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Abstract. Mathematical optimization problems with a goal function,
have many applications in various fields like financial sectors, manage-
ment sciences and economic applications. Therefore, it is very impor-
tant to have a powerful tool to solve such problems when the main crite-
rion is not linear, particularly fractional, a ratio of two affine functions.
In this paper, we propose an exact algorithm for optimizing a linear
fractional function over the efficient set of a Multiple Objective Integer
Linear Programming (MOILP ) problem without having to enumer-
ate all the efficient solutions. We iteratively add some constraints, that
eliminate the undesirable (not interested) points and reduce, progres-
sively, the admissible region. At each iteration, the solution is being
evaluated at the reduced gradient cost vector and a new direction that
improves the objective function is then defined. The algorithm was
coded in MATLAB environment and tested over different instances
randomly generated.
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1. Introduction

Discrete Linear programming problems with multiple objective functions have
received considerable attention in many areas of application as well as in academic
research papers.

One can read about examples of the rather broad range of applications in [17,20].
For a discussion of some of the basic theoretical properties and other approaches
to the problem, see, for example [10, 15].

In addition to vector maximization approach for solving Multi-objective In-
teger Linear Programming problem (MOILP), recently, an increase interest of
researchers and practitioners can be noticed in the approach based on the opti-
mization of functions over the efficient set. In an application of this approach, the
decision maker preference function is given explicitly in the form of a linear com-
bination of decision variables, and the problem of finding a most preferred efficient
solution can be written as the maximization of this function over the efficient set.
This type of optimization problem is not obvious and cannot be solved by a sim-
ple mono-objective optimization solver. Consequently, two possibilities are to be
considered: either enumerating explicitly all the efficient solutions then evaluate
each of them at the preferred DM criterion and choose the best, which is much
time consuming, or finding a way that yields to an optimal efficient solution that
satisfies the preferences of the DM. The problem has been extensively studied in
the linear case, see for instance for continuous case [2–4,8,16,22] and [1,6,7,12,14]
when integrity decision variables are imposed.

In this paper, however, we consider a ratio of two affine functions instead of a
linear one and we propose a new exact algorithm, based on simple pivoting tech-
niques, taking the advantage of Cambini and Martein idea and bringing together,
branch and bound procedure (see Wolsey (1998) [21]) to find integer solutions
then reducing progressively the admissible domain by adding more constraints,
eliminating all dominated vectors by the current efficient solution until no piv-
oting operation becomes possible; indicating that the current domain is empty
(see [18]).

Consider the following MOILP problem

(P ) Vmax{Cx, x ∈ D} (1.1)

Where D = S ∩ Z
n, S = {x ∈ R

n|Ax ≤ b, x ≥ 0}, A ∈ Z
m×n, b ∈ Z

m×1,
C = (ci)i∈{1,...,p} ∈ Z

p×n are row vectors with p ≥ 2 , Z
n is the set of integers.

We assume throughout the paper that D is not empty and S is a bounded convex
polyhedron. The set of all integer efficient solutions of (P ) is denoted by E(P ).

The main problem is

(FPE) max
{
ϕ(x) =

cx+ α

dx+ β
, x ∈ E(P )

}
. (1.2)
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Let the relaxed problem be

(FPR) max
{
ϕ(x) =

cx+ α

dx+ β
, x ∈ D

}
, (1.3)

Where c, d denotes n-dimensional integer row vectors; α, β are scalars and we
assume that dx+ β > 0 over D.

As in multiple objective linear programming ([20]), the solution to the problem
(P ) is to find all solutions that are efficient in the sense of the following definition.

Definition 1.1. A feasible solution x ∈ D is said to be efficient of (P ), if and only
if, there is no feasible solution x̄ ∈ D such that ci(x̄) ≥ ci(x) for all i ∈ {1, 2, . . . , p}
and ci(x̄) > ci(x) for at least one i. The point Z(x) = Cx is then called non-
dominated vector. Otherwise, x is not efficient and the corresponding vector of
criteria Z(x) is said to be dominated.

