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Abstract. In this paper, a batch arrival single server retrial queue
with modified vacations under N-policy is considered. If an arriving
batch of customers finds the server busy or on vacation, then the entire
batch joins the orbit in order to seek the service again. Otherwise, one
customer from the arriving batch receives the service, while the rest
joins the orbit. The customers in the orbit will try for service one by
one when the server is idle with a classical retrial policy with the re-
trial rate ‘jv’, where ‘j’ is the size of the orbit. At a service completion
epoch, if the number of customers in the orbit is zero, then the server
leaves for a secondary job (vacation) of random length. At a vacation
completion epoch, if the orbit size is at least N , then the server remains
in the system to render service for the primary customers or orbital cus-
tomers. On the other hand, if the number of customers in the orbit is
less than ‘N ’ at a vacation completion epoch, the server avails multiple
vacations subject to maximum ‘M ’ repeated vacations. After availing
‘M ’ consecutive vacations, the server returns to the system to render
service irrespective of the orbit size. The model is studied using sup-
plementary variable technique. For the proposed queueing system, the
probability generating function of the steady state queue size distribu-
tion at an arbitrary time is obtained. Various performance measures are
derived. A cost model for the queueing system is developed. Numerical
illustration is provided.
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1. Introduction

Retrial queueing system is characterized by the feature that the arriving cus-
tomers, who encounter the server busy, join a virtual pool called orbit. An arbitrary
customer in the orbit generates a stream of repeated requests that is independent
of the rest of customers in the orbit. Such queueing systems play important roles
in the analysis of many telephone switching systems, telecommunications networks
and computer systems. The first result on M/G/1 retrial queues is due to Keilson
et al. [16] who used the method of supplementary variable technique to investi-
gate the join distribution of the channel state and the number of customers in
orbit in the steady state. Later, Aleksandrov [2] considered the case of arbitrar-
ily distributed service times. A variant of the M/G/1 retrial queue was consid-
ered by Neuts and Ramalhoto [21]. Artalejo [3] studied some results on M/G/1
queue with N -policy. The detailed overviews of the related references with retrial
queues can be found in the book of Falin and Templeton [10] and survey papers
of Artalejo [4, 5]. Gautam Choudhury [12] analyzed an M/G/1 queue with linear
retrial policy with two phase service and Bernoulli vacation schedule. Modified
vacation policy for M/G/1 retrial queue with balking and feedback was discussed
by Ke and Chang [15]. Zaiming Liu et al. [23] analyzed an M/G/1 retrial G-
queue with preemptive resume and feedback under N -policy subject to the server
breakdowns and repairs.

Queueing systems with batch arrivals are common in many practical situations.
In digital communication systems, messages which are transmitted could consist
of a random number of packets. Falin [9] introduced the first batch arrival retrial
queueing model who assumed the following rule: “If the server is busy at the arrival
epoch, then the whole batch joins the retrial group, whereas when the server is free,
then one of the arriving units starts its service and the rest joins the retrial group”.

Krishnakumar and Pavai Madheswari [18] analyzed a bulk arrival retrial queue
with multiple vacations and starting failures. Fu-Min Chang and Ke [11] an-
alyzed a batch retrial queueing model with J vacations. Senthil Kumar and
Arumuganathan [22] have analyzed the batch arrival single server retrial queue
in which the server provides two phases of heterogeneous service and receives gen-
eral vacation time under Bernoulli schedule. Choudhury et al. [7] analyzed a batch
arrival retrial queueing system with two phases of service and service interruption.
Aissani [1] analyzed an MX/G/1 energetic retrial queue with vacations and it’s
control.

For a detailed survey on queueing system with server vacations, one can refer the
references Lee et al. [20], Krisha Reddy et al. [17] and Arumuganathan et al. [6], etc.
Lee et al. [20] analysed an Mx/G/1 queue with N -policy and multiple vacations.
They have considered bulk arrival and single service. Bulk queue with N -policy,
multiple vacations and setup times is analyzed by Krisha Reddy et al. [17] in which
the arrivals occur in bulk and service process is done in bulk. Arumuganathan
et al. [6] analyzed a bulk queue with multiple vacations, setup times with N -policy
and closedown times. Ke [14] used supplementary variable technique to study an
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Figure 1. Schematic representation of the queueing model (j-orbit size).

MX/G/1 queueing systems with balking under a variant vacation. Haridass and
Arumuganathan [13] analyzed an MX/G(a, b)/1 queueing system with vacation
interruption. In all the above mentioned models, the authors discussed N -policy
with vacations in classical queueing models. But this paper focuses on N -policy
with modified vacations in retrial queueing model.

