
RAIRO-Oper. Res. 46 (2012) 107–123 RAIRO Operations Research

DOI: 10.1051/ro/2012011 www.rairo-ro.org

A STUDY ON THE BUDGET CONSTRAINED FACILITY
LOCATION MODEL CONSIDERING INVENTORY

MANAGEMENT COST ∗
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Abstract. One of the important issues on the distribution network
design is to incorporate inventory management cost into the facility
location model. This paper deals with a network model making the
decisions on the facility location such as the number of DCs and their
locations as well as the decisions on the inventory management such
as the ordering quantity and the level of safety stock at each DC. The
considered model differs from the previous works by classifying the
related costs into the operating cost and the investment cost. For this
model, a solution procedure based on the Lagrangian relaxation method
was proposed and tested for its effectiveness with various numerical
examples.

Keywords. Location, inventory management, nonlinear program-
ming, Lagrangian relaxation.

Mathematics Subject Classification. 35L05, 35L70.

1. Introduction

The design of the distribution network satisfying the demand of each retailer
has been one of the important decision problems in the area of operations research
and production management. Therefore, many models such as p-median model
and p-center model have been developed so as to present a distribution network.
The facility location model (FLM) is also one of the important models describing
a distribution network.

Given the location of demand nodes (retailers) and candidate sites for the sup-
plying facility (DC, Distribution Center), FLM decides the number of DCs and
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their locations as well as the assignment of each retailer to its supplying DC so as
to minimize the considered network cost. The difference between FLM and other
network models such as p-median model and p-center model is that the number of
DCs is not fixed in FLM [4]. Actually, the number of DCs is considered as a decision
variable in FLM whereas it is considered as a given parameter in p-median model
and p-center model. And the setup cost of DCs is considered in FLM whereas
p-median and p-center model do not consider the setup cost by assuming that
setup costs of all DC candidates are the same. Therefore, FLM is recognized as an
extended model of p-median model and p-center model. Detailed description on
FLM can be found in [12].

Many researchers have dealt with FLM and various solution approaches have
been suggested. Since FLM is NP-Hard [2], most researchers have focused on de-
veloping a heuristic algorithm which can find a good solution in a reasonable time.
Kuehn and Hamburger [16] proposed ADD-DROP heuristic algorithm based on
the greedy type methodology to solve FLM. It decides the number of DCs and
their locations by adding a DC which reduces the total network cost and by drop-
ping a DC which increases the total network cost. Each retailer is assigned to the
DC providing the minimum delivery cost among the installed DCs. Erlenkotter [8]
proposed a dual based approach which constructed a primal and dual formulation
of FLM and induced a solution by considering the relation between the primal
and dual formulation. Beasley [1] proposed an algorithm based on the Lagrangian
relaxation method and various meta-heuristic algorithms including Tabu Search,
simulated annealing and genetic algorithm have been proposed to solve FLM.

As more researchers are interested in FLM, it has been evolved by considering
some practical issues. Capacitated facility location model assumes that each DC
has the limited capacity so that the total demand assigned to the DC does not
exceed its capacity [15]. And dynamic facility location model classifies the planning
time horizon into several stages and selects the opening and closing DCs at each
stage by considering the cost and demand at that stage [6, 9].

Another extension of FLM is to combine it with other decision problems. Shen
et al. [27] dealt with the problem combining the facility location model and the
inventory management model. Usually, the facility location model belongs to the
strategic decision problem whereas the inventory management model belongs to
the tactical decision problem. Traditionally, the tactical decision is made after the
upper level (strategic level) decision has been made. However, by incorporating the
tactical decision into the strategic decision, the decisions in different levels can be
consistent so that the quality of each decision might be improved. Because of this
merit, integrating multiple decision problems so as to pursue the global optimum
is one of the important trends on the supply chain management. And the research
of Shen et al. might be recognized as an example of this research trend.

