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UNIFIED DUALITY FOR VECTOR OPTIMIZATION
PROBLEM OVER CONES INVOLVING SUPPORT

FUNCTIONS

Surjeet Kaur Suneja1 and Pooja Louhan2

Abstract. In this paper we give necessary and sufficient optimality
conditions for a vector optimization problem over cones involving sup-
port functions in objective as well as constraints, using cone-convex
and other related functions. We also associate a unified dual to the pri-
mal problem and establish weak, strong and converse duality results.
A number of previously studied problems appear as special cases.
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1. Introduction

Vector Optimization Problems are those in which we have more than one ob-
jective function. In vector optimization one investigates optimal points such as
weak minimum, minimum, proper minimum and strong minimum of a nonempty
subset of a partially ordered linear space. When the ordering of the partially or-
dered linear space is done through cones the problem is referred to as vector
optimization problem over cones. Problems of this type can be found not only in
mathematics but also in engineering and economics. Convexity plays a key role
in the theory of vector optimization. It turns out to be a powerful tool for the
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investigation of vector optimization problems in a partially ordered linear space
for two main reasons. Firstly, separation theorems due to convexity are especially
helpful for the development of Lagrangian theory and secondly, a partial ordering
in a real linear space can be characterized by a convex cone and therefore theo-
rems concerning convex cones are very useful. Weir et al. [18] gave the definition
of cone-convex function. Luc [3] used cone–convex and cone-quasiconvex func-
tions to provide a detailed theory on vector optimization problems. Cambini [13]
introduced several classes of concave vector-valued functions which are possible
extensions of scalar generalized concavity using the order relations generated by a
cone or the interior of a cone or a cone without origin. Suneja et al. [16] defined
second-order cone-convex, pseudoconvex, strongly pseudoconvex and quasiconvex
functions. Flores−Bazán and Vera [4] presented a unified approach for dealing
with both the notions of efficiency and weak efficiency (described in terms of a
preference relation determined by a closed convex cone) under generalized quasi-
convexity assumptions. Jahn [10] introduced the various definitions of generalized
quasiconvex and pseudoconvex maps and established optimality conditions and
duality results for a given vector optimization problem. Recently Suneja et al. [15]
gave the definitions of various types of cone-pseudoconvex and cone-quasiconvex
functions and studied the relations between them.

Support functions play an important role in convex analysis and optimization.
In fact they help in characterizing a closed convex set and the position of a point
relative to a set with powerful analytical tools. This allows one to translate problem
on convex sets to a problem in terms of convex functions. The presence of sup-
port functions in any optimization problem makes the problem nondifferentiable
and hence we have to deal with subdifferentials. So the main reason to use sup-
port functions for studying nondifferentiable optimization problems is that their
subdifferentials are very well known. Various researchers have studied optimization
problems involving support functions. Schechter [11,12] established optimality and
duality results for a nonlinear problem involving support functions in the objective.
Husain et al. [9] derived optimality conditions for a nonlinear program in which a
support function appears in the objective as well as in each constraint function.
They presented Wolfe and Mond−Weir type duals to this program and established
various duality results under suitable convexity and generalized convexity assump-
tions. Recently Husain et al. [8] studied a multiobjective programming problem
containing support functions. They constructed Wolfe and Mond−Weir type duals
to this problem and validated various duality results under invexity and general-
ized invexity assumptions.

We moved a step ahead with this paper and considered a vector optimization
problem over cones which includes support functions of compact convex sets in ob-
jective as well as in constraints. It is also shown in the paper that, under particular
conditions, our problem reduces to the problems considered by various researchers
(see [8,9,11]). On the lines of Craven [1], we have given necessary optimality con-
ditions for a point to be a weak minimum of our vector optimization problem
and then using the constraint qualification given by Suneja et al. [15] we prove
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KKT type necessary optimality conditions. We have also established sufficient op-
timality conditions using cone-convex, (strictly, strongly) cone-pseudoconvex and
cone-quasiconvex functions.

The motivation behind the study of such problems arises from the fact that even
though the objective function and/or constraint function of the primal problem
are nondifferentiable, we can always associate dual problems to it which are dif-
ferentiable. Generally it is easier to solve a differentiable problem than to solve a
nondifferentiable problem. Using this fact, we have associated a unified dual with
the primal problem and established weak, strong and converse duality results un-
der cone-convexity, cone-pseudoconvexity and cone-quasiconvexity assumptions.
In converse duality, we start from the optimal solution of dual problem and under
suitable assumptions we arrive at the optimal solution of the primal problem. As
mentioned earlier the dual problem is easier to solve as compared to the primal
problem, so we can find the optimal solution for dual and using converse duality we
can compute the optimal solution for primal. Finally, we have related our primal
and dual problems with special cases that often occur in the literature in which
a support function becomes the square root of a positive semi-definite quadratic
form or an Lp norm by suitably defining the compact convex sets.

We can find many problems of facility location and portfolio selection modeled
as vector optimization problem which reflect the utility of our problem.

2. Notations and definitions

Let K ⊆ R
m be a closed convex pointed (K ∩ (−K) = {0}) cone such that

intK �= φ, where intK denotes the interior of K. The positive dual cone K+ and
strict positive dual cone Ks+ of K are defined as follows:

K+ =
{
λ ∈ R

m : λT x ≥ 0, for all x ∈ K
}

,

Ks+ =
{
λ ∈ R

m : λT x > 0, for all x ∈ K \ {0}} .

The closedness and convexity of the cone K is equivalent to K = (K+)+ by the
bipolar theorem. In this case,

x ∈ K ⇐⇒ λT x ≥ 0 ∀λ ∈ K+.

Moreover, by [5] we have

x ∈ intK ⇐⇒ λT x > 0 ∀λ ∈ K+ \ {0}. (2.1)

In this section, we recall some of the basic definitions and results, which are to
be used throughout the paper.

Let f : R
n −→ R

m, where f = (f1, f2, . . . , fm)T and h : R
n −→ R.
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Definition 2.1. The function f is said to be K-convex at x ∈ R
n, if for all x ∈ R

n

and t ∈ [0, 1],
tf(x) + (1 − t)f(x) − f(tx + (1 − t)x) ∈ K.

The function f is said to be K-convex if it is K-convex at each x ∈ R
n.

Remark 2.2 [13]. If f is a differentiable function, then f is K-convex if and only
if for all x, x ∈ R

n,
f(x) − f(x) −∇f(x)(x − x) ∈ K

where ∇f(x) = [∇f1(x),∇f2(x), . . . ,∇fm(x)]T is the m× n Jacobian matrix of f

at x and for each i = 1, 2, . . . , m, ∇fi(x) =
(

∂fi

∂x1
,
∂fi

∂x2
, . . . ,

∂fi

∂xn

)T

is the n × 1

Gradient vector of fi at x.

Definition 2.3. The function f is said to be K-pseudoconvex at x ∈ R
n, if for

every x ∈ R
n,

−∇f(x)(x − x) /∈ intK ⇒ − [f(x) − f(x)] /∈ intK.

Remark 2.4. If we replace f by −f and x by any y ∈ R
n, then above defini-

tion reduces to the definition of (intK, intK)-pseudoconcave function given by
Cambini [13] where S = R

n.

On the lines of Suneja et al. [15] we give the following definition.

Definition 2.5. The function f is said to be strictly K-pseudoconvex at x ∈ R
n,

if for every x ∈ R
n,

−∇f(x)(x − x) /∈ intK ⇒ − [f(x) − f(x)] /∈ K \ {0}.
Remark 2.6. If all the conditions of Remark 2.4 are satisfied then the above
definition reduces to the definition of (K \ {0}, intK)-pseudoconcave function
given by Cambini [13].

Remark 2.7. Every strictly K-pseudoconvex function at x is K-pseudoconvex
at x.

Definition 2.8. The function f is said to be strongly K-pseudoconvex at x ∈ R
n,

if for every x ∈ R
n,

−∇f(x)(x − x) /∈ intK ⇒ f(x) − f(x) ∈ K.

Remark 2.9. Every strongly K-pseudoconvex function at x is strictly
K-pseudoconvex and hence K-pseudoconvex at x.

Definition 2.10. The function f is said to be K-quasiconvex at x ∈ R
n, if for

every x ∈ R
n,

f(x) − f(x) /∈ intK ⇒ −∇f(x)(x − x) ∈ K.
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Now we briefly describe the Clarke’s [6] notion of generalized directional deriva-
tive and subdifferential of a locally Lipschitz function.

The function h is said to be locally Lipschitz at x ∈ R
n if there exists a non-

negative constant L and a neighborhood N(x) of x such that for all x, y ∈ N(x),
we have

‖h(x) − h(y)‖ ≤ L‖x − y‖.
The vector-valued function f is locally Lipschitz at x ∈ R

n if for each i =
1, 2, . . . , m, fi is locally Lipschitz at x ∈ R

n.
The Clarke generalized directional derivative of a locally Lipschitz function h

at x ∈ R
n in the direction d ∈ R

n is given as

h◦(x; d) = lim sup
y→x,t→0+

h(y + td) − h(y)
t

,

where y ∈ R
n and t > 0.

