
RAIRO-Oper. Res. 45 (2011) 339–352 RAIRO Operations Research

DOI: 10.1051/ro/2012001 www.rairo-ro.org

BOOTSTRAP CLUSTERING FOR GRAPH
PARTITIONING ∗

Philippe Gambette
1

and Alain Guénoche
1

Abstract. Given a simple undirected weighted or unweighted graph,
we try to cluster the vertex set into communities and also to quan-
tify the robustness of these clusters. For that task, we propose a new
method, called bootstrap clustering which consists in (i) defining a new
clustering algorithm for graphs, (ii) building a set of graphs similar to
the initial one, (iii) applying the clustering method to each of them,
making a profile (set) of partitions, (iv) computing a consensus parti-
tion for this profile, which is the final graph partitioning. This allows
to evaluate the robustness of a cluster as the average percentage of
partitions in the profile joining its element pairs ; this notion can be
extended to partitions. Doing so, the initial and consensus partitions
can be compared. A simulation protocol, based on random graphs struc-
tured in communities is designed to evaluate the efficiency of the Boot-
strap Clustering approach.

Keywords. Graph partitioning, clustering, modularity, consensus of
partitions, bootstrap.

Mathematics Subject Classification. 05C85, 90C35, 62F40.

1. Introduction

The topic of assessing the quality of the classes of a partition, or the quality of
the partition itself, appeared with the beginning of the clustering methodology and
still remains an open subject. It has often been reduced to the seek for a partition
that optimizes some criterion. However, these criteria are very diverse, and none of

Received June 14, 2011. Accepted January 26, 2012.

∗ This work is supported by a PiriBio ANR grant (Moonlight project R09127AA). We would
like to thank C. Brun (TAGC, Marseille) and A. Baudot (IML, Marseille) for fruitful dis-
cussions.
1 IML – CNRS, 163 Av. de Luminy, 13009 Marseille, France. guenoche@iml.univ-mrs.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2012

http://dx.doi.org/10.1051/ro/2012001
http://www.rairo-ro.org
http://www.edpsciences.org

340 P. GAMBETTE AND A. GUÉNOCHE

them can be chosen as the best one to evaluate the quality of partitions computed
according to different principles ([12] or [11]). Furthermore, they do not indicate
the reliability of the computed classes and/or partition.

To quantify the robustness of the classes, we define a bootstrap methodology. The
principle of bootstrap, used in machine learning [7] or in molecular phylogeny [10]
consists in: (i) generating several data-sets by altering, i.e. sampling or noising,
the initial data, (ii) applying the same treatment algorithm, and (iii) comparing
the results to the initial one to evaluate its robustness. This process has already
been used for clustering from data arrays [15], and in this article we apply it to
graphs.

Hence, our bootstrap clustering approach for graph partitioning consists in the
following steps:
– generating q altered graphs that are similar to the initial one (i.e. they share

a large proportion of edges with it), by modifying the weights and/or the edge
list;

– defining a fast partitioning method for graphs, for which it is not necessary to
fix the number of classes, which is applied to partition the q graphs;

– applying a partition consensus method [13] which gives a median partition of
the q obtained partitions.

Given the constraints of the partitioning method, we choose to use partition-
ing based on modularity optimization. Modularity has been introduced by [17]
to describe whether a simple unweighted graph displays a community structure.
Indeed, the modularity value of a graph partition increases with the percentage
of intra-class edges. A very fast multi-level algorithm which can handle networks
with millions of vertices was introduced in [4] to find a vertex partition optimizing
the modularity function. We have developed a new heuristic for modularity opti-
mization, which is not as fast, but is still able to deal with graphs with thousands
of vertices (suitable for protein-protein interaction graphs), and gives results with
better modularity. This approach was implemented in C and the source code is
available at http://bioinformatics.lif.univ-mrs.fr.

In Section 2 we introduce the modularity formulas and the corresponding op-
timization problem. In Section 3, we describe two methods to generate altered
graphs similar to the input graph, which will be used as the input of the bootstrap
clustering method. In Section 4 we develop the consensus formalization, leading to
the same kind of optimization problem. Then, in Section 5, we give a new heuris-
tic algorithm, called TFit, for graph partitioning by modularity optimization. We
compare its performance on benchmark graphs with other methods optimizing
modularity. Other experimental results are detailed in Section 6: we evaluate the
bootstrap procedure on simulated data, and quantify partition robustness.