In earlier literature, very few authors have studied the comparable work on
the variant vacations for the retrial queuing models which the server may take a
sequence of finite vacations in his idle time. But as far as the authors’ knowledge,
there is no considerable amount of research work on retrial queueing system with
N policy and modified vacations. This motivates us to develop a Mx/G/1 retrial
queueing system with modified vacation policy and the threshold value ‘N ’ for
vacation policy. In which the server may take at most M vacations when the orbit
size is less than ‘N ’.

In this paper, a batch arrival single server retrial queue with modified vacations
under N -policy is considered. If an arriving batch of customers finds the server
busy or on vacation, then the entire batch joins the orbit in order to seek the ser-
vice again. Otherwise, one customer from the arriving batch receives the service,
while the rest joins the orbit. The customers in the orbit will try for service one by
one when the server is idle with a classical retrial policy with the retrial rate ‘jv’,
where ‘j’ is the size of the orbit. At a service completion epoch, if the number of
customers in the orbit is zero, then the server leaves for a secondary job (vacation)
of random length. At a vacation completion epoch, if the orbit size is at least N ,
then the server remains in the system to render service for the primary customers
or orbital customers. On the other hand, if the number of customers in the orbit is
less than ‘N ’ at a vacation completion epoch, the server avails multiple vacations
subject to maximum ‘M ’ repeated vacations. After availing ‘M ’ consecutive vaca-
tions, the server returns to the system to render service irrespective of the orbit
size. Analytical treatment of this model is obtained used supplementary variable
technique. The model under study is schematically represented in Figure 1.

The following points are addressed in this paper. Constructed the mathemati-
cal model for the Mx/G/1 retrial queue under modified vacations with N -policy,
where the server takes at most M vacations utilizing his idle time. Probability
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generating function of the steady state orbit size at an arbitrary time is obtained.
Particular cases and some special cases are discussed. Various performance mea-
sures are derived. A cost model for the queueing system is developed. Numerical
illustration is also presented.

1.1. Practical justification of the model

The motivation of the model comes from a situation observed in the mail system
that uses simple main transfer protocol (SMTP) to deliver messages between mail
servers. When a mail transfer program contacts a server on a remote machine,
it forms a TCP connection over which it communicates. Once the connection is
established, the two programs follow SMTP that allows the sender to identify it,
specify a recipient, and transfer an e-mail message. After the sender deposits the
e-mail in his/her own mail server, the mail server can repeatedly try to send the
contact message to target server until it becomes operational. Typically, contacting
messages arrive at the mail server following the Poisson stream. One message
comprises collection of finite number of packets (i.e. Threshold Policy N). If all
packets of a message are arrived to the mail server, the server starts to do service.
When all the packets arrive at the mail server, one packet is selected to serve
and the rest of the packets will join the buffer (i.e., retrial group). In the buffer,
each packet waits a certain amount of time and retries the service again. Various
maintenance activities (i.e., finite number of vacations) are needed to keep the
mail server functioning well. For example, virus scan and spam filtering etc., are
the important maintenance activities for the mail server. It can be performed when
the mail server is idle and be programmed to perform on a regular basis. In this
scenario, the buffer, mail server service mechanism and maintenance activities are
corresponding to orbit, the server, and modified vacations in queueing terminology,
respectively. This can be modeled as a batch arrival single server retrial queue
under modified vacations with N -policy.

2. Mathematical model

Let X be the group size random variable of the arrival, λ be the Poisson
arrival rate. gk be the probability that ‘k’ customers arrive in a batch. Let
v be the retrial rate (classical retrial) of the customer from the orbit. Let
S(x)(s(x)){S̃(θ)}[S0(x)] be the cumulative distribution function (probability den-
sity function) {Laplace-Stieltjes transform} [remaining service time] of service. Let
V (x)(v(x)){Ṽ (θ)][V 0(x)] be the cumulative distribution function (probability den-
sity function) {Laplace-Stieltjes transform} [remaining vacation time] of vacation.
Let N denotes the threshold value and M denotes the maximum number of va-
cations that a server can avail (modified vacations). N(t) denotes the number of
customers in the orbit at time t. The different states of the server at time ‘t’ are
defined as follows:

C(t) =

⎧⎨
⎩

0, if the server is busy with service
1, if the server is on vacation
2, if the server is idle.
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To obtain the system equations, the following state probabilities are defined:

P1,n(x, t)dt = Pr
{
N(t) = n, x � S0(t) � x + dt, C(t) = 0

}
, n � 0

Ql,n(x, t)dt = Pr
{
N(t) = n, x � V 0(t) � x+dt, C(t) = 1

}
, l = 1, 2, . . .M, n � 0

P0,n(t) = Pr {N(t) = n, C(t) = 2} , n � 0.

