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AN SMDP MODEL FOR A MULTICLASS MULTI-SERVER
QUEUEING CONTROL PROBLEM CONSIDERING

CONVERSION TIMES

Zhicong Zhang
1
, Na Li

2
, Shuai Li

1
, Xiaohui Yan

1

and Jianwen Guo
3

Abstract. We address a queueing control problem considering ser-
vice times and conversion times following normal distributions. We for-
mulate the multi-server queueing control problem by constructing a
semi-Markov decision process (SMDP) model. The mechanism of state
transitions is developed through mathematical derivation of the tran-
sition probabilities and transition times. We also study the property
of the queueing control system and show that optimizing the objec-
tive function of the addressed queueing control problem is equivalent
to maximizing the time-average reward.
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1. Introduction

Multi-server queueing problems assuming that customers arrive with Poission
process are widely applied to manufacturing and service industries. These prob-
lems have received remarkable attention from researchers. In literature, research
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on multi-server queueing problems is mainly categorized into two types. Some re-
search focuses on analyzing the performance measures of the queueing systems
in stationary state [7, 9, 18] contending for resources under a given policy, e.g.
to analyze the performance measures such as the utilization of the servers, the
workload balance of the servers, the queue length, the waiting time of the cus-
tomers or the flow time of the customers under FCFS (First Come First Served)
dispatching rule. Some research pursues a good policy by comparing several can-
didate control policies [5]. For example, Borst et al. [3] study a system of parallel
servers handling users of various classes and compare the server assignment only
policy (SA), the coordinated scheduling only policy (CS) and the combined server
assignment and scheduling policy (SACS). Andriansyah et al. [1] study open zero-
buffer multi-server queueing networks in the semi-process and process industries.
They evaluate the performance of the queueing networks in terms of throughput
using the generalized expansion method (GEM) and compare the results with a
simulation method.

Some queueing networks control problems are solved by heuristics such as ge-
netic algorithm [4] or formulated into fluid networks models [13, 16, 17]. However,
many researchers study queueing networks with Markovian property. These queue-
ing networks control problems are formulated into Markov chain models [2] or
Markov decision process (MDP) models [10,12,19] and solved by analytical meth-
ods such as matrix analysis [14] or handled by simulation methods. Harchol-Balter
et al. [8] present the first near-exact analysis of an M/PH/k queue with m > 2
preemptive-resume priority classes. They introduce Recursive Dimensionality Re-
duction (RDR) whose key idea is that the m-dimensionally infinite Markov chain,
representing the m class state space, is recursively reduced to a 1-dimensionally in-
finite Markov chain, that is easily and quickly solved. Xu and Zhang [20] consider a
Markovian multi-server queue with a single vacation (e, d)-policy. They formulate
the service or manufacturing systems with servers’ maintenance performed during
their idle time as quasi-birth-and-death (QBD) processes and develop the various
stationary performance measures for these systems. They also prove several con-
ditional stochastic decomposition properties. Koçagǎ and Ward [11] formulate a
M/M/N+M queue with abandonment as a Markov decision process (MDP), show
that the optimal policy is of threshold form, and provide a simple and efficient it-
erative algorithm. They solve the approximating diffusion control problem (DCP)
and obtain a convenient analytic expression for the infinite horizon expected av-
erage cost as a function of the threshold level. Choudhury and Pallabi [6] and
Pallabi and Choudhury [15] analyze a single server Markovian queuing system
and a multiserver Markovian queuing system with limited waiting space under the
assumption that customers may balk as well renege.

In the following, we address a queueing control problem with unrelated parallel
servers considering sequence-dependent conversion times so as to minimize the
weighted mean flow time. We describe the queueing control problem in Section 2,
formulate the problem as a detailed semi-Markov decision process (SMDP) model,
analyze the state transition mechanism and develop the transition probabilities
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in Section 3, prove the property of the queueing control system in Section 4, and
present a numerical example in the Section 5. The main contributions of this
paper are obtaining analytic expression of the mechanism of state transitions,
i.e. the explicit formulation of state transition probabilities and the probability
distribution of transition times, revealing the property of the multi-server queueing
control problem with normal distributed conversion times and service times, and
showing the equivalence of the objective of the queueing control problem and the
objective of the corresponding SMDP model.

2. Problem statement

In some manufacturing and service industries, e.g. machinery industry and semi-
conductor industry, many production or service control problems consider dynamic
jobs arrival and conversion times. Take the example of semiconductor industry, a
semiconductor test station usually contains several testers which test many types
of semiconductor products. Different types of products arrive at the test station
following Poission processes. Any product must be tested on one tester in the
station. To test a semiconductor product, a tester, a handler and an enabler are
simultaneously in need. A product can be tested with one or more [tester, handler,
enabler] combinations, and one [tester, handler, enabler] combination is qualified
to test one or more products. Therefore, when a tester finishes testing a product,
e.g. product P1, and intends to test another product, e.g. product P2, a qualified
handler and a qualified enabler for product P2 need to be setup on the tester,
which takes a specific amount of conversion time. In some circumstance, both the
conversion times and the testing times follow normal distributions.

The above problem can be modeled as a multi-server queueing control problem
described as follows. There are n classes of customers to be served at a service
station containing m unrelated parallel servers. Different classes of customers arrive
at the service station following independent Poission processes and the jth class
of customers arrive following Poission process with rate λj(1 � j � n). All the
arrived customers wait in a queue until they are selected to be served by a server.
Each customer needs to be served on one server only and each server is qualified to
provide service for the specific classes of customers. The service time of customer
j(1 � j � n) on server i(1 � i � m), denoted pi,j , is stochastic and follows normal
distribution N(μp

i,j , (σ
p
i,j)

2). The servers are unrelated, that is, pi,j is independent
of pk,j for any customer j and all servers i �= k, and pi,j is independent of pi,l for
any server i and all customers j �= l. A conversion takes place when a server finishes
serving a customer and selects another customer to serve. The conversion times
are customer-sequence-dependant and independent of servers. For any server, the
conversion time between customer classes j and l (1 � j, l � n), denoted sj,l, is
stochastic and follows normal distribution N(μs

j,l, (σ
s
j,l)

2). Suppose sj1,l1 and sj2,l2

are independent if j1 �= l1 or j2 �= l2. Trivially, sj,j is zero for any customer j.
Moreover, the conversion times and the service times are independent, that is, pi,j

is independent of sj,l and sl,j for any server i(1 � i � m) and any customers j
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and l(1 � j, l � n). If a server completes serving a customer, then the customer
leaves the service station immediately. The customer classes are classified by their
importance weights. Let Jj,k denote the kth arriving customer of class j, then the
objective function of this queueing control problem is to minimize the expected
weighted mean flow time of all customers defined as:

Min E[f̄ ] = E

[
1∑n

j=1 Nj

∑n

j=1

∑Nj

k=1
wj (cj,k − dj,k)

]
, (2.1)

where dj,k is the arrival time of customer Jj,k, cj,k is the completion time of serving
customer Jj,k, wj is the weight of customer class j, Nj is the number of customers
of class j having been served, and cj,k − dj,k is the flow time of customer Jj,k.