2. Partitions optimizing modularity

Let G = (V, E) be a simple, undirected, connected graph, with |V | = n vertices
and |E| = m edges, weighted by a function A : E → R+. If G is not weighted, A is

http://bioinformatics.lif.univ-mrs.fr

BOOTSTRAP CLUSTERING FOR GRAPH PARTITIONING 341

the adjacency matrix, otherwise it is the non negative matrix of the edge weights.
To detect communities in G, we look for a vertex partition P = {V1, V2, . . . Vp}
(into separate non empty classes, such that their union is equal to V) with a
high modularity value. The partition modularity reflects the difference between
the percentage of internal edges and this percentage under the hypothesis there
is no community ; in that case, the edges are randomly distributed according to
degrees. The modularity value is the gap between what is observed and what is
due to randomness. Formally, let eij be the percentage of edges having one end in
class Vi and the other one in class Vj : (eij = |E ∩ (Vi × Vj)|/m). The probability
for a random edge to have one of its ends in class Vi is

ai = eii + 1/2
∑
j �=i

eij

and the modularity of partition P is given by:

M(P) =
∑

i=1..p

(eii − a2
i). (2.1)

This formula has been equivalently reformulated in the literature (see for in-
stance [9, 16, 18]). In the following, we refer to Newman’s formula:

M(P) =
1

2m

n∑
x=1

n∑
y=1

(
Axy − dxdy

2m

)
αxy, (2.2)

where (Axy) is the adjacency matrix of G, dx is the degree of vertex x and αxy is
the square matrix of order n such that

αxy =
{

1 if vertices x and y belong to the same class in P ,
0 otherwise.

Observing that A and α are symmetrical, Axx = 0, αxx = 1, and setting wxy =
2mAxy − dxdy, maximizing M(P) is equivalent to maximize

Q(P) =
n∑

x=2

x−1∑
y=1

αxy

(
2mAxy − dxdy

)
=

n∑
x=2

x−1∑
y=1

αxywxy. (2.3)

It can be seen that Q(P) is the sum of the values wxy of joined pairs (x, y) of the
partition. These values are certainly negatives if (x, y) /∈ E but they are positive
as soon as dxdy < 2m. So, maximizing the modularity Q over the set of all the
partitions of V reduces to a Clique Partitioning problem of the complete graph
on V weighted by the positive or negative values of W = (wxy).

This formulation allows to extend the above formulas to weighted graphs. The
adjacency matrix corresponds to the edge weights, admitting A(x, y) = 0 if

342 P. GAMBETTE AND A. GUÉNOCHE

(x, y) /∈ E. The vertex degrees coincide with the sums over the rows of this
matrix (dx =

∑
y|(x,y)∈E A(x, y)) while formula (2) still defines the weights, posi-

tive or negative, of a complete graph. In that case, the modularity Q is no longer
an integer value.

3. Bootstrapped graphs

In many domains, such as protein-protein interaction (PPI) graphs or social
networks, there is some uncertainty about the edges. A “true” graph possibly
exists, but the one we have depends on temporal informations or on experiments.
For the PPI networks, the interactions are far to be known and even some of them
could not exist. The given graph can be considered as an instance of a true graph.
Other ones are expected, that’s why we generate graphs from the initial one, which
is the only one we have as input. We will denote these randomly generated graphs
as bootstrapped graphs.

As the partition profile is obtained, in our bootstrap clustering framework, by
building a partition on a bootstrapped graph, those graphs should not be too
close to G. Otherwise, the same partition would always be obtained, giving 100%
robust identical classes. On the contrary, the generated graphs should not be too
far from G. This would give a non homogeneous profile of partitions leading to
the atomic partition as consensus. So, starting from G, we will not introduce
edges between distant vertices, or erase edges making distant new pairs of vertices
previously adjacent. Actually, we would like to perform some local rearrangements,
by slightly modifying the graph, and the resulting partition.

