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Abstract. Optimization is an important tool widely used in for-
mulation of the mathematical model and design of various decision
making problems related to the science and engineering. Generally,
the real world problems are occurring in the form of multi-criteria
and multi-choice with certain constraints. There is no such single
optimal solution exist which could optimize all the objective func-
tions simultaneously. In this paper, ε-constraint method along with
Karush−Kuhn−Tucker (KKT) condition has been used to solve multi-
objective Geometric programming problems(MOGPP) for searching
a compromise solution. To find the suitable compromise solution for
multi-objective Geometric programming problems, a brief solution pro-
cedure using ε-constraint method has been presented. The basic concept
and classical principle of multi-objective optimization problems with
KKT condition has been discussed. The result obtained by ε-constraint
method with help of KKT condition has been compared with the result
so obtained by Fuzzy programming method. Illustrative examples are
presented to demonstrate the correctness of proposed model.
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1. Introduction

Geometric programming(GP) is a powerful optimization technique developed to
solve a class of non-linear optimization programming problems especially found in
engineering design and manufacturing. In 1961, Duffin et al. [4] put a foundation
stone to solve a wide range of engineering design problems developing the basic
theories of Geometric programming and have shown its application in their text.
In their work, they have considered many engineering design problems where an
objective function consisting of component cost under certain constraints which
are in the form of posynomials. Several methods have been proposed by the au-
thors [1,2,5–7] to solve various non-linear programming problems subject to linear
and non-linear constraints. A lot of work have been done in the field of production,
transportation, distribution of products and risk management as well as inventory
model in market planning [16–18,20, 21, 36]. The recent application of GP can be
found in various fields including circuit design [22,23], information theory [24,25],
queue proportional scheduling in fading broadcast channels [26] and also in cer-
tain convex optimization problems [31]. Since the recent real world problems are
multi choice problems, optimizing a combination of objectives has the advantages
of producing a single compromise solution require no further discussion with deci-
sion makers. If the optimal solution can not be accepted either due to function used
or to an inappropriate setting of the coefficient of combining functions, a new runs
of optimizer may be required until a suitable solution is found. Now-a-days, GP
techniques have been used extensively to solve various engineering design problems
which are in the form of multi-objective functions. These multi-objective functions
with given constraints are usually incommensurate and conflict with one another.
It indicates, multi-objective optimization problem does not have a single solution
that could optimize all objective functions simultaneously. However, the decision
makers are always in search of a most compromise solution that could optimize
all objective functions, known as pareto optimal solution. In this paper, we have
discussed a theory which has been developed for locating the points of maxima and
minima of constrained and unconstrained nonlinear optimization problems, pop-
ularly known as Kuhn−Tucker theory. Though, it is not well suited for computa-
tional purposes, it provides a set of necessary and sufficient conditions for locating
the point of optimality. Sinha et al. [42] used KKT transportation approach for
solving multi-objective multi-level linear programming problems. Luptacik [45], in
his paper presented optimization theory as an instrument for qualitative economic
analysis using KKT theory. He has shown the relationship of Kuhn−Tucker condi-
tions to their saddle points of the Lagrangian function in finding optimal solutions.
It has been observed that there exist no unified approach to dualization in multi-
objective optimization. In multi-objective optimization problem there exist a set
of pareto optimal solution instead of unique solution. Luptacik also developed the
parametric form of duality for a multi-objective optimization problem which can
be used for solving multi-objective geometric programming problems and as an ap-
plication he developed and analysed a nonlinear model of environmental control.
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In an another paper, he has studied the optimal behaviour of a monopolistic firm
and subsequently developed a model how to maximize revenue and profit based
on neoclassical theory of monopolistic firm. In economics and engineering design,
there are so many problems leading to geometric programming models involving
several objectives or criteria that must be considered simultaneously. In a paper
Pascual and Israel [46] have generated an efficient and properly efficient solutions
of geometric programming problems using vector valued criteria and also proposed
a new parametric problem with a nonlinear combination of objectives via power
function. Soorpanth [32] has solved multi-objective analog circuit design problems
using GP technique. Waiel et al. [33] have solved multi-objective transportation
problems under fuzziness. In a recent paper, Ray et al. [34] developed multi-item
inventory models of deteriorating items with space constraints under fuzzy environ-
ment. Cao.bing-yuan, first extended GPP in the study of fuzzy state problems and
consider the situation where co-efficient are fuzzy [6,7,27,28]. Biswal [2] developed
fuzzy programming with non-linear membership functions in the study of multi-
objective Geometric programming problems. Some other classical methods such
as Weighting mean and ε-constraint method are also used to solve multi-objective
Geometric programming problems with fuzzy parameters. According to Hwang
et al. [29], the methods for solving multi-objective optimization problems can be
classified into three categories such as priori method, the interactive method and
generation method. The priori methods are based on the goals or weights set by
the decision maker before the solution process, being a difficult task for obtaining
a compromise solution. In the interactive methods phases of dialogue with decision
maker are changed with phases of calculation and the process usually converges
towards the most preferred solution after a few iteration. The draw back in this
method is decision maker can not see the whole pareto front or an approximation
in it. The generation methods are less popular due to their computational effort
in finding pareto optimal solutions. Various generation methods are found in lit-
erature which are presented by [12–14]. The ultimate aim of the multi-objective
optimization is to achieve three important goals. First, the pareto front should be
very close as possible as to the true pareto front. Secondly, the solution best known
as pareto optimal should be uniformly distributed and finally the best pareto front
should capture the whole spectrum of the pareto front.

In this paper we have applied ε-constraint method to solve a class of multi-
objective Geometric programming problems. Using ε-constraint method, we can
optimize one of the objective function at a time where other objectives are kept
in the constraint part of the model as defined in Section 5. This method is found
more suitable than other generating methods used for obtaining pareto optimal
solutions. After obtaining lower and upper bounds of each objective function with
the given constraints, we have generated a set of pareto optimal solution. The result
so obtained has been compared with its corresponding solution obtained by fuzzy
programming method. Berube et al. [43] in their recent paper have studied the
multi-objective optimization problems by solving a series of single objective sub-
problems, where all but one objectives are transformed into constraints. They have
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also shown, how the Pareto front of bi-objective problems can be efficiently gener-
ated with the [epsilon]-constraint method. In a recent paper, Laumanns et al. [44]
have discussed for generating or approximating the Pareto set of multi-objective
optimization problems by solving a sequence of constrained single-objective prob-
lems. The requirement of determining the constraint value a priori is shown to be
a serious drawback of the original epsilon-constraint method. Therefore they have
proposed a new adaptive scheme to generate appropriate constraint values during
the run.

