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MULTI-OBJECTIVE OPTIMIZATION PROBLEM
WITH BOUNDED PARAMETERS

Ajay Kumar Bhurjee1 and Geetanjali Panda1

Abstract. In this paper, we propose a nonlinear multi-objective op-
timization problem whose parameters in the objective functions and
constraints vary in between some lower and upper bounds. Existence
of the efficient solution of this model is studied and gradient based as
well as gradient free optimality conditions are derived. The theoretical
developments are illustrated through numerical examples.
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1. Introduction

In most of the real-life optimization models, the parameters in the objective
function and constraints are not known exactly due to the presence of improper
information in the data set. The lower and upper bounds of the parameters can be
estimated from the historical data. In other words, the parameters are not fixed
and assumed to lie in closed intervals. In that case, the objective and constraint
functions map from real space to the set of intervals. So these functions are interval
valued functions. In this paper, we address these type optimization models with
several conflicting objective functions and call these optimization models as multi-
objective interval optimization problem, in short (MIOP ). Such type situation
appears in production planning, portfolio selection, transportation models etc.
Example 1 explains such a model related to portfolio optimization.
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Example 1. Consider a portfolio management problem which has n number of
risky assets. Due to uncertainty in the market, the returns of the assets cannot be
predicted exactly. From the historical data one can estimate the upper and lower
bound of the parameters of the return in a fixed time period. Hence the expected
return can be described in terms of interval parameters for a fixed time period. Let
xj be the proportion of the total fund invested on jth asset. Return of jth asset
lies between rL

j and rR
j , (rL

j < rR
j ), which is found from previous data. Since the

return of all assets are lying in intervals, so the standard deviation and correlation
between any two of them will also lie in intervals. Suppose QM = (Qij)n×n denotes
the n× n symmetric covariance interval matrix (Qij = [qL

ij , q
R
ij ]) corresponding to

ith and jth asset. In this circumstance, the expected return and the variance of the
resulting portfolio x = (x1, x2, . . . , xn)T , are

∑
i[r

L
i , r

R
i ]xi and

∑
i,j [q

L
ij , q

R
ij ]xixj ,

respectively.
In order to maximize the expected return and minimize the risk factor of the

portfolio simultaneously, it is necessary to solve the interval multi-objective opti-
mization problem,

min

⎛
⎜⎝−

∑
i

[rL
i , r

R
i ]xi,

⎛
⎝∑

i,j

[qL
ij , q

R
ij ]xixj

⎞
⎠

1
2
⎞
⎟⎠

subject to
∑

i

xi = 1, xi ≥ 0, i = 1, 2, . . . , n.

This is a nonlinear multi-objective interval optimization model.
Multi-objective optimization problems with interval parameters are studied by

many researchers during last two decades (see [1, 3, 4, 8, 9, 11]). The optimiza-
tion models of all these papers have linear interval valued functions. Some re-
cent developments in the area of nonlinear multi-objective interval optimization
problem(MIOP ) are due to Dunwei Gong et al. [2], Soares et al. [10] and Wu [13].
Dunwei Gong et al. [2] have suggested an interactive evolutionary algorithm for
(MIOP ). This algorithm periodically provides a set of non-dominated solutions.
GL Soares et al. [10] have considered a robust multi-objective optimization prob-
lem with interval valued function as an inclusion of real valued function. In both
the papers conditions for the existence of solution of (MIOP ) has not been stud-
ied. Wu [13] has studied the conditions for the existence of solution of a (MIOP )
whose objective functions are interval valued functions and all constraints are real
valued functions. This paper discusses the conditions for the existence of solution
of (MIOP ) model whose objective functions as well as constraints are nonlinear
interval valued functions. For this purpose approach of this paper is different from
above approaches. The existence results use the concept of convexity and differen-
tiability of a general interval valued function and derives the sufficient optimality
conditions for the existence of I�-Efficient solution of (MIOP ).

Development of the paper is explained in several sections. Section 2 discusses
some prerequisites on interval analysis. In Section 3, sufficient optimality condition
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for (MIOP ) and the existence of solution is studied. The theoretical developments
are illustrated in several numerical examples.

The following notations are used throughout the paper.
Bold capital letters denote closed intervals; I(R)= The set of all closed

intervals in R; (I(R))k= The product space I(R) × I(R) × . . .× I(R)︸ ︷︷ ︸
k times

. Ck
v=

k-dimensional column vector, whose elements are intervals; Ck
v ∈ (I(R))k, Ck

v =
(C1,C2, . . . ,Ck)T , Cj = [cLj , c

R
j ]; cLj , c

R
j ∈ R, j ∈ Λk, Λk = {1, 2, . . . , k}; The

degenerate interval η̂ is denoted by η̂ = [η, η], where η is a real number.

2. Preliminaries

For two real vectors a = (a1, a2, . . . , an)T , b = (b1, b2, . . . , bn)T in Rn, we denote

a �v b⇔ ai ≥ bi; a �v b⇔ ai ≤ bi; a >v b⇔ ai > bi; a <v b⇔ ai < bi, i ∈ Λn.

