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A HYBRID APPROACH COMBINING LOCAL SEARCH
AND CONSTRAINT PROGRAMMING FOR A LARGE
SCALE ENERGY MANAGEMENT PROBLEM *

HARIS GAVRANOVIG! AND MIRSAD BULJUBASICG?

Abstract. This paper presents a heuristic approach combining con-
straint satisfaction, local search and a constructive optimization algo-
rithm for a large-scale energy management and maintenance schedul-
ing problem. The methodology shows how to successfully combine and
orchestrate different types of algorithms and to produce competitive
results. We also propose an efficient way to scale the method for huge
instances. A large part of the presented work was done to compete in the
ROADEF/EURO Challenge 2010, organized jointly by the ROADEF,
EURO and Electricité de France. The numerical results obtained on
official competition instances testify about the quality of the approach.
The method achieves 3 out of 15 possible best results.
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1. INTRODUCTION

In this work we take the perspective of a large utility company, tackling their
problems in modeling and planning production assets, i.e., a multitude of power
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plants. The goal is to fulfill the respective demand of energy over a time horizon
of several years, while minimizing a total operation cost.

This problem was proposed at the ROADEF/EURO Challenge 2010, a compe-
tition organized by the French Operational Research and Decision Support Society
(ROADEF) and the European Operational Research Society (EURO). The prob-
lem is defined by Electricité de France (EDF) and it is a real world industry
problem solved at EDF.

The proposed problem consists of modeling the production assets and finding
an optimal outage schedule that includes two mutually dependent and related
subproblems:

(1) Determining the schedule of plant outages. This schedule must satisfy some
constraints in order to comply with limitations on resources, which are neces-
sary to perform refueling and maintenance operations.

(2) Determining an optimal production plan to satisfy demand. Production must
also satisfy some technical constraints.

The production plan should be determined for different scenarios. The objective
is to minimize the expected cost of production.

We present a hybrid heuristic approach to solve the problem. It combines sev-
eral solution methods: greedy algorithm, constraint programming and local search.
The paper focuses on the orchestration of these strategies in order to tackle this
problem. A simple reduction of the problem is used in order to solve the biggest
instances of the problem more efficiently. This reduction is based on an accu-
rate analysis of the problem structure and consists of decreasing the size of the
instances.

The paper is organized as follows. Formal description of the problem is given
in Section 2. Section 4 introduces several notations and simplifications, while giv-
ing an idea how they would be useful. Section 5 outlines the proposed algorithm
explaining its coarse structure first. Thereafter, in the same section, we describe
in detail the most important sub-procedures that make the whole algorithm. Sec-
tion 6 presents the numerical results for the given ROADEF/EURO Challenge
instances and compares them with the best known, public results.

2. PROBLEM STATEMENT

Here we give a formal definition of the problem. Large part of the section is
borrowed from the challenge subject [1] and Godskesen et al. [4].
A production portfolio with two types of production units is considered:

e Type-1 power plants which can be supplied in fuel continuously.
e Type-2 power plants which have to be supplied in fuel at regular intervals.

Production assets are used to satisfy a customer demand over a specific time
horizon. This time horizon has been discretized with a homogeneous time step.
The series of consecutive time steps is called a week. Week length is constant in
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each data set. Customer load is uncertain and known only through an available
set of uncertainty scenarios. Optimizing for several realistic scenarios instead of
just one generally leads to more robust plans.

Each Type-2 plant goes through a number of cycles. A cycle is composed of an
outage followed by a production campaign. During the outage, the plant cannot
produce electricity. During the production campaign, the plant is able to produce
electricity. The maximum number of cycles for each Type-2 power plant is equal
to six in all instances proposed by EDF.

Decisions concerning Type-2 plants, i.e. scheduling of outages and refueling
amounts are shared by all scenarios, but production levels of all plants are deter-
mined for each individual scenario.

A production plan specifies the production level of each plant for every time
step and every scenario. Furthermore, a maintenance plan specifies when outages
of Type-2 plants are scheduled and the amount of fuel to reload at each outage.
The objective is to satisfy the demand for electricity at the lowest average cost
over all scenarios while satisfying a number of constraints.

Production at a Type-1 plant incurs a cost that is proportional to the power
output and depends on the scenario and the time step. Refueling of a Type-2
plants leads to costs proportional to the amount of loaded fuel. The quantity of
fuel available for each Type-2 power plant at the beginning of the time horizon is
known.

2.1. VARIABLES AND BOUNDS

We will use the following indices: s =0, ..., 5 — 1 for scenarios, t =0,..., T —1
for time steps, h = 0,...,H — 1 for weeks, j = 0,...,J — 1 for Type-1 plants,
1=0,...,I —1 for Type-2 plants, and £ =0,..., K — 1 for cycles.

The following decision variables make up the problem:

e dates for outages to refuel Type-2 plants;
e the amount of fuel that is supplied whenever a Type-2 plant is refueled;
e production levels for Type-1 and Type-2 plants for each time step and scenario.