Throughout this paper we use the following notations:
We consider a linear fractional problem:

(FPk)

{
max ϕ(x) =

cx+ α

dx+ β
s.t. x ∈ Dk

(1.4)

Where

− Dk be the current feasible region at iteration k;
− xk is an optimal integer solution of (FPk) obtained in Dk;
− ak,j is the activity vector of xk

j with respect to the current region Dk;
− Bk is the basis associated with solution xk;
− Ik = {i|ak,i ∈ Bk} is the set of indices of basic variables;
− Nk = {j|ak,j /∈ Bk} is the set of indices of non-basic variables;
− yk,j = (yk,ij) = (Bk)−1ak,j .
− xopt is an optimal solution of (FPE).
− ϕopt = ϕ(xopt) the optimal value of the main criterion ϕ(x).

In the next section some basic definitions and results are presented, followed by a
detailed procedure. In Section 4, a numerical illustration is included to explain the
proposed algorithm. Section 5 describes details of the implementation and com-
putational experiments. Finally, a general conclusion is given in the last section.

2. Necessary results

The approach adopted to solve the problem (FPk) at the kth iteration, is the
Cambini and Martein’s method (see [5]), which is mainly based on the evaluation
of the reduced gradient vector γ̂ defined by

γ̂ = β̂ĉ− α̂d̂



268 S. MAHDI AND D. CHAABANE

where ĉ, d̂, α̂ and β̂ are the updated values of c, d, α and β respectively. The fol-
lowing theorem allows us to find the optimal solution of (FPk):

Theorem 2.1 [13]. A feasible solution x̂ is an optimal solution of the fractional
problem (FPk) if and only if γ̂j ≤ 0 for all non-basic index j ∈ Nk.

Remark 2.2. Recall that a sufficient condition for the uniqueness of the optimal
solution x̂ is that the set Jk = {j ∈ Nk/γ̂j = 0} is empty. Otherwise, there exist
another integer feasible solution x̃ ∈ Dk such that ϕ(x̃) = ϕ(x̂) and we define x̃ as
an alternate optimal solution to x̂.

2.1. Testing efficiency

We may need sometimes along the algorithm process to test the efficiency of
a given feasible solution of the problem (P ), the following result enables us to
perform this task (see [9]).

Theorem 2.3. Let x∗ be an arbitrary element of the admissible region D. x∗ ∈
E(P ) if and only if the optimal value of the objective function Θ∗(ψ, x) is null in
the following mixed integer linear programming problem

Teff(x∗)

⎧⎪⎪⎨⎪⎪⎩
max Θ =

p∑
i=1

ψi

s.t. Cx− Iψ = Cx∗

x ∈ D, ψi ∈ R
+; ∀i = 1, p,

(2.1)

Where

− C = (p× n) matrix, I = (p× p) identity matrix;
− Ψ = (ψi)i=1,...,p are real non negative variables for all i.

2.2. Incident edge

Proposition 2.4. An edge Ejk
, jk ∈ Nk incident to a feasible solution xk is de-

fined as the set

Ejk
=

⎧⎪⎨⎪⎩ (x1, . . . , xn) ∈ Dk

∣∣∣∣∣∣∣
xi = xk

i − θjk
yk,ijk

, for i ∈ Ik

xjk
= θjk

xj = 0, for j ∈ Nk\{jk}

⎫⎪⎬⎪⎭ (2.2)

where 0 < θjk
≤ min

i∈Ik

{ xk
i

yk,ijk

; yk,ijk
> 0}, θjk

is a positive integer and θjk
× yk,ijk

are integers for all i ∈ Ik if such integer values exist.

Remark 2.5. Note that equation (2.2) enables us to compute the integer feasible
alternate solutions when the optimal solution obtained by solving (FPk) is not
unique (Jk �= 0).
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3. Description of the procedure

The procedure starts by solving the relaxed problem (FPR). Obviously, if (FPR)
is infeasible; the problem (FPE) is also infeasible. If it is not the case, the optimal
solution of (FPR), denoted x0, is tested of efficiency in order to obtain an initial
efficient solution x̂0. This is done by solving the problem Teff(x0) (see Eq. (2.1)),
then at each iteration k, the main criterion ϕ(x) is optimized on the equivalent
efficient solutions of x̂k by solving the problem (FTk)

(FTk) : max
{
ϕ(x) =

cx+ α

dx+ β

∣∣∣∣ Cx = Cx̂k, x ∈ D

}
. (3.1)

Let x̄k be an optimal solution of (FTk), the values of xopt and ϕopt are updated,
we put xopt = x̄k, ϕopt = ϕ(x̄k).