To obtain the probability generating function (PGF) of the number of cus-
tomers in the orbit, the system equations are derived at various states using the
supplementary variable technique and the above definitions. Cox [8] analyzed a
Non-Markovian stochastic processes by the inclusion of Supplementary variables.

Now, the following system equations are obtained for the queueing system, using
supplementary variable technique:

P0,0(t + Δt) = P0,0(t)(1 − λΔt) + QM,0(0, t)Δt (2.1)
P0,j(t + Δt) = P0,j(t)(1 − λΔt − jvΔt) + P1,j(0, t)Δt + QM,j(0, t)Δt;

1 � j � N − 1 (2.2)

P0,j(t + Δt) = P0,j(t)(1 − λΔt − jvΔt) + P1,j(0, t)Δt +
M∑
l=1

Ql,j(0, t)Δt;

j � N (2.3)

P1,j(x−Δt, t+Δt) = P1,j(x, t)(1 − λΔt) +
j+1∑
k=1

λgkP0,j−k+1(t)s(x)Δt

+ (j + 1)vP0,j+1(t)s(x)Δt +
j∑

k=1

λgkP1,j−k(x, t)Δt; j � 0

(2.4)

Q1,0(x−Δt, t+Δt) = Q1,0(x, t)(1 − λΔt) + P1,0(0, t)v(x)Δt (2.5)

Q1,j(x−Δt, t+Δt) = Q1,j(x, t)(1 − λΔt) +
j∑

k=1

Q1,j−k(x, t)λgkΔt; j � 1 (2.6)

Ql,0(x−Δt, t+Δt) = Ql,0(x, t)(1 − λΔt) + Ql−1,0(0, t)v(x)Δt;
l = 2, 3, . . .M (2.7)

Ql,j(x−Δt, t+Δt) = Ql,j(x, t)(1 − λΔt) +
j∑

k=1

Ql,j−k(x, t)λgkΔt

+ Ql−1,j(0, t)v(x)Δt

1 � j � N − 1; l = 2, 3, . . .M (2.8)

Ql,j(x−Δt, t+Δt) = Ql,j(x, t)(1 − λΔt) +
j∑

k=1

Ql,j−k(x, t)λgkΔt;

j � N ; l = 2, 3, . . .M. (2.9)
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3. Probability generating function

Lee [19] developed a new technique to find the steady state probability generat-
ing function (PGF) of the number of customers in the queue at an arbitrary time
epoch. To apply the technique, first the following probability generating functions
are defined.

P̃1(z, θ) =
∞∑

j=0

P̃1,j(θ)zj and P1(z, 0) =
∞∑

j=0

P1,j(0)zj ;

Q̃l(z, θ) =
∞∑

j=0

Q̃l,j(θ)zj and Ql(z, 0) =
∞∑

j=0

Ql,j(0)zj l = 1, 2, 3, . . .M

P0(z) =
∞∑

j=0

P0,jz
j. (3.1)

The probability generating function P (z) is obtained by the procedure followed
in [13].

P (z) = P0(z) + P̃1(z, 0) +
M∑
l=1

Q̃l(z, 0)

P (z) =

(z − 1)

(
(λX(z)−λ)P0(z)+

(
Ṽ (λ − λX(z)) − 1

)(N−1∑
j=0

qjz
j+P1,0(0)

))
(
z − S̃(λ − λX(z))

)
(λX(z) − λ)

·

(3.2)

Expression for P0(z) is

P0(z) =

⎛
⎝P0(1) +

z∫
1

f(t)

k(t)v
(
t − S̃(λ − λX(t))

)dt

⎞
⎠ k(z) (3.3)

where

k(z) = exp

⎛
⎝−λ

v

z∫
1

(
1 − S̃(λ − λX(u))X(u)

u

)
(
u − S̃(λ − λX(u))

) du

⎞
⎠

and

f(z) =
(
Ṽ (λ − λX(z)) − 1

)⎛⎝P1,0(0) +
M−1∑
l=1

N−1∑
j=0

Q
l,j

(0)zj

⎞
⎠ .