In their model, the locations and demands of each retailer are given as well as the
locations of the candidates of DC. The model makes the location related decisions
including the number of DCs, the location of DCs and the assignment of each
retailer to its supplying DC as well as the inventory related decisions including
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the ordering quantity, the re-order point and the safety stock level at the open
DCs. It is assumed that each retailer has independent stochastic demand. The
objective of the problem is to minimize the total network cost including the setup
cost of DC, the delivery cost and the inventory cost. Shen et al. [27] formulated
the problem as a non linear integer program and proposed a solution approach
based on the set covering model. After that, Daskin et al. [5] considered the same
model and proposed a Lagrangian relaxation based solution approach. Shen and
Qi [26] added the routing cost to the same model. Miranda and Garido [22] and
Park et al. [25] extended this model by considering the capacity of each DC.

Another criterion for classifying the facility location problem is the way of con-
sidering the setup cost. The objective function of the traditional FLM is to mini-
mize the total network cost which is the sum of the delivery cost from DC to retailer
and the setup cost for opening DCs. However, facility setup cost belongs to the
investment cost whereas delivery cost belongs to the operating cost [19]. Usually,
the operating cost is incurred continuously over a long time and can be covered by
the revenue in the same time period while the investment cost is incurred intermit-
tently over a short time and is covered by the predetermined budget. It means that
summing two different types of cost might be inadequate because of their different
characteristics. To overcome this difficulty, some researchers treated the setup cost
as a constraint rather than an objective function [7,19,29]. Drezner [7] considered
a competitive facility location model in which the budget for constructing new
facilities was fixed. Wang et al. [29] dealt with another facility location model con-
sidering opening and closing cost of facilities. In their model, total cost of opening
and closing facilities should not exceed the given budget. Melo et al. [19] also con-
sidered the facility location model where the facility setup cost was constrained
by a given budget. Their model is different from the above by considering multi
commodities and multi time phases.

Even though there are some researches on separating the investment cost and
the operating cost, the author could not find any research on the combined model of
the facility location and inventory management considering the budget constraint
on the facility setup cost. This provided the author with the motivation for dealing
with the model combining FLM and inventory management model with the budget
constrained setup cost.

The rest of this paper is organized as follows. Section 2 describes the proposed
problem and derives its mathematical formulation. Section 3 describes the solution
approach based on the Lagrangian relaxation and Tabu Search. Section 4 discusses
the results of numerical experiments to verify the performance of the proposed
solution approach. Section 5 makes concluding remarks.

2. Mathematical formulation

The problem considered in this paper is now stated in detail as follows. A
network which is composed of the set of retailers N having n elements and the
set of candidate sites for DC location M having m elements is given. Some of
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m candidate sites are selected and DCs are installed at the selected sites. Each
retailer is assigned to one of the open DCs so that its demand is satisfied by the
assigned DC.

Daily demands at each retailer are assumed to be independent and follow a
stationary Poisson process [5, 24, 25, 27]. The Poisson distribution is known to be
appropriate when demand events occur independently for a reasonable planning
horizon [14, 18]. Since this paper assumes independent demand and the planning
horizon is as long as a year, it might be acceptable to assume that daily demands
at each retailer follow a Poisson distribution. Moreover, demands at each DC are
assumed to follow a normal distribution since approximating a Poisson demand
process by normally distributed demands is known to be good for sufficiently large
demand values [5, 23, 24].

DC orders the products to the plant and manages its inventory so as to satisfy
the demand from the assigned retailers. Inventory at DC is managed under (r, Q)
policy. That is, inventory level is monitored in real time and the fixed quantity Q
is ordered to the plant if the inventory level reaches the reorder point r. Ordered
products are arrived after the lead time and DC holds safety stocks to meet the
demand during the lead time. This paper assumes that the lead time is fixed for
each DC although it may vary between DCs. The level of safety stock at each DC
is determined according to the service level during the lead time.

The objective of the proposed model is to make the decisions on the facility
location and on the inventory management so as to minimize the total expected
network operating cost. The decisions on the facility location include the number
of DCs and their locations as well as the assignment of each retailer to its sup-
plying DC. The decisions on the inventory management include the fixed order
quantity, the reorder point and the level of safety stock at DC j. The total ex-
pected network operating cost is the sum of the expected operating cost of each DC
which is composed of the expected delivery costs to its retailer and the expected
inventory costs at the DC. And the expected inventory management costs include
the ordering cost and the inventory holding cost. The ordering cost is incurred in
proportion to the number of orders and the inventory holding cost is incurred in
proportion to the amount of inventory and the holding time. Since the setup cost
for a DC is not included in the operating cost, it is considered as the constraint.