For that task, we use the Czekanovski-Dice (C-D) distance [8] which is a local
measure of dissimilarity. Let G(x) be the set of all adjacent vertices of x, let
G(x) = {x} ∪ G(x) and let Δ denote the symmetric difference between two sets.
We have

D(x, y) =
|Δ(G(x), G(y))|
|G(x)| + |G(y)| ·

It is easily seen that the distance values decrease as vertices share more common
adjacent vertices and that two vertices having distance 1.0 are separated by more
than 2 edges. The C-D distance allows, on the one hand to weight the edges (a
strong weight corresponding to edges whose ends belong to the same community),
and on the other hand to prevent from connections between distant vertices. This
distance has been established for unweighted graphs, but equivalent formulas have
been adapted for weighted ones [2].

Now, we describe two generating strategies for bootstrapped graphs, which will
be tested afterwards to fix parameters. Namely:

(1) Randomly modify the edge weights. It is the simplest procedure, fixing the
elongation rate τe as the only parameter. Each edge weight is multiplied by a
random coefficient selected in τ ∈ [1− τe, 1 + τe]. Thus, all the edges are kept

BOOTSTRAP CLUSTERING FOR GRAPH PARTITIONING 343

and none are added.

If (x, y) ∈ E, then a(x, y)← a(x, y)τ else a(x, y) = 0;

(2) add supplementary edges and assign new weights to all the edges, according
to the C-D distance. In the first step, the C-D distance is computed and let
F be the set of non adjacent pairs of vertices having a distance strictly lower
than 1.0:

F = {(x, y) /∈ E, such that D(x, y) < 1.0}.
The supplementary edges are selected in F by the way of a parameter τa which
corresponds to the probability of any pair to be selected. All these edges are
weighted by a(x, y) = 1−D(x, y).

From these two types of bootstrapped graphs, a set of partitions of V is estab-
lished. Since graphs are not identical, partitions will be different but not too much.
The frequently joined vertices will define robust classes of V making a consensus
partition.

4. Consensus partition

4.1. Definition of the problem

Former works on consensus partitions were motivated by the problem of clus-
tering items described by nominal variables. In his pioneer paper, Régnier [19]
introduced the notion of partition centrale, defined as the partition with minimum
sum of distances to the partitions in the profile. Hereafter, we focus on this notion
of consensus. Indeed it has been empirically assessed that other definitions, more
strict or formal, do not lead to satisfying practical results. For the numerous works
axiomatically tackling this problem or seeking for a node in the partition lattice,
we refer to [3].

Let P be the set of all partitions of V and Π ⊂ P be a profile of q partitions.
For partition P ∈ P , any element x ∈ V belongs to the class denoted P (x).
Using δ as the usual Kronecker symbol, δP (x)P (y) = 1 if x and y are joined in P
and δP (x)P (y) = 0 otherwise. Given a profile Π , the consensus partition problem
consists in finding π ∈ P minimizing the sum of symmetric difference distances
to Π . In other words, it is a median partition. In terms of similarity, rather than
distance, it consists of enumerating pairs of items that are commonly joined or
separated.

S(P, Q) =
∑
x<y

(
δP (x)P (y)δQ(x)Q(y) + (1 − δP (x)P (y))(1 − δQ(x)Q(y))

)
. (4.1)

Then, the score of a partition P with respect to a profile Π = (P1, . . . , Pq) is
defined as the sum of the similarity values between P and any partition in Π :

SΠ(P) =
q∑

k=1

S(P, Pk). (4.2)

344 P. GAMBETTE AND A. GUÉNOCHE

Given a profile, let Txy be the number of partitions joining x and y in the same
class. So:

SΠ(P) =
∑
x<y

(
δP (x)P (y)Txy + (1 − δP (x)P (y))(q − Txy)

)

= 2
∑
x<y

δP (x)P (y)Txy +
∑
x<y

q −
∑
x<y

δP (x)P (y)q −
∑
x<y

Txy.

Quantities
∑

x<y q and
∑

x<y Txy only depend on the profile Π and not on P .
Thus, maximizing SΠ(P) is equivalent to maximize:

∑
x<y

δP (x)P (y)Txy − 1
2

∑
x<y

δP (x)P (y)q.

