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A COOPERATIVE SENSOR NETWORK: OPTIMAL
DEPLOYMENT AND FUNCTIONING
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Abstract. A network of mobile cooperative sensors is considered.
The following problems are studied: (1) the “optimal” deployment of
the sensors on a given territory; (2) the detection of local anomalies in
the noisy data measured by the sensors. In absence of an information
fusion center in the network, from “local” interactions between sensors
“global” solutions of these problems are found.
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1. INTRODUCTION

Sensor networks have countless applications, for example, we mention the sen-
sor networks used in computer science and telecommunications, in biology, where
they can be used to monitor the behaviour of animal species such as birds or fishes,
and in habitat monitoring, where they can be used to provide real-time rainfall
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and water level information used to evaluate the possibility of flooding. To fix
the ideas as an example of sensor network we consider a collection of devices (i.e.:
sensors) placed on a given geographical area, that will be called territory, to mon-
itor environmental conditions, such as temperature, pressure, sound at different
positions. We consider mobile cooperative sensor networks, that is networks made
of sensors able to move on the territory to achieve a desired optimal deployment
configuration and willing to cooperate to pursue a goal. The goal pursued is the
construction of “consensus” values of the quantities monitored and of the magni-
tude of the noise contained in the data. These consensus values are used to detect
local anomalies in the noisy data measured. Each sensor is imagined as being
placed on a node of a graph and communicates with the sensors located in the
nodes of the graph adjacent to the node where it is. The problem of determining
the representation and the topology of the graph associated to the network, that
is the problem of determining the spatial coordinates of the nodes of the graph
where the sensors are located and the set of the branches of the graph, is called
deployment problem. The quality of the territory monitoring obtained with the
sensor network depends on the way the sensors are deployed. In many circum-
stances it is important to guarantee an high quality monitoring. We assume that
high quality monitoring means that the sensors are “well distributed” on the terri-
tory monitored and that the communications on the network are not “too heavy”.
The deployment problem will be formulated as an optimization problem. The de-
ployment resulting as solution of this optimization problem will be called optimal
deployment. This optimal deployment guarantees an high quality territory mon-
itoring. After being deployed on the territory the sensors start monitoring noisy
data. We assume the sensors to be identical. Just to fix the ideas let us imagine
that the sensors measure the temperature of the territory in the position or in the
“area” where they are located and that in absence of anomalies there is a uniform
temperature on the territory where the sensors are deployed. The sensor measures
are synchronous and noisy. This measurement process is repeated periodically in
time with a given frequency. From these measures we want to deduce a kind of
“consensus” temperature of the territory where the sensors are deployed and an
estimate of the magnitude of the noise contained in the data. Finally using these
consensus values as reference values we want to detect local anomalies in the data
measured by the individual sensors. In the detection of these anomalies we will
make some elementary hypotheses in order to be able to use elementary statistical
tests. Through these statistical tests a (statistical) significance will be associated
to the anomalies detected.

Usually in sensor networks the information traffic goes from the sensor nodes to
a single sink node called information fusion center. According to the information
received from the sensors the fusion center monitors the area where the sensors
are deployed and decides the actions to take. In this type of networks the fusion
center will be responsible for the deployment of the sensors on the territory and for
the elaboration of the noisy data measured. If an intruder reaches and neutralizes
the fusion center, the communication between the network nodes are interrupted
and the whole network is exposed to the risk of becoming useless as a network
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even if the individual sensors may still be all working. In many circumstances
the problem of detecting the presence of intruders in a monitored territory is very
important. In this paper the intruder detection problem will be identified with
the problem of the detection of local anomalies in the noisy data measured by the
sensors. That is we assume that the local anomalies detected in the data are due
to the presence of intruders.