The organization of this paper is as follows: Following introduction, the concept
of MOGPP has been discussed in Section 2. General mathematical formulation of
KKT condition and solution of Geometric programming problem using KKT con-
dition have been discussed in Sections 3 and 4 respectively, where as ε-constraint
method has been discussed in Section 5. Standard GP with ε-constraint method
and its corresponding dual GP have been discussed in Sections 6 and 7 to find most
compromise solution of the multi-objective functions. Fuzzy programming method
has been discussed in Section 8, to compare pareto optimal solution so obtained
by ε-constraint method with its counterpart fuzzy solution and the convergence
analysis of pareto set of solution has been discussed in Section 9. An illustrative
example have been incorporated in Section 10 and finally some conclusions drawn
from the results have been presented in Section 11.

2. Multi-objective geometric programming

problem(MOGPP)

Optimization is an important activity in many fields of science and engineering.
The classical framework for optimization is to find the optimum value of objective
functions with respect to the given constraints. All the Conventional type opti-
mization methods seek to find a single optimal solution based on a weighted sum
of all objectives. If all objectives get better or worse together, then conventional
approach can effectively find the optimal solution. In this case, a multi-objective
optimization study should be performed which provides multiple tradeoff solutions
among the objectives. A solution of multi-objective optimization problem is con-
sidered to be more a concept than a definition. In multi-objective optimization
problems, what is optimal in terms of one of the objectives is usually non-optimal
for the remaining objectives. Consequently, there is no single optimal solution exist
for a multi-objective optimization problem. Hence we have to search for a solution
which is acceptable to the decision maker. The method of optimizing systemati-
cally and simultaneously a collection of objective function is called multi-objective
optimization or vector optimization. A multi-objective geometric programming
problem can be stated as:

Find x = (x1, x2, . . . , xn)T so as to

min : fk
0 (x) =

T k
0∑

t=1

Ck
0t

n∏
j=1

x
ak
0tj

j , k = 1, 2, . . . , p (2.1)
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subject to

gi(x) =
Ti∑

t=1

Cit

n∏
j=1

x
aitj

j ≤ 1, i = 1, 2, . . . ,m (2.2)

xj > 0, j = 1, 2, . . . , n (2.3)

where:

Ck
0t > 0 for all k and t;

Cit > 0 for all i and t;
ak
0tj and aitj are real numbers for all i, j, k, t;
T k

0 = number of terms present in the kth objective function fk
0 (x);

Ti= number of terms present in the ith constraint.

In the above multi-objective Geometric programming problem, there are p number
of minimization type objective functions, m number of inequality type constraints
and n number of strictly positive decision variables.

The multi-objective Geometric programming problem defined in (2.1)−(2.3) is
considered as a Vector-minimization problem. It is assumed that the problem has
an optimal compromise solution.

According to Pascual and Israel, a vector minimization problem is formu-
lated in terms of a subset X of Rm and a vector valued function F (x) =
[f1(x), f2(x), . . . , fs(x)] which is defined on X, where X is the feasible set and
F is the vector valued criterion function whose components are to be minimized
in X.

A point x0 ∈ X is an efficient solution of vector minimization problem if x ∈ X ,
F (x) ≤ F (x0) ⇒ x = x0. The point x0 is an properly efficient solution of a vector
minimization problem if it is efficient and if there is a scalarM > 0 such that
xi ∈ X , fi(x) < fi(x0) ⇒ [fi(x) − fi(x0)]/[fj(x) − fj(x0)] ≤ M for some j with
fj(x) > fj(x0). If x0 is an optimal solution of a primal program, then x0 will be
an efficient solution of vector minimization problem.

3. Karush−Kuhn−Tucker (KKT) condition

The theory which has been developed for locating the points of maxima and
minima of constrained and unconstrained optimization problems is known as
Kuhn−Tucker theory. It provides a set of necessary and sufficient conditions for
checking whether the given point is point of optimality or not. This section pri-
marily deals with developing the necessary form of KKT condition for identifying
stationary points of constrained non-linear optimization problems. The general
form of KKT condition can be stated as follows.

In a general optimization problem, we have to find x = (x1, x2, . . . , xn) so as to

min : f(x) = f(x1, x2, . . . , xn) (3.1)
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subject to

gi(x) ≤ bi, i = 1, 2 . . . ,m
i .e. bi − gi(x) ≥ 0, i = 1, 2 . . . ,m (3.2)

where, x ≥ 0. (3.3)

Now, we can write the above optimization problem using KKT condition as follows:

min : F (x) = f(x) −
m∑

i=1

λi

(
bi − gi(x) − φ2

i

)
(3.4)

subject to the following conditions are satisfied.

∂f(x)
∂xj

−
m∑

i=1

λi
∂

∂xj
(bi − gi(x) − φ2

i ) = 0, j = 1, 2, 3, . . . , n (3.5)

λi(bi − gi(x)) = 0, i = 1, 2, 3, . . . ,m (3.6)

(bi − gi(x)) ≥ 0, i = 1, 2, 3, . . . ,m (3.7)

λi ≥ 0, i = 1, 2, 3 . . . ,m and x ≥ 0 (3.8)

where λi’s are constant known as Lagrange’s multiplier and φi is a complimentary
surplus of ith constraint.

The KKT conditions are necessary conditions for a local maximum or minimum.
They don’t guarantee that a point satisfying them is actually a local maximum or
minimum.