3. The SMDP model

In this section the queueing control problem is formulated into an SMDP model.
An SMDP model includes the following key elements: states, policies, transition
probabilities, and the reward function. A policy determines the action selected at
each state. The transition probabilities indicate the behavior of state transitions.
The reward function evaluates the instant impact of an action on the system at a
transition from one state to another and the value function specifies the value of
a state in the long run which is usually the expected total reward or the expected
average reward from this state.

3.1. State representation

A state describes the characteristics of the system including the information
of the servers and the customers. It is capable of tracking the variation of the
system status. The system state at a decision-making epoch can be represented
by a vector of state variables defined as:

s = [qj(1 � j � n); Bi(1 � i � m); Ti(1 � i � m); ti(1 � i � m)], (3.1)

where qj denotes the number of customers of class j(1 � j � n) waiting in the
queue, Bi(1 � i � m) denotes the customer class that the last customer having
been completely served on server i(1 � i � m) belongs to, Ti(1 � i � m) denotes
the customer class that the customer being served on server i(1 � i � m) belongs
to (Ti equals zero if server i is idle), and ti(1 � i � m) denotes the time starting
from the beginning of the latest conversion on server i(1 � i � m) (ti equals zero
if Ti = 0, i.e. server i is idle). There are 3m + n components in the state vector.

3.2. Actions

We define the action taken at decision-making state s as aΩ, where Ω =
{(i, j)|server i is selected to serve a customer of class j, 1 � i � m, 1 � j � n}. If



A QUEUEING CONTROL PROBLEM CONSIDERING CONVERSION TIMES 619

Figure 1. Scheme of state transitions.

Ti �= 0 for any server i(1 � i � m), then Ω is empty (Ω = ϕ), i.e. a server cannot
select a customer if it is serving another customer. For any server i(1 � i � m), if
Ti = 0, then |{(i, j)|(i, j) ∈ Ω, 1 � j � n}| � 1, i.e. a server cannot select two or
more customers synchronously, where |Δ| is the cardinality (size) of the set Δ. Triv-
ially, for any customer j(1 � j � n), we have |{(i, j)|(i, j) ∈ Ω, 1 � i � m}| � qj ,
i.e. the number of customers selected is not more than the number of customers
waiting in the queue.

Apparently a natural action is to select no customer. For example, when a server
is serving a customer in a state, it is not allowed to select another customer to
serve synchronously. Or if no customer is in the queue in a state, all the idle servers
have to keep idle in this circumstance. That is, if {i|Ti = 0, 1 � i � m} = ϕ or
{j|qj > 0, 1 � j � n} = ϕ, then aΩ selects no customer, i.e. Ω = ϕ. In this case,
we also use aϕ to denote aΩ

3.3. The mechanism of state transitions

This section develops the mechanism of state transitions, focusing on the transi-
tion probabilities and transition times. The transition probabilities and transition
times determine the trace of state transitions. There are two types of system states:
the decision-making states and the interim states. Let sk and s∗k respectively de-
note the kth decision-making state and the kth interim state. As shown in Figure 1,
when the system arrives at decision-making state sk, an action, denoted ak, is se-
lected immediately at state sk and the system immediately transfers from sk to
an interim state, denoted s∗k, with probability 1. The system stays at state s∗k for
some time, called the transition time or the sojourn time, and it transfers into the
next decision-making state, denoted sk+1, and receives reward rk when a trigger-
ing event for state transition takes place. The sojourn time of a decision-making
state is zero.

Specifically, suppose sk is represented as

sk = [qj,k(1 � j � n); Bi,k(1 � i � m); Ti,k(1 � i � m); ti,k(1 � i � m)] . (3.2)

Let τk denote the time at the kth decision-making state. Let Ωk =
{(i, j)|actionak selects server i to serve a customer of class j, 1 � i � m, 1 � j � n}.
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After taking action ak, the system immediately transfers form sk to an interim
state s∗k denoted as

s∗k =
[
q∗j,k(1 � j � n); B∗

i,k(1 � i � m); T ∗
i,k(1 � i � m); t∗i,k(1 � i � m)

]
(3.3)

where B∗
i,k = Bi,k(1 � i � m), t∗i,k = ti,k(1 � i � m), q∗j,k is defined as:

q∗j,k =

{
qj,k − 1 if ∃i ∈ {1, 2, . . . , m}, s.t. (i, j) ∈ Ω

qj,k otherwise
(1 � j � n), (3.4)

and T ∗
i,k is defined as:

T ∗
i,k =

{
j if ∃j ∈ {1, 2, . . . , n}, s.t. (i, j) ∈ Ω

Ti,k otherwise
(1 � i � m). (3.5)

There are two kinds of events triggering a transition from an interim state
to the next decision-making state: arrival of a new customer and completion of
serving a customer on any server. The next decision-making state, denoted sk+1,
is represented as

sk+1 = [qj,k+1(1 � j � n); Bi,k+1(1 � i � m);

Ti,k+1(1 � i � m); ti,k+1(1 � i � m)] (3.6)

If the triggering event for the transition from s∗k to sk+1 is completion of serving a
customer on some server, we have {i|T ∗

i,k = 0, 1 � i � m} �= ϕ In the following we
derive the analytical expression of the transition probabilities and the transition
times respectively when the two kinds of events take place.