Let J(P) be the set of joined pairs in P . An equivalent criterion to SΠ(P) is:

WΠ(P) =
∑

(x,y)∈J(P)

(
Txy − q

2

)
· (4.3)

Criterion WΠ can be intuitively interpreted as follows: for a partition P , a joined
pair in J(P) has a positive contribution (resp. negative) when both elements are
joined in more (resp. less) than half the partitions in Π .

Let Kn be the complete graph on V , in which the pairs are weighted by w :
V × V → R, where w(x, y) = Txy − q/2 and let P be a partition into p classes
P = (V1, . . . , Vp). The quantity W (Vk) =

∑
(x,y)∈Vk

w(x, y) is the weight of all the
pairs (a clique) in Vk. We have,

WΠ(P) =
∑

k=1,..p

W (Vk) =
∑

k=1,..p

∑
(x,y)∈Vk

(
Txy − q

2

)
· (4.4)

Thus the consensus of partitions problem can be seen as a Clique Partition-

ing problem on the complete graph on V , weighted by w(x, y) = Txy − q
2 . The

weights w(x, y) are positive or negative, according to the number of times x and
y are joined.

4.2. A Common optimization problem

Both problems, modularity maximization and consensus of partitions, come
down to Clique Partitioning problems on the complete graph on V , positively
and negatively weighted. So we are looking for a set of separated cliques in (Kn, w)
with a maximum sum of weights. This problem is an extension to weighted graphs
of Zahn problem [20], which has been proved to be NP-hard [3]. Therefore no poly-
nomial algorithm is able to ensure an optimal solution. As noted by Régnier, the
consensus of partitions problem can be solved by integer linear programming, and
so it is for modularity optimization [5]. For n elements there are n(n−1)/2 binary

BOOTSTRAP CLUSTERING FOR GRAPH PARTITIONING 345

variables and 3
(
n
3

)
linear constraints. Even if there exist optimal methods opti-

mizing W over P , we have for n = 100, 4950 variables and 485 100 constraints,
which constitutes a limitation for GLPK (GNU Linear Programming Kit). Re-
cently, Aloise et al. [1] have computed, by column generation, optimal partitions
maximizing the modularity for graphs up to 512 vertices. For larger ones, heuristics
must be used.

5. The iterated transfer-fusion method (TFit)

5.1. Description of the algorithm

Those heuristics correspond mostly to agglomerative hierarchical clustering
methods, where cluster fusion is the basic operation. In the fast and popular
Louvain method [4], each step before cluster fusion consists in creating clusters
of clusters, and transferring the clusters of vertices from one cluster of cluster to
another, as long as modularity increases. We call this operation “cluster transfer”.
Once this step is over, clusters of vertices belonging to the same cluster of cluster
are merged.

The function which decides which pair will be fusioned next is called “merge
prioritizer” in a comparative study of heuristics for modularity optimization by
Noack and Rotta [18]. In the Louvain method as well as in ours, we use no “merge
prioritizer” (those may create unbalanced clusters), and just consider in turn all
clusters or vertices to transfer.

Noack and Rotta also mention possible post-processings, called “refinements”,
based on vertex transfers, to improve modularity. They claim that this step in-
creases the running time. However, for some graphs like protein-protein interac-
tion graphs which have a few thousands of vertices, we are not limited by this
running time issue, and we can use the “fast greedy” version of this improvement
heuristic, which consists in transferring each vertex to the cluster with best mod-
ularity improvement, if any. Furthermore, we do not only apply it at the end of
the algorithm, but before each cluster fusion step, which explains the name of our
algorithm. Briefly speaking, TFit is a multi-level algorithm in which an element
transfer procedure has been inserted at each level change.

More formally, algorithm TFit is described in Figure 1, and illustrated on an ex-
ample in Section 5.2. Note that with the chosen version of the modularity formula,
where each edge (x, y) has a modularity score w(x, y), it is easy to compute the
potential modularity increase for each vertex transfer, and to update the modular-
ity values. Indeed, the contribution of vertex x to the modularity of its class can
be expressed as K(x, Ci) =

∑
y∈Ci

w(x, y), and the gain of modularity resulting
from a transfer of x to cluster Cj can be expressed as K(x, Cj)−K(x, Ci).