4. Geometric programming problem(GPP) with KKT

condition

Minimising a posynomial subject to inequality constraints is known as geometric
programming problem. A constrained posynomial GPP is represented as follows:

min : f0(x) =
T0∑
t=1

c0t

n∏
j=1

x
a0tj

j (4.1)

subject to

gi(x) =
Ti∑

t=1

cit

n∏
j=1

x
aitj

j ≤ 1

i .e. 1 − gi(x) ≥ 0 (4.2)
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where
i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , n. and xj > 0. (4.3)

Here the posynomial f0(x) is an objective function containing T0 number of terms
where as posynomial gi(x) contains Ti, (i = 1, 2, 3, . . . ,m) number of inequality
constraints.

The standard GPP using KKT condition can be represented as:

min : F0(x) =
T0∑
t=1

c0t

n∏
j=1

x
a0tj

j −
Ti∑

t=1

λt

⎛
⎝−cit

n∏
j=1

x
aitj

j + 1 − ψ2
t

⎞
⎠ (4.4)

subject to

∂

∂xj

⎛
⎝ T0∑

t=1

c0t

n∏
j=1

x
a0tj

j

⎞
⎠ − ∂

∂xj

⎛
⎝ Ti∑

t=1

λt

⎛
⎝−cit

n∏
j=1

x
aitj

j + 1 − ψ2
t

⎞
⎠

⎞
⎠ = 0 (4.5)

Ti∑
t=1

λt

⎛
⎝−cit

n∏
j=1

x
aitj

j + 1

⎞
⎠ = 0 (4.6)

Ti∑
t=1

⎛
⎝−cit

n∏
j=1

x
aitj

j + 1

⎞
⎠ ≥ 0 (4.7)

λt ≥ 0 and x ≥ 0. (4.8)

where λt’s are known as Lagrange multiplier and ψt is a complimentary surplus
of tth constraint.

5. ε-Constraint method

A method which overcomes some of the convexity problems of the weighted
sum technique is known as ε-constraint method. This method involves minimizing
a primary objective and expressing the other objectives in the form of inequality
constraints.

The ε-constraint method was proposed by Haimes et al. [30] for generat-
ing Pareto optimal solutions for the multi-objective optimization problem. This
method generates the non inferior solutions of multi-objective optimization prob-
lems by considering one objective function at a time as primary one and converting
the remaining objective functions as constraints. In other words, it minimizes one
objective function and simultaneously maintain the maximum acceptability level
for other objective function. The ε-constraint method is defined as:

min : fk
0 (x), where k ∈ {1, 2, . . . , p} (5.1)
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subject to
f j
0 (x) ≤ εj , j = 1, 2, . . . , p, j �= k (5.2)

gi(x) ≤ 1, i = 1, 2, . . . ,m (5.3)

we define
Lj ≤ εj ≤ Uj , j = 1, 2, . . . , p, j �= k

where
Lj = min

∀x∈X
f j
0 (x), j = 1, 2, . . . , p

and
Uj = max

∀x∈X
f j
0 (x), j = 1, 2, . . . , p

x ∈ X, X being the feasible region.

Changing the value of εj in the interval [Lj, Uj ], j=1,2,. . . , p, we generate the most
preferred non-inferior solution of the MOGPP.

6. Standard MOGPP with ε-constraint method

For any non-linear multi-objective optimization problem, the solution obtained
by ε-constraint method yields a weak pareto optimal solution [30]. A true pareto
optimal solution can be obtained, either if the solution is unique or if the opti-
mizations are done for all the objectives before reporting the solution [37]. As our
proposed method is designed to deals with the real valued problems which are
likely to have a continuous Pareto front, a systematic variation of εj will yields a
set of non-dominated solution. However, the determination of the minimum level
and assumption about the form of preference in finding the preferred decisions
are often questionable in real world problems. The ε-constraint method is also
applicable to a non-convex vector optimization problem.

The ε-constraint method has been incorporated into the surrogate worth trade-
off method as an interactive decision making method. The bounded objective
method is another variation of this approach.

Using ε-constraint method, the present multi-objective Geometric programming
problem (2.1)−(2.3) can be redefined as a single-objective Geometric programming
problem as:

min : fk
0 (x) =

T k
0∑

t=1

n∏
j=1

x
ak
0tj

j , k ∈ {1, 2, . . . , p} (6.1)

subject to

f r
0 (x) =

T r
0∑

t=1

Cr
0t

n∏
j=1

x
ar
0tj

j ≤ εr, r = 1, 2, . . . , . . . , p, r �= k (6.2)
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and

gi(x) =
Ti∑

t=1

Cit

n∏
j=1

x
aitj

j ≤ 1, i = 1, 2, . . . ,m (6.3)

xj > 0, j = 1, 2, . . . , n (6.4)

where εr > 0, for all r.
Here we have p number of single-objective geometric programming problems.
These problems can be further simplified as:

min : f̂k
0 (x) =

T k
0∑

t=1

Ĉk
0t

n∏
j=1

x
ak
0tj

j , k ∈ {1, 2, . . . , p} (6.5)

subject to

f̂ r
0 (x) =

T r
0∑

t=1

Cr
0t

εr

n∏
j=1

x
ar
0tj

j ≤ 1, r = 1, 2, . . . , p, r �= k

f̂ r
0 (x) =

T r
0∑

t=1

Ĉr
0t

n∏
j=1

x
ar
0tj

j ≤ 1, r = 1, 2, . . . , p, r �= k (6.6)

gi(x) =
Ti∑

t=1

Ĉit

n∏
j=1

x
aitj

j ≤ 1, i = 1, 2, . . . ,m (6.7)

xj > 0, j = 1, 2, . . . , n

where

Ĉr
0t =

Cr
0t

εr
(6.8)

for all r, t, , r �= k

Ĉk
it = Ck

it, i = 1, 2, . . . ,m and f̂k
0 (x) = fk

0 (x) (6.9)

for k = 1, 2, . . . , p.
The GPP has p+m− 1 constraints and n number of decision variables.
The degree of difficulty of this problem can be defined as:

d =
p∑

k=1

T k
0 +

m∑
i=1

Ti − n− 1 (6.10)
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7. Dual form of MOGPP with ε-Constraint method