Let ∗ ∈ {+,−, ·, /} be a binary operation on the set of real numbers. The binary
operation � between two intervals A = [aL, aR] and B = [bL, bR] in I(R), denoted
by A � B is the set {a ∗ b : a ∈ A, b ∈ B}. In case of division (A � B), it is
assumed that 0 /∈ B. These interval operations can also be expressed in terms of
parameters. Any point in A may be expressed as a(t) = aL + t(aR−aL), t ∈ [0, 1].
An interval A is said to be positive interval if a(t) is positive for every t. Algebraic
operations of intervals may be explained in parametric form as follows.

A � B = {a(t1) ∗ b(t2)| t1, t2 ∈ [0, 1]} (2.1)

An interval vector Ck
v ∈ (I(R))k may be expressed in terms of parameters as

Ck
v =

{
c(t)| c(t) = (c1(t1), c2(t2), . . . , ck(tk))T ,

where t = (t1, t2, . . . , tk)T , cj(tj) ∈ Cj ,

cj(tj) = cLj + tj(cRj − cLj ), tj ∈ [0, 1], j ∈ Λk

}
The set of intervals I(R) is not a totally order set. Partial ordering between two
intervals can be represented in parametric form. For A,B ∈ I(R),

A � B if a(t) ≤ b(t), ∀ t ∈ [0, 1] and A ≺ B if a(t) < b(t), ∀ t ∈ [0, 1] (2.2)

A = B if a(t) = b(t), ∀ t ∈ [0, 1]. (2.3)

Note that A � B is not same as B � A � 0. For example [2, 5] � [3, 7], but
[3, 7] � [2, 5] = [−2, 5] � 0.

Next we summarize interval valued function and some of its properties below
which are due to [1].
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For c(t) ∈ Ck
v, let fc(t) : Rn → R. For a given interval vector Ck

v , an interval
valued function FCk

v
: Rn → I(R) can be expressed in the parametric form as

FCk
v
(x) =

{
fc(t)(x)

∣∣∣ fc(t) : Rn → R, c(t) ∈ Ck
v

}
. (2.4)

For every fixed x, if fc(t)(x) is continuous in t then mint∈[0,1]k fc(t)(x) and
maxt∈[0,1]k fc(t)(x) exist. In that case

FCk
v
(x) =

[
min

t∈[0,1]k
fc(t)(x), max

t∈[0,1]k
fc(t)(x)

]
.

If fc(t)(x) is linear in t then mint∈[0,1]k fc(t)(x) and maxt∈[0,1]k fc(t)(x) exist in the
set of vertices of Ck

v . If fc(t)(x) is monotonically increasing in t, then FCk
v
(x) =

[fc(0)(x), fc(1)(x)]. The partial derivatives of FCk
v

: Rn → I(R) at x∗ is calculated
as follows.

∂FCk
v
(x∗)

∂xi
=
{
∂fc(t)(x∗)

∂xi

∣∣∣ for every t ∈ [0, 1]k, c(t) ∈ Ck
v

}
.

If ∂fc(t)(x
∗)

∂xi
is continuous in t then

∂FCk
v
(x∗)

∂xi
=
[

min
t∈[0,1]k

∂fc(t)(x∗)
∂xi

, max
t∈[0,1]k

∂fc(t)(x∗)
∂xi

]
.

The gradient of an interval valued function, FCk
v

: Rn → I(R) at x = x∗ is an
interval vector,

∇FCk
v
(x∗) =

(
∂FCk

v
(x∗)

∂x1
,
∂FCk

v
(x∗)

∂x2
, . . . ,

∂FCk
v
(x∗)

∂xn

)T

.

Using the representation of the partial ordering and interval valued function we
can define interval valued convex function as follows.

Definition 2.1. Interval valued convex function.
Suppose D ⊆ Rn is a convex set. For given Ck

v ∈ (I(R))k, the interval valued
function FCk

v
: D → I(R) is said to be convex with respect to � if for every

x1, x2 ∈ D and 0 ≤ λ ≤ 1,

FCk
v
(λx1 + (1 − λ)x2) � λFCk

v
(x1) ⊕ (1 − λ)FCk

v
(x2).

Remark 2.2. From (2.2) and definition of interval valued convex function, one
may observe that FCk

v
is convex with respect to � means fc(t)(λx1 + (1−λ)x2) ≤

λfc(t)(x1) + (1 − λ)fc(t)(x2), for all t ∈ [0, 1]k. So we can conclude that FCk
v

is
convex with respect to � if and only if fc(t)(x) is a convex function on D for every
t ∈ [0, 1]k.
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The following separation theorem is needed to prove the existence of the solution
of (MIOP ).

Proposition 2.3 [6]. Let f be a m-dimensional convex vector function on the
convex set Γ ⊂ Rn. Then either
(I) f(x) <v 0 has a solution x ∈ Γ or (II) pT f(x) ≥ 0 for all x ∈ Γ for some
p �v 0, p ∈ Rm but never both.

