have common nodes, it means that one of them cannot be
deleted in the graph. Then the graph remains connected after deleting any two-
edge matching.

Property 3 says that feasible graphs have fewer edges than a planar subgraph
with triangular inner faces. Based on this property of an optimal subgraph, the
techniques in [3, 7] can be used to solve NDP2EM.

There is a rich literature in polyhedral combinatorics on the facet manipulation
technique for solving network design problems [1, 2, 4–6,8–10,13]. Success of the
polyhedral approach is provided by generating valid inequalities for describing
more precisely the convex hull of feasible solutions to the network design problems.
Valid inequalities are usually derived from structural analysis of edge cut sets
destroying the connectivity of feasible graphs [1, 2, 5, 6, 8, 9, 13]. The above example
shows that deriving valid inequalities for NDP2EM from this type analysis is a hard
task.

In order to solve NDP2EM, if we were to apply some trivial valid inequalities,
δ(v) ≥ 2 for each v ∈ N (δ(v) is the set of the edges with one end node v), for
example, it could be regarded as local improving executed randomly. In the paper,
we are going to use local and dual heuristics in [6, 14, 16] to get some feasible
subgraph of G in which the objective value is an upper bound for NDP2EM.
To compute a lower bound for the optimal value of NDP2EM, we use the linear
relaxation of its model in Section 3. Then, in order to solve NDP2EM, we describe
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Figure 2. The original network (a) and the modified network (b).

a Branch-and-Bound algorithm with the upper and lower bounds procedures and
report computational results for the algorithm.

2. Flow-Based formulation for NDP2EM

To formulate NDP2EM for an undirected network G with given terminal nodes
in N , without loss of generality, we fix an arbitrary node s in N as the source and
add a virtual node r to the network G as the sink. We also add virtual edges with
unit capacities between every terminal t and the sink r. The terminal nodes t in
N0 = N \ {s} are connected by the arcs (t → r) with unit capacities. Each edge
(s, v) ∈ E is then directed from s to v and weighted with a capacity b = |N0|.
Moreover, each edge (v, w) ∈ E, where v �= s, r, is replaced by two arcs (v → w)
and (v ← w) with opposite directions with capacity b, too. Figure 2b shows such
a modification for a complete graph with 4 nodes, which is shown in Figure 2a.
After deleting a two-edge matching M from graph G, we denote an amount of the
flow on an arc (i → j) by xij(M) for each arc (i → j), when the edge (i, j) /∈ M .
Let Π be the set of all two-edge matchings in G. Let xij be an integer variable
that represents the edge (i, j) in the network.

The flow model for NDP2EM can be formulated as the following integer linear
program:

min
∑

(i,j)∈E

cijxij (2.1)

subject to

∑
j∈δ−

M (i)

xji(M)−
∑

j∈δ+
M (i)

xij(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−b, if i = s,

b, if i = r, ∀ i ∈ V, M ∈ Π,

0, otherwise,

(2.2)

0 ≤ xij(M) + xji(M) ≤ b · xij , ∀ (i, j) ∈ E, M ∈ Π : (i, j) /∈M, (2.3)
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0 ≤ xtr(M) ≤ 1, ∀ t ∈ N0, M ∈ Π, (2.4)

0 ≤ xij ≤ 1, ∀ (i, j) ∈ E, (2.5)

xij = 0 ∨ 1, ∀ (i, j) ∈ E, (2.6)

where δ+
M (i) is the set of arcs directed out of node i and δ−M (i) is the set of arcs

directed into node i in the network Gr = (V ∪ {r}, E ∪ {(t, r), t ∈ N \ {s}}), after
deleting a two-edge matching M from the network G.

The above model for NDP2EM contains flow conservation conditions for each
two-edge matching fail. Clearly, the number of different two-edge matchings may
be estimated as O(m2) or O(n4). We show that we can actually use only O(m) two-
edge matchings in the linear relaxation of NDP2EM. As an immediate consequence
of this fact, the number of constraints in the primal problem or the number of dual
variables is also reduced, and that makes computations of lower bound faster.