The considered problem is formulated as a nonlinear integer program, and the
followings are the decision variables used for the formulation.

Yj : 1 if a DC is installed on the candidate site j, and 0 otherwise.
Xij : 1 if retailer i is assigned to DC j, and 0 otherwise.

Decision variables Yj decide the location of DCs and decision variables Xij de-
cide the assignment of retailers. The number of DCs is derived by

∑
j∈M Yj . The

decisions on the inventory management can be derived from the above decision
variables and the inventory related parameters. The followings are the parameters
used for the mathematical formulation.

μi: mean of daily demand at retailer i;
χ: number of working days per year;
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Oj : fixed cost per order at DC candidate site j;
hj : annual inventory holding cost per unit at DC candidate site j;
Cij : delivery cost per unit from DC candidate j to retailer i;
Lj: lead time at DC candidate j;
α: required service level at each DC.

With the above mentioned input parameters and the decision variables, the
total expected delivery cost in the objective function can be derived as∑

i∈N

∑
j∈M CijχμiXij . The expected inventory management cost is composed

of the on-hand inventory management cost and the safety stock management cost.
Moreover, the on-hand inventory management cost is defined as a sum of the or-
dering cost and the inventory holding cost for the on-hand inventory. Denote by
Qj the order quantity at DC j. Since the number of ordering is

∑
i∈N χμiXij/Qj,

the on-hand inventory management cost at DC j is derived as follow.

Oj

∑
i∈N

χμiXij/Qj + hjQj/2.

Since the above model is the same to EOQ model, the optimal ordering quantity
at DC j is derived as follows.

Q∗
j =

√
2Oj

∑
i∈N

χμiXij/hj.

The safety stock holding cost is related to the level of safety stock. Since the
distribution of the demand at each retailer is assumed to be the Poisson distribu-
tion, the variance of the demand at retailer i is μi. Moreover, the distribution of
the demand at each DC is approximated by the normal distribution. Therefore,
daily demand at DC j follows the normal distribution with the mean

∑
i∈N μiXij

and the variance
∑

i∈N μiXij . The lead time at DC j is fixed to Lj and the service
level is given at α. Therefore, if denote by Zα the standard normal deviate, then
the level of safety stock satisfying the given service level is Zα

√
Lj

∑
i∈N μiXij [5].

Since the objective function of the proposed model is derived, the proposed
model can be formulated as follows.

Problem (P):

min
∑
i∈N

∑
j∈M

CijχμiXij +
∑
j∈M

⎧⎨
⎩
√

2Ojhj

∑
i∈N

χμiXij + hjZα

√
Lj

∑
i∈N

μiXij

⎫⎬
⎭
(2.1)

s.t.
∑
j∈M

FjYj � B (2.2)

∑
j∈M

Xij = 1 ∀i ∈ N (2.3)

Xij � Yj ∀i ∈ N, ∀j ∈ M (2.4)
Xij , Yj ∈ {0, 1} ∀i ∈ N, ∀j ∈ M. (2.5)
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The objective function (2.1) is to minimize the sum of the expected delivery cost
and the expected inventory management cost. In equation (2.2), Fj is the setup
cost to open a DC at the candidate site j and B is the given budget. Therefore,
constraint (2.2) requires that the total setup cost to open DCs should not exceed
the given budget B. Constraints (2.3) require that each retailer is assigned to one
facility. Constraints (2.4) do not allow any delivery unless the corresponding DC
is open. Constraints (2.5) mean that the decision variables are binary variables.

The above model deals with the stochastic environment since daily demand
follows a stochastic process. However, for the simplicity of the formulation, the
model is formulated as a deterministic form by considering the expected values of
each cost.

3. Solution approach

The proposed problem is NP-Hard since FLM which does not consider the
inventory management cost is NP-Hard [11]. Therefore, this paper aims to develop
a heuristic algorithm which can get a good solution in a reasonable time.