The Clarke generalized gradient or the Clarke subdifferential of a locally
Lipschitz function h at x ∈ R

n is given as

∂ch(x) =
{
ξ ∈ R

n : h◦(x, d) ≥ ξT d, for all d ∈ R
n
}

.

If h is convex function, then for any x ∈ R
n, h is locally Lipschitz at x and in

this case

∂ch(x) = ∂h(x) =
{
ξ ∈ R

n : h(x) − h(x) ≥ (x − x)T ξ, for all x ∈ R
n
}

.

Also, if h is continuously differentiable at x, then h is locally Lipschitz at x and
∂ch(x) = {∇h(x)}.

We also review some well known facts about support functions. Let C ⊆ R
n be

a compact convex set. The support function of C is defined by

s(x|C) = max
z∈C

xT z.

The support function of a compact convex set, being convex and finite every-
where, has a subgradient at every x ∈ R

n and the set of all subgradients at x, that
is, the subdifferential at x is given by

∂s(x|C) =
{
z ∈ C : xT z = s(x|C)

}
.

3. Optimality conditions

Consider the vector optimization problem
(NVP) K-Minimize

f(x) + s(x|C)k = (f1(x) + s(x|C)k1, f2(x) + s(x|C)k2, . . . , fm(x) + s(x|C)km)T
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subject to

−g(x) − s(x|D)q = − (g1(x) + s(x|D)q1, g2(x)

+s(x|D)q2, . . . , gp(x) + s(x|D)qp)
T ∈ Q,

where f : R
n −→ R

m and g : R
n −→ R

p are continuously differentiable
vector-valued functions, C and D are non-empty compact convex subsets of R

n,
K and Q are closed convex pointed cones in R

m and R
p respectively with non-

empty interiors and k = (k1, k2, . . . , km)T ∈ intK and q = (q1, q2, . . . , qp)T ∈ Q
are any arbitrary but fixed vectors. The feasible set of (NVP) is given by
S0 = {x ∈ R

n : −g(x) − s(x|D)q ∈ Q}.
Remark 3.1.

(i) If we take m = 1, p = m, K = R+, k = 1, f(x) = k(x), Q = Rm
+ and

D = {0}, then our Problem (NVP) reduces to the problem (P′) considered
by Schechter [11].

(ii) If we take m = 1, p = m, K = R+, k = 1, Q = R
m
+ and q = (1, 1, . . . , 1)T ∈ Q

then our Problem (NVP) reduces to the problem (NP) considered by Husain
et al. [9] where Dj = D for j = 1, 2, . . . , m.

(iii) If we interchange the roles of m and p and take K = R
p
+, Q = R

m
+ , k =

(1, 1, . . . , 1) ∈ intK and q = (1, 1, . . . , 1) ∈ Q, then our problem (NVP)
reduces to (NP) considered by Husain et al. [8] where Ci = C for each i =
1, 2, . . . , p and Dj = D for each j = 1, 2, . . . , m.

Definition 3.2. A point x ∈ S0 is called

(i) a weak minimum of (NVP), if for every x ∈ S0,

f(x) + s(x|C)k − f(x) − s(x|C)k /∈ intK.

(ii) a minimum of (NVP), if for every x ∈ S0,

f(x) + s(x|C)k − f(x) − s(x|C)k /∈ K \ {0}.
(iii) a strong minimum of (NVP), if for every x ∈ S0,

f(x) + s(x|C)k − f(x) − s(x|C)k ∈ K.

Lemma 3.3. Consider the problem
K-Minimize Φ(x)
subject to

−Ψ(x) ∈ Q,
where Φ : R

n −→ R
m and Ψ : R

n −→ R
p are locally Lipschitz functions. Let x be

a weak minimum of this problem, then there exists (0, 0) �= (λ, μ) ∈ K+ ×Q+ such
that

0 ∈ ∂c
(
λT Φ + μT Ψ

)
(x)(

μT Ψ
)
(x) = 0.
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Proof. This Lemma can be proved by taking F = Φ, G = Ψ , Q = K, S = Q and
T = φ(the empty set) in the problem (P) considered by Craven [1] and applying
Theorem 2 given by him. �

We now establish Fritz-John type necessary optimality conditions for the prob-
lem (NVP), based on the above lemma.

Theorem 3.4. Let x ∈ S0 be a weak minimum of (NVP). Then there exist λ ∈
K+, μ ∈ Q+ with (λ, μ) �= 0 and z ∈ ∂s(x|C), w ∈ ∂s(x|D) such that

∇
(
λ

T
f
)

(x) + z
(
λ

T
k
)

+ ∇ (
μT g

)
(x) + w

(
μT q

)
= 0 (3.1)

(
μT g

)
(x) + xT w

(
μT q

)
= 0. (3.2)

Proof. Let x ∈ S0 be a weak minimum of (NVP) and let Φ : R
n −→ R

m and
Ψ : R

n −→ R
p be such that

Φ(x) = f(x) + s(x|C)k and Ψ(x) = g(x) + s(x|D)q.

Since s(·|C) and s(·|D) are convex functions, therefore they are locally Lipschitz
at any x ∈ R

n and hence s(·|C)k and s(·|D)q are vector-valued locally Lipschitz
functions at any x ∈ R

n and because f and g are vector-valued continuously
differentiable functions, so they are vector-valued locally Lipschitz at any x ∈ R

n.
Also sum of two locally Lipschitz functions is locally Lipschitz, therefore Φ and Ψ
are vector-valued locally Lipschitz functions.

Now using Lemma 3.3, there exist λ ∈ K+, μ ∈ Q+ with (λ, μ) �= 0 such that

0 ∈ ∂c
(
λ

T
Φ + μT Ψ

)
(x) ⊆ ∂c

(
λ

T
Φ
)

(x) + ∂c
(
μT Ψ

)
(x)

(
μT Ψ

)
(x) = 0.

That is,

0 ∈
{
∇

(
λ

T
f
)

(x)
}

+ ∂cs(x|C)
(
λ

T
k
)

+
{∇ (

μT g
)
(x)

}
+ ∂cs(x|D)

(
μT q

)
(
μT g

)
(x) + s(x|D)

(
μT q

)
= 0.

Due to convexity of support function ∂cs(x|C) = ∂s(x|C) and ∂cs(x|D) =
∂s(x|D). Thus there exist z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that

∇
(
λ

T
f
)

(x) + z
(
λ

T
k
)

+ ∇ (
μT g

)
(x) + w

(
μT q

)
= 0

(
μT g

)
(x) + xT w

(
μT q

)
= 0. �
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On the lines of Suneja et al. [15], we establish the following Kuhn-Tucker type
necessary optimality conditions for the problem (NVP).

Theorem 3.5. Let x ∈ S0 be a weak minimum of (NVP). Then there exist λ ∈
K+, μ ∈ Q+ with (λ, μ) �= 0 and z ∈ ∂s(x|C), w ∈ ∂s(x|D) such that (3.1) and
(3.2) hold.

Moreover if g is Q-convex at x and there exists x∗ ∈ R
n such that(

μT g
)
(x∗) + s(x∗|D)

(
μT q

)
< 0.

Then λ �= 0.

Proof. Let x be a weak minimum of (NVP), then we invoke Theorem 3.4 to deduce
that there exist λ ∈ K+ and μ ∈ Q+ with (λ, μ) �= 0 and z ∈ ∂s(x|C), w ∈ ∂s(x|D)
such that (3.1) and (3.2) hold.

Suppose now that g is Q-convex at x and there exists x∗ ∈ R
n such that(

μT g
)
(x∗) + s(x∗|D)

(
μT q

)
< 0. (3.3)

We have to prove that λ �= 0.
Let, if possible, λ = 0, then μ �= 0 and (3.1) reduces to

∇ (
μT g

)
(x) + w

(
μT q

)
= 0. (3.4)

Now as g is Q-convex at x, hence

g(x∗) − g(x) −∇g(x)(x∗ − x) ∈ Q. (3.5)

Since w ∈ ∂s(x|D), therefore

s(x∗|D) − s(x|D) ≥ (x∗ − x)T w,

which implies that [
s(x∗|D) − s(x|D) − (x∗ − x)T w

]
q ∈ Q. (3.6)

Adding relations (3.5) and (3.6) and using the fact that μ ∈ Q+ and w ∈ ∂s(x|D),
we get (

μT g
)
(x∗) + s(x∗|D)

(
μT q

) − (
μT g

)
(x) − xT w

(
μT q

) − (x∗ − x)T

× [∇ (
μT g

)
(x) + w

(
μT q

)] ≥ 0.