3.3.1. The triggering event of state transitions: arrival of a customer

If the triggering event of the state transition from s∗k to sk+1 is arrival of a new
customer (say, belonging to customer class J), we use sJ

k+1 to denote the next
decision-making state sk+1. Let XJ denote the transition time from s∗k to sJ

k+1,
then

qj,k+1 =

{
q∗j,k + 1 if j = J

q∗j,k otherwise
(1 � j � n), (3.7)

ti,k+1 =

{
t∗i,k + XJ if T ∗

i,k > 0

t∗i,k if T ∗
i,k = 0

(1 � i � m), (3.8)

and for all 1 � i � m, we have Bi,k+1 = B∗
i,k and Ti,k+1 = T ∗

i,k.
Let FJ (u) denote the probability of that the triggering event of the state tran-

sition from s∗k to sJ
k+1 under action ak is arrival of a customer of class J and the
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transition time from s∗k to sJ
k+1 is not longer than u, then

FJ(u) = P{XJ � u, the trigger event of the state transition from s∗k to sJ
k+1

is arrival of a customer of class J} = P{0 � XJ � u, XJ < Xj(∀j �= J), sB∗
i ,T∗

i

+ pi,T∗
i
− t∗i > XJ(∀T ∗

i �= 0)|sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)}

=
P{0 � XJ � u, XJ < Xj(∀j �= J), sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > XJ(∀T ∗

i �= 0), sB∗
i ,T∗

i

P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)} ,

+
pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)}
P{sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > 0 (∀T ∗

i �= 0)} (3.9)

where Xj(1 � j � n) denotes the length of the time interval from τk to the time
when the next customer of class j arrives. Since the customers of class J arrive
following Poission process with rate λJ , XJ is a continuous random variable having
exponential distribution with parameter λJ . Hence,

FJ (u) =∫ u

0
P{XJ < Xj(∀j �= J), sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > XJ(∀T ∗

i �= 0)|XJ = x}λJe−λJxdx

P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)}

=

∫ u

0 P{Xj > x (∀j �= J), sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > x(∀T ∗

i �= 0)}λJe−λJxdx

P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)} · (3.10)

Since customers of class j (1 � j � n) arrive following Poission process with rate
λj , we have

P{Xj > x (∀j �= J), sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > x (∀T ∗

i �= 0)}
=P{Xj > x (∀j �= J)}P{sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > x (∀T ∗

i �= 0)}
=P{sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > x (∀T ∗

i �= 0)}
∏

1�j�n,j �=J

P{Xj > x}

=P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > x (∀T ∗

i �= 0)}
∏

1�j�n,j �=J

e−λjx. (3.11)

Because the conversion times and the service times on all servers are independent
random variables, sB∗

i ,T∗
i

+ pi,T∗
i

and sB∗
k
,T∗

k
+ pk,T∗

k
(T ∗

i �= 0, T ∗
k �= 0, 1 � i �= k �

m) are independent random variables. Hence,

P
{
sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > x (∀T ∗

i �= 0)
}

=
∏

1�i�m,T∗
i �=0

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i + x
}
,

(3.12)
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P
{
sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > x (∀T ∗

i �= 0)
}

=
∏

1�i�m,T∗
i �=0

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i
}
.

(3.13)
Since sB∗

i ,T∗
i

follows normal distribution N(μs
B∗

i ,T∗
i
, (σs

B∗
i ,T∗

i
)2) and pi,T∗

i
follows

normal distribution N(μp
i,T∗

i
, (σp

i,T∗
i
)2),sB∗

i ,T∗
i

+ pi,T∗
i

follows normal distribution
N(μs

B∗
i ,T∗

i
+ μp

i,T∗
i
, (σs

B∗
i ,T∗

i
)2 + (σp

i,T∗
i
)2) and thus

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i + x
}

=
∫ +∞

t∗i +x

1√
2π

[
(σs

B∗
i ,T∗

i
)2 +

(
σp

i,T∗
i

)2
]

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(y − μs
B∗

i ,T∗
i
− μp

i,T∗
i
)2

2
[(

σs
B∗

i ,T∗
i

)2

+
(
σp

i,T∗
i

)2
]
⎫⎪⎪⎬
⎪⎪⎭dy, (3.14)

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i
}

=
∫ +∞

t∗i

1√
2π

[(
σs

B∗
i ,T∗

i

)2

+
(
σp

i,T∗
i

)2
]

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(y − μs
B∗

i ,T∗
i
− μp

i,T∗
i
)2

2
[(

σs
B∗

i ,T∗
i

)2

+
(
σp

i,T∗
i

)2
]
⎫⎪⎪⎬
⎪⎪⎭ dy. (3.15)

By equations (3.11)−(3.15), equation (3.10) yields

FJ (u) =

λJ

∫ u

0
exp

(
−

n∑
j=1

λjx

) ∏
1�i�m,T∗

i �=0

∫ +∞
t∗i +x

1√
2π

[(
σs

B∗
i

,T∗
i

)2

+

(
σp

i,T∗
i

)2]

∏
1�i�m,T∗

i �=0

∫ +∞
t∗i

1√
2π

[(
σs

B∗
i

,T∗
i

)2
+

(
σp

i,T∗
i

)2] exp

⎧⎨
⎩−

(
y−μs

B∗
i

,T∗
i
−μp

i,T∗
i

)2

2

[(
σs

B∗
i

,T∗
i

)2

+

(
σp

i,T∗
i

)2]
⎫⎬
⎭ dy

·

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(
y − μs

B∗
i ,T∗

i
− μp

i,T∗
i

)2

2
[(

σs
B∗

i ,T∗
i

)2

+
(
σp

i,T∗
i

)2
]
⎫⎪⎪⎬
⎪⎪⎭ dydx (3.16)

Let PF (s∗k, ak, sJ
k+1) denote the transition probability from s∗k to sJ

k+1 by taking
action ak, then

PF (s∗k, ak, sJ
k+1) = FJ (+∞). (3.17)
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3.3.2. The trigger event of state transitions: completion
of serving a customer

If the triggering event of the next state transition is completion of serving a
customer on a server (say, server I), we use sI

k+1 to denote the next decision-
making state sk+1. Let YI denote the transition time from s∗k to sI

k+1, then

Bi,k+1 =

{
T ∗

i,k if i = I

B∗
i,k if i �= I

(1 � i � m), (3.18)

Ti,k+1 =

{
0 if i = I

T ∗
i,k if i �= I

(1 � i � m), (3.19)

ti,k+1 =

{
t∗i,k + YI if T ∗

i,k > 0 and i �= I

0 otherwise
(1 � i � m), (3.20)

and for any customer class j(1 � j � n), we have qj,k+1 = q∗j,k.