In recent years the decreasing sensor cost and the development of telecommu-
nication technologies have made possible the deployment of networks with a huge
number of sensors. The use of information fusion centers is unpractical when
networks made of a huge number of sensors are considered. These facts have de-
termined the emergence of a new class of sensor networks whose way of functioning
is called “network centric”. These networks do not have a fusion center and their
functioning is based on the information exchange between “near by” sensors. In a
well designed network centric network global solutions to the problems considered
are obtained from local interactions. Note that a sensor network operated in a
network centric manner can tolerate the lost of some of its sensors without loosing
its character of being a network, that is without loosing its functionality.

In this paper we present a mathematical model for the deployment of a sensor
network, for the creation of consensus values from the noisy data measured and
a statistical methodology to detect local anomalies in these data. Remind that
we have assumed that a local anomaly in the data is associated to the presence
of an intruder. In future works also the problem of taking an action after having
detected an intruder will be considered. The action taken will consist in moving
some (mobile) sensors to meet the intruder, this last problem is called rendez vous
problem. The model of sensor network presented in this paper is characterized
by the absence of a fusion center. In other words the deployment found, the
construction of the consensus values and the detection of local anomalies in the
data are the result of local interactions between sensors. Nevertheless the local
interactions will lead to global solutions of the problems considered. That is our
model is a model of a network centric sensor network.

In Section 2 we study the deployment problem. In Section 3 we study the prob-
lem of the creation of the consensus values and of the detection of local anomalies
in the data measured.

2. THE DEPLOYMENT PROBLEM

Let © be a bounded connected polygonal domain contained in the two dimen-
sional real Euclidean space R%. The domain §) represents the territory where the
sensor network must be deployed. Let || - || be the Euclidean norm of - in R2.

We consider N sensors sy, So, ..., Sy, located, respectively, in the points §1 , §2, e
§N € Q. The points §:&y - §N € Q are assumed to be distinct. To the sensor
network deployed in the points § 1,§ g e 3 N corresponds a graph whose nodes are
the sensor locations and whose branches join the sensors able to communicate
between themself. This graph is assumed to be connected and can be imagined as
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FIGURE 1. (a) Voronoi partition of £ and (b) optimal Voronoi
partition of €.

laying on the territory. The assumption that the graph is connected is equivalent
to assuming that the sensors constitute a network. For ¢ = 1,2, ..., N we associate
to the sensor s; a polygonal region €2; C €2 defined by the condition that the points
belonging to €); are closest to the sensor s;, that is they are closest to §i, than to
any other of the remaining sensors s; located in §j, j#i,j=12..,N. That is

we have:
Q; = {z€Q:i=argmin(f(j) = Hg—ng),
j=1,2,.,N}, i=1,2...N. (2.1)
When for a given z € Q the minimizer of the function f(j) = ||z — §j|\, Jj =

1,2, ..., N, is not unique we attribute z to €);, where 7 is the smallest index between
the indices that are minimizers of the function f.

The collection of subsets {1, €s, ..., Qx} defined in (2.1) and further specified
by the condition above is a partition of €2 and is called Voronoi partition of €2 asso-
ciated to the Voronoi centers £ ,&,,.... €, (see Fig. 1) [1]. The sets Q1,Qo,...,Qn
are called Voronoi cells. Remind that §i € Q;,i=1,2,..., N. The sensor s; is lo-
cated in §Z and monitors the subregion €2; of 2,7 =1,2,..., N. Note that there is a
Voronoi partition of {2 associated to each choice of the Voronoi centers §1 , §2, e §N.
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We can conclude that each choice of the Voronoi centers § 1,§ g 3 N € Q com-
pleted with the graph that defines the communication between the sensors is a
deployment of the sensors s1, s2, ..., Sy on the territory 2.