Using (3.2) and (3.4) in the above inequality, we get(
μT g

)
(x∗) + s(x∗|D)

(
μT q

) ≥ 0,

which is a contradiction to (3.3). Hence, λ �= 0. �
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Next we give some sufficient optimality conditions for the problem (NVP) as-
suming the concerned functions to be cone-convex.

Theorem 3.6. Let x ∈ S0 and suppose that there exist λ ∈ K+ \ {0}, μ ∈ Q+,
z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that (3.1) and (3.2) hold. If f be K-convex
and g be Q-convex at x, then x is a weak minimum of (NVP).

Proof. Let x ∈ S0 be any arbitrary point, then

−g(x) − s(x|D)q ∈ Q. (3.7)

Since w ∈ ∂s(x|D), therefore[
s(x|D) − s(x|D) − (x − x)T w

]
q ∈ Q. (3.8)

As g is Q-convex at x, therefore

g(x) − g(x) −∇g(x)(x − x) ∈ Q. (3.9)

Adding (3.7), (3.8) and (3.9), we get

−g(x) − s(x|D)q −∇g(x)(x − x) − (x − x)T wq ∈ Q.

Using μ ∈ Q+ in above relation, we get

− (
μT g

)
(x) − s(x|D)

(
μT q

) − (x − x)T
[∇ (

μT g
)
(x) + w

(
μT q

)] ≥ 0.

Using the fact that w ∈ ∂s(x|D) in above inequality and then applying (3.1) and
(3.2) we have

(x − x)T
[
∇

(
λ

T
f
)

(x) + z
(
λ

T
k
)]

≥ 0. (3.10)

Since z ∈ ∂s(x|C), therefore[
s(x|C) − s(x|C) − (x − x)T z)

]
k ∈ K.

Since f is K-convex at x, therefore

f(x) − f(x) −∇f(x)(x − x) ∈ K.

Adding the above two relations and using the fact that λ ∈ K+ \ {0}, we get(
λ

T
f
)

(x) + s(x|C)
(
λ

T
k
)
−

(
λ

T
f
)

(x) − s(x|C)
(
λ

T
k
)
− (x − x)T

×
[
∇

(
λ

T
f
)

(x) + z
(
λ

T
k
)]

≥ 0. (3.11)

Adding (3.10) and (3.11), we have(
λ

T
f
)

(x) + s(x|C)
(
λ

T
k
)
−

(
λ

T
f
)

(x) − s(x|C)
(
λ

T
k
)
≤ 0.

Again since λ ∈ K+ \ {0}, we have

f(x) + s(x|C)k − f(x) − s(x|C)k /∈ intK.

Hence, x is a weak minimum for (NVP). �

Now we give an example to illustrate the above theorem.



280 S.K. SUNEJA AND P. LOUHAN

Example 3.7. Let f : R −→ R
2 and g : R −→ R

2

f(x) =
(

f1(x)
f2(x)

)
=

(
1 − x2

x

)
, C = [−1, 1], s(x|C) =

{−x x ≤ 0
x x > 0

K =
{(

x1

x2

)
∈ R

2 : x1 ≤ 0, x1 ≤ −x2

}
, k =

(−1
0

)
∈ intK.

g(x) =
(

g1(x)
g2(x)

)
=

(
2 − 7x4

x4 + x + 2

)
, D = [0, 1], s(x|D) =

{
0 x ≤ 0
x x > 0

Q =
{(

x1

x2

)
∈ R

2 : x1 ≤ x2 ≤ −x1

}
, q =

(−11/4
1

)
∈ Q.

Now, the problem (NVP) is as follows

(NVP) K-Minimize (f1(x) + s(x|C)k1, f2(x) + s(x|C)k2)T

subject to
−(g1(x) + s(x|D)q1, g2(x) + s(x|D)q2)T ∈ Q,

where

f1(x) + s(x|C)k1 =
{

1 + x − x2 x ≤ 0
1 − x − x2 x > 0 , f2(x) + s(x|C)k2 = x,

g1(x) + s(x|D)q1 =

{
2 − 7x4 x ≤ 0

2 − 11
4

x − 7x4 x > 0
,

g2(x) + s(x|D)q2 =
{

x4 + x + 2 x ≤ 0
x4 + 2x + 2 x > 0

The feasible set of the problem (NVP) is S0 =
[
−1

2
, 0

]
. Let x = 0.

Then f is K-convex at x, because for every x ∈ R, we have

f(x) − f(x) −∇f(x)(x − x) =
(−x2

0

)
∈ K

And g is Q-convex at x, because for every x ∈ R, we have

g(x) − g(x) −∇g(x)(x − x) =
(−7x4

x4

)
∈ Q (Fig. 1) .

K+ =
{(

x1

x2

)
∈ R

2 : x1 ≤ x2 ≤ 0
}

, Q+ = Q,

∂s(x|C) = [−1, 1] and ∂s(x|D) = [0, 1].
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Figure 1. The line represents g(x) − g(x) − ∇g(x)(x − x) and
the shaded region represents Q.

Also there exist λ = (−1,−1)T ∈ K+ \ {0}, μ = (−1, 1)T ∈ Q+, z = −1
4

∈
∂s(x|C), w =

1
15

∈ ∂s(x|D) such that

∇
(
λ

T
f
)

(x) + z
(
λ

T
k
)

+ ∇ (
μT g

)
(x) + w

(
μT q

)
= 0(

μT g
)
(x) + xT w

(
μT q

)
= 0.

Therefore, x is a weak minimum of problem (NVP).

Theorem 3.8. Let x ∈ S0 and suppose that there exist λ ∈ Ks+, μ ∈ Q+, z ∈
∂s(x|C) and w ∈ ∂s(x|D) such that (3.1) and (3.2) hold. If f be K-convex and g
be Q-convex at x, then x is a minimum of (NVP).

Proof. Proceeding on the lines of proof of Theorem 3.6, we have, for every x ∈ S0(
λ

T
f
)

(x) + s(x|C)
(
λ

T
k
)
−

(
λ

T
f
)

(x) − s(x|C)
(
λ

T
k
)
≤ 0.

Since λ ∈ Ks+, therefore we have

f(x) + s(x|C)k − f(x) − s(x|C)k /∈ K \ {0}.
Hence, x is a minimum for (NVP). �
Theorem 3.9. Let x ∈ S0 and suppose that there exist μ ∈ Q+, z ∈ ∂s(x|C) and
w ∈ ∂s(x|D) such that (3.1) and (3.2) hold (with λ replaced by λ) for all λ ∈ K+.
If f be K-convex and g be Q-convex at x ∈ S0, then x is a strong minimum of
(NVP).
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Proof. Proceeding on the lines of proof of Theorem 3.6, we have, for every x ∈ S0

(
λT f

)
(x) + s(x|C)

(
λT k

) − (
λT f

)
(x) − s(x|C)

(
λT k

) ≥ 0 ∀ λ ∈ K+,

which implies that

f(x) + s(x|C)k − f(x) − s(x|C)k ∈ (K+)+ = K.

Hence, x is a strong minimum for (NVP). �

Sufficient optimality conditions are also proved under (strictly, strongly) cone-
pseudoconvexity and cone-quasiconvexity assumptions.

Theorem 3.10. Let x ∈ S0 and suppose that there exist λ ∈ K+ \ {0}, μ ∈ Q+,
z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that (3.1) and (3.2) hold. If f(·)+(·)T zk is K-
pseudoconvex and g(·) + (·)T wq is Q-quasiconvex at x, then x is a weak minimum
of (NVP).

Proof. Let x ∈ S0 be any arbitrary point, then

−g(x) − s(x|D)q ∈ Q (3.12)

and because w ∈ D, we have s(x|D) ≥ xT w, which implies that

[
s(x|D) − xT w

]
q ∈ Q. (3.13)

Adding (3.12) and (3.13) and using μ ∈ Q+, we get

(
μT g

)
(x) + xT w

(
μT q

) ≤ 0. (3.14)

From (3.2) and above inequality, we have

(
μT g

)
(x) + xT w

(
μT q

) − (
μT g

)
(x) − xT w

(
μT q

) ≤ 0. (3.15)

If μ �= 0, then

g(x) +
(
xT w

)
q − g(x) − (

xT w
)
q /∈ intQ.

Since g(·) + (·)T wq is Q-quasiconvex at x, therefore

−∇g(x)(x − x) − (x − x)T wq ∈ Q.
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Using μ ∈ Q+, we have

−(x − x)T
[∇ (

μT g
)
(x) + w

(
μT q

)] ≥ 0.

If μ = 0, then also the above inequality holds. Now using above inequality in (3.1),
we get

−(x − x)T
[
∇

(
λ

T
f
)

(x) + z
(
λ

T
k
)]

≤ 0.

Since λ ∈ K+ \ {0}, we have

−∇f(x)(x − x) − (x − x)T zk /∈ intK.