Let GI(u) denote the probability of that the triggering event of the state transi-
tion from s∗k to sI

k+1 under action ak is completion of serving a customer on server
I and the transition time from s∗k to sI

k+1 is not longer than u, then

GI(u) = P{YI � u, the trigger event of the next state transition is completion of
serving a customer on machine I}.

(3.21)
Since YI = sB∗

I ,T∗
I

+ pI,T∗
I
− t∗I , equation (3.21) yields

GI(u) =P{sB∗
I ,T∗

I
+ pI,T∗

I
− t∗I � u, Xj > sB∗

I ,T∗
I

+ pI,T∗
I
− t∗I(1 � j � n), sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > sB∗

I
,T∗

I
+ pI,T∗

I
− t∗I (∀T ∗

i �= 0, i �= I)|sB∗
i ,T∗

i

+ pi,T∗
i
− t∗i > 0 (∀T ∗

i �= 0)}

=
P{0<sB∗

I ,T∗
I
+pI,T∗

I
− t∗I � u, Xj > sB∗

I ,T∗
I
+pI,T∗

I
− t∗I(1 � j � n), sB∗

i ,T∗
i

P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)}

+
pi,T∗

i
− t∗i > sB∗

I ,T∗
I

+ pI,T∗
I
− t∗I(∀T ∗

i �= 0, i �= I)}
P{sB∗

i ,T∗
i

+ pi,T∗
i
− t∗i > 0 (∀T ∗

i �= 0)} · (3.22)
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Let H(x) denote the probability distribution function of sB∗
I ,T∗

I
+pI,T∗

I
, i.e. H(x) =

P{sB∗
I ,T∗

I
+ pI,T∗

I
� x}, then equation (3.22) yields

GI(u) =

∫ t∗I+u

t∗I
P{Xj >sB∗

I ,T∗
I
+pI,T∗

I
−t∗I(1 � j � n), sB∗

i ,T∗
i
+pi,T∗

i
− t∗i > sB∗

I ,T∗
I

P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)}

+
pI,T∗

I
− t∗I(∀T ∗

i �= 0, i �= I)|sB∗
I
,T∗

I
+ pI,T∗

I
= x}dH(x)

P{sB∗
i ,T∗

i
+ pi,T∗

i
− t∗i > 0 (∀T ∗

i �= 0)}

=

∫ t∗I+u

t∗I
P{Xj > x − t∗I(1 � j � n), sB∗

i ,T∗
i

+ pi,T∗
i

> x

P{sB∗
i ,T∗

i
+ pi,T∗

i
> t∗i (∀T ∗

i �= 0)}

+
t∗i − t∗I(∀T ∗

i �= 0, i �= I)}dH(x)
P{sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i (∀T ∗
i �= 0)} . (3.23)

Since the customer of class j(1 � j � n) arrive following independent Poission
process with rate λj , it follows that

P
{
Xj > x − t∗I(1 � j � n), sB∗

i ,T∗
i

+ pi,T∗
i

> x + t∗i − t∗I(∀T ∗
i �= 0, i �= I)

}
= P

{
Xj > x − t∗I(1 � j � n)}P{sB∗

i ,T∗
i

+ pi,T∗
i

> x + t∗i − t∗I(∀T ∗
i �= 0, i �= I)

}
= P{sB∗

i ,T∗
i

+ pi,T∗
i

> x + t∗i − t∗I(∀T ∗
i �= 0, i �= I)}

∏
1�j�n

P{Xj > x − t∗I}

= P{sB∗
i ,T∗

i
+ pi,T∗

i
> x + t∗i − t∗I(∀T ∗

i �= 0, i �= I)}
∏

1�j�n

e−λj(x−t∗I )

= P{sB∗
i ,T∗

i
+ pi,T∗

i
> x + t∗i − t∗I(∀T ∗

i �= 0, i �= I)} exp

⎡
⎣(t∗I − x)

n∑
j=1

λj

⎤
⎦ .

(3.24)

Similar to the derivation of equations (3.12) and (3.13), we have

P{sB∗
i ,T∗

i
+ pi,T∗

i
> x + t∗i − t∗I(∀T ∗

i �= 0, i �= I)}
=

∏
1�i�m,T∗

i �=0,i�=I

P{sB∗
i ,T∗

i
+ pi,T∗

i
> x + t∗i − t∗I}, (3.25)

P{sB∗
i ,T∗

i
+ pi,T∗

i
> t∗i (∀T ∗

i �= 0)} =
∏

1�i�m,T∗
i �=0

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i
}
. (3.26)

By equations (3.24)−(3.26), equation (3.23) yields

GI(u) =

∫ t∗I+u

t∗I
exp

[
(t∗I − x)

n∑
j=1

λj

] ∏
1�i�m,T∗

i �=0,i�=I

P{sB∗
i ,T∗

i
+ pi,T∗

i
> x + t∗i − t∗I}dH(x)

∏
1�i�m,T∗

i �=0

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i
} ·

(3.27)
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Similar to equation (3.14), we have

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> x + t∗i − t∗I
}

=
∫ +∞

x+t∗i −t∗I

1√
2π

[(
σs

B∗
i ,T∗

i

)2

+
(
σp

i,T∗
i

)2
]

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(
y − μs

B∗
i ,T∗

i
− μp

i,T∗
i

)2

2
[(

σs
B∗

i ,T∗
i

)2

+
(
σp

i,T∗
i

)2
]
⎫⎪⎪⎬
⎪⎪⎭dy,

(3.28)

P
{
sB∗

i ,T∗
i

+ pi,T∗
i

> t∗i
}

=
∫ +∞

ti

1√
2π

[(
σs

B∗
i ,T∗

i

)2

+
(
σp

i,T∗
i

)2
]

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(y − μs
B∗

i ,T∗
i
− μp

i,T∗
i
)2

2
[(

σs
B∗

i ,T∗
i

)2

+
(
σp

i,T∗
i

)2
]
⎫⎪⎪⎬
⎪⎪⎭dy. (3.29)

By the definition of H(x), we have

dH(x) =
1√

2π

[(
σs

B∗
I ,T∗

I

)2

+
(
σp

I,T∗
I

)2
] exp

⎧⎪⎪⎨
⎪⎪⎩−

(
x − μs

B∗
I ,T∗

I
− μp

I,T∗
I

)2

2
[(

σs
B∗

I ,T∗
I

)2

+
(
σp

I,T∗
I

)2
]
⎫⎪⎪⎬
⎪⎪⎭ dx.