In this paper, the Lagrangian relaxation method which has shown good per-
formance for various network design problems is used to solve the proposed prob-
lem [1,3]. Lagrangian relaxation method transforms a complex problem to multiple
simple sub problems by relaxing some constraints. Infeasibility on the relaxed con-
straints is added to the objective function so that the algorithm searches towards
the solution area having less infeasibility.

3.1. Lagrangain relaxation model

In this research, constraints (2.3) in problem (P) are relaxed using Lagrangian
multipliers λi so that the following relaxed problem is derived.

Problem (LR):

min
∑
i∈N

∑
j∈M

CijχμiXij +
∑
j∈M

⎧⎨
⎩INVj

√∑
i∈N

μiXij

⎫⎬
⎭+

∑
i∈N

λi

⎛
⎝1−

∑
j∈M

Xij

⎞
⎠ (3.1)

s.t. (2.2), (2.4), (2.5).

INVj inequation (3.1) corresponds to
√

2Ojhjχ + hjZα

√
Lj. The objective

function (3.1) is derived from the objective function of problem (P) and the relaxed
constraints. The objective function can be rearranged as follows.

min
∑
i∈N

∑
j∈M

(Cijχμi − λi)Xij +
∑
j∈M

⎧⎨
⎩INVj

√∑
i∈N

μiXij

⎫⎬
⎭+

∑
i∈N

λi. (3.2)

Therefore, the Lagrangian relaxed problem of problem (P) can be rewritten as
follows.
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Step 1. Partition the set of candidate sites N as follows;
N1 = {i : Ai � 0}, N2 = {i : Ai < 0, Bi = 0}, N3 = {i : Ai < 0, Bi > 0}
where Ai = Cijχμi − λi and Bi = (INVj)

2 μi

Step 2. Sort the elements in N3 in increasing order of Ai/Bi ratio.
Step 3. Compute the following partial sums.

PSm =
∑

i∈N2

AiXij +
√ ∑

i∈N2

BiXij +
m∑

i=1,i∈N3

AiXij +

√
m∑

i=1,i∈N3

BiXij

where m = 1, 2, . . . , |N3|.
Step 4. Select the value of m resulting in the minimum value of PSm,

and set Xmj to be 1.

Figure 1. Solution procedure for problem (LR j).

Problem (LR′):
min (3.2)
s.t. (2.2), (2.4), (2.5)
If a decision variable Yj′ in problem (LR′) is set to 0, then the decision variables

Xij′ also should be set to 0 for all retailers i because of constraints (2.4). If a
decision variable Yj′ in problem (LR′) is set to 1, then the decision variables Xij′

may be set to 0 or 1. Moreover, the optimal value of Xij′ where Yj′ is set to 1 can
be derived by solving the following sub problem.

Problem (LR j):

min
∑
i∈N

(Cijχμi − λi) Xij + INVj

√∑
i∈N

μiXij

s.t. Xij ∈ {0, 1} ∀i ∈ N.

The optimal solution of problem (LR j) can be derived by using the following
solution procedure in Figure 1 proposed by Shen et al. [27].

Denote by Vj the optimal objective function value of problem (LR j). Then,
the optimal value of Yj in problem (LR′) can be obtained by solving the following
problem.

Problem (LR Y ):

min
∑
j∈M

VjYj

s.t.
∑
j∈M

FjYj � B

Yj ∈ {0, 1} ∀j ∈ M.

Problem (LR Y ) is a knapsack problem which is known to be NP-Complete [11].
However, many algorithms which can solve the knapsack problem in efficient time
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have been developed. Moreover, the number of variables in problem (LR Y ) is not
a very big value since it is the number of candidate sites for DC. Therefore, this
paper uses the algorithm proposed by Martello and Toth [17] which is known to
solve a knapsack problem having more than 100000 variables in a few seconds.

In summary, the optimal solution (X∗
ij , Y

∗
j ) of problem (LR′) can be obtained

from the optimal solution X ′
ij of problem (LR j) and the optimal solution Y ′

j of
problem (LR Y ) as follows.