Since f(·) + (·)T zk is K-pseudoconvex at x, therefore

− [
f(x) +

(
xT z

)
k − f(x) − (

xT z
)
k
]

/∈ intK.

Thus, using (2.1) there exists λ∗ ∈ K+ \ {0}, such that

−
(
λ∗T f

)
(x) − xT z

(
λ∗T k

)
+

(
λ∗T f

)
(x) + xT z

(
λ∗T k

)
≤ 0. (3.16)

Since z ∈ ∂s(x|C), we have

[
s(x|C) − s(x|C) − xT z + xT z

]
k ∈ K.

Using λ∗ ∈ K+ \ {0}, we get

[−s(x|C) + s(x|C) + xT z − xT z
] (

λ∗T k
)
≤ 0. (3.17)

Adding (3.16) and (3.17), we get

(
λ∗T f

)
(x) + s(x|C)

(
λ∗T k

)
−

(
λ∗T f

)
(x) − s(x|C)

(
λ∗T k

)
≤ 0,

which implies that

f(x) + s(x|C)k − f(x) − s(x|C)k /∈ intK.

Hence, x is a weak minimum for (NVP). �

Below we give an example to illustrate the above theorem.
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Example 3.11. Let f : R −→ R
2 and g : R −→ R

2

f(x) =
(

f1(x)
f2(x)

)
=

(
x

xex

)
, C = [−1, 1], s(x|C) =

{−x x ≤ 0
x x > 0

K =
{(

x1

x2

)
∈ R

2 : −x2 ≤ x1 ≤ x2

}
, k =

(
1/2
1

)
∈ intK.

g(x) =
(

g1(x)
g2(x)

)
=

(
x

(x + 1)3

)
, D = [1, 2], s(x|D) =

{
x x ≤ 0
2x x > 0

Q =
{(

x1

x2

)
∈ R

2 : x1 ≤ 0, x1 ≤ −x2

}
, q =

(−1/4
−1/8

)
∈ Q.

Now, the problem (NVP) is as follows

(NVP) K-Minimize (f1(x) + s(x|C)k1, f2(x) + s(x|C)k2)T

subject to
−(g1(x) + s(x|D)q1, g2(x) + s(x|D)q2)T ∈ Q,

where

f1(x) + s(x|C)k1 =
{

x/2 x ≤ 0
3x/2 x > 0 , f2(x) + s(x|C)k2 =

{
x (ex − 1) x ≤ 0
x (ex + 1) x > 0 ,

g1(x) + s(x|D)q1 = 3x/4, g2(x) + s(x|D)q2 = (x + 1)3 − x/4.

The feasible set of the problem (NVP) is S0 =
[
−1

2
, 0

]
. Let x = 0.

K+ = K, Q+ =
{(

x1

x2

)
∈ R

2 : x1 ≤ x2 ≤ 0
}

,

∂s(x|C) = [−1, 1] and ∂s(x|D) = [1, 2].

Also f(·) + (·)T zk is K-pseudoconvex at x, because for every x ∈ R, we have

−∇f(x)(x − x) − (x − x)T zk =
(−5x/4
−3x/2

)
/∈ intK (Fig. 2a)

=⇒ x ≥ 0

=⇒ −[f(x) +
(
xT z

)
k − f(x) − (

xT z
)
k] =

( −5x/4
−x (ex + 1/2)

)
/∈

intK (Fig. 2b)

And g(·) + (·)T wq is Q-quasiconvex at x, because for every x ∈ R, we have

g(x) +
(
xT w

)
q − g(x) − (

xT w
)
q =

(
3x/4

(x + 1)3 − x/8 − 1

)
/∈

intQ (Fig. 3a)
=⇒ x ≥ 0

=⇒ −∇g(x)(x − x) − (x − x)T wq =
( −3x/4
−23x/8

)
∈ Q (Fig. 3b) .
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(a) The line represents −∇f(x)(x −
x)− (x− x)T zk and the shaded region
represents K.

(b) The curve represents [−f(x) +(
xT z

)
k − f(x) − (

xT z
)
k and the

shaded region represents K.

Figure 2.

(a) The curve represents g(x) +(
xT w

)
q − g(x) − (

xT w
)
q and the

shaded region represents Q.

(b) The line represents −∇g(x)(x −
x)− (x−x)T wq and the shaded region
represents Q.

Figure 3.

There exist λ =
(

0,
1
2

)T

∈ K+ \ {0}, μ = (−1, 0)T ∈ Q+, z =
1
2

∈
∂s(x|C), w = 1 ∈ ∂s(x|D) such that

∇
(
λ

T
f
)

(x) + z
(
λ

T
k
)

+ ∇ (
μT g

)
(x) + w

(
μT q

)
= 0

(
μT g

)
(x) + xT w

(
μT q

)
= 0.

Therefore, x is a weak minimum of problem (NVP).

Theorem 3.12. Let x ∈ S0 and suppose that there exist λ ∈ Ks+, μ ∈ Q+,
z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that (3.1) and (3.2) hold. If f(·) + (·)T zk
is strictly K-pseudoconvex and g(·) + (·)T wq is Q-quasiconvex at x, then x is a
minimum of (NVP).
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Proof. Proceeding on the lines of proof of Theorem 3.10 and using the fact that
f(·) + (·)T zk is strictly K-pseudoconvex at x, we get that, for every x ∈ S0

− [
f(x) +

(
xT z

)
k − f(x) − (

xT z
)
k
]

/∈ K \ {0}.

So, there exists λ∗ ∈ Ks+, such that

−
(
λ∗T f

)
(x) − xT z

(
λ∗T k

)
+

(
λ∗T f

)
(x) + xT z

(
λ∗T k

)
≤ 0.

Since z ∈ ∂s(x|C), we have
[
s(x|C) − s(x|C) − xT z + xT z

]
k ∈ K and using that

λ∗ ∈ Ks+, we get

[−s(x|C) + s(x|C) + xT z − xT z
] (

λ∗T k
)
≤ 0.

Adding the above two inequalities, we get

(
λ∗T f

)
(x) + s(x|C)

(
λ∗T k

)
−

(
λ∗T f

)
(x) − s(x|C)

(
λ∗T k

)
≤ 0,

which implies that

f(x) + s(x|C)k − f(x) − s(x|C)k /∈ K \ {0}.

Hence, x is a minimum for (NVP). �

Theorem 3.13. Let x ∈ S0 and suppose that there exist λ ∈ K+ \ {0}, μ ∈ Q+,
z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that (3.1) and (3.2) hold. If f(·) + (·)T zk
is strongly K-pseudoconvex and g(·) + (·)T wq is Q-quasiconvex at x, then x is a
strong minimum of (NVP).

Proof. Proceeding on the lines of proof of Theorem 3.10 and using the fact that
f(·) + (·)T zk is strongly K-pseudoconvex at x, we get that, for every x ∈ S0

f(x) +
(
xT z

)
k − f(x) − (

xT z
)
k ∈ K.

Since z ∈ ∂s(x|C), we have

[
s(x|C) − s(x|C) − xT z + xT z

]
k ∈ K.

Adding the above two inequalities, we get

f(x) + s(x|C)k − f(x) − s(x|C)k ∈ K.

Hence, x is a strong minimum for (NVP). �
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4. Unified duality

The Unified Duality approach studied in this section has been proposed in the
literature in order to manage both the Mond-Weir and the Wolfe type duals in
a unifying framework. On the lines of Cambini and Carosi [14], we propose the
following unified dual for our problem (NVP) by considering a 0 − 1 parameter
δ ∈ {0, 1}.

(UD) K-Maximize f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k

subject to
∇ (

λT f
)
(u) + z

(
λT k

)
+ ∇ (

μT g
)
(u) + w

(
μT q

)
= 0

(1 − δ)
[(

μT g
)
(u) + uT w

(
μT q

)] ≥ 0
δ
(
λT k

)
= δ,

where u ∈ R
n, z ∈ C, w ∈ D, λ ∈ K+ \ {0}, μ ∈ Q+.

It is worth noticing here that if δ = 0, then the above dual becomes Mond−Weir
type dual and if δ = 1, then it becomes Wolfe type dual.

Remark 4.1. The presence of δ in the third constraint δ
(
λT k

)
= δ of our unified

dual is to remark the fact that we do not need this constraint in the case of
Mond−Weir dual, i.e., when δ = 0.

Remark 4.2.

(i) If we take m = 1, p = m, K = R+, Q = R
m
+ , z = w, for each j = 1, 2, . . . , m,

wj = 0, μ = y and δ = 1 then our dual (UD) reduces to the dual (D”)
considered by Schechter [11].

(ii) Let m = 1, p = m, K = R+, Q = R
m
+ and k = 1. Now if δ = 1 then our

dual (UD) reduces to the dual (WD) and if δ = 0 then it reduces to the dual
(M-WD), both considered by Husain et al. [9].

Now we will establish Weak Duality relations for (NVP) and its unified dual (UD).