Note that Π = ∅ only when G is a star (a tree on n nodes having n− 1 leaves)
or a triangular (a cycle containing three edges). For these cases of G, it needs
to find a minimum cost tree connecting terminal nodes since any edge cannot be
deleted in G. Thus, we assume that G is neither a star nor a triangular. Now,
we want to show some interesting properties of the dual problem of (2.1)−(2.5)
(without the constraints (2.6)) to reduce the number of dual variables or the
number of constraints of the primal problem (2.1)−(2.5). The dual problem can
be formulated as follows:

max b ·
∑

M∈Π

(ur(M)− us(M))−
∑
t∈N0

∑
M∈Π

ytr(M)−
∑

(i,j)∈E

zij (2.7)

subject to

uj(M)− ui(M) ≤ wij(M), ∀ (i, j) ∈ E, M ∈ Π : (i, j) /∈M, (2.8)

ui(M)− uj(M) ≤ wij(M), ∀ (i, j) ∈ E, M ∈ Π : (i, j) /∈M, i �= s, (2.9)

b ·
∑

M∈Π:(i,j)/∈M

wij(M) ≤ cij + zij , ∀ (i, j) ∈ E, (2.10)

ytr(M) ≥ 0, wij(M) ≥ 0, zij ≥ 0, ∀ (i, j) ∈ E, (2.11)

ur(M)− ut(M) ≤ ytr(M), ∀ t ∈ N0, M ∈ Π. (2.12)

In this dual linear program, ui(M) is the dual variable for the flow balance con-
straint (2.2) at node i after deleting a two-edge matching M , and wij(M), ytr(M),
and zij are the dual variables for constraints (2.3), (2.4) and (2.5), respectively.
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Proposition 2.1. There exists an optimal solution to (2.7)−(2.12) for which

ur(M)− ut(M) = ytr(M),

for all t ∈ N0 and M ∈ Π.

Proof. An easy proof follows from the complementary slackness optimality condi-
tions for the linear programs (2.1)−(2.5) and (2.7)−(2.12). Since the capacity of
the cut separating the node r and the other nodes is equal to b, then xtr(M) = 1
for all nodes t ∈ N0 and for an optimal solution to (2.1)−(2.5). Then, by the
complementary slackness conditions, we have

(ur(M)− ut(M)− ytr(M))xtr(M) = 0.

It follows that ur(M)− ut(M) = ytr(M) for all nodes t ∈ N0. �

By Proposition 2.1, there exists an optimal solution such that ur(M) = ut(M)+
ytr(M) for all t ∈ N0 and M ∈ Π . Taking into account that b = |N0|, the objective
function (2.7) can be rewritten as follows:

max
∑

M∈Π

(∑
t∈N0

ut(M)− us(M)

)
−

∑
(i,j)∈E

zij (2.13)

and the constraints (2.12) can be deleted in the model.
There are usually a lot of two-edge matchings not covering some edges (i, j).

This means that the dual problem includes the constraints (2.8)−(2.11) for each of
these matchings. The following theorem states that in the dual program for each
edge, we can consider only one matching among all these matchings not covering
the edge.

Theorem 2.2. There exists an optimal solution to the dual problem (2.8)−(2.11)
and (2.13) such that uj(M) − ui(M) �= 0 for at most one two-edge matching M
among matchings not covering an edge (i, j) ∈ E.

Proof. Consider any edge (i, j) and let σij(M) = ui(M) − uj(M). Suppose that
σij(M1) �= 0 and σij(M2) �= 0 for any two-edge matchings M1 and M2 which do not
cover the edge (i, j), where ui(M1), ui(M2) and uj(M1), ui(M2) are dual variables
in an optimal solution to the dual problem (2.8)−(2.11), (2.13). Let σij(M) �= 0.
Then either σij(M) > 0 or σji(M) > 0 for M = M1, M2 ∈ Π . Consider the case
when σij(M1) > 0 and σji(M2) > 0. Now let us redefine

uj(M1)− ui(M1) = ui(M1)− uj(M1) + uj(M2)− ui(M2),

σij(M2) = σji(M2) = 0 and wij(M1) = wij(M1) + wij(M2), and wij(M2) = 0. It
is easy to see that these redefined values of these dual variables together with the
optimal values of the remainder dual variables satisfy the constraints (2.8)−(2.10).
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Thus, we have defined a feasible solution to the dual problem such that the con-
straints that held as equalities for the dual optimal solution hold as equalities
for this dual feasible solution. Linear programming theory states that there exists
a primal optimal solution corresponding to the dual optimal solution such that
they together satisfy the complementary slackness optimality conditions. There-
fore, this dual solution and the primal problem optimal solution together satisfy
the complementary slackness optimality conditions, too. That is, the dual feasible
solution is optimal. The proof of Theorem 2.2 is the same for the other possible
cases of σij(M1) and σji(M2). Continuing this process for the edge (i, j), we obtain
wij(M1) ≥ 0 and σij(M) = 0, wij(M) = 0 for M �= M1.