Note that as both partition consensus and modularity optimization are special
cases of Clique Partitioning, we can solve both problems with the TFit al-
gorithm. We checked experimentally that TFit obtains similar results (or slightly
better, depending on the graph density) than the Transfer-Fusion method [13] for

346 P. GAMBETTE AND A. GUÉNOCHE

TFit (G = (V, E): graph)
1. P ← {{x}, x ∈ V }; mod← 0; currentmod← mod; continue← true;

2. While continue Do

3. While ∃v ∈ V, Ci ∈ P ∪ {∅} such that

modularity(G,P) < modularity(G,Transfer(v,Ci,P)) Do

4. Ci ← argmax
(
modularity(G,Transfer(v,Ci,P))

)
;

5. P ← Transfer(v,Ci,P);

6. currentmod← modularity(G,P);

7. P ′ ← {{Ci}
}
;

8. While ∃Ci ∈ P, P ′
j ∈ P ′ ∪ {∅} such that

modularity(G,P ′) < modularity
(
G,Fusion(Transfer(Ci,P

′
j ,P ′))

)
Do

9. P ′
j ← argmax

[
modularity

(
G,Fusion(Transfer(Ci,P

′
j ,P ′))

)]
;

10. P ′ ← Transfer(Ci,P
′
j ,P

′);
11. currentmod← modularity

(
G,Fusion(P ′)

)
;

12. P ← Fusion(P ′);
13. If currentmod ≤ mod Then

14. continue← false;

15. Else

16. continue← true;

17. mod← currentmod;

18. Return P ;

Figure 1. TFit algorithm. A call to Transfer(v,Pi,P) deletes the
element v (either a vertex or a cluster) from its cluster in P , adds it
to the cluster Pi ∈ P , and returns P . A call to Fusion(P ′ = {P ′i})
returns P = {⋃Ci∈P ′

i
Ci}.

consensus partition. We also proposed, in this article, a stochastic procedure based
on element transfers. It starts from a random partition established by exchang-
ing some elements in the optimized partition and applies single element transfers
improving W . Its efficiency for consensus has been proved, but for fairness of
comparison, we do not use it in our tests against other algorithms.

5.2. Example

To illustrate algorithm TFit, we apply it on the graph illustrated in Figure 2. Ini-
tially, P = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}, {12}, {13}, {14}}.

The first execution of the while loop of line 2 occurs as follows:

– following the first series of transfers due to the while loop of line 3, we obtain
partition P = {{1, 6, 7}, {2, 3, 10, 11}, {4, 5, 13, 14}, {8, 9, 12}}, with a modular-
ity of 0.33;

– on line 7, we create P ′ = {{{1, 6, 7}}, {{2, 3, 10, 11}}, {{4, 5, 13, 14}}, {{8, 9, 12}}};

BOOTSTRAP CLUSTERING FOR GRAPH PARTITIONING 347

Figure 2. An example of graph, where TFit computes the par-
tition {{1, 5, 6, 7}, {2, 8, 9, 10, 11, 12}, {3, 4, 13, 14}}, which is rep-
resented by the gray ovals. Starting from singleton clusters, it is
obtained after a first vertex transfer step (the dotted line clus-
ters), a cluster transfer and fusion step (the full line clusters),
and another vertex transfer step (the gray clusters).

– the second while loop (on line 8) only performs one cluster transfer: clus-
ter C2 = {2, 3, 10, 11} is transfered to P ′4 = {{8, 9, 12}}, so we obtain
P ′ = {{{1, 6, 7}}, {{4, 5, 13, 14}}, {{8, 9, 12}, {2, 3, 10, 11}}};

– on line 12, we obtain P = {{1, 6, 7}, {4, 5, 13, 14}, {2, 3, 8, 9, 10, 11, 12}}, with
an improved modularity of 0.35.

The second execution of the while loop of line 2 only performs two vertex trans-
fers:

– in the while loop of line 3, vertex 3 is transfered to C2 = {4, 5, 13, 14},
and vertex 5 is transfered to C1 = {1, 6, 7}, which provides partition P =
{{1, 5, 6, 7}, {3, 4, 13, 14}, {2, 8, 9, 10, 11, 12}}, with an improved modularity of
0.38;

– the while loop of line 8 does not perform any cluster transfer.