Theorem 4.3 Weak Duality. Let x be feasible for (NVP) and (u, z, w, λ, μ) be
feasible for (UD). If f is K-convex and g is Q-convex at u, then we have

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − s(x|C)k /∈ intK.

Proof. Let, if possible,

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − s(x|C)k ∈ intK.

Since z ∈ C, therefore s(x|C) ≥ xT z and[
s(x|C) − xT z

]
k ∈ K.
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Adding the above two relations, we get

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − (

xT z
)
k ∈ intK.

Since f is K-convex at u, therefore

f(x) − f(u) −∇f(u)(x − u) ∈ K.

Again adding the above two relations and using the fact that λ ∈ K+ \ {0}, we
get

−(x − u)T
[∇ (

λT f
)
(u) + z

(
λT k

)]
+ δ

[(
μT g

)
(u) + uT w

(
μT q

)] (
λT k

)
> 0.

Using the feasibility of (u, z, w, λ, μ) for (UD) in the above inequality, we get

(x − u)T
[∇ (

μT g
)
(u) + w

(
μT q

)]
+

[(
μT g

)
(u) + uT w

(
μT q

)]
> 0,

which implies that

(x − u)T∇ (
μT g

)
(u) + xT w

(
μT q

)
+

(
μT g

)
(u) > 0.

Since g is Q-convex at u and μ ∈ Q+, therefore(
μT g

)
(x) − (

μT g
)
(u) − (x − u)T∇ (

μT g
)
(u) ≥ 0.

Adding the above two inequalities, we get(
μT g

)
(x) + xT w

(
μT q

)
> 0. (4.1)

Since x is feasible for (NVP), w ∈ D and μ ∈ Q+, therefore we have(
μT g

)
(x) + xT w

(
μT q

) ≤ 0,

which is a contradiction to (4.1) and hence the result. �

Now we illustrate the above result with an example.

Example 4.4. Consider the problem in Example 3.7. The Unified dual of this
problem is given by
K-Maximize(

1 − u2 − uz − δ

{(
2 − 7u4 − 11

4
uw

)
μ1 +

(
u4 + u + 2 + uw

)
μ2

}
, u

)T

subject to

−(2u + z)λ1 + λ2 −
(

28u3 +
11
4

w

)
μ1 + (4u3 + 1 + w)μ2 = 0

(1 − δ)
{(

2 − 7u4 − 11
4

uw

)
μ1 +

(
u4 + u + 2 + uw

)
μ2

}
≥ 0

δ
(
λT k

)
= δ.
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where u ∈ R, z ∈ C, w ∈ D, λ = (λ1, λ2)T ∈ K+ \ {0}, μ = (μ1, μ2)T ∈ Q+.

Take x = −1
4

feasible for primal problem (NVP) and (u, z, w, λ, μ) =(
0,−1

4
,

1
15

, (−1,−1)T , (−1, 1)T

)
feasible for Unified dual (UD). As shown in Ex-

ample 3.7, the function f is K-convex and g is Q-convex at u = 0;
Here,

f(u)+
(
uT z

)
k+δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k−f(x)−s(x|C)k =

(
5/16
1/4

)
/∈ intK.

Thus, Weak Duality result (Thm. 4.3) holds.

Below we define a function which will be used to prove the next Weak Duality
result.

Definition 4.5. Given the Problem (NVP) and given a vector k ∈ intK, we define
the following function:

L : R
n × C × D × Q+ −→ R

m such that

L(x, z, w, μ) = f(x) +
(
xT z

)
k +

[(
μT g

)
(x) + xT w

(
μT q

)]
k.

Theorem 4.6 Weak Duality. Let x be feasible for (NVP) and (u, z, w, λ, μ) be
feasible for (UD). Suppose the following conditions hold:

(a) If δ = 1, L(·, z, w, μ) is K-pseudoconvex at u, and
(b) If δ = 0, f(·) + (·)T zk is K-pseudoconvex and g(·) + (·)T wq is Q-quasiconvex

at u

Then, we have

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − s(x|C)k /∈ intK. (4.2)

Proof. Case (a). Let δ = 1 and let, if possible,

f(u) +
(
uT z

)
k +

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x)− s(x|C)k ∈ intK.

Since z ∈ C, therefore s(x|C) ≥ xT z and[
s(x|C) − xT z

]
k ∈ K.

Adding the above two relations, we get

f(u) +
(
uT z

)
k +

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x)− (

xT z
)
k ∈ intK.

(4.3)
Since x is feasible for (NVP), w ∈ D and μ ∈ Q+, therefore we have

− [(
μT g

)
(x) + xT w

(
μT q

)] ≥ 0, (4.4)
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and using the fact that k ∈ intK and (4.4), we get

− [(
μT g

)
(x) + xT w

(
μT q

)]
k ∈ K. (4.5)

Adding (4.3) and (4.5), we get

f(u) +
(
uT z

)
k +

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − (

xT z
)
k

− [(
μT g

)
(x) + xT w

(
μT q

)]
k ∈ intK.

That is,
− [L(x, z, w, μ) − L(u, z, w, μ)] ∈ intK.

Using the fact that L(·, z, w, μ) is K-pseudoconvex at u, we get

−∇L(u, z, w, μ)(x − u) ∈ intK

Since λ ∈ K+ \ {0}, therefore

(x − u)T∇(λTL)(u, z, w, μ) < 0,

which on using the condition λT k = 1, gives

(x − u)T
[∇ (

λT f
)
(u) + z

(
λT k

)
+ ∇ (

μT g
)
(u) + w

(
μT q

)]
< 0,

which is a contradiction to the fact that (u, z, w, λ, μ) is feasible for
(UD). Hence the result.

Case (b). Let δ = 0, then we have to prove that,

f(u) +
(
uT z

)
k − f(x) − s(x|C)k /∈ intK.

Since x is feasible for (NVP), therefore

−g(x) − s(x|D)q ∈ Q

and because w ∈ D, we have[
s(x|D) − xT w

]
q ∈ Q.

Adding the two and using μ ∈ Q+, we get(
μT g

)
(x) + xT w

(
μT q

) ≤ 0.

From the above inequality and the fact that (u, z, w, λ, μ) is feasible
for (UD) with δ = 0, we have(

μT g
)
(x) + xT w

(
μT q

) − (
μT g

)
(u) − uT w

(
μT q

) ≤ 0.

If μ �= 0, then

g(x) +
(
xT w

)
q − g(u) − (

uT w
)
q /∈ intQ.
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Since g(·) + (·)T wq is Q-quasiconvex at u, therefore

−∇g(u)(x − u) − (x − u)T wq ∈ Q.

Using μ ∈ Q+, we get

−(x − u)T
[∇ (

μT g
)
(u) + w

(
μT q

)] ≥ 0.

If μ = 0, then also the above inequality holds. Now using the fact that
(u, z, w, λ, μ) is feasible for (UD) and above inequality, we get

−(x − u)T
[∇ (

λT f
)
(u) + z

(
λT k

)] ≤ 0.

Since λ ∈ K+ \ {0}, we have

−∇f(u)(x − u) − (x − u)T zk /∈ intK.

Since f(·) + (·)T zk is K-pseudoconvex at u, therefore

− [
f(x) +

(
xT z

)
k − f(u) − (

uT z
)
k
]

/∈ intK.

Thus, using (2.1) there exists λ∗ ∈ K+ \ {0}, such that

−
(
λ∗T f

)
(x) − xT z

(
λ∗T k

)
+

(
λ∗T f

)
(u) + uT z

(
λ∗T k

)
≤ 0.

Since z ∈ C, we have
[
s(x|C) − xT z

]
k ∈ K and using that λ∗ ∈

K+ \ {0}, we get

[−s(x|C) + xT z
] (

λ∗T k
)
≤ 0.

Adding the above two inequalities, we get(
λ∗T f

)
(u) + uT z

(
λ∗T k

)
−

(
λ∗T f

)
(x) − s(x|C)

(
λ∗T k

)
≤ 0,

which implies that

f(u) +
(
uT z

)
k − f(x) − s(x|C)k /∈ intK.

Hence the result. �

We now give the Strong Duality result.

Theorem 4.7 Strong Duality. Let x ∈ S0 be a weak minimum of (NVP). Then
there exist λ ∈ K+, μ ∈ Q+ with (λ, μ) �= 0 and z ∈ ∂s(x|C), w ∈ ∂s(x|D) such
that (3.1) and (3.2) hold. Moreover if g is Q-convex at x and we can find x∗ ∈ R

n

such that
(
μT g

)
(x∗) + s(x∗|D)

(
μT q

)
< 0 then there exist λ ∈ K+ \ {0} and

μ ∈ Q+ such that (x, z, w, λ, μ) is feasible for (UD). Suppose conditions of Weak
Duality Theorem 4.3 or 4.6 are satisfied for each feasible solution (u, z, w, λ, μ) of
(UD), then (x, z, w, λ, μ) is weak maximum for (UD).
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Proof. Since x is a weak minimum of (NVP), therefore by Theorem 3.4 there exist
λ∗ ∈ K+, μ∗ ∈ Q+ with (λ∗, μ∗) �= 0 and z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that
(3.1) and (3.2) hold.