By the above redefinition, we can set u∗
k(M1) =

∑
M∈Π uk(M1) − uk(M1) for

k = i, j. Hence,

∑
M∈Π

(∑
t∈N0

ut(M)− bus(M)

)
=
∑
t∈N0

(∑
M∈Π

ut(M)− us(M)

)
=
∑
t∈N0

(u∗
t − u∗

s),

where u∗
t = u∗

t (Mt) and u∗
s = u∗

s(Ms) for Mt and Ms in Π . �

Theorem 2.2 states that for each edge (i, j) ∈ E, we can add into Π only one
two-edge matching M such that (i, j) /∈M . On the other hand, NDP2EM requires
the existence of at least one path connecting any pair of terminal nodes, or the
flow conservation conditions for any two-edge matching fail. Therefore, the set Π
must contain one two-edge matching for which one of the edges is (i, j). Hence,
we first add into Π all possible disjoint two-edge matchings, and if some edges
are not covered by them, we add into Π a minimum number of distinct two-edge
matchings covering these edges. Yet it is possible that no two-edge matching covers
some edge. To clarify this edge, we claim the following lemma.

Lemma 2.3. In a simple graph G, it does not exist a two-edge matching which
covers an edge (i, j) if and only if deg(i) + deg(j) = m + 1, where deg(v) denotes
the degree of any v ∈ V .

Proof. Suppose that M is a two-edge matching that contains the edges (i, j) and
(k, l). After deleting the edges (i, j) and (k, l), we obtain a graph with m−2 edges.
In the resulting graph, for node degrees deg2(i) and deg2(j), we have deg2(i) +
deg2(j) = m + 1 − 2 = m − 1 since the edge (k, l) is not incident to the nodes
i and j and the nodes i and j are not adjacent in this graph. The inequality
m − 1 > m − 2 contradicts the fact that in a simple graph, the number of edges is
less than the number of edges incident to two non-adjacent nodes. This is because
the edge (i, j) cannot be covered by any two-edge matching.

Now, let deg(i) + deg(j) = m + 1 for the edge (i, j). Again after deleting the
edge (i, j) from the graph G, the obtained graph has m− 1 edges and the equality
deg1(i) + deg1(j) = m + 1− 2 = m− 1 holds for deg1(i) and deg1(j) of the nodes
i and j in this graph. Since the nodes i and j are not adjacent in this graph, this
equality says that any edge is incident to either the node i or the node j. This
means that in G, there is not a two-edge matching covering the edge (i, j). �
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Figure 3. The edge (1, 2) is not covered by any two-edge matching.

Lemma 2.3 has the interesting corollary that if deg(i) + deg(j) = m + 1 for the
end nodes of some edge (i, j), then there is no matching (containing more than
one edge) covering the edge (i, j) in G. This fact may be used in the well-known
perfect and maximum weight matching algorithms for detecting this type of edges
in advance since they can be deleted in G.

Let us consider the graph in Figure 3. It can be easily checked that none of the
two-edge matching M ∈ Π covers the edge (1, 2).

The statement of Theorem 2.2 is true for the edge (i, j) since the existence of
a two-edge matching covering any edge is not used in the proof. The number of
two-edge distinct matchings can be estimated as O(m2). However, by Theorem 2.2,
it suffices to add into Π no more than O(m/2) two-edge matchings to solve the
linear relaxation of NDP2EM. The probability of covering any edge by some two-
edge matching is high in huge graphs. For these graphs, the number of two-edge
matchings to be considered is reduced remarkably. For example, when G is a
complete graph with 100 nodes, there are 11763675 two-edge distinct matchings.
Yet to solve the dual problem (2.8)−(2.11) and (2.13) in this graph, we can only
use 2475 distinct two-edge matchings that cover all edges.