Finally, we obtain partition P = {{1, 5, 6, 7}, {3, 4, 13, 14}, {2, 8, 9, 10, 11, 12}}.

5.3. Performance of TFit on benchmark graphs

A set of graphs corresponding to real data have been used as benchmarks in
many articles which compare graph clustering algorithms through modularity op-
timization. For some of them (with at most a few hundred vertices), an optimal so-
lution was computed by integer linear programming [1]. We compared our heuristic
to the Louvain method and to the best modularity obtained by a set of heuristics
described by Noack and Rotta. As shown in Table 1, our method always gives bet-
ter results than the Louvain method, and sometimes outperforms the ten Noack

348 P. GAMBETTE AND A. GUÉNOCHE

Table 1. Comparison of modularity optimization heuristics on
benchmark graphs.

Graph n m Opt Louvain N-R TFit
Dolphins 62 159 .5285 .5185 .5276 .5268
polBooks 105 441 .5272 .5266 .5272 .5268
afootball 115 613 .6046 .6046 .6045 .6046

A01 249 635 .6329 .6145 .6293 .6284
USAir97 332 2126 .3682 .3541 .3678 .3595

netscience 379 914 .8486 .8475 .8474 .8475
s388 512 819 .8194 .7962 .8143 .8148

emails 1133 5452 .5438 .5816 .5722

and Rotta heuristics. Note that if we compare TFit with each of those heuristics,
the modularity found is equal or better in at least 5 of the 8 benchmark graphs.

5.4. Robustness of classes and partitions

The score of a partition WΠ(π) is defined as the sum of joined pair weights. So
the score of a class is all the more high that its pairs are often joined in the profile.
One can evaluate the robustness of a class by the percentage of partitions in the
profile joining its elements. As Txy = |{P ∈ Π = {P1, . . . , Pq} such that P (x) =
P (y)}|, we set:

Rob(Vk) =
2

∑
x,y∈Vk

Txy

q × |Vk| × (|Vk| − 1)
·

This quantity (between 0 and 1) is the average percentage of partitions joining
the pairs of elements in the class. So, one can compare classes using Rob(Vk), the
best ones containing only pairs often joined in the profile.

This definition can be extended to partitions. Their robustness is the average,
over joined pairs (x, y), of the percentage of partitions joining them. Recall that
J(P) is the set of joined pairs in P . We obtain

Rob(P) =
1

q × |J(P)|
∑

(x,y)∈J(P)

Txy.

6. Evaluation of bootstrap clustering

6.1. Simulation protocol

We have developed a simulation protocol with unweighted random graphs made
of 200 vertices spread in 5 balanced classes defining a seed partition, Pseed. Each
graph is generated by an Erdös-Reyni procedure with two parameters, the inter-
nal density (intra-class edges) di and the external density (inter-class edges) de.
There are three families of graphs corresponding to densities (di = .30, de = .10),

BOOTSTRAP CLUSTERING FOR GRAPH PARTITIONING 349

Table 2. Corrected Rand index and robustness of initial and
consensus partitions, for 30 type 1 bootstrapped graphs.

Rand Robustness
Pini Pcons Pini Pcons Pini Pcons Pini Pcons

di de .01 .02 .03 .01 .02 .03
.30 .10 .825 .881 .880 .880 .888 .939 .886 .938 .886 .938
.20 .05 .689 .793 .798 .797 .737 .842 .734 .841 .731 .842
.10 .01 .615 .682 .683 .678 .719 .835 .713 .829 .708 .828

(di = .20, de = .05) and (di = .10, de = .01). They generate more and more diffi-
cult problems, not because community vanishes into the graph, but the consensus
classes do not fit the seed partition when the average degree decreases.

The TFit algorithm is applied to obtain an initial partition Pini. Then, q =
30 bootstrapped graphs are generated and clustered using TFit to get a profile
Π containing q partitions (a larger value has been tested and does not provide
any improvements). Its consensus partition Pcons, is computed with TFit again,
without applying any stochastic procedure. The two partitions, Pini and Pcons, are
compared to the seed partition Pseed by the way of the corrected Rand index [14])
and also their robustness values, as previously defined.