The probability generating function P (z) has to satisfy P (1) = 1. In order to
satisfy the condition, applying L’Hospital’s rule and evaluating limz→1P (z) and
equating the expression to 1, 1 − λE(X)E(S) > 0 is obtained. Thus ρ < 1 is
the condition to be satisfied for the existence of steady state for the model under
consideration, where ρ = λE(X)E(S).
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3.1. Computational aspects of unknown probabilities

Equation (3.2) gives the probability generating function P (z) of the num-
ber of customers in the orbit at an arbitrary time, which involves N + 1 un-
known probabilities namely, q1

0 , q
1
1 , q

1
2 , q

1
3 , . . . q

1
N−1 and P1,0(0). Using Theorem 3.1,

q0, q1, q2, . . . qN−1 are expressed in terms of the single constant P1,0(0).

Theorem 3.1. The unknown constants qj involved in P (z) are expressed in terms
of P1,0(0) as,

q0 =
1

1 − α0
(α0P1,0(0) − QM,0(0))

and

qj =
1

1 − α0

(
αjP1,0(0) +

j∑
i=1

αiqj−i − QM,j(0)

)
, j = 1, 2, 3, . . .N − 1,

where αi is the probability that ‘i’ customers arrive during the vacation and

QM,j(0) = P1,0(0)
j∑

km−1=0

αj−km−1

km−1∑
km−2=0

αkm−1−km−2

×
km−2∑

km−3=0

αkm−2−km−3 . . .

k2∑
k1=0

αk2−k1αk1

j = 0, 1, 2, 3, . . .N − 1. (3.4)

As the procedure followed in [13], the proof of the above theorem is obtained.

4. Performance measures

In this section, some useful performance measures of the proposed model like,
expected number of customers in the orbit, expected length of busy period and
expected length of busy cycle are derived which are useful to find the total average
cost of the system. Also, probability that the server is on vacation P (V ), proba-
bility that the server is idle P (I) and probability that the server is busy P (B) are
derived.

4.1. Expected orbit length

The expected orbit length E(Q) (i.e. mean number of customers waiting in the
orbit) at an arbitrary time epoch, is obtained by differentiating P (z) at z = 1 and



286 M. HARIDASS AND R. ARUMUGANATHAN

is given by

lim
z→1

(
d
dz

P (z)
)

= E(Q)

E(Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2λ2E2(X)(1 − ρ)P ′
0(1) + λ2E2(X)(S2)P0(1)

+(λE(X)(V 2)(1 − ρ)(S2) + λE(X)(V 1)(S2)

−λE(X2)(V 1)(1 − ρ))

(
N−1∑
j=0

qj + P1,0(0)

)

+2λE(X)(V 1)(1 − ρ)
N−1∑
j=0

jqj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2(1 − ρ)2λ2E2(X)

=

⎛
⎜⎜⎜⎜⎝

2λE(X)(1 − ρ)P ′
0(1) + λE(X)P0(1)S2

+
(
(1 − ρ)λ2E2(X)E(V 2) + (V 1)(S2)

)
×
(

N−1∑
j=0

qj + P1,0(0)

)
+ 2(V 1)(1 − ρ)

N−1∑
j=0

jqj

⎞
⎟⎟⎟⎟⎠

2(1 − ρ)2λE(X)

E(Q) =

⎛
⎜⎜⎜⎜⎝

λE(X) (2(1 − ρ)P ′
0(1) + P0(1)S2)

+ ((V 1)(S2) + (1 − ρ)(V 2))

×
(

N−1∑
j=0

qj + P1,0(0)

)
+ 2(V 1)(1 − ρ)

N−1∑
j=0

jqj

⎞
⎟⎟⎟⎟⎠

2(1 − ρ)2λE(X)
(4.1)

where

S2 = λE(S)X ′′(1) + λ2E2(X)E
(
S2
)
; V 1 = λE(X)E(V );

V 2 = λ2E2(X)E
(
V 2
)
; ρ = λE(X)E(S)

P0(1) = 1 − ρ − E(V )

⎛
⎝N−1∑

j=0

qj + P1,0(0)

⎞
⎠ ;

P ′
0(1) =

(
N−1∑
j=0

qj + P1,0(0)

)
(V 1) − λP0(1)(1 − ρ − E(X))

v(1 − ρ)
· (4.2)

4.2. Expected length of busy period

If Tb is the length of busy period, then under the steady state conditions and by
the argument of alternating renewal process, the expected length of busy period
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E(Tb) is obtained as:

E(Tb) =
1

λE(X)

(
1

P0,0
− 1
)

(4.3)

where P0,0 = 1
λQM,0(0) and the expression for QM,0(0) is given in (3.4).