(3.30)
Hence, it follows from equations (3.27)−(3.29) that

GI (u) =

∫ t∗I+u

t∗I
exp

[
(t∗I − x)

n∑
j=1

λj

] ∏
1�i�m,T∗

i �=0,i�=I

∫ +∞
x+t∗i −t∗I

1√
2π

[(
σs

B∗
i

,T∗
i

)2

+

(
σp

i,T∗
i

)2]

∏
1�i�m,T∗

i �=0

∫ +∞
t∗i

1√
2π

[(
σs

B∗
i

,T∗
i

)2

+

(
σp

i,T∗
i

)2] exp{−
(

y−μs
B∗

i
,T∗

i
−μp

i,T∗
i

)2

2

[(
σs

B∗
i

,T∗
i

)2

+

(
σp

i,T∗
i

)2] }dy

,

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(
y − μs

B∗
i ,T∗

i
− μp

i,T∗
i

)2

2
[(

σs
B∗

i ,T∗
i

)2

+
(
σp

i,T∗
i

)2
]
⎫⎪⎪⎬
⎪⎪⎭dydH (x) (3.31)

where dH(x) is shown as equation (3.30).
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Let PG(s∗k, ak, sI
k+1) denote the transition probability from s∗k to sI

k+1 under
action ak, then

PG(s∗k, ak, sI
k+1) = GI(+∞). (3.32)

3.3.3. The probability distribution of transition times

Assume that random variable V (V = τk+1−τk) denote the transition time from
state sk to state sk+1, and F (x) is the probability distribution function of V , i.e.
F (x) = P{V � x}. Thus,

F (x) =
n∑

j=1

P{0 � Xj � x, the trigger event of the next state transition is arrival

of a customer belonging to class j} +
∑

1�i�m,T∗
i �=0

P{0 � Yi � x, the trigger event

of the next state transition is completion of serving a customer on server i}
=

n∑
J=1

FJ (x) +
∑

1�I�m,T∗
I �=0

GI(x). (3.33)

3.4. The reward function

A reasonable reward function indicates the instant impact of an action on the
queueing system, that is, to link an action with immediate reward. Moreover, the
accumulated reward or the average reward indicates the performance of a control
policy. We define the reward function as follows and prove the property of the
reward function in the fourth section.

Definition 3.1. Let rk(k=1, 2, . . . ) denote the reward received at the transition
from state sk to sk+1 at time τk+1. rk is defined as

rk = −(τk+1 − τk)
∑n

j=1
wjq

∗
j,k, (3.34)

where τk is the time at the kth decision-making state, wj is the weight of customer
class j, and q∗j,k is the number of waiting customers of class j at the kth interim
state which is a component of vector s∗k as equation (3.3).

From the definition of the reward function, rk is computed due to s∗k and the
transition time from s∗k to sk+1. Because s∗k is determined by sk and ak, rk is also
determined by sk and ak. Let S denote the state space. It is easy to shown that
for any s ∈ S we have

P{sk+1 = s, τk+1 − τk � t, rk � r|s0, τ0, a0; s1, τ1, a1; . . . ; sk, τk, ak}
= P{sk+1 = s, τk+1 − τk � t, rk � r|sk, τk, ak}, (3.35)

where τk+1 − τk is the transition time from sk to sk+1. That is, the decision process
associated with (s, τ, a) is a semi-Markov decision process.
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4. The property of the queuing control system

In Section 3 the queuing problem is formulated as an SMDP problem. In the
following we investigate the property of the queuing control system and also show
the relationship of the reward function and the objective of the discussed queueing
control problem.

Lemma 4.1. Let N j
T denote the number of customers of class j arriving by time

T, NT denote the number of customers of all classes arriving by time T. Then

(1)
lim

T→+∞
P{N j

T = k} = 0 ∀1 � j � n, k ∈ Z+ ∪ {0} (4.1)

(2)
lim

T→+∞
P{NT = k} = 0 ∀k ∈ Z+ ∪ {0} (4.2)

Proof.

(1) Since the customers of class j arrive following Poission process with rate λj ,
it follows that

P{N j
T = k} =

1
k!

e−λjT (λjT )k. (4.3)

Hence, for any 1 � j � n, k ∈ Z+ ∪ {0},

lim
T→+∞

P{N j
T = k} = lim

T→+∞
1
k!

e−λjT (λjT )k =
1
k!

lim
T→+∞

e−λjT (λjT )k = 0 (4.4)

(2) Since the customers of class j arrive following Poission process with rate λj ,
N j

T follows Poission distribution with parameter λjT (1 � j � n) and thus NT

follows Poission distribution with parameter
∑n

j=1 λjT . Similarly to the proof of
part (2.1) we obtain equation (4.2).

Lemma 4.2. Suppose C > 0, D > 0, q is a positive integer (q � 1), K is an
non-negative integer (0 � K < q) and j is an integer (1 � j � n). Then

(1)

lim
T→+∞

E

[
C

N j
T + D

]
= 0 ∀1 � j � n (4.5)

(2)

lim
T→+∞

E

[
C

NT + D

]
= 0 (4.6)

(3)

lim
T→+∞

+∞∑
k=q

C

k − K
P{N j

T = k} = 0 (4.7)
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(4)

lim
T→+∞

+∞∑
k=q

C

k − K
P{NT = k} = 0 (4.8)

Proof.
(1) By the definition of mathematical expectation, we have

E

[
C

N j
T + D

]
=

+∞∑
k=0

C

k + D
P{N j

T = k}

=
+∞∑
k=0

C

k + D

(λjT )k

k!eλjT
· (4.9)

Since C > 0 and D > 0, it follows that

C

k + D
P{N j

T = k} � 0 (∀k ∈ Z+ ∪ {0}). (4.10)