6.2. Bootstrapping by edge elongation

We try to establish the elongation rate optimizing the proximity between Pseed

and Pcons, that is maximizing the corrected Rand index. This leads to small values
for τe: .01, .02 and .03 (see Tab. 2).

It is seen in Table 2 that the corrected Rand index gets lower as the problem
gets more challenging. It illustrates that problems are more and more difficult.
However consensus partitions are clearly closer than the initial ones, particularly
for τe = .02. The robustness of the initial partition depends on bootstrapped
graphs since it can be evaluated after the clustering of the 30 bootstrapped graphs.
Finally, Pcons always has a larger value than Pini, which is expected by consensus
definition.

6.3. Bootstrapping by edge addition and weighting

Here again, we seek for the added edge rate maximizing the corrected Rand
index between Pseed and Pcons. Surprisingly, the higher values for τa, the better
the result is, suggesting that the weighting and the supplementary edges improve
the homogeneity of the communities. The higher the density values are, the lower
τa must be to get the best corrected Rand index value. The robustness values are
clearly improved and reach their maximum for a large number of added edges.

350 P. GAMBETTE AND A. GUÉNOCHE

Table 3. Corrected Rand index and robustness of initial and
consensus partitions, for 30 type 2 bootstrapped graphs.

Rand Robustness
Pini Pcons Pini Pcons Pini Pcons Pini Pcons

di de .30 .50 .70 .30 .50 .70
.30 .10 .825 .833 .828 .815 .767 .845 .777 .847 .805 .868
.20 .05 .689 .768 .775 .772 .700 .827 .732 .852 .758 .880
.10 .01 .615 .695 .723 .728 .694 .816 .744 .852 .772 .885

Table 4. Size and robustness of the 7 main classes computed by
TFit on the Plasmodium network.

Size 333 176 54 219 119 193 259 M = .1569

Rob. .74 .45 .57 .69 .83 .83 .65 Rob = .696

Table 5. Size and robustness of the 11 main consensus classes
computed by the bootstrap clustering algorithm on the Plasmod-
ium network.

Size 325 223 239 31 113 181 161 14 30 9 14 M = .1571

Rob. .81 .84 .79 .84 .92 .89 .69 82 96 97 93 Rob = .815

6.4. A biological network

Protein-protein interaction networks are represented by graphs whose vertices
correspond to proteins and edges to the physical binding between two proteins.
While these complex networks contain a tremendous amount of information about
protein and cellular function, its extraction is one of the most challenging issue of
systems biology.

A Plasmodium interactome network [6] containing 12 391 interactions between
1416 proteins has been analyzed. Algorithm TFit applied to this graph gives 33
classes, 7 of which having more than 5 elements. The size and the robustness of
these classes are given in Table 4. The modularity of this partition is equal to
0.1569.

For the bootstrap clustering method, type 1 bootstrapped graphs were used with
τe = .01. The obtained consensus partition gives 44 classes, 11 of which having
more than 5 elements. The modularity of this partition is practically unchanged
(0.1571) and the average robustness is much higher.

Generally, the modularity is lightly decreasing, which can be expected since it
is the maximized criterion in TFit, and the average robustness is always strongly
increased, as it is here.

BOOTSTRAP CLUSTERING FOR GRAPH PARTITIONING 351

7. Conclusion

The first type of bootstrapped graphs, generated by edge length variation, seems
to be the most efficient for graphs belonging to the two first families (di ≤ .20, de ≤
.10), when the τe parameter varies between .01 and .02. Overall, for the two types
and the three families of graphs, consensus partitions are closer, on the average, to
the seed partitions than the initial ones, but it is not always the case. Concerning
the robustness, classes of Pcons are systematically more robust than those of Pini.