Since g is Q-convex at x and there exists x∗ ∈ R
n such that

(
μ∗T g

)
(x∗) +

s(x∗|D)
(
μ∗T q

)
< 0, so by applying Theorem 3.5 we can prove that λ∗ �= 0.

Due to the fact that λ∗ ∈ K+ \ {0} and k ∈ intK, we have λ∗T k > 0 and

λ =
1

λ∗T k
λ∗ ∈ K+ \ {0} and μ =

1
λ∗T k

μ∗ ∈ Q+. Thus there exist λ ∈ K+ \ {0},
μ ∈ Q+, z ∈ ∂s(x|C) and w ∈ ∂s(x|D) such that (x, z, w, λ, μ) is feasible for (UD).

Now suppose the conditions of Weak Duality Theorem 4.3 or 4.6 hold for all
feasible points of (UD) and let if possible (x, z, w, λ, μ) be not a weak maximum
of (UD), then there exists a feasible point (u, z, w, λ, μ) of (UD) such that

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) +

(
xT z

)
k

+ δ
[(

μT g
)
(x) + xT w

(
μT q

)]
k ∈ intK

Using μ =
1

λ∗T k
μ∗, equation (3.2) and the fact that z ∈ ∂s(x|C) in the above

relation we have

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − s(x|C)k ∈ intK,

which is a contradiction to the Weak Duality Result. Hence, (x, z, w, λ, μ) is a
weak maximum of (UD). �

In order to prove the Converse Duality result, we now obtain Fritz-John type
necessary optimality conditions for a point to be a weak minimum of the following
program:
(VPE) K1-Minimize F (x)

subject to
−G(x) ∈ K2

H(x) = 0,
where F : S −→ R

m, G : S −→ R
p and H : S −→ R

l are differentiable vector-
valued functions, S is a nonempty convex subset of R

n, K1 and K2 are convex cones
in R

m and R
p respectively with vertices at respective origins such that intK1 �= φ.

Lemma 4.8. Let x∗ be a weak minimum of (VPE), then there exist α∗ ∈ K+
1 ,

ν∗ ∈ K+
2 and β∗ ∈ R

l with (α∗, ν∗, β∗) �= 0 such that

(x−x∗)T
[
∇

(
α∗T F

)
(x∗) + ∇

(
ν∗T G

)
(x∗) + ∇

(
β∗T H

)
(x∗)

]
≥ 0 for all x ∈ S

(
ν∗T G

)
(x∗) = 0 and

(
β∗T H

)
(x∗) = 0.
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Proof. Let K3 = {0} ⊂ R
l, then the problem (VPE) can be written as

K1-Minimize F (x)
subject to

−G(x) ∈ K2

−H(x) ∈ K3.
We claim that there is no x ∈ S such that

∇F (x∗)(x − x∗) ∈ −intK1,

∇G(x∗)(x − x∗) + G(x∗) ∈ −K2,

∇H(x∗)(x − x∗) ∈ −K3.

Let, if possible, there be an x ∈ S which is a solution to the above system.
Now since S is convex, therefore for any t ∈ (0, 1), x∗ + t(x − x∗) ∈ S. Further

we have

G(x∗ + t(x − x∗)) = G(x∗) + t∇G(x∗)(x − x∗) + o(t)
= t [G(x∗) + ∇G(x∗)(x − x∗)] + (1 − t)G(x∗) + o(t) ∈ −K2

where lim
t↓0

o(t) = 0.

Since H(x∗) = 0, we get

H(x∗ + t(x − x∗)) = H(x∗) + t∇H(x∗)(x − x∗) + o(t)
= t∇H(x∗)(x − x∗) + o(t) ∈ −K3

where lim
t↓0

o(t) = 0. That is, H(x∗ + t(x − x∗)) = 0.

Therefore x∗ + t(x − x∗) is feasible for the problem (VPE). Also

F (x∗ + t(x − x∗)) = F (x∗) + t∇F (x∗)(x − x∗) + o(t)

=⇒ F (x∗ + t(x − x∗)) − F (x∗) = t∇F (x∗)(x − x∗) + o(t) ∈ −intK1

where lim
t↓0

o(t) = 0. But this contradicts the fact that x∗ is a weak minimum of the

problem (VPE).
Thus by the theorem of alternative given by Illés and Kassay [17], Theorem 3.1,

there exist α∗ ∈ K+
1 , ν∗ ∈ K+

2 and β∗ ∈ K+
3 = R

l with (α∗, ν∗, β∗) �= 0 such that

(x−x∗)T
[
∇

(
α∗T F

)
(x∗) + ∇

(
ν∗T G

)
(x∗) + ∇

(
β∗T H

)
(x∗)

]
+

(
ν∗T G

)
(x∗) ≥ 0

for all x ∈ S

For x = x∗, the above inequality gives(
ν∗T G

)
(x∗) ≥ 0.
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Since −G(x∗) ∈ K2 and ν∗ ∈ K+
2 , we have

(
ν∗T G

)
(x∗) ≤ 0.

Therefore the above two inequalities imply that

(
ν∗T G

)
(x∗) = 0.

Also, since H(x∗) = 0, therefore
(
β∗T H

)
(x∗) = 0.

Thus we obtain

(x−x∗)T
[
∇

(
α∗T F

)
(x∗) + ∇

(
ν∗T G

)
(x∗) + ∇

(
β∗T H

)
(x∗)

]
≥ 0 for all x ∈ S

(
ν∗T G

)
(x∗) = 0 and

(
β∗T H

)
(x∗) = 0. �

Theorem 4.9 Converse Duality. Let (û, ẑ, ŵ, λ̂, μ̂) be a weak maximum of (UD)
and suppose the following conditions are satisfied:

(a) f and g are twice differentiable,
(b) ∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û) is negative definite matrix,

(c) The set {∇fi(û) + ẑki : i = 1, 2, . . . , m} is linearly independent,
(d) μ̂T q > 0,
(e) Conditions of Weak Duality Theorem 4.3 or 4.6 are satisfied for each feasible

solution x of (NVP).

Then û is a weak minimum of (NVP)

Proof. Since (û, ẑ, ŵ, λ̂, μ̂) is a weak maximum of (UD), therefore it will be a weak
minimum of the following program:

K-Minimize −f(u) − (
uT z

)
k − δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k

subject to
∇ (

λT f
)
(u) + z

(
λT k

)
+ ∇ (

μT g
)
(u) + w

(
μT q

)
= 0

(1 − δ)
[(

μT g
)
(u) + uT w

(
μT q

)] ≥ 0
δ
(
λT k

)
= δ.

where u ∈ R
n, z ∈ C, w ∈ D, λ ∈ K+ \ {0}, μ ∈ Q+.
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Therefore by Lemma 4.8, there exist α̂ ∈ K+, β̂ ∈ R
n, ξ̂ ≥ 0 and γ̂ ∈ R with

(α̂, β̂, ξ̂, γ̂) �= 0 such that

(u − û)T
[−∇ (

α̂T f
)
(û) − (

α̂T k
)
ẑ − δ

(
α̂T k

) {∇ (
μ̂T g

)
(û) + ŵ

(
μ̂T q

)}
− (1 − δ) ξ̂

{∇ (
μ̂T g

)
(û) + ŵ

(
μ̂T q

)}
+

{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂
]

+ (z − ẑ)T
[
− (

α̂T k
)
û +

(
λ̂T k

)
β̂
]

+ (w − ŵ)T
[
−δ

(
α̂T k

)
û − (1 − δ) ξ̂û + β̂

] (
μ̂T q

)
+ (λ − λ̂)T

[
∇f(û)β̂ +

(
β̂T ẑ

)
k + δγ̂k

]
+ (μ − μ̂)T

[−δ
(
α̂T k

){
g(û) +

(
ûT ŵ

)
q
}

− (1 − δ) ξ̂
{
g(û) +

(
ûT ŵ

)
q
}

+ ∇g(û)β̂ +
(
β̂T ŵ

)
q
]
≥ 0

for all u ∈ R
n, z ∈ C, w ∈ D, λ ∈ K+ \ {0}, μ ∈ Q+. (4.6)

β̂T
[
∇

(
λ̂T f

)
(û) + ẑ

(
λ̂T k

)
+ ∇ (

μ̂T g
)
(û) + ŵ

(
μ̂T q

)]
= 0.

(1 − δ) ξ̂
[(

μ̂T g
)
(û) + ûT ŵ

(
μ̂T q

)]
= 0.

δγ̂
[(

λ̂T k
)
− 1

]
= 0.