3. Strengthened model for NDP2EM

Our experimental results show that there exists a big gap (relative error)
with respect to the lower bound which is computed by solving (2.8)−(2.11)
and (2.13) that is the dual problem of the linear relaxation (2.1)−(2.5). Though
the model (2.1)−(2.5) includes fewer variables than the one that we are going to
present in this section, the existence of the big gaps do not allow us to get a good
solution to some test problems in Table 2. Constraints (2.3) are an aggregation
of the flow conservation conditions when the amount of the flow from the source
to any sink is restricted by unit value. In order to reformulate NDP2EM, we as-
sign some terminal node s as a source and the remainder terminal nodes as sinks.
Moreover, we use xt

ij(M) to denote the unit amount of flow on each arc (i → j)
from the source s to a sink t after deleting a two-edge matching M in G, such that
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(i, j) /∈M . In terms of variables xt
ij(M), the model for NDP2EM can be rewritten

as follows:

min
∑

(i,j)∈E

cijxij (3.1)

subject to

∑
j∈δ−

M (i)

xt
ji(M)−

∑
j∈δ+

M (i)

xt
ij(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1, if i = s,

1, if i = r, ∀ i ∈ V, M ∈ Π, t ∈ N0,

0, otherwise,
(3.2)

0 ≤ xt
ij(M) + xt

ji(M) ≤ xij , ∀ (i, j) ∈ E, M ∈ Π : (i, j) /∈M, t ∈ N0, (3.3)

0 ≤ xt
ij(M), ∀ (i, j) ∈ E, M ∈ Π, t ∈ N0, (3.4)

0 ≤ xij ≤ 1 ∀ (i, j) ∈ E, (3.5)

xij = 0 ∨ 1, ∀ (i, j) ∈ E. (3.6)

The dual program to the linear relaxation of (3.1)−(3.5) can be written as follows:

max
∑

M∈Π

∑
t∈N0

(ut
t(M)− ut

s(M))−
∑

(i,j)∈E

zij (3.7)

subject to

ut
j(M)− ut

i(M) ≤ wt
ij(M), ∀ t ∈ N0, (i, j) ∈ E, M ∈ Π : (i, j) /∈M, (3.8)

ut
i(M)− ut

j(M) ≤ wt
ij(M), ∀ t ∈ N0, (i, j) ∈ E, M ∈ Π : (i, j) /∈M, (3.9)

∑
t∈N0

∑
M∈Π:(i,j)/∈M

wt
ij(M) ≤ cij + zij , ∀ (i, j) ∈ E, (3.10)

wt
ij(M) ≥ 0, zij ≥ 0, ∀ (i, j) ∈ E. (3.11)

It is easy to show that Theorem 2.2 holds for this dual problem, too. This allows
to add into the set Π no more than O(m) two-edge matchings such that each edge
(i, j) ∈ E is in one of them. This will permit to compute the lower bound by solving
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Figure 4. A feasible graph for NDP2EM.

the dual problem (3.7)−(3.11). For example, consider (3.1)−(3.6) for the graph in
Figure 4, where the terminal nodes are 1 and 4. Let cij = 1 for all edges (i, j) in
this graph. We set s = 1 and t = 4 and ignore the superscript t in all variables.
Two-edge matchings are just M1 = {(1, 3), (2, 4)} and M2 = {(1, 2), (3, 4)}, and
no matching covers the edge (2, 3). The objective value is 5 in the solution

x12(M1) = 1, x23(M1) = 1, x34(M1) = 1,

x13(M2) = 1, x32(M2) = 1, x24(M2) = 1,

of the problem (3.1)−(3.5). Now, consider a feasible solution to the dual pro-
gram (3.7)−(3.11) (b = 1):

u1(M1) = 0, u2(M1) = 1, u3(M1) = 2, u4(M1) = 3,

u1(M2) = 0, u3(M2) = 1, u2(M1) = 2, u4(M2) = 3

and z23 = 1, zij = 0 for all edges (i, j) �= (2, 3). Since the dual objective value is
again 5 these primal and dual solutions are optimal. Since u3(M1) − u2(M1) = 1
and u2(M1)−u3(M1) = 1 for the edge (2, 3), we can redefine u2(M1)−u3(M1) = 2
and u3(M2) − u2(M2) = 0, w23(M1) = 2 and w23(M2) = 0 without changing the
dual optimal objective value although no matching covers the edge (2, 3).

4. Branch-and-Bound Algorithm

We use the results obtained after solving the dual problem (3.7)−(3.11) to get
some feasible graph for NDP2EM. That is, the constraints (3.2)−(3.6) hold for this
graph. The value of (3.1) corresponding to this graph is an upper bound UB(root)
for the optimal objective value of NDP2EM. Let E0 be the set of edges for which
the dual constraints (3.10)∑

wt
ij = cij + zij , (i, j) ∈ E0

hold as equalities for the optimal solution to the dual problem (3.7)−(3.11). From
the theory of the linear programming problems, we have xij ≥ 0 just for the
edges in E0 where xij are components of the optimal solution to the primal prob-
lem (3.1)−(3.5). Therefore, there exists a subgraph G∗ with the edge set E∗ ⊆ E0
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that is feasible for (3.1)−(3.6). To define a graph with the edge set E∗, the algo-
rithm below uses some heuristics by solving NDP1EM test problems in [16], where
the results showed that the improving of the objective value UB(root) (the ini-
tial upper bound) occurs in few iterations of the Branch-and-Bound algorithm. In
order to define G∗, we also use some local heuristics in [6,14] that improve locally.