Let p(l,t,s) denote the production of plant (which may be of type 1 or 2) at
time step ¢ in scenario s. Let PMIN j” and PM AX;’S denote the minimum and
maximum allowed production of Type-1 plant j at time step ¢ in scenario s, then

Vt,s  PMIN;® <p(jt,s) < PMAX}". (2.1)

The bounds on production for a Type-2 plants are more complex, since they depend
on the current fuel stock and will be defined in the constraints section.

We will denote by (i, k) the k’th outage of Type-2 power plant i. Let ha(i, k)
denote the starting week of outage (i, k), and TO; ;, and T A; ;, denote the earliest
and latest possible starting week. Then, we have

TO; < ha(i,k) <TA; . (2.2)
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If bounds T'O; ;, and T'A; j, are undefined, the corresponding inequality is trivially
satisfied. If outage (7, k) is not scheduled then ha(i, k) = —1 and constraint (2.2)
is not enforced. Outage (i, k + 1) cannot start before outage (i, k) is finished.

The amount of fuel reloaded in outage (i,k) is denoted by r(i, k) and must
satisfy the following inequality if (i, k) is scheduled

RMIN; ), < r(i,k) < RMAX, . (2.3)

If (i, k) is not scheduled, then r(i, k) = 0.

In addition to the decision variables, we define a number of auxiliary variables
used to represent constraints of the problem.

The set of time steps composing the k’th outage of Type-2 plant ¢ is denoted by
ea(i, k), and the set of time steps composing the subsequent production campaign
is denoted by ec(i, k). For any k, the production p(i,t,s) of plant ¢ must be zero
for every t € ea(i, k).

The fuel stock of Type-2 plant i at time step ¢ is denoted by x(i,¢,s) > 0.
The initial fuel level of plant ¢ (at time step 0) XI; is specified in the input data.
During the production campaign for plant i, the decrease in fuel level from time
step ¢t to t + 1 in scenario s equals the production multiplied by the length of a
time step D:

xz(i,t +1,s) = x(i, t,s) — p(i,t,s) x D. (2.4)

During an outage, the fuel level at Type-2 plant increases because of refueling.
Due to technical reasons, the new fuel level is not simply the sum of the old fuel
level and the amount reloaded. Formally, if ¢ is the first time step in outage (i, k),
then the new fuel level for 7 in scenario s is computed using

w(i,t+1,8) = Qi x x(ist,s) +7(i, k) + Qf 4, (2.5)

where @); ; < 1 and Qg,k are input data.

2.2. CONSTRAINTS

The constraints can be divided into three groups, namely production level con-
straints, fuel level constraints and outages scheduling constraints.

2.2.1. Production level constraints

Let DEM?%* denote the demand at time step ¢ in scenario s. The total produc-
tion must equal to the demand in every scenario and every time step

J—1 I—-1
Vs,t: Y plist.s)+ Y pli,t,s) = DEM"*. (2.6)
=0 i=0

The bounds on production for Type-1 plants are defined in (2.1). The bounds on
production for Type-2 plants depend on the current fuel stock of the plant. If
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the fuel level is above a given threshold BO; ) that depends on the production
campaign k, then the production is bounded from above by PM AX}!

Vs,t,i,k:t € ec(i, k) ANx(i,t,s) > BO;x = .0 < p(i,t,s) < PMAX!.  (2.7)

As long as the fuel level is above the threshold, there is no lower bound on the
production of Type-2 plants in each individual time step, but modulation is un-
desirable and therefore there is an upper bound MM AX; ; on the accumulated
modulation of plant ¢ in each production campaign k:

Vs, ik : > (PMAX! —p(i,t,s)) x D < MMAX, ;. (2.8)
teec(i,k)Ax(i,t,s)>BO;

If the fuel level is below the threshold, the upper bound decreases and a lower
bound is also enforced. We will call this the decreasing power profile (DPP). The
amount of bound decrease for Type-2 plant ¢ in production campaign k is specified
by a decreasing function PB;j which maps fuel level to a real number in [0, 1].
Formally, for all s,t,4,k, if t € ec(i, k) and z(i,t,s) < BO,, then the production
must lie in a small interval centered around P, = PB;(x(i,t,s)) x PMAX!.
However, if the plant will run out of fuel if it produces at P,, it cannot produce
at all.

(1 —¢€)x P, <p(i,t,s) <(l+¢)x P, (2.9)

where € is a small positive real value given in input data.