Substituting z = ẑ, w = ŵ, λ = λ̂ and μ = μ̂ in inequality (4.6), we get

(u − û)T
[−∇ (

α̂T f
)
(û) − (

α̂T k
)
ẑ − δ

(
α̂T k

){∇ (
μ̂T g

)
(û) + ŵ

(
μ̂T q

)}
− (1 − δ) ξ̂

{∇ (
μ̂T g

)
(û) + ŵ

(
μ̂T q

)}
+

{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂
]
≥ 0 for all u ∈ R

n (4.7)

and proceeding the similar manner we get the following inequalities

(z − ẑ)T
[
− (

α̂T k
)
û +

(
λ̂T k

)
β̂
]
≥ 0 for all z ∈ C (4.8)

(w − ŵ)T
[
−δ

(
α̂T k

)
û − (1 − δ) ξ̂û + β̂

] (
μ̂T q

) ≥ 0 for all w ∈ D (4.9)

(λ − λ̂)T
[
∇f(û)β̂ +

(
β̂T ẑ

)
k + δγ̂k

]
≥ 0 for all λ ∈ K+ \ {0} (4.10)

(μ − μ̂)T
[
−δ

(
α̂T k

) {
g(û) +

(
ûT ŵ

)
q
} − (1 − δ) ξ̂

{
g(û) +

(
ûT ŵ

)
q
}

+∇g(û)β̂ +
(
β̂T ŵ

)
q
]
≥ 0 for all μ ∈ Q+. (4.11)

It must be noted here that if the value of δ = 0, then we would not have the
third constraint δ

(
λT k

)
= δ in our dual problem (UD) and hence the multiplier
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γ̂ will not come into existence and similarly if δ = 1 then the multiplier ξ̂ will not
come into existence.

Inequality (4.7) can be written as,

−∇ (
α̂T f

)
(û) − (

α̂T k
)
ẑ −

{
δ
(
α̂T k

)
+ (1 − δ) ξ̂

}{∇ (
μ̂T g

)
(û) + ŵ

(
μ̂T q

)}
+

{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂ = 0,

which implies that

{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂

= ∇ (
α̂T f

)
(û) +

(
α̂T k

)
ẑ +

{
δ
(
α̂T k

)
+ (1 − δ) ξ̂

}{∇ (
μ̂T g

)
(û) + ŵ

(
μ̂T q

)}
.

On using the feasibility of (û, ẑ, ŵ, λ̂, μ̂) for (UD) in above equality, we get{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂

= ∇ (
α̂T f

)
(û) +

(
α̂T k

)
ẑ −

{
δ
(
α̂T k

)
+ (1 − δ) ξ̂

}{
∇

(
λ̂T f

)
(û) + ẑ

(
λ̂T k

)}

=
m∑

i=1

{
α̂i −

(
δ
(
α̂T k

)
+ (1 − δ) ξ̂

)
λ̂i

}
{∇fi(û) + ẑki} . (4.12)

Premultiplying the above equation with β̂T , we get

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂

= β̂T
m∑

i=1

{
α̂i − δ

(
α̂T k

)
λ̂i

}
{∇fi(û) + ẑki}

− (1 − δ) ξ̂β̂T
{
∇

(
λ̂T f

)
(û) + ẑ

(
λ̂T k

)}
. (4.13)

Substituting λ =
λ̂

2
and λ =

3λ̂

2
in relation (4.10) and using that δ

(
λ̂T k

)
= δ, we

get

β̂T∇
(
λ̂T f

)
(û) + β̂T ẑ

(
λ̂T k

)
= −δγ̂. (4.14)

From (4.13) and (4.14), we get

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂

= β̂T
m∑

i=1

{
α̂i − δ

(
α̂T k

)
λ̂i

}
{∇fi(û) + ẑki} − (1 − δ) δξ̂γ̂.
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Since δ ∈ {0, 1}, therefore the above equation reduces to

β̂T
{
∇uu

(
λ̂T f

)
(û)+∇uu

(
μ̂T g

)
(û)

}
β̂ = β̂T

m∑
i=1

{
α̂i − δ

(
α̂T k

)
λ̂i

}
{∇fi(û) + ẑki} .

(4.15)
First we will prove that α̂ �= 0. For if α̂ = 0, then by equation (4.15) we have

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂ = 0,

which on using condition (b) of this theorem gives β̂ = 0.
By substituting β̂ = 0 in equation (4.14) we have

δγ̂ = 0,

As mentioned earlier if δ = 0, then γ̂ will not come into existence and if δ = 1,
then from above equation γ̂ = 0. Substituting α̂ = 0 and β̂ = 0 in equation (4.12)
we have

m∑
i=1

(1 − δ) ξ̂λ̂i {∇fi(û) + ẑki} = 0

which on using condition (c) implies that for each i = 1, 2, . . . , m, ξ̂ (1 − δ) λ̂i = 0.
But since λ̂ ∈ K+ \ {0}, therefore we have

ξ̂ (1 − δ) = 0.

Again if δ = 1, then ξ̂, will not come into picture and if δ = 0, then from above
equation ξ̂ = 0.

We finally arrive at a condition where α̂ = 0, β̂ = 0, ξ̂ = 0, γ̂ = 0, which a
contradiction to the fact that (α̂, β̂, ξ̂, γ̂) �= 0. Hence α̂ �= 0.

Since α̂ ∈ K+ \ {0} and k ∈ intK, therefore α̂T k > 0 and hence
1

(α̂T k)
α̂ ∈

K+ \ {0}. Now substituting λ =
1

(α̂T k)
α̂ in (4.10), we have

(
α̂ − (

α̂T k
)
λ̂
)T [

∇f(û)β̂ +
(
β̂T ẑ

)
k + δγ̂k

]
≥ 0.

Using the fact that δ
(
λ̂T k

)
= δ, we get

(
α̂ − (

α̂T k
)
λ̂
)T [

∇f(û)β̂ + k
(
β̂T ẑ

)]
≥ 0,

which gives that

β̂T
[∇ (

α̂T f
)
(û) +

(
α̂T k

)
ẑ
] ≥ (

α̂T k
)
β̂T

[
∇

(
λ̂T f

)
(û) +

(
λ̂T k

)
ẑ
]
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or

β̂T
m∑

i=1

α̂i {∇fi(û) + ẑki} ≥ β̂T
m∑

i=1

(
α̂T k

)
λ̂i {∇fi(û) + ẑki} .

Substituting the above inequality in (4.15), we get

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂ ≥ β̂T

m∑
i=1

(1 − δ)
(
α̂T k

)
λ̂i {∇fi(û) + ẑki}

or

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂

≥ (1 − δ)
(
α̂T k

)
β̂T

[
∇

(
λ̂T f

)
(û) +

(
λ̂T k

)
ẑ
]
.

Now using (4.14) in above inequality, we have

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂ ≥ −δ (1 − δ) γ̂

(
α̂T k

)
,

and since δ ∈ {0, 1}, we have

β̂T
{
∇uu

(
λ̂T f

)
(û) + ∇uu

(
μ̂T g

)
(û)

}
β̂ ≥ 0.

On using condition (b), we get β̂ = 0.
Putting the value β̂ = 0 in (4.12), we get

m∑
i=1

{
α̂i −

(
δ
(
α̂T k

)
+ (1 − δ) ξ̂

)
λ̂i

}
{∇fi(û) + ẑki} = 0,

which on using condition (c), gives

α̂i =
{(

α̂T k
)
δ + ξ̂ (1 − δ)

}
λ̂i, for each i = 1, 2, . . . , m.

That is, for each i = 1, 2, . . . , m,

α̂i =
{

ξ̂λ̂i ; if δ = 0(
α̂T k

)
λ̂i ; if δ = 1.

Since α̂, λ̂ ∈ K+ \ {0}, so if δ = 0, then in that case we have ξ̂ > 0.
Putting the value β̂ = 0 in (4.8) and using the fact that α̂T k > 0, we get

ûT z ≤ ûT ẑ for all z ∈ C,

which implies that

ûT ẑ = max
{
ûT z : z ∈ C

}
= s(û|C), that is ẑ ∈ ∂s(û|C).
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Similarly substituting β̂ = 0 in (4.9), we get

−(w − ŵ)T
{
δ
(
α̂T k

)
û + (1 − δ) ξ̂

}(
μ̂T q

) ≥ 0 for all w ∈ D

which on using the fact that δ ∈ {0, 1}, α̂T k > 0, ξ̂ > 0 and μ̂T q > 0, becomes

ûT w ≤ ûT ŵ for all w ∈ D,

which implies that

ûT ŵ = max
{
ûT w : w ∈ D

}
= s(û|D), that is ŵ ∈ ∂s(û|D).