Algorithm 1: Upper bound algorithm
Data: The set of terminal nodes N , the costs cij on the edges, and the subgraph

G0 = (V0, E0) of G = (V, E) defined by the set E0 ⊆ E of edges (i, j) for
which the constraints ∑

wt
ij ≤ cij + zij , (i, j) ∈ E

hold as equalities in the dual model (3.7)−(3.11).
Result: A feasible solution G∗ = (V∗, E∗) for NDP2EM and an upper bound.
begin1

V∗ ←− ∅;2

E∗ ←− ∅;3

Find two edge-disjoint paths between source node s and each pair of other4

terminal nodes in the network G0 ;
Add nodes and edges on the paths into V∗ and E∗, respectively to create the5

subgraph G∗ = (V∗, E∗) ;
Set the capacities of the edges in G∗ to 1;6

Find the minimum cut in G∗ ;7

if the size of the minimum cut ≥ 3 then8

go to 16;9

end10

if the size of the minimum cut = 2 and the edges of this cut form a matching,11

then
find the shortest path between the cut separating connected components12

after deleting the edges in the cut;
end13

Add nodes and edges on the shortest path into V∗ and E∗, respectively;14

go to 6;15

Subgraph G∗ = (V∗, E∗) is a feasible solution and the sum of the cost of the16

edges in G∗ is an upper bound to NDP2EM;
end17

As it will be presented in the next section, this algorithm can provide a small gap
between the lower and upper bounds LB(root) and UB(root) that are the objective
optimal value of the dual problem (3.7)−(3.11) and the objective value of (3.1) on
the graph G∗(root), which are to be computed at the root node (root) of a Branch-
and-Bound tree, where G∗(root) is a feasible subgraph defined by the above Upper
bound algorithm. When the gap is big, we process further to get the best feasible
graph G∗ by the Branch-and-Bound method. We use special techniques to make
a decision how to branch and bound. Let G∗(cur) denote a feasible graph defined
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by the above algorithm at the current node of the Branch-and-Bound tree. Let
LB(cur) and UB(cur) denote the lower and the upper bounds at the current node
cur of the Branch-and-Bound tree, respectively. At the beginning of branching,
cur = root. To process the branching from the node cur, we choose an edge
(i, j) for which constraints (3.10) hold as equalities and such that (i, j) is an edge
of maximum number of paths (in G∗(cur)) connecting distinct pairs of terminal
nodes. Then we work with either NDP2EM(cij = 0) obtained by setting cij = 0
in (3.1)−(3.6) or NDP2EM(cij =∞) obtained by setting cij =∞ in (3.1)−(3.6).

The optimal objective value of the dual problem (3.7)−(3.11) in which cij =∞
is LB(cur) for NDP2EM(cij = ∞). Since cij = ∞, constraints (3.10) do not
hold as equalities for the edge (i, j). Hence, (i, j) /∈ E(G∗(cur)). The objective
value of (3.1) in graph G∗(cur) is UB(cur) for NDP2EM(cij =∞). Since (i, j) /∈
E(G∗(cur)), LB(cur) and UB(cur) are the lower and the upper bounds for the
subproblem of (3.1)−(3.6) created in the branching process by setting xij = 0.

For NDP2EM(cij = 0), the lower bound LB(cur) is the sum of the initial edge
cost cij and the optimal objective value of the dual problem (3.7)−(3.11). In this
case, clearly constraints (3.10) hold as equalities for the edge (i, j), and from that
(i, j) is an edge of maximum number of paths connecting distinct pairs of terminal
nodes. This implies that the probability of edge (i, j) in E(G∗(cur)) is higher
than the probability of the same event for the other edges in G. The objective
value of (3.1) in the graph G∗(cur) is UB(cur) for NDP2EM(cij = 0). From
(i, j) ∈ E(G∗(cur)) it also follows that LB(cur) and UB(cur) are the lower and the
upper bounds for the subproblem of (3.1)−(3.6) created in the branching process,
respectively, by setting xij = 1. If (i, j) /∈ E(G∗), then fixing the variable xij

in the branching process will not be successful. We use depth first search in the
Branch-and-Bound tree to continue the branching process. The method stops as
soon as the gap is under 2%.