2.2.2. Fuel level constraints

There are upper bounds on the fuel level before and after the outage. Let
AMAX; ), denote the upper bound on the fuel level at the starting time step of
outage (i, k) and SM AX;, j, the upper bound on the fuel level after outage (4, k).
If (i, k) starts at time step ¢, then the following inequalities must hold for every
scenario s:

z(i,t,s) < AMAX,
(it +1,5) < SMAX; . (2.10)

2.2.3. Outages scheduling constraints

There are several types of temporal constraints between outages that are given
in the original problem definition from ROADEF (see CT14-CT18 in [1]). However,
all these constraints can be converted to the following constraint:

If a specified pair of outages (i, k) and (¢, k') is scheduled such that they both
intersect a specified interval (this interval may be the entire planning horizon),
then constraint (2.11) must be satisfied.

ha(i, k) — ha (i', k') > Se V ha (', k") — ha(i, k) > S., (2.11)

where the bounds S, and S/ are input data.
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For every week h, there is a collection of subsets of outages and for each subset
A in this collection, an associated natural number N. For every A and N, at most
N of the outages in A are allowed to contain week h

> F(i,k,h) <N, (2.12)

(i,k)eA

where F(i, k, h) equals 1 if outage (i, k) is active in week h and 0 otherwise.

There are limited resources available for carrying out maintenance. Thus, a
collection of subsets of outages is given. Each subset A in this collection has an
associated resource availability @. For every A and @, at most @ of the outages
in A can use resources in any week

Yh:G(i,k,h) < Q, (2.13)

where G(i, k, h) equals 1 if outage (7, k) uses resources in week h and 0 otherwise.
Note that the weeks in which an outage uses resources are not necessarily the same
as the weeks in which it is active.

Finally, there is an upper bound on the capacity that is allowed to be offline at
the given time. Thus, a collection of subsets of outages is given. Each subset C' in
this collection has an associated upper bound IMAX and a subset of weeks IT.
For every C, IMAX, and IT, during any week h in IT the total offline capacity
of plants corresponding to C' cannot exceed I M AX

VYhelT:Vteh: > PMAX! < IMAX. (2.14)
i€C:3k:tceal(i,k)

Note that in (2.14) a week is considered as a set of time steps. The sum is simply
over all Type-2 plants in C' that are offline at time step ¢.

2.3. OBJECTIVE FUNCTION

The objective function is composed of three terms: the total cost of reloading
all Type-2 plants, the average cost of Type-1 production over all scenarios, and
the average price of remaining fuel at Type-2 plants at the end of the planning
horizon over all scenarios.

Let C; 1 denote the refueling cost for Type-2 plant ¢ in cycle k, C}¢ s the pro-
duction cost for Type-1 plant j at time step ¢ in scenario s, and C; the cost of fuel
for Type-2 plant 7 at the end of the planning horizon. Then the objective function
to be minimized is

I-1K-1 S—1I-1

ZZClszk Z_:Z_:Z_: tsp]ﬂst——ZZszTs (2.15)
=0 t=0 ;=0

=0 k=0 s=0 =0
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TABLE 1. The table shows the size of instances A, B and X.

Instances
set J 1 T S
A 11-31  10-28 1750 10-30
B 1927 4856  5565-5817 50-121
X 1927 4856 5565-5817  50-121

2.4. INSTANCES

The instances used in this paper are the ones provided by EDF and used at
ROADEF/EURO Challenge 2010. All the instances are publicly available and can
be found at “http://challenge.roadef.org/2010/en/”. They are composed of 3 data
sets, A, B and X, each of them containing five instances. Instances in set A are
smaller than instances in B and X and are used for the qualification phase of the
competition. Instances B and X are similar and about the same size. The size of
the instances is illustrated in Table 1.

3. RELATED WORK

A similar problem was studied in Fourcade et al. (1997) [8], but with only one
scenario and one time step per week. The instances of the challenge are much
bigger, and several technical constraints that appear in the challenge version do
not appear in Fourcade et al.

The method presented in this paper is similar to a hybridized local search and
constraint programming approach by Khemmoudj et al. [9] but our problem is
more complex and more difficult than the one solved in [9].

Several solution methods were designed and tested specifically for the model
and the data of the challenge. Pure local search method is proposed by Gardi
and Nouioua [2]. The authors achieve the best numerical results reported in the
literature and their high-quality solutions are obtained in just a few minutes of
computational time. A column Generation approach is proposed by Rozenknop
et al. [3]. The method achieves the second best results reported in the literature.
Godskesen et al. [4] present an approach combining local search and constraint
programming. Reported solutions are around 1.3% above the best known solutions.
The solutions reported in [3] and [4] are numerically comparable with our solutions.
A constraint programming approach is proposed by Brandt et al. [5]. The same
paper also proposes lower bound computations. Jost and Savourey [6] propose a 0—
1 integer linear programming approach to solve the problem. The results obtained
are comparable to the results in Brandt et al. and Lusby et al. [7] use the method
based on Benders decomposition. The reported implementation is good on small
instances (set A) but not competitive on large scale instances (B and X).
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4. NOTATION, ASSUMPTIONS AND REDUCTIONS

In this section, we introduce some new notations and simplifications of the
problem that proved to be helpful either for the presentation itself or for improving
the quality and the efficiency of the solution.