Y ∗
j = Y

′
j (3.3)

X∗
ij =

{
X

′
ij , if Y ∗

j = 1

0, if Y ∗
j = 0.

(3.4)

Lagrangian multipliers reflect the infeasibility caused by the relaxed constraints
and they are added to the objective function as a form of the penalty function. In
this paper, the subgradient method which is adopted to various problems [10] is
used to update Lagrangian multipliers.

3.2. Lagrangian heuristic

The solution obtained by equations (3.3) and (3.4) is the optimum to the relaxed
problem. However, it may not satisfy the retailer assignment constraints since con-
straints (2.3) were relaxed. Therefore, the process constructing a feasible solution
of the original problem from the obtained solution is needed and it is called the
Lagrangian heuristic.

In this paper, the Lagrangian heuristic is composed of two parts; the construc-
tion phase and the improvement phase.

3.2.1. Construction phase

The construction phase aims to find a feasible solution satisfying the retailer
assignment constraints.

The construction phase

Step 1. Check the assignment of retailer
1.1. Count the number of assignments of each retailer.
1.2. If retailer i′ is assigned to more than 2 DCs, then compare the as-

signment cost for each DC and assign retailer i′ to the DC providing
the lowest cost.

1.3. If retailer i′ is not assigned to any DCs, then it can be assigned to
any of the current open DC or a DC candidate which is not open yet
but its opening cost satisfies the budget constraint. After comparing
the assignment cost, retailer i′ is assigned to the DC providing the
lowest cost. If the selected DC j′ is not open yet, then set the decision
variable Yj′ to 1.
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Step 2. Update the open facility
2.1. Count the number of assigned retailers for each open DCs.
2.2. If no retailer is assigned to DC j′, then set the decision variable Yj′

to 0.

3.2.2. Improvement phase

The construction phase produces a feasible solution of the original problem.
In the improvement phase, the solution obtained from the construction phase is
improved by searching its neighborhood solutions. In this paper, Tabu Search,
which is a well-known local search algorithm, is adapted to this phase.

A local search algorithm is a meta-heuristic method for solving various combina-
torial optimization problems. It moves the current solution to the most promising
neighborhood solution until the termination condition is satisfied. The local search
algorithm is widely applied to various combinatorial optimization problems since
it is easy to understand and implement. However, it is usually stuck at a local
optimum solution.

Tabu Search enhances the performance of a local search algorithm by incorpo-
rating a memory based strategy called Tabu list. Tabu list prevents the solution
search from becoming trapped at a local optimal solution [13]. Since Tabu Search
is a meta-heuristic which can be adapted to various problems, it is important to
consider the characteristics of the proposed problem in designing the components.
The design issues of Tabu Search in this paper are briefly discussed.

Move

Neighborhood in Tabu Search is defined as a set of solutions which can be
reached with one move from the current solution. In this paper, move is defined
to change the status of one DC candidate site (i.e., if the DC is open, then close it
and vice versa). Therefore, there are m neighborhood solutions at each step. The
same definition of neighborhood has been used by Michel and Hentenryck [21] and
Sun [28] to solve FLM.

Tabu Search moves the current solution to the neighborhood solution which
provides the best objective function value. If the neighborhood solution is to open
a new DC, then the assignment cost of each retailer to the new DC is compared
to the existing assignment cost and the DC providing the lower cost is selected
for each retailer. If the neighborhood solution is to close a DC, then the assigned
retailers to the closed DC needs to be re-assigned to another DC. Those retailers
are assigned to the DC providing the lowest cost except the closed DC.

Tabu list

Tabu Search records some characteristics on the searched solution in a short
term memory called Tabu list and excludes the neighborhood solution having the
characteristics in the Tabu list from the search process. In this model, the Tabu list
records the DC whose status has been changed by the previous move. That is, if the
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status of DC j has been changed by the previous move, then the status of DC j
would remain the same for the time being. This allows the algorithm to search
various solution areas and may improve the performance of the algorithm. Size of
the Tabu list is set to m/2 which showed good results at the pretest. Moreover,
as an aspiration condition, if the objective function value of the neighborhood
solution in the Tabu list is better than the current best objective function value,
then the neighborhood solution is set free from the tabu status and can be a
candidate for the next solution.