Hence,

E

[
C

N j
T + D

]
� 0 (∀T > 0). (4.11)

For arbitrary ε>0, there exists a positive integer W satisfying that W >
max{C/ε − D, 0}. Hence,

C

W + D
< ε. (4.12)

By equation (4.9) we obtain

[
C

N j
T + D

]
=E

W∑
k=0

C

k + D

(λjT )k

k!eλjT
+

+∞∑
k=W+1

C

k + D

(λjT )k

k!eλjT

<
C

D

W∑
k=0

(λjT )k

k!eλjT
+

C

K + D

+∞∑
k=W+1

(λjT )k

k!eλjT
· (4.13)

From inequality (4.12), we have

C

K + D

+∞∑
k=K+1

(λjT )k

k!eλjT
< ε

+∞∑
k=K+1

(λjT )k

k!eλjT

<
ε

eλjT

+∞∑
k=0

(λjT )k

k!

= ε. (4.14)
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Since lim
T→+∞

C
D

W∑
k=0

(λjT )k

k!eλjT = C
D

W∑
k=0

lim
T→+∞

(λjT )k

k!eλjT =0, it follows from inequali-

ties (4.13) and (4.14) that as T → +∞, E[C/(N j
T + D)] < ε for arbitrary ε >

0. According to the definition of limit and the arbitrariness of ε, we arrive at
equation (4.5).

(2) Since NT follows Poission distribution with parameter
∑n

j=1 λjT , similar to
the derivation of equation (4.5) we obtain equation (4.6).

(3) Since q > K, there exist a number M > 1, e.g. M = (k +1)/(k−K)+1, such
that for arbitrary k � q we have 1/(k − K) < M/(k + 1). Then by equation (4.3)
we have

+∞∑
k=q

C

k − K
P{N j

T = k} �
+∞∑
k=q

MC

k + 1
P{N j

T = k}

=
+∞∑
k=q

MC(λjT )k

(k + 1)!eλjT
· (4.15)

Obviously,
+∞∑
k=q

C

k − K
P{N j

T = k} � 0. (4.16)

Hence,

0 �
+∞∑
k=q

C

k − K
P{N j

T = k} � MC
+∞∑
k=q

(λjT )k

(k + 1)!eλjT
· (4.17)

Since

+∞∑
k=q

(λjT )k

(k + 1)!eλjT
=

+∞∑
k=0

(λjT )k

(k + 1)!eλjT
−

q−1∑
k=0

(λjT )k

(k + 1)!eλjT

= E

[
1

N j
T + 1

]
−

q−1∑
k=0

(λjT )k

(k + 1)!eλjT
(4.18)

and from equation (4.5) we have

lim
T→+∞

E

[
1

N j
T + 1

]
= 0, (4.19)

by taking the limit of the two sides of (4.18) we obtain

lim
T→+∞

+∞∑
k=q

(λjT )k

(k + 1)!eλjT
= lim

T→+∞
E

[
1

N j
T + 1

]
− lim

T→+∞

q−1∑
k=0

(λjT )k

(k + 1)!eλjT
= 0.

(4.20)
Then inequality (4.17) and equation (4.20) yield equation (4.7).



630 ZH. ZHANG ET AL.

(4) Since NT follows Poission distribution with parameter
∑n

j=1 λjT , similar to
the derivation of equation (4.7) we obtain equation (4.8).

Lemma 4.3. Let fg denote the flow time of the gth arriving customer, wg denote
the weight of the gth arriving customer. Suppose K is an arbitrary integer and
V = max1�j�n{wj}. If there exists a positive number U such that E[fg] � U for
arbitrary g(g ∈ Z+), then

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
= E

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞

.
Proof. According to the definition of mathematical expectation, we have

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
=

1
K

K∑
g=1

wgE[fg]P{NT = 0}

+
+∞∑
k=1

1
k + K

k+K∑
g=1

wgE[fg]P{NT = k}. (4.21)

In the following we show inequalities (4.22) and (4.23) respectively.

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� E

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞ (4.22)

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� E

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞ (4.23)

Trivially,

+∞∑
k=1

1
k + K

k+K∑
g=1

wgE[fg]P{NT = k} �
+∞∑
k=1

1
k

k+K∑
g=1

wgE[fg]P{NT = k}

=
+∞∑
k=1

1
k

k∑
g=1

wgE[fg]P{NT = k} +
+∞∑
k=1

1
k

k+K∑
g=k+1

wgE[fg]P{NT = k}. (4.24)

Since E[fg] � U and wg � V hold for arbitrary g (g ∈ Z+), then

+∞∑
k=1

1
k

k+K∑
g=k+1

wgE[fg]P{NT = k} �
+∞∑
k=1

KUV

k
P{NT = k}. (4.25)

According to the definition of mathematical expectation, we have

E

[
1

NT

NT∑
g=1

wgfg

]
=

+∞∑
k=1

1
k

k∑
g=1

wgE[fg]P{NT = k}. (4.26)
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It follows from equations (4.21), (4.24)−(4.26) that

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� 1

K

K∑
g=1

wgE[fg]P {NT = 0}

+ E

[
1

NT

NT∑
g=1

wgfg

]
+

+∞∑
k=1

KUV

k
P{NT = k}. (4.27)

It follows from Lemma 4.1 that

lim
T→+∞

P{NT = 0} = 0. (4.28)

Hence,

lim
T→+∞

K∑
g=1

wgE[fg]P{NT = 0} = 0. (4.29)

By equation (4.8), we have

lim
T→+∞

+∞∑
k=1

KUV

k
P{NT = k} = 0. (4.30)

Hence, by equation (4.27) we obtain

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� E

[
1

NT

NT∑
g=1

wgfg

]

+ lim
T→+∞

1
K

K∑
g=1

wgE[fg]P{NT = 0}

+ lim
T→+∞

+∞∑
k=1

KUV

k
P{NT = k}

= E

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞. (4.31)

On the other hand, we have

+∞∑
k=1

1
k + K

k+K∑
g=1

wgE[fg]P{NT = k} �
+∞∑
k=1

1
k + K

k∑
g=1

wgE[fg]P{NT = k}

=
+∞∑
k=1

[
1
k
−
(

1
k
− 1

k + K

)] k∑
g=1

wgE [fg]P{NT = k}

=
+∞∑
k=1

1
k

k∑
g=1

wgE[fg]P{NT = k} −
+∞∑
k=1

K

k(k + K)

k∑
g=1

wgE[fg]P{NT = k}. (4.32)
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By the definition of mathematical expectation we have

E

[
1

NT

NT∑
g=1

wgfg

]
=

+∞∑
k=1

1
k

k∑
g=1

wgE[fg]P{NT = k}· (4.33)

Hence, inequality (4.32) yields

+∞∑
k=1

1
k + K

k+K∑
g=1

wgE[fg]P{NT = k}

� E

[
1

NT

NT∑
g=1

wgfg

]
−

+∞∑
k=1

K

k(k + K)

k∑
g=1

wgE[fg]P{NT = k}· (4.34)

Thus, according to equation (4.21) we have

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� 1

K

K∑
g=1

wgE[fg]P{NT = 0}

+ E

[
1

NT

NT∑
g=1

wgfg

]
−

+∞∑
k=1

K

k(k + K)

k∑
g=1

wgE[fg]P{NT = k}. (4.35)

Since
∑k

g=1 wgE[fg] � kUV , it follows that

+∞∑
k=1

K

k(k + K)

k∑
g=1

wgE[fg]P{NT = k} �
∞∑

k=1

KUV

k + K
P{NT = k}

� E

[
KUV

NT + K

]
· (4.36)

Thus, by inequality (4.35) we obtain

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� 1

K

K∑
g=1

wgE[fg]P{NT = 0}

+ E

[
1

NT

NT∑
g=1

wgfg

]
− E

[
KUV

NT + K

]
· (4.37)

It follows from equations (4.6) and (4.29) that

lim
T→+∞

E

[
KUV

NT + K

]
= 0. (4.38)

Hence, according to inequality (4.37),

E

[
1

NT + K

NT +K∑
g=1

wgfg

]
� E

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞. (4.39)

Hence, by inequalities (4.31) and (4.39) the result follows.
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Lemma 4.4. Let fg denote the flow time of the gth arriving customer. Suppose
λ =

∑n
j=1 λj. If there exists a positive number U such that E[fg] � U for arbitrary

g (g ∈ Z+), then

E

[
1
T

NT∑
g=1

wgfg

]
= λE

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞. (4.40)

Proof. By the definition of mathematical expectation we have

E

[
1
T

NT∑
g=1

wgfg

]
=

+∞∑
k=1

1
T

k∑
g=1

wgE[fg]P{NT = k}

= λ

+∞∑
k=1

1
λT

k∑
g=1

wgE[fg]
e−λT (λT )k

k!

= λ

+∞∑
k=1

k∑
g=1

wgE[fg]
e−λT (λT )k−1

k!
· (4.41)

Let i = k − 1, then equation (4.41) yields

E

[
1
T

NT∑
g=1

wgfg

]
= λ

+∞∑
i=0

{
i+1∑
g=1

wgE[fg]
e−λT (λT )i

i!
1

i + 1

}

= λ

+∞∑
i=0

1
i + 1

i+1∑
g=1

wgE[fg]P{NT = i}

= λE

[
1

NT + 1

NT +1∑
g=1

wgfg

]
. (4.42)

It follows from Lemma 4.3 that

E

[
1

NT + 1

NT +1∑
g=1

wgfg

]
= E

[
1

NT

NT∑
g=1

wgfg

]
as T → +∞. (4.43)

Hence, by equations (4.42) and (4.43) the result follows.

Theorem 4.5. Let Nd
T denote the number of decision-making states by time T, dg

denote the arrival time of the gth arriving customer, and cg denote the completion
time of the gth arriving customer. Suppose there exists a positive number U such
that E[fg] � U for arbitrary g (g ∈ Z+). Let rt

T denote the time-average reward by
time T, fT denote the average flow time of the customers served by time T, which
are defined as
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rt
T =

1
T

NT∑
k=1

rk, (4.44)

fT =
1

NT

NT∑
g=1

wgfg, (4.45)

where fg = cg − dg. Let δg(t) denote an indicator function defined as

δg(t) ={
0 if the gth customer has not arrived or has been completedly served by time t
1 if the gth customer is waiting or being served at time t

(4.46)

Then we have
E
[
rt
T

]
= −λE[fT ] as T → +∞. (4.47)

Proof. By equations (3.34) and (4.44) we obtain

rt
T =

1
T

Nd
T∑

k=1

−(τk+1 − τk)
n∑

j=1

wjq
∗
j,k

= − 1
T

Nd
T∑

k=1

∫ τk+1

t=τk

N
T∑

g=1

wgδg(t)dt

= − 1
T

Nd
T∑

k=1

N
T∑

g=1

∫ τk+1

t=τk

wgδg(t)dt

= − 1
T

N
T∑

g=1

Nd
T∑

k=1

∫ τk+1

t=τk

wgδg(t)dt

= − 1
T

NT∑
g=1

∫ T

t=0

wgδg(t)dt

= − 1
T

NT∑
g=1

wgfg. (4.48)

Hence,

E[rt
T ] = −E

[
1
T

NT∑
g=1

wgfg

]
. (4.49)

It follows from Lemma 4.4 that

E
[
rt
T

]
= −λE

[
1

NT

NT∑
g=1

wgfg

]
as T → ∞. (4.50)
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According to equations (4.45) and (4.50) the result follows.
By Theorem 4.5 the reward function has the following property:

Proposition 4.6. Minimizing all the customers’ expected weighted mean flow
time defined as equation (2.1) is equivalent to maximizing the expected time-average
reward in the SMDP model when the queuing system runs infinite time.

From the above proposition, we can see that solving the discussed queueing
control problem is equivalent to solving the SMDP with average reward objective
formulated in Section 3. In other words, to find an optimal policy for the queueing
control problem is equivalent to find an optimal policy for the SMDP.