4.1. ASSUMPTION ON PRODUCTION COSTS

The objective function consists of three parts that in a more or less obvious and
direct way influence each other. For instances A the part of the cost associated
with the production cost for Type-1 plants differs by an order or two of magnitude
from the part associated with the fuel cost of Type-2 plants. In bigger instances B
and X, these two costs are comparable. As the cost associated with the nuclear
plants (Type-2 plants) in most of the given instances is smaller than the cost
incurred with Type-1 plants and in a real life the nuclear energy is less expensive
than the energy from conventional energy plants, we assume that Type-2 power
plants are in general cheaper than Type-1 power plants. This assumption is used
throughout the production planing algorithm.

4.2. PREPROCESSING

We perform simple preprocessing of input data in order to simplify the pre-
sentation and the implementation of the solution. Namely, Type-1 power plants
have a minimum production level for each time step in each scenario (see inequal-
ity (2.1)). The problem is simplified by decreasing the customer demand in each
time step and scenario by the sum of these values over all Type-1 power plants
while setting the new lower bound on production to zero. Formally,

J—1
. t,s __ t,s t,s
Vs,t: DEM"* = DEM"* — > " PMIN]
7=0
Vj,s,t: PMING® =0, PMAX}® = PMAX}® — PMIN;*. (4.1)

This alteration of input data obviously does not change the structure of the initial
problem.

4.3. MARGINAL COST ASSOCIATED TO THE TIME STEP

In order to have a smaller cost, demand should be distributed among the cheap-
est power plants. Since Type-2 power plants are, by assumption, cheaper, their
production levels should be maximized. Nevertheless, for some time steps and sce-
narios, one part of the demand has to be distributed among Type-1 power plants.
The problem of determining the production on Type-1 power plants, given the
total production plan for the set of Type-2 power plants, gives rise to a very sim-
ple optimization problem similar to the relaxed knapsack problem. The solution
consists of sorting the plants according to their respective production cost and
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fully employing them one by one, until the demand is satisfied. We will denote by
marginal cost the cost of the last employed power plant. Formally, the marginal
cost at time step t for scenario s is defined as:

Mct,s = maXp(j,t,s)>OCj,t,S'

We will define the marginal cost at time step ¢ as the average marginal cost over
all scenarios:

1 S—1
MC, = < ZO MC .

It is obvious that if the demand would increase (decrease) by one in a given time
step, then the total cost of production would increase (decrease) by the marginal
cost associated to that time step. Marginal costs showed to be useful in guiding
local search and constraint programming, which will be explained later.

4.4. DECREASING THE PROBLEM SIZE

One of the things that make this problem very hard is the size of its instances. As
the problems may contain a huge number of variables (up to tens of millions), it is
an advantage both with respect to computational time and memory consumption
to reduce the problem size. We propose a simple way to reduce the size of the
problem while keeping some of its original features. The reduction consists of
shrinking several consecutive time steps into one. Most of the constraints on the
set of outages are given in terms of weeks, and thus it is important to respect their
structure in newly created, reduced instances. Therefore, the simplest reduction
would be to shrink all time steps from one week, which is described bellow.

Let W denote the week length (number of days in week) in the original instance.
The number of time steps in the reduced instance is equal to H, i.e. equal to the
number of weeks in original instance. Demands, production level bounds, produc-
tion costs and time step duration of reduced instance are set in the following way:

te0,...,W-1
(t+Hw
. t,s\/ _ m,s
Vs,t5 (DEM™) = = S~ DEM
m=tW
(t+1)W
VS,t,j : (PMAX;’S)/ = W Z PMAX;n,s
m=tW
1 (t+1)W
) - AV m
Vs, t,i: (PMAX]) = o Z PMAX!
m=tW
1 (t+nHw
VS,t,j . (Cj,t,s)/ = W Z Cj,m,s
m=tW

D' =W x D. (4.2)
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TABLE 2. The table compares the size and the cost for shrinked
and original instances. The second and the third column repre-
sent the size in megabytes of data files used to store original and
reduced instance. The fourth column represents the solution cost
of original instance obtained by using the outages schedule of the
best solution of the shrinked instance whose cost is given in the
last column.

Shrinked instances
Instance  Original size  Shrink size  Original cost ~ Shrink cost

(MB) (MB) (10") (10")
dataB6 139.9 5.6 8.41 8.13
dataB7 144.3 5.6 8.27 7.93
dataB8 262.0 10.3 8.43 8.11
dataB9 262.0 10.3 8.82 8.37
dataB10 251.7 9.8 7.99 7.51
dataX11 140.0 5.5 8.01 7.71
dataX12 143.2 5.5 7.87 7.50
dataX13 262.1 10.4 7.83 7.42
dataX14 262.1 10.4 7.85 7.42
dataX15 249.8 9.7 7.68 7.09

Keeping all other parameters like fuel costs, fuel stock bounds, refueling bounds
and outages constraints the same, even the values of objective functions of original
and shrinked instances turned out to be comparable and fairly close. As an exam-
ple, for an instance having 250 weeks, 1750 time steps (week length = 7) and time
step duration 24, the shrink of a week into one time step results into an instance
with 250 weeks, 250 time steps and time step duration 168. Shrinked instances are
much smaller and easier to solve. Obtaining the first feasible solution for some of
the instances in sets B and X without this reduction showed to be almost impossi-
ble in a reasonable computing time. In Table 2, we compare the size and the cost
of shrinked instances to the original ones.