To improve the performance of Tabu Search, various methodologies such as
diversification strategy and intensification strategy have been developed. Diversi-
fication strategy is to search diverse solution areas if the algorithm seems to be
stuck at some specific solution area. And intensification strategy is to focus on the
promising solution area. By adapting those strategies, the performance of Tabu
Search might be improved. However, those strategies increase the complexity of
the algorithm and result in a longer time to solve the problem.

From the result of the pretest, the procedure described in this paper seems to
be effective without those additional methodologies. Therefore, this paper does
not consider those methodologies.

3.3. Whole solution procedure

This subsection summarizes the whole solution procedure described in the above
two subsections as follows:

Step 1. Initialization
1.1. Initializing the upper and lower bound.

– Set the upper bound of the objective function value Best
Upper Bound to Big M and the lower bound of the objective func-
tion value Best Lower Bound to 0.

1.2. Initializing the Lagrangian multipliers.
– Set the Lagrangian multiplier λi to min

j∈M
(Cijχμi).

Step 2. Lower bound update.
2.1. Solving problem (LR j).

– Solve problem (LR j) for all j in M , and obtain its objective
function value Vj .

2.2. Solving problem (LR Y ).
– Solve problem (LR Y ). If the objective function value of prob-

lem (LR Y ) ZL is bigger than Best Lower Bound, then replace
Best Lower Bound with ZL.

Step 3. Upper bound update
3.1. Constructing the feasible solution.

– Construct a feasible solution of the original problem by using the
construction phase described in Section 3.2.1.

3.2. Improving the solution.
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– Improve the feasible solution by using the improvement phase
described in Section 3.2.2. If the objective function value of the
improved solution ZU is less than Best Upper Bound, then update
Best Upper Bound with ZU and update Current Best Solution
with the current solution.

Step 4. Dual gap update
4.1. Updating the Lagrangian multipliers.

– Update the Lagrangian multiplier as follows.

λk+1
i = λk

i + tk

(
1 − ∑

j∈M

Xij

)
, where tk = α ZU−ZL

∑
i∈N

(
1− ∑

j∈M

Xij

)2

for ∀i ∈ N , and k is the number of iteration.
4.2. Updating the dual gap.

– Update the dual gap with (ZU − ZL)/ZL.
Step 5. Termination condition.

– If the number of iteration is greater than the predetermined value or
the dual gap is less than the predetermined value ε, then stop the
algorithm.

– If the termination condition is not satisfied, go to Step 2.

In the above, big M in Step 1.1 means a big value which can be used as an initial
upper bound. In the experimental test, big M is set to be

∑
i∈N

∑
j∈M Cijχμi +∑

j∈M

{√
2Ojhj

∑
i∈N χμi + hjZα

√
Lj

∑
i∈N μi

}
, which is the upper bound of

any feasible solution.
Step 4.1. shows the process which updates Lagrangian multipliers λi by the sub-
gradient method. The Lagrangian multiplier of demand node i after kth iteration,
λk+1

i , is updated by using the previous value λk
i and the infeasibility of the newly

obtained solution of problem (LR). The positive stepsize tk is updated by summing
the infeasibility of the whole demand nodes.

4. Experimental results

To evaluate the performance of the solution algorithm described in Section 3,
the experimental tests under various environments were performed. The algorithm
was coded in C++ language on a Pentium IV CPU 2.0 GHz 2 GB RAM desktop
computer.

To test the algorithm effectiveness under various environments, the following
design factors are considered to generate the data set; the size of network, the
level of demand variation between retailers, the level of cost variation between DC
candidates and the level of budget.

The size of network is defined by the number of retailers and the number of
DC candidates. In this paper, four different network sizes are considered to have
(30, 20), (50, 30), (80, 40), (100, 50), where (n, m) means that the data set has
n retailers and m DC candidates. Given the network size, the coordinate of each
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Figure 2. Sample data set having 30 retailers and 20 DC candidates.

retailer and DC candidate is randomly generated within a predetermined rectan-
gular area. The delivery cost from a DC to a retailer is assumed to be proportional
to its Euclidean distance. Figure 2 shows a sample data set having 30 retailers and
20 DC candidates.