5. Computational results

In this section, we use the methodology described in the previous sections to
solve NDP2EM test problems. We compute a lower bound by solving the dual
problem (3.7)−(3.11) by CPLEX 11.0 as the linear programming solver. The upper
bound algorithm in Section 4 and branching depth first search procedures are coded
in C. The algorithm is tested on a workstation with a 2.4 Ghz processor with 8
cores and 8GB RAM. We fix the maximum CPU time to 10 hours.

Our random problem generator creates NDP2EM test problems. It uses the
following three input parameters: the number of nodes |V |, the number of edges |E|,
and the number of terminals |N |. Then it randomly selects |V | nodes on a 100×100
grid and arbitrarily creates |E| edges between these nodes. Some graphs in the test
problems are complete and some of them are not.

To ensure that the problems are feasible, it also creates a cycle that contains all
the nodes. Random problems with 4 to 40 nodes are generated, and we test five
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Table 1. List of abbreviations.

|V | number of nodes in the graph
|E| number of edges in the graph
|N | number of terminals
LB(root) lower bound obtained at the root of the Branch-and-Bound tree
LB(final) global lower bound obtained at the end of the optimization
UB(root) upper bound obtained in the beginning
UB(final) best upper bound found
#UB number of changes of upper bound
#B&B number of Branch-and-Bound examined nodes (including the root node)
#Vars number of variables in the dual model (3.7)−(3.11)
#Cons number of constraints in the dual model (3.7)−(3.11)
Gap gap between the best upper and final lower bounds:

gap=
UB(final) − LB(final)

LB(final)
× 100

CPU time overall time (GAMS(The General Algebraic Modeling System) + C code)

instances of each size. Table 2 reports the average results obtained for randomly
generated problems. Abbreviations used in Table 2 are summarized in Table 1.

Remark that a value of 0 for Gap indicates that UB (Final) is the optimal
solution of the problem. Table 2 shows that for the test problems used in these
experiments, 4 instances over 16 has been solved to optimality. Ten instances have
been solved with a gap less than 2% within 10 hours. Two instances have not been
solved with a gap less than 2% within the time limit. Optimal graphs obtained
in the test problems are not 3-edge connected. For the instances marked by *,
the initial graphs are almost complete and the resulting graphs are almost planar
graphs with triangular inner faces. Solution graphs are between 2-edge connected
and 3-edge connected graphs for the other test problems.

6. Conclusion

In this article, we have introduced a new network design problem using matching
failures called NDP2EM. We have given a mathematical model (2.1)−(2.6) for the
proposed problem. Then we have developed a strong model (3.7)−(3.11) to find
tight lower bounds. Numerical results were obtained with a heuristic algorithm
based on the Branch-and-Bound method using the improved dual model. From
these results, we can conclude that the proposed algorithm is able to solve to
optimality instances of small size (up to 40 nodes).

We also note that (3.1)−(3.6) can also be solved in the following way that is
similar to the polyhedral approach. Let us consider the dual problem (3.7)−(3.11)
when the set Π contains one two-edge matching for each edge. Then, we can find
a solution of the primal problem (3.1)−(3.6) to the obtained dual problem. If all
the variables are integer valued in the solution, then it is an optimal solution to
NDP2EM. Otherwise, we can add a new two-edge matching to set Π that covers
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edges whose corresponding variables xij are not integer valued and consider the
dual problem (3.7)−(3.11) with respect to the set Π . Again, if all the variables
are integer valued in the solution of the primal problem (3.1)−(3.6) to the latter
dual one, then this is a solution to NDP2EM. Otherwise, we add a new two-edge
matching to Π as above to continue this process. After repeating this process
for some time, we can use the above scheme to compute some lower and upper
bounds which are used in the Branch-and-Bound method. Testing the efficiency
of this polyhedral approach is the subject of future investigations.
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[1] M. Bäıou, F. Barahona and A.R. Mahjoub, Separation of partition inequalities, Math. Oper.
Res. 25 (2000) 243–254.

[2] F. Barahona, Network design using cut inequalities. SIAM. J. Optim. 6 (1996) 823–837.
[3] F.R.K. Chung and D. Mumford, Chordal completions of planar graphs. J. Comb. Theor.

31 (1994) 96–106.
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