Then, the domain of admissibility is reduced progressively by adding some con-
straints that eliminate successively all dominated solutions by the current efficient
solution x̄k by solving the problem (FPk)

(FPk) : max

{
ϕ(x) =

cx+ α

dx+ β

∣∣∣∣ x ∈ Dk = D \
k−1⋃
s=0

Ds

}
(3.2)

where Ds = {x ∈ Z
n | Cx ≤ Cx̄s}, and x̄0, x̄2, . . . , x̄s are the efficient solutions

obtained before.
The feasible region Dk can be defined by the following constraints:

Dk = Dk−1 ∩

⎧⎪⎨⎪⎩x ∈ D

∣∣∣∣∣∣∣
ci(x) ≥ (ci(x̄k) + 1)yk

i −Mi(1 − yk
i ) (∗)

p∑
i=1

yk
i ≥ 1, yk

i ∈ {0, 1}, i = 1, p (∗∗)

⎫⎪⎬⎪⎭
Where D0 = D and −Mi is a lower bound to the ith objective function for all

x ∈ D.
Note that when yk

i = 0 the constraint (∗) is not restrictive and when yk
i = 1

a strict improvement is forced in the ith objective function, the constraint (∗∗)
means that at least one criterion is improved.

Let xk an optimal solution of (FPk), if it is efficient, the procedure terminates
with xk as an optimal solution of the main problem (FPE); otherwise, an explo-
ration procedure is applied over the incident edges Ejk

of xk by using the reduced
gradient vector γ̂j of the objective function searching for an alternate efficient so-
lution which improves the function ϕ(x). If no such solution can be found, the
process continues reducing the domain of admissibility and improving the value of
ϕ until an optimal solution is obtained or the reduced region becomes empty. A
technical presentation is given in the following section.
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Algorithm 1: Optimizing a Linear Fractional Function over Efficient Set.
Input
↓ A(m×n): matrix of constraints;
↓ b(m×1): RHS vector;
↓ c(1×n), α: numerator of the main criterion vector;
↓ d(1×n), β: denominator of the main criterion vector;
↓ C(p×n): matrix of linear criteria;
Output
↑ xopt: optimal solution of the problem (FPE).
↑ ϕopt: optimal value of the main criterion ϕ
Initialization

• Solve for the lower bound where ∀i = 1, . . . , p −Mi = min{cix | x ∈ D},if ci
j ≥ 0,

j = 1, . . . , n else set Mi = 0;
• Let ϕopt ← −∞, k = 0, End← False;

while End=False do
Solve the relaxed problem (FP k

R) ≡ (FPR) ≡ max{ϕ(x) = cx+α
dx+β

| x ∈ D};
if (FP k

R) is unfeasible then (FPE) is unfeasible, End← True;
else

let xk be an optimal solution of (FP k
R).

Solve Teff (xk) : Efficiency test;
if xk ∈ E(P ) then xopt ← xk, ϕopt ← ϕ(xk), End← True;
else

Let x̂k be an optimal solution of Teff (xk)
Solve (FTk) ≡ max{ϕ(x) = cx+α

dx+β
| Cx = Cx̂k, x ∈ D},

Let x̄k be an optimal solution of (FTk),
if ϕ(x̄k) > ϕopt then Let xopt ← x̄k and ϕopt ← ϕ(x̄k)
k ← k + 1, solve the problem (FPk)