The level of demand variation between retailers is defined as maxi∈N (μi)/
mini∈N (μi). The level is set to small if the ratio is between 1.0 and 2.0, medium
if the ratio is between 2.0 and 5.0 and large if the ratio is between 5.0 and 10.0.
Demand of each retailer is randomly generated as follows.

μi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Uniform(0.5,1)∑
i∈N

μi
(30 × n), when the level is set to small,

Uniform(0.2,1)∑
i∈N

μi
(30 × n), when the level is set to medium,

Uniform(0.1,1)∑
i∈N

μi
(30 × n), when the level is set to large.

The level of cost variation between DC candidates is defined as the ratio of the
maximum and minimum value of each cost (ordering cost and inventory holding
cost) between DC candidates. The level is set to small if the ratio is between 1.0
and 2.0, medium if the ratio is between 2.0 and 5.0 and large if the ratio is be-
tween 5.0 and 10.0. Costs at each DC are randomly generated as follows.

Oj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uniform(0.5,1)∑
j∈M

Oj
(150 × m), when the level is set to small,

Uniform(0.2,1)∑
j∈M

Oj
(150 × m), when the level is set to medium,

Uniform(0.1,1)∑
j∈M

Oj
(150 × m), when the level is set to large.

hj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Uniform(0.5,1)∑
j∈M

hj
(50 × m), when the level is set to small,

Uniform(0.2,1)∑
j∈M

hj
(50 × m), when the level is set to medium,

Uniform(0.1,1)∑
j∈M

hj
(50 × m), when the level is set to large.
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Table 1. Test results with the randomly generated data sets.

Design factor Level
Dual gap (%) Elapsed time (s)
Avg. Max. Avg. Max.

Network size

(30, 20) 1.13 4.95 0.16 0.59
(50, 30) 1.13 4.59 0.51 2.11
(80, 40) 1.30 5.81 1.57 5.02
(100, 50) 1.13 5.70 2.87 12.86

Level of demand variation

S 1.16 5.54 1.26 12.86
M 1.15 5.81 1.21 6.69
L 1.21 4.95 1.37 9.13

Level of cost variation

S 1.25 5.00 1.65 12.86
M 1.27 5.81 1.16 7.49
L 1.00 5.54 1.02 8.94

Level of budget

S 1.72 5.81 1.04 5.06
M 0.89 4.95 1.01 5.67
L 0.91 3.99 1.78 12.86

The level of budget is defined as the ratio of the budget to the sum of the
setup cost. The level is set to large if budget is randomly generated between
0.3
∑

j∈M Fj and 0.5
∑

j∈M Fj , medium if budget is randomly generated be-
tween 0.15

∑
j∈M Fj and 0.3

∑
j∈M Fj , small if budget is randomly generated

between 2 × maxj∈M (Fj) and 0.15
∑

j∈M Fj .
The performance of the proposed algorithm is evaluated in terms of the dual

gap and the elapsed time. The dual gap is used to measure the effectiveness of the
algorithm since it calculates the difference between the upper bound and the lower
bound of the optimal solution. The elapsed time is used to measure the efficiency
of the algorithm.

For reliable tests, 5 data sets are randomly generated at each combination of
the design factors and the average and the worst case of the performances at each
combination are recorded. Since there are 4 levels of network sizes, 3 levels of
the demand variation, 3 levels of the cost variation and 3 levels of the budget,
108 combinations of the design factors are made. Moreover, since 5 data sets are
generated at each combination, 540 data sets are used for the test. Table 1 shows
the summary of the experimental test.

The average dual gap of 540 data sets is 1.17% and the average elapsed time
is 1.28 seconds. The maximum dual gap is 5.81%, which is found in the data set
having the medium level of demand variation, the medium level of cost variation,
the small level of budget with 80 retailers and 40 DC candidates. The maximum
elapsed time is 12.86 seconds which is found in the data set having the small level
of demand variation, the small level of cost variation, the large level of budget
with 100 retailers and 50 DC candidates.