3. Methodology

We propose a general multi-objective interval optimization problem as,

(MIOP ) min F(x)
subject to Gp

D
mp
v

(x) � (or �)Bp, p ∈ Λq, (3.5)

where F(x) =
(
F1

C
k1
v

(x),F2

C
k2
v

(x), . . . ,Fm
Ckm

v
(x)
)T

, Fi

C
ki
v

,Gp

D
mp
v

: Rn → I(R),
i ∈ Λm, partial orderings in the constraints (3.5) are as defined in (2.2).

Using expression (2.4), the interval valued functions Fi

C
ki
v

can be represented
in the parametric form as

Fi

C
ki
v

(x) =
{
f i

ci(ti)
(x) | f i

ci(ti)
: Rn → R, ci(ti) ∈ Cki

v

}
.

Using Expression (2.4) and Inequality (2.2) the constraints of (MIOP ) can be
expressed as{

x ∈ Rn|Gp

D
mp
v

(x) � Bp

}
=
{
x ∈ Rn|gp

dp(t′p)(x) ≤ b(t′p)
}
, (3.6)

where gp
dp(t′p) : Rn → R, dp(t′p) ∈ Dmp

v , b(t′p) ∈ Bp.

Throughout this section, we consider t = (t1, t2, . . . , tm)T , ti = (t1i , t
2
i . . . , t

ki

i )T ,

tji ∈ [0, 1], j ∈ Λki , i ∈ Λm, t′p ∈ [0, 1].
The feasible set for (MIOP ) can be expressed as the set,

S =
{
x ∈ Rn|Gp

D
mp
v

(x) � (or �)Bp, p ∈ Λq

}
=
⋂

p∈Λq

{
x ∈ Rn|gp

dp(t′p)(x) ≤ (or ≥)bp(t′p), t
′
p ∈ [0, 1]

}
.

Using expression (2.4), (MIOP ) can be rewritten as

min
x∈S

{
(f1

c1(t1)(x), f
2
c2(t2)(x), . . . , f

m
cm(tm)(x))|ci(ti) ∈ Cki

v , i ∈ Λm

}
.

Since (MIOP ) has several interval valued conflicting objective functions, so ex-
act solution of (MIOP ) may not exist which minimizes all objective functions
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simultaneously. Like general multi-objective problem, solution of (MIOP ) is a
compromise/ Pareto optimal/ efficient solution. For every x, the objective value
of (MIOP ) is an interval vector. So, for any two different feasible points x and
y, the objective values F(x) and F(y) can be compared componentwise like real
vectors. We denote this by

F(x) �v F(y) ⇔ Fi

C
ki
v

(x) � Fi

C
ki
v

(y) ∀i ∈ Λm.

A partial ordering can not compare all intervals. Due to the complexities associ-
ated with partial orderings, involved at different stages of (MIOP ), it is difficult
to derive the efficient solution of (MIOP ) directly like general vector optimiza-
tion problem. To avoid these complications, (MIOP ) is transformed to a general
optimization problem in the subsequent sections. Some gradient free and gradient
based results are established to study the existence of efficient solution of (MIOP )
through the solution of the transformed problem. We accept the partial ordering �
as defined in (2.2) to prove these results and call an efficient solution of (MIOP )
with respect to � as I�-Efficient solution. (Several partial orderings in I(R) exist
in literature (see [5,7]). The results of this paper are based on the partial ordering
in the parametric form. However, similar theory may be developed with respect to
any other partial ordering.) Like vector optimization problem, I�-Efficient solution
and properly I�− Efficient solution of (MIOP ) may be defined as follows.

Definition 3.1. x∗ ∈ S is called an I�-Efficient solution of (MIOP ) if there is
no x ∈ S with

Fi

C
ki
v

(x) � Fi

C
ki
v

(x∗), i ∈ Λm and for at least one j �= i, Fj

C
kj
v

(x) ≺ Fj

C
kj
v

(x∗)

(3.7)

Definition 3.2. x∗ ∈ S is called a properly I�-Efficient solution of (MIOP ) if
x∗ ∈ S is an I�-Efficient solution and there is a positive degenerate interval η̂ so
that for some i ∈ Λm and for every x ∈ S with Fi

C
ki
v

(x) ≺ Fi

C
ki
v

(x∗), at least one

j �= i exists with Fj

C
kj
v

(x∗) ≺ Fj

C
kj
v

(x) and

Fi

C
ki
v

(x∗) � Fi

C
ki
v

(x)

Fj

C
kj
v

(x) � Fj

C
kj
v

(x∗)
� η̂. (3.8)

Example 2. Consider the problem min(x1,x2)∈S{F1(x1, x2), F2(x1, x2)}, where
F1(x1, x2) = [1, 2]x1 ⊕ [1, 3], F2(x1, x2) = [1, 3]x2 ⊕ [1, 2] and S = {(x1, x2) ∈
Rn| x2

1 + x2
2 ≤ 1}.

(x∗1, x
∗
2) = (−

√
3

2 ,− 1
2 ) is properly I�-Efficient solution of (MIOP ).