(FPk) ≡ max{ϕ(x) | x ∈ Dk = D \⋃k−1
s=0 Ds}, Ds = {x ∈ Zn | Cx ≤ Cx̄s}

if (FPk) is unfeasible then (xopt, ϕopt) ≡ SOL (FPE) : End← True;
else

let xk be an optimal solution of (FPk)
if ϕ(xk) ≤ ϕopt then (xopt, ϕopt) ≡ SOL (FPE): End← True;
Solve Teff (xk) : Efficiency test;
if xk ∈ E(P ) then xopt ← xk, ϕopt ← ϕ(xk) : End← True;
else

let x̂k be an optimal solution of Teff (xk)
Let Jk = {jk ∈ Nk/γ̂j = 0};
while Jk �= ∅ do

let xk be an optimal solution of (FPk)

select jk ∈ Jk ; θ�
jk

= int

(
min
i∈Ik

{ xk
i

yk,ijk

; yk,ijk
> 0}

)
;

Explore the edge Ejk : searching for an alternate integer

solution corresponding to θjk

(
θjk
∈ {1, · · · , θ�

jk}
)

starting from

θjk = θ�
jk until θjk = 1

if such efficient point is found then let it be x̃,
xopt ← x̃, ϕopt ← ϕ(x̃) : End← True;
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Figure 1. The feasible region D.

3.1. Technical description of the method

Proposition 3.1. The algorithm above converges in a finite number of iterations.

Proof. Since the feasible region D is a finite bounded set, there are a limited
number of efficient solutions (|E(P )| is finite). At each iteration, a new improved
efficient solution is generated and the feasible region is being reduced until infea-
sibility. Thus, the procedure converges to the optimal solution in a finite number
of iterations. �

4. Numerical illustration

In this didactic example, we try to highlight different steps of the algorithm.
Consider the MOILP problem:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max Z1 = x1 − 3x2

max Z2 = x1 + 3x2

D

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + 2x2 ≤ 8
2x1 + x2 ≤ 7
x1 − x2 ≤ 2
x1, x2 ∈ N.

The feasible region D is presented in Figure 1 and the main problem (FPE) is:

(FPE)

⎧⎨⎩max ϕ(x) =
−5x1 − x2 − 1
4x1 + x2 + 1

s.t. x1, x2 ∈ E(P ).
(4.1)
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Table 1. The optimal table of x0.

B x1 x2 x3 x4 x5 xB

x3 1 2 1 0 0 8

x4 2 1 0 1 0 7

x5 1 −1 0 0 1 2

ĉ −5 −1 0 0 0 −1

d̂ 4 1 0 0 0 1

γ̂ −1 0 0 0 0 −1

Step 0. Let ϕopt = −∞, k := 0, D0 = D, the optimal solution of the relaxed
problem (FPR) is x0 = (0, 0) and ϕ(x0) = −1.

(FPR)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max ϕ(x) =
−5x1 − x2 − 1
4x1 + x2 + 1

D

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x1 + 2x2 ≤ 8

2x1 + x2 ≤ 7

x1 − x2 ≤ 2

x1, x2 ∈ N.

The corresponding optimal tableau is in Table 1.
Step 1. In order to test the efficiency of x0 we solve the problem Teff(x0)

Teff(x0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Θ = ψ1 + ψ2

s.t. x1 + 2x2 ≤ 8
2x1 + x2 ≤ 7
x1 − x2 ≤ 2
x1 − 3x2 − ψ1 = 0
x1 + 3x2 − ψ2 = 0
x1, x2 ∈ N, ψi,i=1,2 ≥ 0.

We obtain x0 /∈ E(P ) and the optimal solution of Teff(x0) is x̂0 = (3, 1). Z(x̂0) =
(0, 6).
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Figure 2. The reduced feasible region D1.

Step 2. We solve the problem (FT0)

(FT0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max ϕ(x) =
−5x1 − x2 − 1
4x1 + x2 + 1

s.t. x1 + 2x2 ≤ 8
2x1 + x2 ≤ 7
x1 − x2 ≤ 2
x1 − 3x2 = 0
x1 + 3x2 = 6
x1, x2 ∈ N.