4.3. Expected length of busy cycle

If Tc is the length of busy cycle, then under the steady state conditions and
by the argument of alternating renewal process, the expected length of busy cycle
E(Tc) is obtained as

E(Tc) =
1

λE(X)

(
1

P0,0

)
(4.4)

where P0,0 = 1
λQM,0(0) and the expression for QM,0(0) is given in (3.4).

4.4. Probability that the server is on vacation

Let V be the random variable for modified vacations and P (V ) be the proba-
bility that the server is on modified vacations at time t. Then

P (V ) = E(V )

⎛
⎝N−1∑

j=0

qj + P1,0(0)

⎞
⎠ , (4.5)

where

qj =
1

1 − α0

(
αjP1,0(0) +

j∑
i=1

αiqj−i − QM,j(0)

)
,

E(V ) is the expected vacation time and the expression for QM,j(0) is given (3.4).

4.5. Probability that the server is busy

Let B be the busy period random variable and P (B) be the probability that
the server is busy at time t. Then

P (B) = E(S) (λP0(1) + vP ′
0(1)) . (4.6)

The expressions for P0(1) and P ′
0(1) are given in (4.2).

4.6. Probability that the server is idle

Let I be the idle period random variable and let P (I) be the probability that
the server is idle at time t. Then

P (I) = 1 − ρ − E(V )

⎛
⎝N−1∑

j=0

qj + P1,0(0)

⎞
⎠ . (4.7)
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5. Particular cases

In this section, some of the existing models are deduced as a particular case of
the proposed model.

Case (i): If there is no N -policy and no modified vacations (i.e., Ṽ (0) = 1),
then equation (3.2) reduces to the following form:

P (z) =
(z − 1)P0(z)

z − S̃(λ − λX(z))

where

P0(z) = (1 − λE(X)E(S)) exp

⎛
⎝−λ

v

z∫
1

(
1 − S̃(λ − λX(u))X(u)

u

)
z − S̃(λ − λX(u))

du

⎞
⎠ .

This equation coincides with the result of orbit size distribution of Mx/G/1
retrial queueing system in [10].

Case (ii): If M = 1, the proposed model can be reduced to the Mx/G/1 retrial
queueing system with N policy under single vacation. In this case equation (3.2)
can be written in the following form:

P (z) =
(z − 1)(

z − S̃(λ − λX(z))
)

(λX(z) − λ)

×
(
(λX(z) − λ)P0(z) +

(
Ṽ (λ − λX(z)) − 1

)
P1,0(0)

)
.

Furthermore, when M = ∞, the proposed model can describe the Mx/G/1
retrial queueing system with multiple vacations and N policy.

5.1. Special cases

The model under study is general in nature as the service time is arbitrary. But
for practical purposes, service time with particular distribution is required. In
this section, some special cases of the proposed model by specifying service time
random variable as exponential distribution, Erlangian distribution and vacation
time random variable as exponential distribution are discussed by the procedure
followed in [13].

Case (i): Single server batch arrival retrial queue with exponential service time,
N -policy and modified vacations.
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The PGF of the orbit size distribution of this special case of the queueing model
is obtained as,

P (z) =
(z − 1)(

z −
(

μ
μ+λ(1−X(z))

))
(λX(z) − λ)

×
⎛
⎝(λX(z) − λ)P0(z) +

(
Ṽ (λ − λX(z)) − 1

)⎛⎝N−1∑
j=0

qjz
j + P1,0(0)

⎞
⎠
⎞
⎠

where

P0(z) =

⎛
⎝P0(1) +

z∫
1

f(t)

k(t)v
(
t −
(

μ
μ+λ(1−X(t))

))dt

⎞
⎠ k(z)

k(z) = exp

⎛
⎝−λ

v

z∫
1

(
1 −

(
μ

μ+λ(1−X(u))

)
X(u)

u

)
(
u −

(
μ

μ+λ(1−X(u))

)) du

⎞
⎠ ,

f(z) =
(
Ṽ (λ − λX(z)) − 1

)⎛⎝P1,0(0) +
N−1∑
j=0

qjz
j

⎞
⎠ .

Case (ii): Single server batch arrival retrial queue with k-Erlangian service
time, N -policy and modified vacations.