F1(x∗1, x
∗
2) = [1 − √

3, 3 −
√

3
2 ], F2(x∗1, x

∗
2) = [− 1

2 ,
3
2 ]. Any point of the set S

is (xn
1 , x

n
2 ) = (−

√
2n−1
n ,−1 + 1

n ), n ∈ N . Substituting (xn
1 , x

n
2 ) in place of x, the
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interval inequalities (3.7) becomes

F1(xn
1 , x

n
2 ) �

[
1 −

√
3, 3 −

√
3

2

]
and F2(xn

1 , x
n
2 ) ≺

[
−1

2
,
3
2

]
· (3.9)

Using the partial ordering � and ≺ stated in (2.2) and interval operations stated
in (2.1), (3.9) reduces to the following system of real inequalities.

√
2n− 1
n

≥
√

3
2

and n > 2, n ∈ N (3.10)

The system (3.10) has no solution. Consequently (3.7) has no solution. Hence by
Definition 3.1, (−

√
3

2 ,− 1
2 ) is an I�-Efficient solution of (MIOP ).

Again

F1(x∗1, x
∗
2) � F1(xn

1 , x
n
2 )

F2(xn
1 , x

n
2 ) � F2(x∗1, x∗2)

=

[
−2 −√

3 + 1
n

√
2n− 1

3
2 + 3

n

,
2 −

√
3

2 + 2
n

√
2n− 1

1
n − 7

2

]
·

For a sequence of intervals {[aL
n , a

R
n ]}, limn→∞[aL

n , a
R
n ] = [limn→∞ aL

n , limn→∞ aR
n ]

(see [12]). Hence

lim
n→∞

F1(x∗1, x
∗
2) � F1(xn

1 , x
n
2 )

F2(xn
1 , x

n
2 ) � F2(x∗1, x

∗
2)

=

[
−4 − 2

√
3

3
,

√
3 − 4
7

]
·

Consider η̂ =
[

4−2
√

3
3 , 4−2

√
3

3

]
. Then we can write F1(x

∗
1 ,x∗

2)	F1(x
n
1 ,xn

2 )
F2(xn

1 ,xn
2 )	F2(x∗

1,x∗
2) � η̂. From

Definition 3.2, x∗ = (−
√

3
2 ,− 1

2 ) is a properly I�-Efficient solution of (MIOP ).

Optimality conditions for the existence of I�-Efficient solution of (MIOP ) are
established in the following subsections.

3.1. Optimality condition without using derivative

As discussed earlier, it is difficult to find the efficient solution of (MIOP ) di-
rectly due to the complexities arising in the partial ordering in the set of intervals.
To address this difficulty, we construct a deterministic form of (MIOP ) using some
transformations as follows and prove that an optimal solution of the transformed
problem is an I�-Efficient solution of (MIOP ) in the subsequent theorems.

Consider a vector valued weight function w (or w(t)) =
(w1(t1), w2(t2) . . . , wm(tm))T , wi(ti) > 0, and μi > 0, i ∈ Λm, and construct an
optimization problem

(MIOPμ
w) : min

x∈S
Ψ(x), (3.11)

where Ψ(x) =
∑

i∈Λm
μiψi(x), and ψi(x) =

∫
ki
wi(ti)f i

ci(ti)
(x) dti, dti =

dt1i dt
2
i . . . dt

ki

i and
∫

ki
=
∫ 1

0

∫ 1

0

. . .

∫ 1

0︸ ︷︷ ︸
(ki times)

.
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Note. wi(ti) may be treated as a preference weight function, which has to be
provided by the decision maker. Different preference functions can be provided to
estimate the Pareto optimal value of the model. For every i, wi(ti) = 1 indicates
that the investor’s natural attitude is to estimate the mean. If

∫ 1

0 wi(ti)dti = 1 for
every i then the investor’s inclination is to estimate in between the optimistic and
pessimistic optimal value. In the subsequent results we will see that any selection
of wi with positive value can provide an I�-Efficient solution.

Theorem 3.3. If x∗ ∈ S is an optimal solution of (MIOPμ
w) for some w >v 0

and μ >v 0, then x∗ is an I�-Efficient solution of (MIOP ).

Proof. Let x∗ ∈ S be an optimal solution of (MIOPμ
w), w >v 0 and μ >v 0. Assume

that x∗ is not an I�-Efficient solution of (MIOP ). Then by Definition 3.1, there is
some x ∈ S satisfying (3.7). Using (2.2), the inequalities in (3.7) can be rewritten
as follows.

For some x in S and each ti ∈ [0, 1]ki ,

f i
ci(ti)

(x) ≤ f i
ci(ti)

(x∗) , i ∈ Λm and f j
cj(tj)

(x) < f j
cj(tj)

(x∗) for at least one j �= i.

Since wi(ti) > 0 and μi > 0, the above relations imply that
∑

i∈Λm
μiψi(x) <∑

i∈Λm
μiψi(x∗). This is equivalent to Ψ(x) < Ψ(x∗), which is impossible since

x∗ is the optimal solution of (MIOPμ
w). Hence x∗ is an I�-Efficient solution of

(MIOP ).