5. SOLUTION

In this section, we describe the heuristic method for solving the proposed prob-
lem. We first give a general description of the method, followed by detailed de-
scription of solution components.

5.1. GENERAL METHOD

The approach combines constraint satisfaction, local search and a greedy con-
structive optimization algorithm. The simple procedure described in Section 4.4
is used to decrease the problem size for huge instances. The proposed problem
includes two dependent and related subproblems: determining the schedule of out-
ages and determining an optimal production plan to satisfy the demand. Solving
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both subproblems together seems to be almost impossible since the number of
decision variables can be huge and the existence of nonlinear constraints makes
it even more difficult. Therefore, a feasible solution to the problem is obtained
by solving these two subproblems in a consecutive manner. First, a feasible out-
age schedule is determined, followed by a production plan compatible with this
schedule. The feasible solution found this way is then improved using a series of
local improvements. The newly obtained locally optimal solution gives rise to a
new outages scheduling phase and the cycle repeats. This would be, in short, a
description of the solution we propose here. A constraint Programming (CP) ap-
proach is used to solve the problem of scheduling outages. A greedy constructive
procedure determines a feasible production plan for a given schedule, then a local
search approach is used to improve the solutions. A detailed description of these
three main solution blocks is given in the following three subsections. The proce-
dure combining these three blocks is given in Algorithm 5. After this, we describe
the use of a shrink procedure for scaling the problem for huge instances and give
the final algorithm.

5.2. OUTAGES SCHEDULING

Different approaches can be used to solve the outages scheduling problem, such
as local search, constraint programming or constructive procedure, but using a
commercial constraint programming solver emerged to be the most reliable, and
probably the most elegant approach, with very good results.

Since the exact problem representation would result in a huge number of vari-
ables, we focus only on finding a feasible maintenance schedule, leaving the rest of
the optimization to the subsequent local search.

All outage scheduling constraints, i.e. constraints of type (2.2) and those of
type (2.11)—(2.13) are modeled precisely. The resulting CP model, without ob-
jective function, for this scheduling problem is given below. We use the notation
defined in Section 2.

TOi,k S ha(z', ]{1) S Tz4i7]C
ha(i, k) — ha(i', k") > Se V ha(i', k') — ha(i, k) > S,

> F(i,k,h) <N
(i,k)eA

Vh: Gi,k,h) < Q. (5.1)

The constraints are modeled using the OPL Optimization Programming Language
offered within IBM Ilog suite, which provides basically all necessary constructions
to efficiently and easily represent every single constraint.

We have solved the same scheduling problem also with other CP solvers such
as Comet and Mistral (see [14] and [15]). They were all capable to efficiently solve
all official instances. The solution time varies from a fraction of a second up to
several seconds for smaller data sets and a few minutes on larger ones. The result-
ing schedule is valid with respect to the scheduling constraints. On the one hand,
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the obtained solutions for outages scheduling suffer from a lack of diversification,
and on the other hand, from the fact that these schedules do not always allow a
feasible production plan. This is why further constraints are added to the model
to ensure the feasibility of the remaining production assignment problem. A cer-
tain amount of fuel has to be consumed in every production campaign to reach
the fuel level limits that apply before or after the upcoming refueling (see con-
straint (2.10)). Thus, based on the existing outages schedule and an approximate
unfeasible production plan, necessary spacing constraints are calculated and added
between every two successive outages. The approximate production plan is based
on minimum refueling and maximum power strategy. Namely, for the given sched-
ule, we set the minimum refueling amount for each outage (i, k) and the maximum
production level for each Type-2 power plant in each time step not in outage. If
fuel levels calculated this way violate constraint (2.10), we say that the schedule
is unfeasible. It is obvious that these unfeasible schedules are also unfeasible for
every possible production plan, i.e. they don’t allow any feasible production plan.
On the other hand, a feasible schedule with respect to the approximate production
plan is not necessarily feasible for a production plan respecting all the constraints.
Every solution with constraint (2.10) violated mandates the addition of a new set
of increased spacings between outages and the model is solved again. This quest
for feasibility comes at a cost, but the number of repeats is usually small and
ranges from 1 to 5 on the provided set of instances.