An optimal solution of (FT0) is x̄0 = (3, 1) and ϕ(x̄0) = −1.21 > ϕopt; we
initialize xopt = (3, 1) and ϕopt = −1.21.
Step 3. Let k := k + 1 = 1,−M = (−12, 0) and solve the problem (FP1)

(FP1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max ϕ(x) =
−5x1 − x2 − 1
4x1 + x2 + 1

D1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + 2x2 ≤ 8
2x1 + x2 ≤ 7
x1 − x2 ≤ 2
−x1 + 3x2 + 13y1

1 ≤ 12 (1)
−x1 − 3x2 + 7y1

2 ≤ 0 (2)
y1
1 + y1

2 ≥ 1
(y1

1 , y
1
2) ∈ {0, 1}2.

An optimal solution is x1 = (0, 3), Z(x1) = (−9, 9) and ϕ(x1) = −1, see
Figure 2.
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Table 2. The optimal table of x1.

B x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 xB

x5 1 0 0 0 1 0 0 0 0 0 0 0 0 0 2 2

x6 2 0 0 0 0 1 0 0 0 0 0 0 0 0 1 4

x7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 5

x4 0 0 0 1 0 0 0 0 0 −1 0 0 0 −1 0 1

x2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 3

x3 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

x11 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 1

x12 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0

x8 −1 0 0 0 0 0 0 1 0 0 0 0 0 −13 3 3

x13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 2

x9 −1 0 0 0 0 0 0 0 1 7 0 0 0 7 −3 2

ĉ −5 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −4

d̂ 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4

γ̂ −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

Step 4. As ϕ(x1) > ϕopt, we test the efficiency of this solution by solving the
problem Teff(x1)

Teff(x1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max Θ = ψ1 + ψ2

s.t. x1 + 2x2 ≤ 8

2x1 + x2 ≤ 7

x1 − x2 ≤ 2

x1 − 3x2 − ψ1 = −9

x1 + 3x2 − ψ2 = 9

x1, x2 ∈ N, ψi,i=1,2 ≥ 0.

We obtain x1 /∈ E(P ) and x̂1 = (2, 3) is an optimal solution of Teff(x1) with
Z(x̂1) = (−7, 11).

Step 5. Using the optimal table of x1 (see Table 2) we obtain:

B = {5, 6, 7, 4, 2, 3, 11, 12, 8, 13, 9};N = {1, 10, 14, 15};
γ̂N = {−4, 0, 0, 0}; J1 = {j ∈ N/γ̂j = 0} = {10, 14, 15};
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Figure 3. The efficient set of (P ).

Since the set J1 is not empty, the incidents edges to x1 is being explored (see
Eq. (2.2)) and we find the only integer solution on the edge E15 defined by

E15 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x15 = θ15 = min
{

2
2
;
4
1
;
3
3

}
= 1;

x5 = 2 − 1(2) = 0;
x6 = 4 − 1(1) = 3;
x7 = 5 − 1(−1) = 6;
x4 = 1 − 1(0) = 1;
x2 = 3 − 1(−1) = 4;
x3 = 0 − 1(0) = 0;
x11 = 1 − 1(0) = 1;
x12 = 0 − 1(0) = 0;
x8 = 3 − 1(3) = 0;
x13 = 2 − 1(−1) = 3;
x9 = 2 − 1(−3) = 5;
x1 = x10 = x14 = 0.

(4.2)

x̂1 = (0, 4) is efficient, then xopt = (0, 4) and ϕopt = −1 and the procedure
terminates.

The set of all efficient solutions of the problem (P ) is

E(P ) = {(2, 0), (3, 1), (2, 2), (2, 3), (0, 4)}. Whereas, the proposed algorithm op-
timizes the linear fractional function ϕ(x) without having to pass by all these
solutions but only by {(3, 1), (2, 3), (0, 4)}, see Figure 3.
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Table 3. Results of samples randomly generated.

p p = 3 p = 5 p = 8

n × m cpu (s) # iter cpu (s) # iter cpu (s) # iter

5 × 5 0.39 3.5 0.6 3 0.67 3

[0.02; 1.56] [1; 6] [0.03; 23.5] [1; 8] [0.13; 38] [1; 7]