Theorem 3.4. If x∗ is an I�-Efficient solution of (MIOP ) with Gp

D
mp
v

(x) � Bp

and Fi

C
ki
v

, Gp

D
mp
v
, p ∈ Λq, i ∈ Λm are interval valued convex functions with respect

to � then there exists a weight function w �v 0 such that x∗ is an optimal solution
of (MIOPμ

w) for any μ >v 0.

Proof. Here S = {x ∈ Rn| Gp

D
mp
v

(x) � Bp, p ∈ Λq} =
⋂

p∈Λq
{x ∈ Rn|gp

dp(t′p)(x) ≤
bp(t′p), t′p ∈ [0, 1]}. Since Gp

D
mp
v

is an interval valued convex function, so by Re-
mark 2.2, gp

dp(t′p)(x) is a convex function. Hence S is a convex set. Suppose x∗ ∈ S

is an I�-Efficient solution of (MIOP ). Then there exists no x ∈ S satisfying (3.7).
From Remark 2.2, we can conclude that f i

ci(ti)
is convex on a convex set S for

each ti. Since (3.7) has no solution, so using the concept of partial ordering and
interval valued function in Section 2, we can conclude that, for every ti in [0, 1]ki ,
the following system has no solution on S.

f i
ci(ti)

(x) − f i
ci(ti)

(x∗) ≤ 0 ∀ i ∈ Λm

and f j
cj(tj)

(x) − f j
cj(tj)

(x∗) < 0

for at least one j �= i

If we denote F (x, t) = (f1
c1(t1)

(x)−f1
c1(t1)(x

∗), . . . , fm
cm(tm)(x)−fm

cm(tm)(x
∗))T then

above system implies that F (x, t) �v 0 has no solution for every t. This implies
that F (x, t) <v 0 has no solution for every t. Hence from Proposition 2.3, there
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exists a real vector u = (u1, u2, . . . , um)T , u �v 0 such that uTF (x, t) ≥ 0 is
true for all x ∈ S. Define wi : [0, 1]ki → R+ ∪ {0} by wi(ti) = ui, i ∈ Λm. Then
uTF (x, t) ≥ 0 is same as

w(t)TF (x) ≥ 0, ∀x ∈ S

This implies that
∑

i∈Λm
wi(ti)f i

ci(ti)
(x) ≥∑i∈Λm

wi(ti)f i
ci(ti)

(x∗) ∀ x ∈ S. Hence
for μi > 0,

∑
i∈Λm

μiψi(x) ≥
∑

i∈Λm
μiψi(x∗) ∀x ∈ S. This is equivalent to Ψ(x) ≥

Ψ(x∗) ∀x ∈ S, which implies that x∗ is an optimal solution of (MIOPμ
w) for w �v 0,

μ >v 0.

Theorem 3.5. If x∗ ∈ S is an optimal solution of (MIOPμ
w), w >v 0, wi are

continuous functions satisfying
∫

ki
wi(ti) dti = 1 and μ >v 0 then x∗ is a properly

I�-Efficient solution of (MIOP ).

Proof. Suppose x∗ is not a properly I�-Efficient solution of (MIOP ). So either
x∗ is not an I�-Efficient solution of (MIOP ) or x∗ is an I�-Efficient solution but
does not satisfy the conditions in (3.8).
(I) Suppose x∗ is not an I�-Efficient solution of (MIOP ). Then by Theorem 3.3,
x∗ is not an optimal solution of (MIOPμ

w) for any choice of w >v 0 and μ >v 0,
which contradicts that x∗ is the optimal solution of (MIOPμ

w).
(II) Let x∗ be an I�-Efficient solution of (MIOP ) but does not satisfy the con-
dition for properly I�-Efficient solution (3.8). One can choose

η = (m− 1)max
i,j

max
ti,t̄i,tj ,t̄j

{
μjwj(tj)wj(t̄j)
μiwi(ti)wi(t̄i)

}
for m ≥ 2, i �= j, ti, t̄i ∈ [0, 1]ki

Since wi is continuous so η exists. Then from Definition 3.2, for some i ∈ Λm and
some x ∈ S with Fi

C
ki
v

(x) ≺ Fi

C
ki
v

(x∗),

Fi

C
ki
v

(x∗) � Fi

C
ki
v

(x)

Fj

C
kj
v

(x) � Fj

C
kj
v

(x∗)
� η̂, ∀j ∈ Λm, i �= j, (3.12)

with Fj

C
kj
v

(x∗) ≺ Fj

C
kj
v

(x) holds for η̂ = [η, η].