The dual form of Geometric programming problems plays an important role in
solving complex types of single and multi-objective optimization problems. It has
been verified, if primal program of the problem is super consistent and attains its
constrained minimum value, then its corresponding dual program is consistent and
attains its corresponding maximum value where the optimal values due to primal
and dual program are same. The model given by (6.5)−(6.9) is a conventional
type Geometric programming problem. The solution procedure for a GP may be
categorized as of two types. It is either primal based algorithms that directly solve
non-linear primal problem, or dual based algorithms that solve the equivalent
linear constraint dual program [38]. In view of Rajgopal and Bricker [39], the dual
program has the desirable features of some linear constraints having an objective
function with attractive structural properties, which enables for getting a solution.
According to Beightler and Phillips [1] and Duffin et al. [4], one can obtain the
corresponding dual program of (6.5)−(6.9) as follows:

Dual Program.

max : V (w) =
p∏

k=1

T k
0∏

t=1

(
Ck

0t

wk
0t

)wk
0t m∏

i=1

Ti∏
t=1

(
Cit

wit

)wit p∏
k=1

(
λk

)λk
m∏

i=1

(
λi

)λi

(7.1)

subject to
T r
0∑

t=1

wr
0t = λr, r = 1, 2, . . . , p, r �= k (7.2)

T k
0∑

t=1

wk
0t = λk = 1 (7.3)

(normality condition)

Ti∑
t=1

wit = λi, i = 1, 2, . . . ,m (7.4)

p∑
k=1

T k
0∑

t=1

ak
0tjw

k
0t +

m∑
i=1

Ti∑
t=1

aitjwit = 0, j = 1, 2, . . . , n (7.5)

wit ≥ 0 ∀ t, i

wk
0t ≥ 0 ∀ k, t.

This dual problem can be solved by using duality theory of GPP.
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8. Fuzzy programming method

Zadeh, introduced fuzzy set theory in the year 1965 which is a generalization of
classical set theory to understand the uncertainty and vagueness in the complexity
of the problems. Fuzzy programming Problem due to Zimmermann [41] based on
the concept given by Bellman and Zadeh [40] has been successfully applied to
solve various types of multi-objective decision making problems such as engineering
design and maintenance, production planning and control, transportation, water
resource management, managerial decision making and scheduling problems. A
fuzzy set is associated with its membership function which is defined from its
elements to the interval [0,1] plays an important role in solving multi-objective
decision making problems. As there are several type of fuzzy membership functions,
a suitable membership function is to be selected to solve the real world multi-
objective mathematical programming problems. The following steps are used for
solving a multi-objective optimization problem with a linear membership function
by Geometric programming technique to find an optimal compromise solution.

Step 1. Choose one of the objective function fk
0 (x), k = 1, 2, . . . , p. and solve

it as a single objective Geometric programming problem subject to the con-
straints (2.2) and (2.3) by using Geometric programming algorithms [22]. Let
X(1), X(2), . . . , X(p) be the respective optimal solution for p different (k =
1, 2 . . . , p)) Geometric programming problems. It is assumed that at least two
of these ideal solutions are different (fk

0 (x), k = 1, 2, . . . , p) and has the different
bound values. If all the optimal solutionsX(1) = X(2) = . . . = X(p) = X∗ are same
then stop and X(∗) is the optimal compromise solution. Otherwise go to Step 2.

Step 2. Evaluate all these p objective functions fk
0 (x), k = 1, 2, . . . , p, at all these

p ideal solutions X(1), X(2), . . . , X(p).

Step 3. Find the best value Lk (minimum value) and the worst value Uk (maxi-
mum value) of each objective function fk

0 (x) such that

Lk ≤ fk
0 (x) ≤ Uk, k = 1, 2, . . . , p.

Step 4. Define a fuzzy membership function μk(x) for the kth objective function
fk
0 (x) as:

μk(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if fk
0 (x) ≤ Lk;

Uk−f
(k)
0 (x)

Uk−Lk
if Lk ≤ fk

0 (x) ≤ Uk;

0 if f
(k)
0 (x) > Uk.

where Lk �= Uk, k = 1, 2, . . . , p
If Lk = Uk then define μk(x) = 1 for any value of k.
Now maximize the membership function μk(x), k = 1, 2, . . . , p subject to the

constraints (2.2) and (2.3) and then use max-min operator [23] to find a crisp
model.
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Step 5. Consider a Dummy variable θ and formulate a crisp model for fuzzy
Geometric programming problem as :

max : θ (8.1)

subject to
Uk − f

(k)
0 (x)

Uk − Lk
≥ θ, k = 1, 2, . . . , p (8.2)

gi(x) ≤ 1, i = 1, 2, . . . ,m (8.3)

θ ≥ 0, xj > 0, j = 1, 2, . . . , n (8.4)

Further the inequality (8.2) can be represented as:

f
(k)
0 (x) + (Uk − Lk) θ ≤ Uk, k = 1, 2, . . . , p. (8.5)

Step 6. Solve the crisp Geometric programming problem defined in Step 5 by
using Geometric programming algorithms to find x∗ and evaluate all p number of
objective functions (2.1) at this optimal solution x∗.

9. The ε-Constraint method and convergence

of the optimal solution

There is no specific mathematical proof for the convergence of the pareto opti-
mal solutions of the multi-objective mathematical programming problem available
in the literature. However the decision maker try to find out the most compromise
solutions by using some of the existing methods like fuzzy programming, goal pro-
gramming and weighting methods. In the present work we have used ε-constraint
method as defined in Section 5 to find the pareto optimal solution. Here, we have
adopted the following steps to show the set of pareto optimal solutions are con-
verging to certain point.

Step 1. First find the bounds of the objective functions (f (k)
0 (x), k = 1, 2, . . . , p)

with the help of obtained ideal solutions X(1), X(2), . . . , X(p) by using Geometric
programming algorithms as discussed in the section 6, such that Lk and Uk are
the best and worst values of f (k)

0 i .e.Lk ≤ f
(k)
0 (x) ≤ Uk, k = 1, 2 . . . , p

Step 2. Let εk, be a point in the interval such that Lk ≤ εk ≤ Uk, k = 1, 2 . . . , p

Step 3. Changing the value of εk in the interval [Lk, Uk], it generate a set of pareto
optimal solution.