5.2.1. Improved scheduling

The outages scheduling could be optimized from the very beginning of the solu-
tion procedure. The marginal cost introduced in 4.3 and the numerical experiments
endorse the scheduling of outages in the weeks of low demand over the scheduling
in weeks of high demand. The solver is guided to these solutions by using a set of
weeks of low demand as its starting search point. The week demand is defined as
the sum of demands over all time steps in a week and over all scenarios. Formally,
the starting point SP(i, k) for each outage (i, k) is set as follows:

S—1
Vh:DEM(h) =Y > DEM"*
s=0 teh
Vi,k: SP(i,k) = h' & DEM(h') = minge(ra, . ro, DEM (h). (5.2)

This simple heuristic is used exclusively in the beginning, when no feasible solution
for the problem is available. It does not come as a surprise that this guided search
shows better numerical results than randomized solutions for the outage schedule
problem. In the advanced stages of search, when feasible or even good solutions
are available, the weeks with the smallest marginal cost are used as the starting
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point for the solver, i.e.

S—1
Vh:MC(h) =Y > MC,,

s=0 teh
Vi, k : SP(Z, ]{1) =h < MC(]’L/) = minhE[TAi,k,TOi,k]MC(h)' (53)

The outages scheduling procedure is given in Algorithm 1.

Algorithm 1 outagesSchedule()

INPUT: startPoint - solver starting point
schedule = solveC'SP M odel(startPoint) - find outages schedule using solver
Greedy Production Planning - min refuel max power strategy
while constraints violated do
add spacing constraints
schedule = solveC'SP M odel(startPoint)
Greedy Production Planning
end while

5.3. PRODUCTION ASSIGNMENT

The next step to build a feasible solution is production planning. This part
of the solution assigns production levels for all plants and refueling amounts for
all outages. For the outages schedule given by the solver, a solution is found by a
constructive production setting procedure. This solution is not always feasible since
constraint (2.10) cannot always be satisfied. In this case, the additional spacing
constraints are added to the CP model and the model is solved again.

The algorithm, in a greedy manner, assigns as much production as possible to
the cheapest plants until the demand is covered. By the assumption of Type-2
power plants production cost being smaller than Type-1 plants production cost, it
is desirable for Type-2 power plants to produce as much as possible. To achieve this,
refueling amounts should be as big as possible while respecting all the constraints.
Also, the decrease power profile length should be short, since the maximum allowed
power is generally smaller during this profile.

On the other hand, a certain amount of fuel is lost during refueling (see con-
straint (2.5)) and, therefore, it is not desirable to have “too big” fuel stock before
the refueling.

For these reasons, we implement the following refueling strategy for each Type-2
power plant:

e initially choose the minimum refuel amount at each outage;
e increase the refuel amount at the previous outage if the plant enters the de-
crease profile in the next time step (if increase is possible).
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Setting Type-2 plants production levels as described can lead to a problem of
overproduction. Overproduction occurs if a total production over all Type-2 power
plants extends over the customer demand at a certain time step for a certain
scenario. Actually, using the described strategy causes overproduction for all B
and X instances. This means that, at certain time steps (usually time steps with
relatively small demand), some of Type-2 power plants should not be powered to
their maximum. The problem is then to choose some Type-2 power plants and
drive them to use the associated modulation on the production.

On the other hand, solving the overproduction problem by using modulation
can lead to the violation of maximum modulation constraint (see constraint (2.8)).
Therefore, the total modulation necessary to cope with the overproduction problem
should be properly distributed among Type-2 plants. Simultaneously, solving the
problems of overproduction and overmodulation can lead to violation of constraints
imposed on maximum fuel level before (after) the outage (see (2.10)).

The algorithm handles these difficulties by sorting Type-2 power plants for each
time step before setting the production. Namely, the algorithm sets the production
in ascending order of time steps, and for each time step ¢, a sorted list of Type-2
power plants is calculated. The production level is then set for each plant in the list
as described before, i.e. as high as possible with eventually increasing the refuel
(satisfying all constraints). Thus, the modulation will usually be used for the last
plants in the list.

To avoid the feasibility problems, power plants for which these problems are
highly probable are placed on the top of the list. These are the plants with a
minimum amount of modulation that can still be used in a current production
campaign while satisfying maximum modulation and fuel bounds constraints (con-
straints (2.8) and (2.10)). Note that the power plants that are in decreasing power
profile in a current time step should also be at the top of the list because of the
imposed lower bound on production. The sorting procedure is given in Algorithm 3.

The production levels of Type-2 power plants are equal for all production sce-
narios. We will sometimes use p(i,t) instead of p(i, ¢, s) to denote the production of
Type-2 plant ¢ in any scenario. The remaining demand is distributed among Type-1
plants for all scenarios using the simple procedure mentioned in Section 4.3.

The presented production assignment procedure efficiently finds the initial fea-
sible production plan for all 15 provided benchmarks and the pseudo code is given
in Algorithm 2.