Considering errors in the data estimates, 1% of the dual gap might be almost
optimal in the real life problem [20]. Since the average dual gap of the proposed
algorithm is 1.17%, it might be claimed that the proposed algorithm is acceptable
in terms of the effectiveness.
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Figure 3. Comparison with simple Tabu Search heuristic algorithms.

Figure 4. Test results in terms of the network size.

Since this paper deals with the new problem, the author could not find any al-
gorithms to be compared with the proposed algorithm in the literature. Therefore,
2 simple algorithms, TS1 and TS2, are used for the comparison. TS1 is a simple
Tabu Search heuristic algorithm described in Section 3.2.2. TS2 is another simple
Tabu Search heuristic algorithm similar to TS1, but allowing swap move [3]. Ini-
tial solution of TS1 and TS2 is obtained by the construction phase described in
Section 3.2.1. Test results are summarized in Figure 3 as follows.

Test results show that the proposed algorithm (LR-TS) outperforms other sim-
ple algorithms in terms of the average dual gap and the average elapsed time.
Therefore, it might be claimed that incorporating Lagrangian relaxation proce-
dure described in Section 3.1 with Tabu Search heuristic generates better results
than Tabu Search algorithm itself. Comparing TS1 and TS2, the average dual gap
of TS2 (5.38%) is slightly less than TS1 (5.97%). However, TS2 takes much longer
time (35.17 s) than TS1 (1.29 s), since TS2 searches wider area of neighborhood.

The performance of the proposed algorithm in terms of the design factors can
be shown from Figures 4 to 7. Figure 4 shows the performance of the proposed
algorithm in terms of the network size.

Figure 4 shows the elapsed time of the proposed algorithm increases as the
network size increases. It means that the complexity of the problem increases
because the number of variables increases. However, the dual gap did not increase
even though the network size increased. Therefore, it can be inferred that the
increase of the network size reduces the efficiency of the proposed algorithm by
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Figure 5. Test results in terms of the demand variation.

Figure 6. Test results in terms of the cost variation.

Figure 7. Test results in terms of the level of the given budget.

increasing the complexity of the problem but does not affect the effectiveness of
the proposed algorithm.

Figure 5 shows that demand variation across retailers does not affect the effec-
tiveness (dual gap) nor the efficiency (elapsed time) of the proposed algorithm.
Therefore, it might be claimed that the proposed algorithm is robust against the
demand variation.

Figure 6 shows the effect of cost variation on the effectiveness and the efficiency
of the proposed algorithm. Based on the test results, the effect of cost variation
on the dual gap seems to be small but the elapsed time tends to decrease as the
level of cost variation increases.
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Figure 7 shows the effect of the level of the given budget on the dual gap and
the elapsed time. Based on the test results, the dual gap is large when the level of
budget is small and the elapsed time is large when the level of budget is large.

5. Conclusions

This paper deals with the distribution network design problem considering the
inventory management cost. Given the locations and demands of each retailer as
well as the locations of DC candidates, the proposed model makes both the location
related decisions and the inventory related decisions. The objective of the model
is to minimize the total expected network operating cost including the expected
delivery cost and the expected inventory management cost. The cost for installing
a DC is considered to be restricted by a given budget.

The problem is formulated as a nonlinear integer program and a solution ap-
proach based on the Lagrangian relaxation method is proposed. The proposed
algorithm relaxes the retailer assignment constraints and solves each sub prob-
lems. Then, a solution of the original problem is induced from the solution of the
sub problems.

The performance of the proposed algorithm is evaluated in terms of the dual
gap and the elapsed time. By considering the design factors, 540 data sets are
randomly generated to test the proposed algorithm under various environments.
Test results show that the average dual gap is less than 2% and the average elapsed
time in the largest network is less than 3 seconds.

The contribution of this paper would be to propose a new inventory-location
model considering the cost segmentation as well as to develop a solution procedure
for the new model. An extension of the proposed problem considering the capacity
of each DC may be an interesting subject for further study as well as multiple
item distribution network.
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