10 × 5 1.09 3.5 2.26 3.5 3.25 3

[0.08; 15.64] [1; 7] [0.08; 34.54] [1; 9] [0.13; 75.35] [1; 10]

15 × 5 3.21 4.5 5.18 3.5 8.56 4

[0.14; 96.88] [1; 11] [0.15; 48.69] [1; 6] [0.18; 91.29] [1; 8]

20 × 5 4.39 3.5 6.14 3 8.02 4

[0.11; 39] [1; 6] [1.35; 129.6] [1; 7] [0.28; 141] [1; 8]

20 × 10 6.56 3.5 7.42 4 14.5 4.5

[0.23; 101] [1; 6] [0.27; 148] [1; 10] [0.35; 165] [1; 7]

30 × 10 18.04 3.5 18.11 4 20.5 3.5

[0.27; 153] [2; 8] [0.51; 213] [1; 8] [3.48; 195] [1; 6]

35 × 15 22.27 4 25.79 4 24.69 3.5

[1.51; 296] [2; 7] [1.50; 312] [1; 8] [2.57; 325.27] [1; 7]

40 × 15 32.27 3.5 38.42 3.5 48.93 4.5

[3.07; 387] [1; 6] [11.89; 398.36] [2; 7] [7.32; 430] [1; 8]

50 × 15 75 4 84.47 4.5 69.75 4.5

[8; 370] [2; 7] [3.14; 714.88] [1; 7] [11.19; 516.59] [2; 6]

60 × 20 97.35 3.5 88.7 3.5 102 3.5

[12.75; 500.25] [2; 6] [12.37; 506] [2; 6] [14.3; 1014] [2; 8]

70 × 20 93.5 3.5 100 3 125 3

[23.35; 892] [2; 6] [29; 1355] [2; 7] [33.7; 1804] [2; 7]

80 × 20 119 3 131 4 126.3 3.5

[29; 725] [2; 5] [32.53; 1874] [2; 7] [15.45; 1488] [1; 6]

5. Computational results

The presented procedure was implemented in the MATLAB environment and
run on a PC Intel(R)Core(TM) i3 CPU 2.13 GHZ, the performance is evaluated
using 360 instances randomly generated from discrete uniform distribution; A ∈
U ([1, 30]) , b ∈ U ([25, 100]) and C ∈ U ([−15, 15]). The vectors c, d, and α are
generated in the same way as C and the constant β is generated such that dx+β >
0.

The problems were grouped according to the number of variables, constraints
and objective functions into 36 categories, we consider sets of 3,5 and 8 objective
functions p = 3, 5, 8. For each category of problems, 10 instances were solved.

The results reported in Table 3 − median cpu time (in seconds), required iter-
ations, the lower and upper bounds for each measure − show that the proposed
algorithm for small and relatively medium dimensions works efficiently in terms of
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number of iterations (# iter) and execution time (cpu (s)). In all these problems,
the number of the efficient solutions generated (which is equal to the number of
the performed iterations) does not exceed 11 solutions. As regards larger dimen-
sions, the resolution of such problems becomes difficult due to the factors, such as
multiple objective and discrete nature of the research area.

6. Conclusion

In this paper, we have introduced a new exact method that optimizes a linear
fractional function over the integer efficient set ofMOILP problem, the difficulties
arise are mainly due to the non convexity of the efficient set. The algorithmic
complexity is also well known from the integer linear programming problems, the
NP-hard so-called problems. Nevertheless, the quality of the solution remains our
main interest.

The proposed method solves the problem avoiding the explicit enumeration of
all efficient solutions bringing together Sylva and Crema’s cuts for eliminating the
efficient solutions previously finding and a process of exploring the incident edges
by using the reduced gradient vector of the current solution in order to find an
alternate efficient solution that improves the value of the objective function.

The algorithm was coded using the MATLAB environment and it was tested
for several problems, randomly generated from a discrete uniform distribution. As
all exact cutting plane algorithms, our method gives an exact optimal solution for
relatively medium dimensions in reasonable CPU execution time, but for higher
dimensions, we suggest for future research work, cooperation of such exact tech-
nique with meta-heuristics techniques to take into account both quality and CPU
execution time together.
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