5.4. LOCAL IMPROVEMENTS

Here we present three local search strategies to optimize the solution. Two
strategies optimize the production plan. The first improves the refueling process,
while the other one directly seeks for a better power settings of plants. The third
one moves outages locally, and thus improves the outages schedule quality. Local
improvements are repeatedly used in a given order until no improvements are
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Algorithm 2 set Production()

INPUT: outages schedule
set refuel amounts to minimum
for t = 0 to T-1 do
sortType2Plants(t)
for m=0tol-1do
i« index of m-th plant in the list
Set p(i,t) as high as possible - respecting demand
Increase refuel on previous outage (if possible) if plant will enter the imposed
power profile in ¢t + 1
end for
end for
set Type-1 plants production at time step ¢ for all scenarios

Algorithm 3 sortType2Plants(t)

list; «— power plants in DPP at time step ¢
lista «— power plants not in DPP at time step t
for m = 0 to lists.size() do
i «— index of m-th plant in lists
k « index of production campaign of plant ¢ in ¢
CURR_MOD « current modulation of plant ¢ in campaign k (before t)
MAX_REM _MOD; = MAXM,; ;, — CURR-MOD
CURR_F « current fuel level of plant ¢
t' « last time step of production campaign k
MAX_REM_MOD) — AMAX, ) — (CURR.F —¥¢,_, PMAX!")
MAX_REM _MOD; «— min(MAX_REM _MOD;, MAX_REM_MOD:;)
end for
Sort list2 in increasing order by MAX_REM _MOD;
return merge(listy, listz)

found or a given time limit is reached. The impact of local improvements on the
solution is illustrated in Figure 1.

5.4.1. Local Search based on marginal cost

This procedure tends to improve the feasible solution modifying the production
levels of a Type-2 power plant at only two time steps at once. Both time steps
should be inside a single production campaign and outside an imposed power
profile. The change should not affect the total production in a given campaign,
1.e. power decrease at one time step should be equal to the power increase at
the second time step. These restrictions make the change very simple since refuel
amounts and fuel levels at the beginning (end) of the campaign and modulation do
not change. To satisfy the demand constraint, adjustment of the production levels
of Type-1 power plants at two appropriate time steps should be done. The overall
cost of the solution changes only according to the change of the production levels
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of Type-1 power plants. Here, the notion of marginal cost proved to be useful,
both to find interesting pairs of time steps and to determine the scope of change.

Consider a Type-2 power plant j such that there is a time step t; where it is
not employed at its maximal power, and it is not in a decreasing profile. Suppose
we have another time step ¢5 in the same production campaign such that MCy, <
MC4,. Obviously, it is profitable to increase the power of j at t; by some small
0 and decrease the power by 0 at ts. The total cost will decrease by (MCy, —
MCy,) x 4. Values for § are chosen to be small enough to have only one Type-1
plant production change at ¢; and only one Type-1 plant production change at t».

The search is done for each Type-2 power plant and each production campaign
until no profitable change can be found. The pseudo code is given in Algorithm 4.

Algorithm 4 LS1

INPUT : power plant i, production campaign k
sort time steps of campaign k in descending order of marginal cost
while true do
Find time step t1 outside DPP s.t. p(i,t1) < PMAX! AN MCy1 = mazier MCt
Find time step t2 outside DPP s.t. p(i,t2) > 0 A MCia = minger MCt
if MCy < MCio then
terminate
end if
p(ivtl) — p(ivtl) +6
p(i,t2) < p(i,t2) — 6
Update the list
end while

5.4.2. Tuning the refuel levels

It is not obvious how to determine the best refueling amounts. The change
in one refuel propagates through all production campaigns and the presence of
a decreasing profile makes these changes non-linear. The production assignment
procedure sets up initial, satisfactory good amounts of refuel at each outage. These
amounts are further optimized with respect to the total cost of the solution using
small incremental changes. A random outage (i,k) is chosen and the difference
in overall cost for a small amount of refuel change § is calculated. If the solution
improves, the change is made and the process continues. Different, positive and
negative, values for § are chosen. The whole process continues until a local optimum
is met, i.e. when all pairs (7, k) have been checked.

5.4.3. Local improvements for outages schedule

These local improvements proved to be the most valuable in terms of improving
the solution quality. At the same time, the idea to move around one or several
outages, exploring the search space, is also the most natural one. This explo-
ration comes at a cost that consists mainly of the evaluation of the improvement
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FIGURE 1. Solution improvement for shrinked B and X instances
(B6-B10, X11-X15). The blue line represents the first feasible so-
lution (FF) while the red, green and black lines represent the
solutions after marginal cost (LS1), tuning fuel levels (LS2) and
moving outages (LS3) local improvements respectively.

(or deterioration) of the solution. Changing the start time of the outage will change
the fuel levels and production of the current Type-2 plant, as well as production
levels of other plants (usually Type-1 power plants). All these changes will affect
the overall solution cost. The move and the associated production assignment have
to be feasible to be accepted. When there is an improvement, the move is accepted
and performed. The moves on at most two outages are examined simultaneously.
Creating the whole solution and computing its cost is time consuming. In the
deployed solver, the quality of the moves for the outages is estimated using the
changes in marginal cost and the estimation of the implied refuel change. In this
way, the search becomes efficient and complies with the time constraints imposed
by the rules of the challenge.