Step 4. Compare the pareto optimal solution with the solution obtained by fuzzy
programming method.

Step 5. If the pareto optimal solution obtained in Step 3 is equal to the optimal
compromise solution obtained in Step 4, then stop and accept the pareto optimal
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solution of the problem. This indicate that the set of solution generated by ε-
constraint method converges to this particular solution. However, the decision
maker has the choice to choose his/her solution from the set of solution according
to their satisfaction.

The following illustrative examples explain, How to find the pareto optimal
solutions and convergence of the method.

10. Numerical examples

For illustration the following multi-objective Geometric programming problem
can be considered.

Example 1. Find x1, x2, x3 so as to

min : f1(x) = x−2
1 +

1
4
x2

2x
−1
3 (10.1)

min : f2(x) = 2x−1
1 x−1

2 x−1
3 + 2x1x2 (10.2)

subject to
3
4
x2

1x
−2
2 +

3
8
x2x

2
3 ≤ 1 (10.3)

where
x1, x2, x3 > 0. (10.4)

Case 1. Solution of Primal f1(x).
Find x1, x2, x3 so as to

min : f1(x) = x−2
1 +

1
4
x2

2x
−1
3 (10.5)

subject to
3
4
x2

1x
−2
2 +

3
8
x2x

2
3 ≤ 1 (10.6)

where
x1, x2, x3 > 0. (10.7)

Using KKT condition,the above problem can be written as follows:

min : f1(x) = x−2
1 +

1
4
x2

2x
−1
3 − λ

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
(10.8)

subject to
∂f1(x)
∂x1

= −2x−3
1 − λ

(
−3

2
x1x

−2
2

)
= 0 (10.9)

∂f1(x)
∂x2

=
1
2
x2x

−1
3 − λ

(
3
2
x2

1x
−3
2 − 3

8
x2

3

)
= 0 (10.10)
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∂f1(x)
∂x3

= −1
4
x2

2x
−2
3 − λ

(
−3

4
x2x3

)
= 0 (10.11)

λ

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
= 0 (10.12)

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
≥ 0 (10.13)

where
x1, x2, x3 ≥ 0. (10.14)

The corresponding Dual program using the condition given in Section 7 is given
below:

max
w

: V (w) =
(

1
w01

)w01( 1
4w02

)w02( 3
4w11

)w11( 3
8w12

)w12

(w11 + w12)
(w11+w12)

(10.15)

subject to

w01 + w02 = 1
−2w01 + 2w11 = 0

2w02 − 2w11 + w12 = 0
−w02 + 2w12 = 0

w01, w02, w11, w12 ≥ 0.

The optimal primal solution of f1(x) using KKT condition is given by f1 =
1.171595 for x1 = 1.239503, x2 = 1.270112, x3 = 0.7745138 and λ = 0.9112412
where as same optimal value of objective function for dual problem is obtained for
w01 = 0.5555556, w02 = 0.444444, w11 = 0.5555556, w12 = 0.222222.

Case 2. Solution of Primal f2(x).
Find x1, x2, x3 so as to

min : f2(x) = 2x−1
1 x−1

2 x−1
3 + 2x1x2 (10.16)

subject to
3
4
x2

1x
−2
2 +

3
8
x2x

2
3 ≤ 1 (10.17)

where
x1, x2, x3 > 0. (10.18)

Using KKT condition the above problem can be written as:

min : f2(x) = 2x−1
1 x−1

2 x−1
3 + 2x1x2 − λ

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
(10.19)
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∂f2(x)
∂x1

= −2x−2
1 x−1

2 x−1
3 + 2x2 − λ

(
−3

2
x1x

−2
2

)
= 0 (10.20)

∂f2(x)
∂x2

= −2x−1
1 x−2

2 x−1
3 + 2x1 − λ

(
3
2
x2

1x
−3
2 − 3

8
x2

3

)
= 0 (10.21)

∂f2(x)
∂x3

= −2x−1
1 x−1

2 x−2
3 − λ

(
−3

4
x2x3

)
= 0 (10.22)

λ

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
= 0 (10.23)

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
≥ 0 (10.24)

where
x1, x2, x3 ≥ 0. (10.25)

The corresponding Dual program is given below

max
w

: V (w) =
(

2
w01

)w01 (
2
w02

)w02 (
3

4w11

)w11 (
3

8w12

)w12

(w11 + w12)
(w11+w12)

(10.26)

subject to

w01 + w02 = 1
−w01 + w02 + 2w11 = 0

−w01 + w02 − 2w11 + w12 = 0
−w01 + 2w12 = 0

w01, w02, w11, w12 ≥ 0.

The optimal primal solution of f2(x) using KKT condition is given by f2 =
3.504279 for x1 = 1.0.6227133, x2 = 1.205879, x3 = 1.330079 and λ = 1.251528
where as same optimal value of objective function for dual problem is obtained for
w01 = 0.5714286, w02 = 0.4285714, w11 = 0.07142857, w12 = 0.2857143.

Using the solution of f1 in f2 and f2 in f1 as obtained above, we can find the
lower bound Li and upper bound Ui of the functions fi for i = 1, 2 as:

L1 = 1.171595 ≤ f1 ≤ 2.852155 = U1

L2 = 3.504279 ≤ f2 ≤ 4.788870 = U2.

Considering ε1 and ε2 defined by

1.171595 ≤ ε1 ≤ 2.852155 and 3.504279 ≤ ε2 ≤ 4.788870,
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Table 1. Optimal solution of Primal (i).