(3.12) means for every ti, t̄i,

f i
ci(ti)

(x∗) − f i
ci(t̄i)

(x)

f j
cj(tj)

(x) − f j
cj(t̄j)

(x∗)
> η ≥ (m− 1)

{
μjwj(tj)wj(t̄j)
μiwi(ti)wi(t̄i)

}
∀ j ∈ Λm/{i},

which is

μiwi(ti)wi(t̄i)(f i
ci(ti)

(x∗) − f i
ci(t̄i)

(x)) >

(m− 1)μjwj(tj)wj(t̄j)(f
j
cj(tj)

(x) − f j
cj(t̄j)

(x∗))
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So

μi

∫
ki

∫
kj

wi(ti)wi(t̄i)(f i
ci(ti)

(x∗) − f i
ci(t̄i)

(x))dtidtj > (m− 1)μj

×
∫

ki

∫
kj

wj(tj)wj(t̄j)(f
j
cj(tj)

(x) − f j
cj(t̄j)

(x∗))dtidtj

Since
∫

ki
wi(ti) dti = 1, after integrating the above inequality becomes

μi(ψi(x∗) − ψi(x)) > (m− 1)μj(ψj(x) − ψj(x∗))

Hence ∑
j∈Λm,j 
=i

μi(ψi(x∗) − ψi(x)) > (m− 1)
∑

j∈Λm,j 
=i

μj(ψj(x) − ψj(x∗))

This implies μi(ψi(x∗) − ψi(x)) >
∑

j∈Λm,j 
=i μj(ψj(x) − ψj(x∗)). Hence∑
j∈Λm

μjψj(x∗) >
∑

j∈Λm
μjψj(x).

That is, Ψ(x∗) > Ψ(x). This contradicts the assumption that x∗ is the optimal
solution of (MIOPμ

w).

3.2. Optimality condition using derivative

For a feasible point x∗ ∈ S, denote J(x∗) = {p : Gp

D
mp
v

(x∗) = Bp, p ∈ Λq}. That
is, J(x∗) = {p : gp

dp(t′p)(x
∗) = bp(t′p), ∀ t′p ∈ [0, 1], p ∈ Λq}.

Theorem 3.6. Suppose Fi

C
ki
v

and Gp

D
mp
v

are differentiable functions and convex
with respect to � at x∗ ∈ S of (MIOP ), satisfying∑

i∈Λm

μi∇Fi

C
ki
v

(x∗) ⊕
∑

p∈J(x∗)

νp∇Gp

D
mp
v

(x∗) = 0, (3.13)

where μi > 0, i ∈ Λm and for every p ∈ Λq, νp ≥ 0 if Gp

D
mp
v

(x) � Bp; νp ≤ 0 if
Gp

D
mp
v

(x) � Bp; and νp is unrestricted if p ∈ J(x∗). Then x∗ is an I�-Efficient
solution for (MIOP ).

Proof. Suppose Fi

C
ki
v

and Gp

D
mp
v

are convex at x∗ with respect to �. From Re-

mark 2.2 it is true that f i
ci(ti)

and gp
dp(t′p) are convex functions at x∗ for every

ti, t
′
p. So for all x ∈ S and all ti, t′p,

f i
ci(ti)

(x)−f i
ci(ti)

(x∗) ≥ (x− x∗)T∇f i
ci(ti)

(x∗), ∀ i ∈ Λm (3.14)

gp
dp(t′p)(x) − gp

dp(t′p)(x
∗) ≥ (x− x∗)T∇gp

dp(t′p)(x
∗), ∀ p ∈ Λq (3.15)

From (2.3), Equation (3.13) becomes∑
i∈Λm

μi∇f i
ci(ti)

(x∗) +
∑

p∈J(x∗)

νp∇gp
dp(t′p)(x

∗) = 0, ∀ ti, t′p (3.16)
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For scalers μi > 0, i ∈ Λm,∑
i∈Λm

μi(f i
ci(ti)

(x) − f i
ci(ti)

(x∗)) ≥
∑

i∈Λm

μi(x− x∗)T∇f i
ci(ti)

(x∗) (from (3.14))

= −
∑

p∈J(x∗)

νp(x− x∗)T∇gp
dp(t′p)(x

∗) (from (3.16))

≥−
∑

p∈J(x∗)

νp(g
p
dp(t′p)(x)−gp

dp(t′p)(x
∗)) (from (3.15))

= −
∑

p∈J(x∗)

νp(g
p
dp(t′p)(x) − bp(t′p)

−gp
dp(t′p)(x

∗) + bp(t′p))

From the definition of νp, νp(g
p
dp(t′p)(x) − bp(t′p)) ≤ 0, ∀ x �= x∗ and for p ∈ J(x∗),

νi(g
p
dp(t′p)(x

∗) − bp(t′p)) = 0. Hence the above inequality becomes

∑
i∈Λm

μif
i
ci(ti)

(x) ≥
∑

i∈Λm

μif
i
ci(ti)

(x∗).

Now for any w >v 0,
∑

i∈Λm
μiψi(x) ≥ ∑i∈Λm

μiψi(x∗). This is same as Ψ(x) ≥
Ψ(x∗). That is, x∗ is an optimal solution for (MIOPμ

w), for w, μ >v 0. Hence from
Theorem 3.3, one can conclude that x∗ is an I�-Efficient solution for (MIOP ).

3.3. Numerical examples

Some results of Sections 3.1 and 3.2 are illustrated in the following examples.
Example 3 justifies the application of Theorem 3.3 and Example 4 justifies the
application of Theorem 3.6.

Example 3. Consider the following optimization problem whose objective func-
tions and constraints are nonlinear interval valued functions.