The PGF of the orbit size distribution of this special case of the queueing model
is obtained as,

P (z) =
(z − 1)(

z −
(

uk
uk+λ(1−X(z))

)k
)

(λX(z) − λ)

×
⎛
⎝(λX(z) − λ)P0(z) +

(
Ṽ (λ − λX(z)) − 1

)⎛⎝N−1∑
j=0

qjz
j + P1,0(0)

⎞
⎠
⎞
⎠

where

P0(z) = k(z)P0(1) + k(z)

z∫
1

f(t)

k(t)v
(

t −
(

uk
uk+λ(1−X(t))

)k
)dt,

k(z) = exp

⎛
⎜⎜⎝−λ

v

z∫
1

⎛
⎜⎜⎝
(

1 −
(

uk
uk+λ(1−X(u))

)k
X(u)

u

)

u −
(

uk
uk+λ(1−X(u))

)k

⎞
⎟⎟⎠du

⎞
⎟⎟⎠

and

f(z) =
(
Ṽ (λ − λX(z)) − 1

)⎛⎝P1,0(0) +
N−1∑
j=0

qjz
j

⎞
⎠ .
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This result is suitable for a system in which ‘k’ servers with exponential service
time.

Case (iii): Single server batch arrival retrial queue with exponential vacation
time, N -policy and modified vacations.

The PGF of the orbit size distribution of this special case of the queueing model
is obtained as,

P (z) =
(z − 1)(

z − S̃(λ − λX(z))
)

(λX(z) − λ)

×
⎛
⎝(λX(z)−λ)P0(z)+

((
γ

γ+λ(1 − X(z))

)
− 1
)⎛⎝N−1∑

j=0

qjz
j+P1,0(0)

⎞
⎠
⎞
⎠

where

P0(z) =

⎛
⎝P0(1) +

z∫
1

f(t)

k(t)v
(
t − S̃(λ − λX(t))

)dt

⎞
⎠ k(z)

k(z) = exp

⎛
⎝−λ

v

z∫
1

(
1 − S̃(λ − λX(u))X(u)

u

)
(
u − S̃(λ − λX(u))

) du

⎞
⎠

and

f(z) =
((

γ

γ + λ(1 − X(z))

)
− 1
)⎛⎝P1,0(0) +

N−1∑
j=0

qjz
j

⎞
⎠ .

6. Cost model

Cost analysis is the most important fact in any practical situation at every
stage. Cost involves startup cost, operating cost, holding cost and reward cost (if
any). It is quite natural that the management of the system desires to minimize
the total average cost. Addressing this, in this section, the cost model for the
proposed queueing system is developed and the total average cost is obtained with
the following assumptions:

Cs : Start up cost per cycle.
Ch : Holding cost per customer per unit time.
Co : Operating cost per unit time.
Cr : Reward cost per cycle due to vacation.

Since the length of the cycle (Tc) is the sum of the idle period (Ti) and busy
period (Tb), from equations (4.3) and (4.4), E(Ti) is obtained as 1

λE(X) ·
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Table 1. Retrial rate (V s) mean orbit size for various values of
M (modified vacations) (for λ = 2.0, μ = 8 and γ = 5).

Mean orbit size
Retrial Threshold value N = 6
rate Different values of M (modified vacations)

2 3 4 5
1 8.3578 8.6870 8.9514 9.1696
2 5.0081 5.2238 5.4008 5.5506
3 3.8916 4.0694 4.2172 4.3443
4 3.3333 3.4922 3.6254 3.7411
5 2.9984 3.1459 3.2704 3.3792
6 2.7751 2.9151 3.0337 3.1379
7 2.6156 2.7501 2.8646 2.9656

The total average cost (TAC) per unit time is given by

Total Average Cost = Start-up cost per cycle + holding cost of number of
customers in the queue per unit time + Operating
cost per unit time – reward cost due to vacation per cycle.

TAC = Cs
1

E(Tc)
+ ChE(Q) + Co

E(Tb)
E(Tc)

− Cr
E(Ti)
E(Tc)

TAC = CsλE(X)P0,0 + ChE(Q) + Co(1 − P0,0) − CrP0,0 (6.1)

where P0,0 = 1
λQM,0(0) and the expression for QM,0(0) is given in (3.4).

7. Numerical illustration

In this section, the consistency of the theoretical results obtained in Sections 3
and 4 is justified numerically with the following assumptions and notations:

Service time distribution is 2-Erlang with parameter μ.
Batch size distribution of the arrival is geometric with mean 2.
Retrial rate v.
Vacation time is exponential with parameter γ.
Threshold value N .
Number of vacations (Modified vacations) M .