ε2 x1 x2 x3 primal f1

3.6 0.7761717 1.135443 1.235101 1.920866
3.8 0.9001469 1.136367 1.114596 1.523806
4.0 0.9880850 1.154432 1.020190 1.350848
4.2 1.061164 1.177817 0.9411259 1.256553
4.4 1.125801 1.204625 0.8738374 1.204157
4.6 1.185429 1.235360 0.8172388 1.178472
4.7 1.214197 1.252863 0.7931753 1.173041
4.75 1.228452 1.262344 0.7823372 1.171865
4.78 1.236983 1.268307 0.7762508 1.171609
4.788 1.239248 1.269929 0.7746880 1.171595
4.78887 1.239495 1.270107 0.7745190 1.171595

we can reformulate the above problem as two different problems using the
ε-constraint method as follows.
Primal Problem (i) using ε-constraint method

min : f1(x) = x−2
1 +

1
4
x2

2x
−1
3 (10.27)

subject to
3
4
x2

1x
−2
2 +

3
8
x2x

2
3 ≤ 1 (10.28)

2x−1
1 x−1

2 x−1
3 + 2x1x2 ≤ ε2 (10.29)

x1, x2, x3 ≥ 0. (10.30)

Primal Problem (ii) using ε-constraint method

min : f2(x) = 2x−1
1 x−1

2 x−1
3 + 2x1x2 (10.31)

subject to
3
4
x2

1x
−2
2 +

3
8
x2x

2
3 ≤ 1 (10.32)

x−2
1 +

1
4
x2

2x
−1
3 ≤ ε1 (10.33)

x1, x2, x3 ≥ 0. (10.34)

Solution of Primal Problem (i)
Solution of the Primal (i) using general method is given in following Table 1.
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Using KKT condition, we can write the same Primal Problem (i) as follows:

min : f1(x) = x−2
1 +

1
4
x2

2x
−1
3 − λ1

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
− λ2

(−2x−1
1 x−1

2 x−1
3 − 2x1x2 + ε2

)
(10.35)

subject to

∂f1(x)
∂x1

= −2x−3
1 − λ1

(
−3

2
x1x

−2
2

)
− λ2

(
2x−2

1 x−1
2 x−1

3 − 2x2

)
= 0 (10.36)

∂f1(x)
∂x2

=
1
2
x2x

−1
3 − λ1

(
3
2
x2

1x
−3
2 − 3

8
x2

3

)
− λ2(2x−1

1 x−2
2 x−1

3 − 2x1) = 0 (10.37)

∂f1(x)
∂x3

= −1
4
x2

2x
−2
3 − λ1

(
−3

4
x2x3

)
− λ2(2x−1

1 x−1
2 x−2

3 ) = 0 (10.38)

λ1

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
= 0 (10.39)

λ2 (−2x−1
1 x−1

2 x−1
3 − 2x1x2 + ε2) = 0 (10.40)

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
≥ 0 (10.41)

(−2x−1
1 x−1

2 x−1
3 − 2x1x2 + ε2) ≥ 0 (10.42)

where
x1, x2, x3 ≥ 0. (10.43)

Solution of the above problem obtained by changing the value of ε2 between 3.6
to 4.78887 is given by the following Table 2.

From the above table it is observed that objective values obtained by changing
the value of ε2 converging towards f1 = 1.171595 for x1 = 1.239495, x2 = 1.270107,
x3 = 0.7745190, λ1 = 0.9112451, λ2 = 0.

The Dual Program of the Primal (i) is given below:

max
w

: V (w) =
(

1
w01

)w01
(

1
4w02

)w02
(

3
4w11

)w11
(

3
8w12

)w12

(w11 + w12)
(w11+w12)

(
2

ε2w21

)w21( 2
ε2w22

)w22

(w21 + w22)
(w21+w22)

(10.44)
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Table 2. Optimal solution of Primal (i) by ε-constraint method
using KKT condition.

ε2 x1 x2 x3 λ1 λ2 primal f1

3.6 0.7761717 1.135443 1.235101 5.106435 3.468290 1.920866

3.8 0.9001469 1.136367 1.114596 2.252495 1.194447 1.523806

4.0 0.9880850 1.154432 1.020190 1.546340 0.6207686 1.350848

4.2 1.061164 1.177817 0.9411259 1.229520 0.3490472 1.256553

4.4 1.125801 1.204625 0.8738374 1.058462 0.1866816 1.204157

4.6 1.185429 1.235360 0.8172388 0.9608445 0.0764288 1.178472

4.7 1.214197 1.252863 0.7931753 0.9302072 0.0332766 1.173041

4.75 1.228452 1.262344 0.7823372 0.9186274 0.014010 1.171865

4.78 1.236983 1.268307 0.7762508 0.9128042 0.0031247 1.171609

4.788 1.239248 1.269929 0.7746880 0.9113952 0.0003135 1.171595

4.78887 1.239495 1.270107 0.7745190 0.9112451 0.000009 1.171595

Table 3. Dual Solution.

ε2 w01 w02 w11 w12 w21 w22 Dualf1

3.6 0.864146 0.135853 0.931679 1.726716 3.317579 3.182513 1.920866

3.8 0.809922 0.190077 0.695640 0.782561 1.375045 1.603610 1.523806

4.0 0.758237 0.241762 0.628943 0.515774 0.789786 1.048373 1.350848

4.6 0.603850 0.396149 0.563066 0.252264 0.108379 0.189948 1.178472

4.7 0.578240 0.421759 0.558597 0.234390 0.047020 0.086306 1.173041

4.75 0.565465 0.434534 0.556780 0.227121 0.019708 0.037077 1.171865

4.78 0.557812 0.442187 0.555870 0.223281 0.004375 0.0083595 1.171609

4.788 0.5557488 0.444251 0.555577 0.222311 0.000372 0.000713 1.171595

subject to

w01 + w02 = 1

−2w01 + 2w11 − w21 + w22 = 0
2w02 − 2w11 + w12 − w21 + w22 = 0

−w02 + 2w12 − w21 = 0
w01, w02, w11, w12, w21, w22 ≥ 0.

Solution of the Dual problem obtained by changing the value of ε2 between 3.6 to
4.78887 is given below in the following Table 3.

from the above table it is observed that the optimal objective value of dual
problem is 1.171595 for w01 = 0.5557488, w02 = 0.444281, w11 = 0.555577, w12 =
0.222311, w21 = 0.000372, w22 = 0.000713.
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Table 4. Optimal solution of Primal (ii).