(MIOP ) min {[−2, 0]x1, [−1, 2]x1 ⊕ [1, 1]x2
2}

subject to [0.5, 1.5]x1 ⊕ [1.5, 2.5]x2 � [2.5, 3.5],
[0.5, 1.5]x2

1 ⊕ [1, 1]x2 � [0.05, 0.2],
x1 ≥ 0, x2 ≥ 0.

Denote F1
C1

v
(x1, x2) = [−2, 0]x1,F2

C2
v
(x1, x2) = [−1, 2]x1 ⊕ [1, 1]x2

2,G
1
D2

v
(x1, x2) =

[0.5, 1.5]x1 ⊕ [1.5, 2.5]x2,G2
D2

v
(x1, x2) = [0.5, 1.5]x2

1 ⊕ [1, 1]x2.
Then f1

c1(t1)
(x1, x2) = (−2 + 2t1)x1 and f2

c2(t2)(x1, x2) = (−1 + 3t2)x1 + x2
2,

where t1, t2 ∈ [0, 1]. Consider the weight functions w1(t1) = 1 + t1, w2(t2) =
(1 + t2)2 and μ1 = 3

4 , μ2 = 1
4 . Then ψ1(x1, x2) =

∫ 1

0 w1(t1)f1
c1(t1)(x1, x2)dt1 =

− 4
3x1 and ψ2(x1, x2) =

∫ 1

0 w2(t2)f2
c2(t2)

(x1, x2)dt2 = 23
12x1 + 7

3x
2
2. Using (3.6), the
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parametric form of G1
D2

v
(x1, x2) � [2.5, 3.5] and G2

D2
v
(x1, x2) � [0.05, 0.2] can be

written as g1
d1(t′1)(x1, x2) ≤ (2.5 + t′1) ∀t′1 ∈ [0, 1] and g2

d2(t′2)(x1, x2) ≤ (0.05 +
0.15t′2) ∀t′2 ∈ [0, 1], respectively, where

g1
d1(t′1)

(x1, x2) = (0.5 + t′1)x1 + (1.5 + t′1)x2, g
2
d2(t′2)

(x1, x2) = (0.5 + t′2)x
2
1 + x2.

Hence

S = {(x1, x2) ∈ R2|g1
d1(t′1)(x1, x2) ≤ (2.5 + t′1), g

2
d2(t′2)

(x1, x2) ≤ (0.05 + 0.15t′2);

t′1, t
′
2 ∈ [0, 1], x1 ≥ 0, x2 ≥ 0}

= {(x1, x2) ∈ R2|0.5x1 + 1.5x2 ≤ 2.5, 1.5x1 + 2.5x2 ≤ 3.5, 0.5x2
1 + x2 ≤ 0.05,

1.5x2
1 + x2 ≤ 0.2, x1 ≥ 0, x2 ≥ 0}.

The deterministic problem corresponding to (MIOP ) becomes

(MIOPμ
w) : min

(x1,x2)∈S
−25

48
x1 +

7
12
x2

2

Using LINGO the optimal solution of the above problem is found as (0.3162278, 0).
From Theorem 3.3 it follows that (0.3162278, 0) is an I�-Efficient solutions for
(MIOP ).

This may also be verified using Definition 3.1.

Example 4. Consider the following optimization problem whose objective func-
tions and constraints are nonlinear interval valued convex functions with respect
to �.

min
{
[1, 2]x2

1 ⊕ [2, 3]x2
2 ⊕ [1, 2], [2, 4]x2

1 ⊕ [4, 6]x2
2 ⊕ [3, 5]

}
subject to [1, 6]x1 ⊕ [1, 2]x2 � [1, 12], [1, 2]x1 ⊕ [

2
3
, 1]x2 �

[
11
5
,
21
5

]
.

Denote F1
C3

v
(x1, x2) = [1, 2]x2

1 ⊕ [2, 3]x2
2 ⊕ [1, 2], F2

C3
v
(x1, x2) = [2, 4]x2

1 ⊕ [4, 6]x2
2 ⊕

[3, 5],
G1

D2
v
(x1, x2) = [1, 6]x1 ⊕ [1, 2]x2 and G2

D2
v
(x1, x2) = [1, 2]x1 ⊕ [ 23 , 1]x2.

Then f1
c1(t1)

(x1, x2) = (1 + t11)x
2
1 + (2 + t21)x

2
2 + (1 + t31) and f2

c2(t2)
(x1, x2) =

(2 + 2t12)x
2
1 + (4 + 2t22)x

2
2 + (3 + 2t32), where tj1, t

j
2 ∈ [0, 1], j = 1, 2, 3.