The order of selection of the outages to be moved influences the final quality
of the solution. We tried several strategies, such as choosing the best move, first
improving move, and random move. Moving the best of all outages shows the best
performance despite the fact that it is not the most efficient in terms of time.

5.5. SCALING — SHRINK

This section describes the use of shrink procedure for scaling the problem size.
The quality of the final solutions and the efficiency of the method for B and X
instances are strongly affected by their size. The idea to shrink the instances proves
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Algorithm 5 solve

INPUT 1: dataSet - data set to solve
INPUT 2: solverStartPoint - starting point for CSP solver
if solverStartPoint = NULL then
solverStartPoint = weeks with low demand
end if
while time limit not exceeded do
schedule = outagesSchedule(solver Start Point)
setProduction(schedule)
while solution not feasible do
add spacing constraints
schedule = outagesSchedule(schedule)
set Production(schedule)
end while
LocalSearch()
update best cost
solver StartPoint = weeks with low marginal cost
end while

to be useful to tackle this problem to a certain degree. The basic idea that we use
is to solve the reduced instance, and then use the set of obtained outages as a
starting point in solving the original instance. The quality of the first feasible
solution for the original instance obtained this way showed to be very high. This is
why, along with the size of the instances, these solutions could not be significantly
improved in reasonable computing time. Therefore, most of the computing time is
devoted to solving the reduced instances. This is also the reason why most of the
presented experiments illustrated in figures is done for reduced instances. The full
method for B and X instances is presented in Algorithm 6. Nevertheless, exactly
the same method is used to solve the smaller instances A. The only difference is
that these small instances are not shrinked in the pre-processing phase.

Algorithm 6 Final Algorithm
INPUT: dataSet - data set to solve
shrinkDataSet = shrinked data set
solve(shrinkDataSet) - solve shrinked data set using algorithm 1
bestOutages = outages from the best solution of shrinked data set
solve(dataSet, bestOutages) - solve the original data set using with bestOutages as a
starting point

6. COMPUTATIONAL RESULTS

The whole solution is implemented in C++ programming language on Linux
x86-64 architecture and compiled with GCC version 4.4.3. The solver chosen for the
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TABLE 3. The table shows the solutions achieved by our method.
We compare the results to the best known results. Results denoted
by * are achieved by Gardi et al. [2] and the results denoted
by t were achieved by the competitors of the ROADEF/EURO

challenge.
Solutions
Inst Our Solution  Best Known Solution  Score(%)
Al 169 474 519 241 169 474 800 000* -0.0002
A2 145 956 733 339 145 956 800 000*  -0.00005
A3 154 277 239 128 154 316 000 000* -0.025
A4 111 505 728 462 111 494 000 000* 0.010
A5 124 716 680 000 124 543 900 000* 0.128
B6 837 632 963 07 834 247 162 171 0.405
B7 820 702 010 04 810 997 200 00* 1.196
B8 837 866 683 28 818 997 400 00* 2.301
B9 875 425 269 18 816 895 600 977 7.164
B10 794 669 685 T4 777 670 249 99 2.185
X11 796 508 419 33 790 096 500 00* 0.811
X12 782 742 078 67 775 639 900 00* 0.915
X13 777 210 105 49 762 885 200 00* 1.877
X14 780 275 365 71 761 494 800 00* 2.466
X15 763 107 410 43 743 883 700 00* 2.584

constraint satisfaction part of the problem is IBM ILOG CPoptimizer version 12.
All results reported in the paper are obtained on a computer equipped with an
Intel i7 920 processor (2.66 GHz, 8M Cache, RAM 6 GB).

The performance was not our main concern, and we believe that the speed
of the actual implementation of the proposed algorithm could be improved sig-
nificantly. The results obtained on 15 official instances used at EURO/ROADEF
Challenge 2010 are presented in Table 3. Time limits imposed by ROADEF /EURO
Challenge 2010 are respected (30 min for A instances and 60 min for B and X in-
stances). Almost all obtained solutions lie within the range 0.5%2% of the best
known solutions while on the instances A, this gap is substantially smaller. For
three instances from set A, we obtain the best known results to our knowledge. It
is important to mention that only B and X instances are considered for the final
ranking of ROADEF/EURO Challenge 2010. The presented results were obtained
after the competition and taking into consideration the possibility that all the
teams found feasible solutions, which was not the case at the competition, it’s fair
to say that the presented method would be ranked in the top five.

7. CONCLUSION

In this paper, we propose a hybrid method to solve a large scale energy man-
agement problem. The methodology used to tackle the problem consists of, among
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other things, constructive and greedy algorithms, local search procedures and con-
straint programming techniques. The method first solves two interdependent sub-
problems in a consecutive manner and constructs a feasible solution. It then pro-
ceeds with improvements of the solution applying several local search techniques.
The method is implemented in C++ and is fully operational and can be used to
solve real world instances. The numerical results are comparable with the best
known, for some of them our method finds the solutions of practically the same
quality and even improves several best results.
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