ε1 x1 x2 x3 primal f2

1.18 1.179935 1.232238 0.822119 4.581102

1.5 0.910294 1.137829 1.103910 3.820710

2.0 0.757922 1.138624 1.250490 3.579273

2.5 0.668465 1.172546 1.311444 3.513293

2.7 0.641207 1.190768 1.323795 3.505775

2.8 0.628857 1.200590 1.328192 3.504445

2.85 0.622963 1.205658 1.330006 3.504279

Solution of Primal Problem (ii)
Solution of the Primal (ii) using general method is given in following Table 4.
Using KKT condition,we can write the Primal Problem (ii) as follows:

min : f2(x) =2x−1
1 x−1

2 x−1
3 + 2x1x2 − λ1

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)

− λ2

(
−x−2

1 − 1
4
x2

2x
−1
3 + ε1

)
(10.45)

∂f2(x)
∂x1

= −2x−2
1 x−1

2 x−1
3 + 2x2 − λ1

(
−3

2
x1x

−2
2

)
− λ2(2x−3

1 ) = 0 (10.46)

∂f2(x)
∂x2

= −2x−1
1 x−2

2 x−1
3 +2x1−λ1

(
3
2
x2

1x
−3
2 − 3

8
x2

3

)
+λ2

(
1
2
x2x

−1
3

)
= 0 (10.47)

∂f2(x)
∂x3

= −2x−1
1 x−1

2 x−2
3 − λ1

(
−3

4
x2x3

)
− λ2

(
1
4
x2

2x
−2
3

)
= 0 (10.48)

λ1

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
= 0 (10.49)

λ2

(
−x−2

1 − 1
4
x2

2x
−1
3 + ε1

)
= 0 (10.50)

(
−3

4
x2

1x
−2
2 − 3

8
x2x

2
3 + 1

)
≥ 0 (10.51)

(
−x−2

1 − 1
4
x2

2x
−1
3 + ε1

)
≥ 0 (10.52)

where
x1, x2, x3 ≥ 0. (10.53)



448 A.K. OJHA AND R. RANJAN OTA

Table 5. Optimal solution of Primal (ii) by ε-constraint method
using KKT condition.

ε1 x1 x2 x3 λ1 λ2 primalf2

1.18 0.6227133 1.205879 1.330079 1.251528 0.0000 3.504279

1.5 0.6227134 1.205879 1.330073 1.251529 0.0000 3.504279

2.0 0.6227134 1.205879 1.330079 1.251528 0.0000 3.504279

2.5 0.6227133 1.205879 1.330079 1.251528 0.0000 3.504279

2.7 0.6227145 1.205878 1.330073 1.251538 0.0000 3.504279

Solution of the above problem obtained by changing the value of ε1 between 1.17
to 2.852 is given by the following Table 5.

From the above table it is observed that objective values obtained by chang-
ing the value of ε1 converging towards f2 = 3.504279 for x1 = 0.6227145,
x2 = 1.205878, x3 = 1.330073, λ1 = 1.251538, λ2 = 0.

The Dual program of the primal (ii) is given below:

max
w

: V (w) =
(

2
w01

)w01 (
2
w02

)w02 (
3

4w11

)w11 (
3

8w12

)w12

(w11 + w12)
(w11+w12)

(
1

ε1w21

)w21 (
1

4ε1w22

)w22

(w21 + w22)
(w21+w22)

(10.54)

subject to

w01 + w02 = 1
−w01 + w02 + 2w11 − 2w21 = 0

−w01 + w02 − 2w11 + w12 + 2w22 = 0
−w01 + 2w12 − w22 = 0

w01, w02, w11, w12, w21, w22 ≥ 0.

Solution of the above problem obtained by changing the value of ε1 between 1.17
to 2.852 is given by the following Table 6.

from the above table it is observed that the optimal objective value of dual
problem is 3.504279 for w01 = 0.571353, w02 = 0.428646, w11 = 0.071505, w12 =
0.285684, w21 = 0.000151, w22 = 0.000016

Convergence Analysis
For lower bound Li and upper bound Ui of the functions fi, for i = 1, 2 is

given by.

L1 = 1.171595 ≤ f1 ≤ 2.852155 = U1;

L2 = 3.504279 ≤ f2 ≤ 4.788870 = U2
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Table 6. Dual Solution.

ε1 w01 w02 w11 w12 w21 w22 Dualf2

1.18 0.365234 0.634765 1.702165 0.773053 1.83693 1.180873 4.581102
1.5 0.457818 0.542181 0.243350 0.263594 0.285531 0.069371 3.820710
2.0 0.517785 0.482214 0.133127 0.267479 0.115341 0.017173 3.579273
2.5 0.553805 0.446194 0.089935 0.279018 0.036129 0.004231 3.513293
2.7 0.564416 0.435583 0.078645 0.282991 0.014229 0.001566 3.505775
2.8 0.509118 0.430881 0.073786 0.284809 0.004667 0.000500 3.504445
2.85 0.571353 0.428646 0.071505 0.285684 0.000151 0.000016 3.504279

Table 7. Convergence test for Solution of Primal (i) by ε-constraint method.

ε2 x1 x2 x3 λ1 λ2 primal f1

3.6 0.7761717 1.135443 1.235101 5.106435 3.468290 1.920866
3.7 0.8457904 1.131758 1.170157 3.054870 1.835243 1.671550
3.8 0.9001469 1.136367 1.114596 2.252495 1.19447 1.523806
3.9 0.9466340 1.144447 1.065098 1.818183 0.8440674 1.423355
4.0 0.9880850 1.154432 1.020190 1.546340 0.6207686 1.350848
4.1 1.025965 1.165656 0.9790380 1.361619 0.4648520 1.296986
4.2 1.061146 1.177817 0.9411259 1.229520 0.3490472 1.256553
4.3 1.094292 1.190804 0.9061239 1.131934 0.259060 1.226322
4.4 1.125806 1.204625 0.8738374 1.0584620 0.1866816 1.204157
4.5 1.156066 1.219398 0.8441914 1.002766 0.1268772 1.188569
4.6 1.185429 1.235360 0.8172388 0.9608445 0.0764288 1.178472
4.7 1.214197 1.252863 0.7931753 0.9302072 0.0332766 1.173041
4.75 1.228452 1.262344 0.7823372 0.9186274 0.014010 1.171865
4.76 1.23196 1.264312 0.780749 0.9165978 0.010327 1.171743
4.77 1.234140 1.266303 0.7782483 0.9146599 0.006698 1.171658
4.78 1.236983 1.268307 0.7762508 0.9128042 0.0031247 1.171609
4.788 1.239248 1.269929 0.7746880 0.9113952 0.0003135 1.171595
4.7888 1.239476 1.270093 0.7745326 0.9112571 0.000033 1.171595
4.78882 1.239481 1.270097 0.7745287 0.9112537 0.000026 1.171595
4.78884 1.239487 1.270101 0.7745248 0.9112502 0.000014 1.171595
4.78887 1.239495 1.270107 0.7745190 0.9112451 0.000009 1.171595