7.1. Effects of various parameters on the expected orbit length

The effects of various parameters such as arrival rates, retrial rates, mean orbit
size, threshold value and modified vacations are analyzed numerically and the
results are reported in Tables 1–6 and represented in Figure 2. All numerical
results are obtained using Mat Lab software.

The effects of different retrial rates ‘v’ on the mean orbit size for a fixed threshold
value N with respect to various values of M (modified vacation) are presented in
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Table 2. Retrial rate (Vs) mean orbit size for various values of
N (threshold value) (for λ = 2.0, μ = 8 and γ = 5).

Mean orbit size

Maximum value of M = 4
Retrial (Maximum number of vacations
rate a server can avail)

Different values of N (threshold value)

1 2 3 4
1 8.8242 8.9119 8.9644 8.9835
2 5.3066 5.3713 5.4128 5.4286
3 4.1341 4.1910 4.2289 4.2437
4 3.5478 3.6009 3.6370 3.6512
5 3.1960 3.2469 3.2818 3.2957
6 2.9616 3.0108 3.0451 3.0587
7 2.7941 2.8422 2.8759 2.8894

Table 3. Retrial rate (Vs) total average cost for various values
of M (modified vacations) with arrival rate 4 (for λ = 4, μ = 20
and γ = 5).

Threshold value N = 3
Retrial Different values of M (modified vacations)
rate 2 3 4 5

E(Q) TAC E(Q) TAC E(Q) TAC E(Q) TAC

1 11.4414 15.7892 11.7675 15.9609 11.9810 16.0885 12.1196 16.1795
2 6.3369 10.6847 6.5534 10.7468 6.6969 10.8044 6.7910 10.8508
3 4.6354 8.9832 4.8154 9.0087 4.9355 9.0430 5.0148 9.0746
4 3.7847 8.1325 3.9464 8.1398 4.0548 8.1623 4.1267 8.1865
5 3.2743 7.6220 3.4249 7.6184 3.5264 7.6339 3.5938 7.6536
6 2.9339 7.2817 3.0773 7.2707 3.1741 7.2816 3.2386 7.2984
7 2.6909 7.0387 2.8290 7.0224 2.9225 7.0300 2.9849 7.0446

E(Q) – expected orbit length; TAC – total average cost.

Table 4. Retrial rate (Vs) total average cost for various values
of N (threshold value) with arrival rate 4 (for λ = 4, μ = 20 and
γ = 5).

Maximum value of M = 6
Retrial (Maximum number of vacations a server can avail)
rate Different values of N (threshold value)

2 3 4 5
E(Q) TAC E(Q) TAC E(Q) TAC E(Q) TAC

1 12.0341 16.0437 12.2091 16.2187 12.3506 16.3602 12.4582 16.4678
2 6.7233 10.7329 6.8522 10.8619 6.9608 10.9705 7.0461 11.0557
3 4.9530 8.9627 5.0667 9.0763 5.1642 9.1739 5.2420 9.2516
4 4.0679 8.0775 4.1739 8.1835 4.2660 8.2756 4.3400 8.3496
5 3.5368 7.5464 3.6382 7.6478 3.7270 7.7366 3.7988 7.8084
6 3.1828 7.1924 3.2811 7.2907 3.3677 7.3773 3.4379 7.4476
7 2.9299 6.9395 3.0259 7.0356 3.1111 7.1207 3.1803 7.1899

E(Q) – expected orbit length; TAC – total average cost.
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Table 5. Retrial rate (Vs) total average cost for various values
of M (modified vacations) with arrival rate 5 (for λ = 5, μ = 20
and γ = 5).

Threshold value N = 3

Retrial Different values of M (modified vacations)
rate 2 3 4 5

E(Q) TAC E(Q) TAC E(Q) TAC E(Q) TAC

1 18.6455 23.0268 19.1801 23.3708 19.5041 23.5994 19.6979 23.7457
2 10.3447 14.7259 10.6995 14.8902 10.9170 15.0124 11.0484 15.0960
3 7.5777 11.9590 7.8727 12.0633 8.0547 12.1499 8.1652 12.2128
4 6.1943 10.5755 6.4592 10.6499 6.6235 10.7188 6.7236 10.7712
5 5.3642 9.7454 5.6112 9.8018 5.7648 9.8601 5.8586 9.9063
6 4.8108 9.1920 5.0458 9.2364 5.1923 9.2876 5.2819 9.3296
7 4.4155 8.7968 4.6419 8.8326 4.7834 8.8787 4.8701 8.9177

E(Q) – expected orbit length; TAC – total average cost.