Substituting β̂ = 0 in (4.11) and using the fact that δ ∈ {0, 1}, α̂T k > 0 and ξ̂ > 0,
we have

−(μ − μ̂)T
[
g(û) +

(
ûT ŵ

)
q
] ≥ 0 for all μ ∈ Q+. (4.16)

Since μ, μ̂ ∈ Q+ and Q+ is a closed convex cone therefore replacing μ by μ + μ̂
and using ûT ŵ = s(û|D) in the above inequality, we get

−μT [g(û) + s(û|D)q] ≥ 0 for all μ ∈ Q+,

which implies that
−g(û) − s(û|D)q ∈ Q.

Hence û is feasible for (NVP).
Since (û, ẑ, ŵ, λ̂, μ̂) is feasible for (UD) and conditions of Weak Duality result 4.3

or 4.6 are satisfied for each feasible solution x of (NVP), we have for each x ∈ S0,

f(u) +
(
uT z

)
k + δ

[(
μT g

)
(u) + uT w

(
μT q

)]
k − f(x) − s(x|C)k /∈ intK. (4.17)

Substituting μ = 0 and μ = 2μ̂ in (4.16), we get(
μ̂T g

)
(û) + ûT ŵ

(
μ̂T q

)
= 0.

Using ûT ẑ = s(û|C) and above equation in (4.17), we have

f(û) + s(û|C)k − f(x) − s(x|C)k /∈ intK.

Therefore, û is weak minimum for (NVP). �

5. Special cases

In this section we specialize our problem.

1. Let the compact sets C and D be

C =
{
Az : zT Az ≤ 1

}
and D =

{
Bw : wT Bw ≤ 1

}
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where A and B are positive semidefinite matrices of order n. As discussed by
Mond and Schechter [2], we may write

s(x|C) =
(
xT Ax

)1/2
and s(x|D) =

(
xT Bx

)1/2
.

Putting these values in our problems, we get

(NVP)1 K-Minimize f(x) +
(
xT Ax

)1/2
k

subject to
−g(x) − (

xT Bx
)1/2

q ∈ Q,

Similarly substituting these values in dual problem, we get

(UD)1 K-Maximize f(u) +
(
uT Az

)
k + δ

[(
μT g

)
(u) + uT Bw

(
μT q

)]
k

subject to
∇ (

λT f
)
(u) + Az

(
λT k

)
+ ∇ (

μT g
)
(u) + Bw

(
μT q

)
= 0

(1 − δ)
[(

μT g
)
(u) + uT Bw

(
μT q

)] ≥ 0
δ
(
λT k

)
= δ.

where u, z, w ∈ R
n, zT Az ≤ 1, wT Bw ≤ 1, λ ∈ K+ \ {0}, μ ∈ Q+.

If we take m = p and p = q and replace gi by the function Gi, also if we take
K = R

p
+, Q = R

q
+, k = (1, 1, . . . , 1) ∈ R

p and q = (1, 1, . . . , 1) ∈ R
q. Then our

problem (NVP)1 reduces to the problem (P5) considered by Zalmai [7] where
X = R

n, the set r is empty, Pi = A for each i = 1, 2, . . . , p and Rj = B for
each j = 1, 2, . . . , q.
If we interchange the roles of m and p and take K = R

p
+, Q = R

m
+ , k =

(1, 1, . . . , 1) ∈ R
p and q = (1, 1, . . . , 1) ∈ R

m, then our problem (NVP)1 reduces
to (MNP)1 and the unified dual (UD)1 reduces to (WND)1 and (M-WND)1 if
δ = 1 and δ = 0, respectively, considered by Husain et al. [8] where Bi = A for
each i = 1, 2, . . . , p and Ej = B for each j = 1, 2, . . . , m.

2. Let the compact convex set C and D be

C = {Az : ‖z‖p1 ≤ 1}
D = {Bw : ‖w‖p1 ≤ 1} ,

where A and B are n × n matrices. As shown by Mond and Schechter [2], we
can write

s(x|C) = ‖Ax‖p2 s(x|D) = ‖Bx‖p2

where p1 and p2 are conjugate exponents, i. e., for p2 > 1,
1
p1

+
1
p2

= 1.

Then substituting these values of s(x|C) and s(x|D) in the problem
(NV P ), we get

(NVP)2 K-Minimize f(x) + ‖Ax‖p2k
subject to
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−g(x) − ‖Bx‖p2q ∈ Q,

and its unified dual is given as under

(UD)2 K-Maximize f(u) +
(
uT Az

)
k + δ

[(
μT g

)
(u) + uT Bw

(
μT q

)]
k

subject to
∇ (

λT f
)
(u) + Az

(
λT k

)
+ ∇ (

μT g
)
(u) + Bw

(
μT q

)
= 0

(1 − δ)
[(

μT g
)
(u) + uT Bw

(
μT q

)] ≥ 0
δ
(
λT k

)
= δ.

where u, z, w ∈ R
n, ‖z‖p1 ≤ 1, ‖w‖p1 ≤ 1, λ ∈ K+ \ {0}, μ ∈ Q+.

If we take m = p and p = q and replace gi by the function Gi, also if we take
K = R

p
+, Q = R

q
+, k = (1, 1, . . . , 1) ∈ R

p and q = (1, 1, . . . , 1) ∈ R
q. Then our

problem (NVP)2 reduces to the problem (P1) considered by Zalmai [7] where
X = R

n, the set r is empty, Ai = A, a(i) = p2 for each i = 1, 2, . . . , p and
Cj = B, cj = p1 for each j = 1, 2, . . . , q.
If we take m = 1, p = m, K = R+, k = 1, Q = Rm

+ and q = (1, 1, . . . , 1)T ∈ Q
then our Problem (NVP)1 reduces to the problem (NP)1 and the dual problem
(UD)1 reduces to (WD)1 and (M-WD)1 if δ = 1 and δ = 0, respectively,
considered by Husain et al. [9] as special case where B = A and Ej = B for
j = 1, 2, . . . , m. Further our problem (NVP)2 reduces to (NP)2 and the unified
dual (UD)2 reduces to the problem (WD)2 and (M-WD)2, if δ = 1 and δ = 0,
respectively, where p = p2, q = p1, P = A and Qj = B for j = 1, 2, . . . , m.

6. Conclusions

The main advantage of this paper is that the problem (NVP) considered here
generalises many existing problems in the literature. As mentioned in Remark 3.1,
under particular conditions, our problem (NVP) reduces to the problems consid-
ered by Schechter [11], Husain et al. [9] and Husain et al. [8]. Also the main result of
the paper, Theorem 3.4, is proved without using any convexity assumptions. More-
over, the unified dual (UD), provides a common platform to study both Wolfe type
as well as Mond−Weir type duals.

Acknowledgements. The first author is grateful to the University Grants Commission
(UGC), India for offering financial support. The second author is thankful to Council
of Scientific & Industrial Research (CSIR), India for the financial support provided dur-
ing the work. Both the authors are also grateful to the two referees for their valuable
suggestions in improving the presentation of the paper.

References
[1] B.D. Craven, Nonsmooth multiobjective programming. Numer. Func. Anal. Optim. 10

(1989) 49–64.
[2] B. Mond and M. Schechter, A duality theorem for a homogeneous fractional programming

problem. J. Optim. Theory. Appl. 25 (1978) 349–359.



302 S.K. SUNEJA AND P. LOUHAN

[3] D.T. Luc, Theory of vector optimization. Springer (1989).
[4] F. Flores−Bazán and C. Vera, Unifying efficiency and weak efficiency in generalized quasi-

convex vector minimization on the real-line. Int. J. Optim. Theory: Theory, Methods and
Appl. 1 (2009) 247–265.

[5] F. Flores−Bazán, N. Hadjisavvas and C. Vera, An optimal altenative theorem and applica-
tions to mathematical programming. J. Glob. Optim. 37 (2007) 229–243.

[6] F.H. Clarke, Optimization and nonsmooth analysis. A Wiley-Interscience Publication
(1983).

[7] G.J. Zalmai, Generalized (η, ρ)-invex functions and global semiparametric sufficient effi-
ciency conditions for multiobjective fractional programming problems containing arbitrary
norms. J. Glob. Optim. 36 (2006) 51–85.

[8] I. Husain, A. Ahmed and R.G. Mattoo, On multiobjective nonlinear programming with
support functions. J. Appl. Anal. 16 (2010) 171–187.

[9] I. Husain, Abha and Z. Jabeen, On nonlinear programming with support functions. J. Appl.
Math. Comput. 10 (2002) 83–99.

[10] J. Jahn, Vector optimization: Theory, applications and extensions. Springer (2011).
[11] M. Schechter, A subgradient duality theorem. J. Math. Anal. Appl. 61 (1977) 850–855.
[12] M. Schechter, More on subgradient duality. J. Math. Anal. Appl. 71 (1979) 251–262.
[13] R. Cambini, Some new classes of generalized concave vector-valued functions. Optim. 36

(1996) 11–24.
[14] R. Cambini and L. Carosi, Mixed type duality for multiobjective optimization problems with

set constraints, in Optimality conditions in vector optimization, edited by Manuel Arana
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