and changing ε1 and ε2 as

1.171595 < ε1 < 2.852155; and 3.504279 < ε2 < 4.788870,

it has been observed that changing the value of ε1 and ε2 within the required range,
the compromise solution of the objective functionf1 and f2 are obtained converging
towards the suitable compromise values of the objective function within the range.

Convergence Test for Solution of Primal (i)
Changing the value of ε2 in the interval [3.6,4.78887],the pareto optimal solution

for primal problem (i)are presented in the Table 7.
From the above Table 5, it is observed that the set of solution generated are

converging to the solution f1 = 1.171595 for x1 = 1.239495, x2 = 1.270107,
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Table 8. Convergence test for Solution of Primal (ii) by ε-constraint method.

ε2 x1 x2 x3 λ1 λ2 primal f1

1.17 0.6227133 1.205879 1.330079 1.251528 0.0000 3.504279

1.4 0.6227133 1.205879 1.330079 1.251528 0.0000 3.504279

1.7 0.6227135 1.205878 1.330079 1.251530 0.0000 3.504279

2.0 0.6227134 1.205878 1.330079 1.251529 0.0000 3.504279

2.3 0.6227131 1.205880 1.330079 1.251529 0.0000 3.504279

2.6 0.6227146 1.205878 1.330072 1.251539 0.0000 3.504279

2.7 0.6227145 1.205878 1.330073 1.251538 0.0000 3.504279

2.8 0.6227145 1.205878 1.330073 1.251538 0.0000 3.504279

2.85 0.6227144 1.205879 1.330073 1.251538 0.0000 3.504279

x3 = 0.7745190, λ1 = 0.9112451 and λ2 = 0.000009 which is same as the result
obtained using KKT condition.

Convergence Test for Solution of Primal (ii)
Similarly changing the value of ε1 in the interval [1.17,2.852],the pareto optimal

solution obtained for Primal Problem (ii)are presented in the Table 8.
From above Table 6,it is observed that the set solutions so generated by changing

the value of ε2 converging to the value f2 = 3.504279 for x1 = 0.6227144, x2 =
1.205879, x3 = 1.330073, λ1 = 1.251538 and λ2 = 0.0000 which is same as the
result obtained using KKT condition.

Comparison of above solution by Fuzzy Programming method
The solutions which are obtained by ε-constraint method along with KKT has

been compared with the fuzzy programming method in the following two cases.

Case-1(Value of f1 by Fuzzy programming method)
Using the steps of fuzzy programming method as defined in Section 8, the

corresponding crisp model for f1 is
max : θ

subject to

x−2
1 +

1
4
x2

2x
−1
3 + (2.852155− 1.171595)θ ≤ 2.852155

3
4
x2

1x
−2
2 +

3
8
x2x

2
3 − 1 ≤ 0

θ > 0, x1 > 0, x2 > 0, x3 > 0. (10.55)

The optimal solution of f1 = 1.171595 for θ = 1.0000, x1 = 1.239502,
x2 = 1.270112, x3 = 0.7745138.
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Case-2(Value of f2 by Fuzzy programming method)
Similarly using the steps of fuzzy programming method, the corresponding crisp

model for f2 is defined as:
max : θ
subject to

2x−1
1 x−1

2 x−1
3 + 2x1x2 + (4.788870− 3.504279)θ ≤ 4.788870

3
4
x2

1x
−2
2 +

3
8
x2x

2
3 − 1 ≤ 0

θ > 0, x1 > 0, x2 > 0, x3 > 0. (10.56)

The optimal solution of f2 = 3.504279 for θ = 1.0000,x1 = 0.6227132,x2 =
1.205879 and x3 = 1.330079.

The above discussion indicate that the solution obtained by ε-constrained
method using KKT condition converging to the solution f1 = 1.171595 for
x1 = 1.239495,x2 = 1.270107,x3 = 0.7745190,λ1 = 0.9112451, λ2 = 0.000009 and
f2 = 3.504279 for x1 = 0.6227144, x2 = 1.205879, x3 = 1.330073, λ1 = 1.251538
and λ2 = 0.0000 is same as the solution obtained by fuzzy programming method.
However the ε-constraint method gives a set of solution where the decision maker
has a choice to change his/her solution according to their choice. But in fuzzy
programming method it gives only one solution.

11. Conclusion

It is a challenging task for searching a suitable compromise solution correspond-
ing to a given multi-objective optimization problem. In fact, the difficulty lies
in conflict between our various objectives and goals. Because most decision and
compromise made on basis of intuition. However, there are certain area where
mathematical modeling and programming needed. In this paper we have used the
ε-constraint method using KKT condition to find the set of primal and dual so-
lutions of the multi-objective functions with given constraints. The corresponding
fuzzy programming techniques have been applied to find the optimal values of the
functions. From the computation it has been observed that the pareto optimal so-
lution obtained by primal-dual techniques matches with their counterpart solution
due to fuzzy programming method. The illustrative examples explain in getting
the most allowable solution with suitable values of ε. The procedures adopted here
for understanding the convergence analysis of multi-objective programming prob-
lem helps to incorporate the preferences of the decision maker, in order to focus on
achieving the most approximate non-inferior solution instead of trying to generate
the entire pareto front. Such a procedure may also alleviate the problem of many
optimizations when dealing with many objective functions.
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