Table 6. Retrial rate (Vs) total average cost for various values
of N (threshold value) with arrival rate 5 (for λ = 5, μ = 20 and
γ = 5).

Maximum value of M = 6
Retrial (Maximum number of vacations a server can avail)

rate Different values of N (threshold value)
2 3 4 5

E(Q) TAC E(Q) TAC E(Q) TAC E(Q) TAC

1 19.4875 23.4957 19.8126 23.8208 20.0952 24.1034 20.3328 24.3410
2 10.8918 14.9000 11.1266 15.1348 11.3385 15.3467 11.5221 15.5303
3 8.0265 12.0348 8.2313 12.2395 8.4196 12.4278 8.5853 12.5935
4 6.5939 10.6021 6.7834 10.7918 6.9602 10.9684 7.1168 11.1250
5 5.7344 9.7426 5.9150 9.9232 6.0845 10.0927 6.2357 10.2439
6 5.1613 9.1696 5.3359 9.3441 5.5008 9.5089 5.6484 9.6566
7 4.7520 8.7602 4.9223 8.9305 5.0838 9.0919 5.2288 9.2370

E(Q) – expected orbit length; TAC – total average cost.

Tables 1, 3 and 5. A graphical representation is also shown in Figure 2. From the
tables and the figure, the following points are observed:
• As retrial rate increases, the mean orbit size decreases.
• As number of modified vacation M increases, the mean orbit size increases.
• As arrival rate increases, the mean orbit size increases.

The effects of different retrial rates ‘v’ on the mean orbit size for a fixed value for
M (i.e., maximum number of vacations a server can avail) with respect to different
threshold values N are presented in Tables 2, 4 and 6. From the tables, it is clear
that,
• As retrial rate increases, the mean orbit size decreases.
• As threshold value N increases, the mean orbit size increases.
• As arrival rate increases, the mean orbit size increases.



294 M. HARIDASS AND R. ARUMUGANATHAN

Figure 2. Retrial rate (Vs.) mean orbit size (for λ = 2.0, μ = 8,
γ = 5 and N = 6).

Figure 3. Retrial rate (Vs.) total average cost for various values
of M (modified vacations) (for λ = 4, μ = 20, γ = 5 and N = 3).

7.2. Effects of various parameters on the total average cost

The total average costs are obtained numerically with the following assumptions:
Start up cost : Rs. 2.00.
Holding cost per customer : Rs. 1.00.
Operating cost per unit time : Rs. 4.00.
Reward cost per unit time due to vacation : Rs. 1.00.

The effects of different retrial rate ‘v’ on the total average cost for a fixed threshold
value N with respect to various values for M (modified vacation) are given in
Tables 3 and 5. A graphical representation is also shown in Figure 3. From the
tables and the figure, the following points are observed:

• As retrial rate increases, the total average cost decreases.
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Figure 4. Retrial rate (Vs.) total average cost (for λ = 5, μ = 20,
γ = 5, M = 6 and N = 3).

• As number of modified vacation M increases, the total average cost increases.
• As arrival rate increases, the total average cost increases.

The effects of different retrial rates ‘v’ on the total average cost for a fixed value
of M (i.e., maximum number of vacations a server can avail) with respect to dif-
ferent threshold values N are given in Tables 4 and 6. A graphical representations
is also shown in Figure 4. From the tables and the figure, the following points are
observed:

• As retrial rate increases, the total average cost decreases.
• As threshold value N increases, the total average cost increases.
• As arrival rate increases, the total average cost increases.

Thus, the theoretical development of the model is justified with the numerical
results which are consistent with the fact that when the retrial rate increases, the
mean orbit size and the total average cost decrease.

8. Conclusion

In this chapter, “a batch arrival single server retrial queue with modified vaca-
tions under N -policy” is analyzed. Probability generating function of the steady
state orbit size distribution at an arbitrary time is obtained. Various performance
measures are derived. Some particular cases and special cases are discussed. A cost
model for the queueing system is developed. The theoretical development of the
model is justified with numerical results.

In the direction of future research, the model can be extended with service
interruptions and bulk service concepts. An attempt may be made to derive the
busy period distributions and idle period distributions. A discrete time model can
also be developed.
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