Using (3.6), the parametric form of G1
D2

v
(x1, x2) � [1, 12] and G2

D2
v
(x1, x2) �

[115 ,
21
5 ] can be written as

g1
d1(t′1)

(x1, x2) ≥ (1 + 11t′1) ∀t′1 ∈ [0, 1] and g2
d2(t′2)

(x1, x2) ≥
(

11
5

+ 2t′2

)
∀t′2 ∈ [0, 1],

where g1
d1(t′1)(x1, x2) = (1 + 5t′1)x1 + (1 + t′1)x2, g

2
d2(t′2)(x1, x2) = (1 + t′2)x1 +(

2
3 + 1

3 t
′
2

)
x2. Following the procedure of Example 3 with w1(t11, t

2
1, t

3
1) = 1 + t11t

2
1
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and w2(t12, t
2
2, t

3
2) = 1 + t12t

2
2t

3
2 and μ1 = 1

2 , μ2 = 1
2 , we get an I�-Efficient solution

of this problem as x∗ = (x∗1, x
∗
2) = (9

5 ,
3
5 ).

Since f1
c1(t1) , f2

c2(t2)
, g1

d1(t′1) and g2
d2(t′2) are convex in R2 for every t1, t2, t′1, t′2,

so from Remark 2.2, the interval valued functions F1
C3

v
, F2

C3
v
, G1

D2
v

and G2
D2

v
are

convex functions with respect to �. Here J(x∗) = {2}.

∇F1
C3

v
(x∗1, x

∗
2) =

⎛
⎜⎝
[
mint1∈[0,1]3

∂f1
c1(t1)(x

∗
1,x∗

2)

∂x1
,maxt1∈[0,1]3

∂f1
c1(t1)(x

∗
1 ,x∗

2)

∂x1

]
[
mint1∈[0,1]3

∂f1
c1(t1)(x

∗
1,x∗

2)

∂x2
,maxt1∈[0,1]3

∂f1
c1(t1)(x

∗
1 ,x∗

2)

∂x2

]
⎞
⎟⎠

=

⎛
⎝
[
mint11∈[0,1](1 + t11)

18
5 ,maxt11∈[0,1](1 + t11)

18
5

]
[
mint21∈[0,1](2 + t21)

6
5 ,maxt21∈[0,1](2 + t21)

6
5

]
⎞
⎠ =

([
18
5 ,

36
5

]
[125 ,185 ]

)
.

Similarly, ∇F2
C3

v
(x∗1, x

∗
2) =

(
[ 365 ,725 ]
[245 ,365 ]

)
, ∇G2

D2
v
(x∗1, x

∗
2) =

(
[1,2]
[ 23 , 1]

)
.

Equation (3.13) is equivalent to

μ1∇F1
C3

v
(x∗1, x

∗
2) ⊕ μ2∇F2

C3
v
(x∗1, x

∗
2) ⊕ ν1∇G2

D2
v
(x∗1, x

∗
2) = 0

≡ μ1

(
[ 185 ,365 ]

[125 ,185 ]

)
⊕ μ2

(
[ 365 ,725 ]

[ 245 ,365 ]

)
⊕ ν1

(
[1,2]
[23 ,1]

)
=
(

[0,0]
[0,0]

)

≡ μ1[
18
5
,
36
5

] ⊕ μ2[
36
5
,
72
5

] ⊕ ν1[1, 2] = [0, 0],

and μ1[
12
5
,
18
5

] ⊕ μ2[
24
5
,
36
5

] ⊕ ν1[
2
3
, 1] = [0, 0]

≡ 18
5
μ1 +

36
5
μ2 + ν1 = 0, and

12
5
μ1 +

24
5
μ2 +

2
3
ν1 = 0 (3.17)

μ1 = 1
2 , μ2 = 1

2 , ν1 = − 27
5 satisfy (3.17). Hence by Theorem 3.6, (9

5 ,
3
5 ) is an

I�-Efficient solution of the problem.

4. Conclusion

In this paper, a multi-objective interval optimization problem is solved after
transforming it to a general deterministic optimization problem, which is free
from interval uncertainty. Relation between the solution of original problem and
the transformed problem is established under some assumptions. As we discussed
earlier, different type of nonlinear multi-objective interval optimization problems
are studied by Dunwei Gong et al. [2], Soares et al. [10] and Wu [13]. Dunwei Gong
et al. and Soares et al. have suggested some evolutionary algorithms for MIOP
but they have not studied the conditions for the existence of solution of MIOP .
Wu has studied the conditions for the existence of solution of a particular type of
MIOP whose objective functions are interval valued functions but all constraints
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are real valued functions. This paper discusses the conditions for the existence
of solution of MIOP model whose objective functions as well as constraints are
nonlinear interval valued functions. This may be treated as an advantage of this
paper. While transforming the original model to a deterministic form, a weight
function is required, which has to be provided by the decision maker. Sometimes
selection of the weight function may create a burden to the decision maker, but
choice of the weight function has no effect on the theoretical developments. Proofs
of the results of this paper require a partial ordering in parametric form. Any
other partial ordering can also be used to develop similar methodologies in the
light of present development. However in case of a different partial ordering the
formulation of the transformed problem and the proof of the theorems may differ.
Duality theory plays an important role for the existence of solution of a general
multi-objective interval optimization problem. In the light of this methodology
duality theory for a general multi-objective interval optimization problem can be
established which is the future scope of the present work.

Acknowledgements. The authors thank two anonymous referees whose justified critical
remarks on the original version led to an essential reworking of the paper.
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