What about the modularity and the number of classes of the consensus parti-
tion? Bootstrap clustering tends to increase the number of classes and to isolate
outliers. Concerning the number of classes, we have only counted clusters with at
least 3 elements (5 for the biological data). The average number of such classes
does not vary much; it decreases for the first graph family, and increases by one or
two units for the others. This leads to a consensus partition with lightly smaller
modularity value than the initial one. However, it depends on the edge density.
Concerning modularity, we observe small variations. Compared to the initial par-
tition, modularity increases for the first family, by around 3% on the average, and
decreases in the same proportion for the other family. Robustness improvement
compensates for when modularity variations are negative.

In conclusion, bootstrap clustering allows to evaluate the robustness of classes
and partitions. When there exists some uncertainty on graph edges, it is likely to
claim that the bootstrap clustering procedure allows to improve partition quality.
Moreover, it is always the case when graphs have a low edge density.

References

[1] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti and S. Perron, Column generation

algorithms for exact modularity maximization in networks. Phys. Rev. E 82 (2010) 046112.
[2] J.B. Angelelli, A. Baudot, C. Brun and A. Guénoche, Two local dissimilarity measures for

weighted graph with application to biological networks. Adv. Data Anal. Classif. 2 (2008)
3–16.

[3] J.P. Barthélemy and B. Leclerc, The median procedure for partitions. DIMACS series in
Discrete Mathematics and Theoretical Computer Science 19 (1995) 3–34.

[4] V. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities
in large networks. J. Stat. Mech. Theor. Exp. (2008) P10008.

[5] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski and D. Wagner, On
modularity – NP-completeness and beyond. Proceedings of WG 2007. Lett. Notes Comput.
Sci. 4769 (2007) 121–132.

[6] S.V. Dale and C.J. Stoeckert Jr., Computational modeling of the Plasmodium falciparum
interactome reveals protein function on a genome-wide scale. Gen. Res. 16 (2006) 542–549.

[7] A.C. Davison and D.V. Hinkley, Bootstrap methods and their application. Cambridge Uni-
versity Press (1997).

[8] L.R. Dice, Measures of the amount of ecologic association between species. Ecology 26 (1945)
297–302.

[9] J. Duch and A. Arenas, Community detection in complex networks using extremal opti-
mization. Phys. Rev. E 72 (2005) 027104.

[10] J. Felsenstein, Inferring Phylogenies. Sunderland (MA), Sinauer Associates Inc. (2003).
[11] S. Fortunato, Community detection in graphs. Phys. Rep. 486 (2010) 75–174.

352 P. GAMBETTE AND A. GUÉNOCHE

[12] A. Guénoche, Comparison of algorithms in graph partitioning. RAIRO 42 (2008) 469–484.
[13] A. Guénoche, Consensus of partitions: a constructive approach. Adv. Data Anal. Classif. 5

(2011) 215–229.
[14] L. Hubert and P. Arabie, Comparing partitions, J. Classif. 2 (1985) 193–218.
[15] A.K. Jain and J.V. Moreau, Bootstrap technique in cluster analysis. Pattern Recogn. 20

(1987) 547–568.

[16] M.E.J. Newman, Modularity and community structure in networks. PNAS 103 (2006) 8577–
8582.

[17] M.E.J. Newman and M. Girvan, Finding and evaluating community structure in networks.
Phys. Rev. E 69 (2004) 026133.

[18] A. Noack and R. Rotta, Multi-level algorithms for modularity clustering, Proceedings of
SEA’2009, edited by J. Vahrenhold. Lett. Notes Comput. Sci. 5526 (2009) 257–268.

[19] S. Régnier, Sur quelques aspects mathématiques des problèmes de classification automatique.
I.C.C. Bulletin 4 (1965) 175–191. Reprint, Math. Sci. Hum. 82 (1983) 13–29.

[20] C.T. Zahn, Approximating symmetric relations by equivalence relations. SIAM J. Appl.
Math. 12 (1964) 840–847.

	Introduction
	Partitions optimizing modularity
	Bootstrapped graphs
	Consensus partition
	Definition of the problem
	A Common optimization problem

	The iterated transfer-fusion method (TFit)
	Description of the algorithm
	Example
	Performance of TFit on benchmark graphs
	Robustness of classes and partitions

	Evaluation of bootstrap clustering
	Simulation protocol
	Bootstrapping by edge elongation
	Bootstrapping by edge addition and weighting
	A biological network

	Conclusion
	References