5. A numerical example

In this section we present a numerical example to illustrate the computation
of transition probabilities and the probability distribution of transition times and
demonstrate the property of the multi-server queueing control problem. In this
queueing control problem, there are 3(n = 3) classes of customers to be served at
a service station containing 3(m = 3) unrelated parallel servers. The rates of the
Poission processes for customers’ arrival are λ1 = 0.1, λ2 = 0.05, and λ3 = 0.04.
The mean matrix of the normal distributions for service times is

{μp
i,j}(1�i�3,1�j�3) =

⎡
⎣ 10.47 5.98 8.12

5.10 13.52 16.91
11.36 6.68 13.92

⎤
⎦ .

The standard deviation matrix of the normal distributions for service times is

{σp
i,j}(1�i�3,1�j�3) =

⎡
⎣2.99 1.17 1.87

1.31 1.57 2.88
3.05 2.16 3.32

⎤
⎦ .

The mean matrix of the normal distributions for conversion times is

{μs
j,l}(1�j�3,1�l�3) =

⎡
⎣0 21.40 16.10

23.30 0 29.90
25.90 21.90 0

⎤
⎦ .

The standard deviation matrix of the normal distributions for conversion times is

{σs
j,l}(1�j�3,1�l�3) =

⎡
⎣0 2.64 3.59

3.14 0 4.19
2.75 3.21 0

⎤
⎦ .

Suppose the kth decision-making state is represented as

sk = [2, 3, 4; 1, 2, 3; 0, 1, 2; 0, 4.6, 5.8].
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Thus the first server is idle and the other servers are busy at this decision-
making epoch. Suppose ak selects a customer of the second class to serve on the
first server. Then the system immediately transfers into the kth interim state s∗k
represented as

s∗k = [2, 2, 4; 1, 2, 3; 2, 1, 2; 0, 4.6, 5.8]

By equations (3.16) and (3.17) the probability of that the triggering event of
the state transition from s∗k to sk+1 is arrival of a customer of the first class is
computed as

PF

(
s∗k, ak, s1

k+1

)
= F1 (+∞)

=
0.1

∫+∞
0 e−0.19x

∫ +∞
x

exp

{
− (y−21.40−5.98)2

2(2.642+1.172)

}
√

2π(2.642+1.172)
dy
∫ +∞
4.6+x

exp

{
− (y−23.30−5.10)2

2(3.142+1.312)

}
√

2π(3.142+1.312)
dy

∫ +∞
0

exp

{
− (y−21.40−5.98)2

2(2.642+1.172)

}
√

2π(2.642+1.172)
dy
∫ +∞
4.6

exp

{
− (y−23.30−5.10)2

2(3.142+1.312)

}
√

2π(3.142+1.312)
dy

×
∫ +∞
5.8+x

exp

{
− (y−21.90−6.68)2

2(3.212+2.162)

}
√

2π(3.212+2.162)
dydx

∫ +∞
5.8

exp

{
− (y−21.90−6.68)2

2(3.212+2.162)

}
√

2π(3.212+2.162)
dy

= 0.515.

Similarly, the probabilities of that the triggering event of the state transition
from s∗k to sk+1 is arrival of a customer of the second class and of the third class
are respectively computed as

PF

(
s∗k, ak, s2

k+1

)
= F2(+∞) = 0.256,

PF

(
s∗k, ak, s3

k+1

)
= F3(+∞) = 0.205.

By equations (3.30), (3.31) and (3.32), the probability of that the triggering event
of the state transition from s∗k to sk+1 is completion of serving a customer on the
first server is computed as

PG

(
s∗k, ak, s1

k+1

)
= G1 (+∞)

=

∫ +∞
0 e0.19(5.8−x) ∫ +∞

x+4.6

exp

{
− (y−23.30−5.10)2

2(3.142+1.312)

}
√

2π(3.142+1.312)
dy

∫ +∞
x+5.8

exp

{
− (y−21.90−6.68)2

2(3.212+2.162)

}
√

2π(3.212+2.162)
dy

∫ +∞
0

exp

{
− (y−21.40−5.98)2

2(2.642+1.172)

}
√

2π(2.642+1.172)
dy

∫ +∞
4.6

exp

{
− (y−23.30−5.10)2

2(3.142+1.312)

}
√

2π(3.142+1.312)
dy

×
exp

{
− (x−21.40−5.98)2

2(2.642+1.172)

}
√

2π(2.642+1.172)
dx

∫ +∞
5.8

exp

{
− (y−21.90−6.68)2

2(3.212+2.162)

}
√

2π(3.212+2.162)
dy

= 0.003.
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Similarly, the probabilities of that the triggering event of the state transition
from s∗k to sk+1 is completion of serving a customer on the second server and on
the third class are respectively computed as

PG(s∗k, ak, s2
k+1) = G2(+∞) = 0.008,

PG(s∗k, ak, s3
k+1) = G3(+∞) = 0.013.

By equations (3.16), (3.31) and (3.33), the probability of that the transition time
from state sk to state sk+1 is less than or equal to 10 is computed as

F (10) =
n∑

J=1

FJ (10) +
∑

1�I�m,T∗
I �=0

GI(10)

=
3∑

J=1

FJ (10) +
3∑

I=1

GI(10)

= 0.850. (5.1)

To demonstrate the result of Theorem 4.5, we run the SMDP model of the above
numerical example under a stochastic policy with 30 random instances. Define an
index GAP as

GAP = |fT − rT /λ|, (5.2)

where fT denotes the average flow time of the customers served by time T averaged
over 30 random instances and rT denotes the time-average reward by time T
averaged over 30 random instances. Figure 2 shows the variation of GAP value
with respect to the number of customers served. As shown in Figure 2, GAP value
asymptotically decreases to zero, which means fT asymptotically approaches rT /λ
and demonstrates equation (4.47).

6. Concluding remarks

This paper studies a multi-server queueing control problem with customers of
various classes considering service times and conversion times following normal dis-
tributions. We convert the queueing control problem into a particular SMDP model
by constructing elaborate state representation, actions and the reward function, in-
vestigate the mechanism of state transitions by deriving the analytic expression of
the transition probabilities and transition times, study the property of the queuing
control system and show the equivalence of the queueing control objective and the
solution to the modeled SMDP. Although the service times and conversion times
follow normal distribution in this study, the method for developing the mecha-
nism of state transitions is also applicable for service times and conversion times
following general distribution functions. The technique for formulating queueing
networks control problems with adaptive multi-state service stations is worthy of
further investigation.
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Figure 2. Variation of GAP value with respect to the number of
customers served.
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