We want to determine a Voronoi partition of {2 that is optimal with respect to
a pre-specified criterion. The criterion considered is the fact that the Voronoi cen-
ters § 1 3 gt e £ N should coincide (as much as possible) with the centers of mass of
the corresponding Voronoi cells €1, ..., Q. This property translates in math-
ematical terms the request that the sensors are well distributed on the territory.
That is we call optimal Voronoi partition the Voronoi partition associated to the
Voronoi centers whose coordinates {7, &7, ..., £}, are the solution of the following
problem:

N
min  F(£,6,,.,§,) = Z B, _§j||2, (2.2)
£y 8y o

subject to the constraints:
§i7é§j, 1#j 4,5=1,2,...,N, (2.3)

where B; is the center of mass of the Voronoi cell §2;, j =1,2,..., N. Moreover we
require:
* ek *

F(§1,§2,...,§N):O, (2.4)
that is, we require that the Voronoi centers and the centers of mass of the Voronoi
cells coincide. Note that in general B; depends on §1,§2, ...,§N and that the
function F(§1,§2, ...,§N) is in general a nonlinear function of §1,§2, ...,§N. The
solution of problem (2.2), (2.3), (2.4) after having specified the communications
between the sensors is the optimal deployment announced in the Introduction (see
Figs. 1b and 2). When we are unable to satisfy condition (2.4) we accept the
available solution of (2.2), (2.3) as location of the Voronoi centers corresponding
to the optimal deployment. Note that in general the solution of problem (2.2),
(2.3), (2.4) is non unique.

In order to solve the optimization problem (2.2), (2.3), (2.4) we use the continu-
ous analog of the steepest descent method [5]. The steepest descent method when
used to solve problem (2.2) is an iterative procedure that, beginning from an initial
guess, updates at every iteration the current approximation of the solution of (2.2)
with a step in the direction of the gradient of the function F(§1’ §2, e §N) In the
deployment problem considered the steepest descent method must be adapted to
the presence of the constraints (2.3), of the condition (2.4) and to the requirement
that its implementation must lead to a network centric solution of the deployment
problem. In this paper to keep the exposition simple we will not discuss how to
impose (2.3). A treatment of constraints in the continuous analog of the steepest
descent algorithm can be found in [4]. Note also that the solutions of (2.2), (2.3)
that are of interest are usually interior points of the constraints (2.3). That is the
constraint issue usually is not relevant in the solution of (2.2), (2.3). Similarly we
will not pay attention to condition (2.4). In fact with respect to (2.4) we will sim-
ply verify if the solution of the optimization problem determined by the steepest
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FiGURE 2. Graph associated to the optimal Voronoi partition
of € shown in Figure 1b.

descent method satisfies (2.4). Let us concentrate our attention on the issue of
building a network centric implementation of the continuous analog of the steepest
descent method to solve (2.2).

We assume that the sensor s; knows only the position of its neighbour sensors,
that is of the sensors that belong to a disk with center §Z and radius r > 0,
1=1,2,..., N. Later we will show how to choose r. The solution of the optimization
problem (2.2) is found approximating the solution of the system of differential
equations:

£ = —Ve F(&,(M),6,(N2)s s € (AN)), A1 > 0,6 = 1,2, N, (2.5)

where A1 denotes a real parameter, with the solution of the “network centric”
system of differential equations:

éi = 7V§1FZ(§1(>\1),§2(>\2), ’éN(AN))’ A1 > 0,2=1,2, ...,N, (26)

with ~
Fo= 3 1By =gl i=12.N, (27)
JEL;
where

L, = {§j,j =1,2,...N: §j is neighbour to & },
i=1,2,..,N, (2.8)

and B” is the center of mass of the Voronoi cell Qi,j obtained computing the
Voronoi partition of {2 associated to the Voronoi centers éj, j€eL;,i=1,2,...,N.
Let us assume that r > 0 is large enough to guarantee that §j is neighbour of §Z
when the distance between §2; and §2; is zero, 7,5 = 1,2, ..., N. Note that with this
assumption we have B, ; = B;, i = 1,2,..., N. In (2.5), (2.6) the ~ denotes differen-
tiation with respect to 7)\1. We observe that (2.5) is known as the steepest descent
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differential equation and the continuous analog of the steepest descent method
consists in obtaining the solution of the optimization problem (2.2) computing the
asymptotic value as A1 goes to infinity of a solution of (2.5) equipped when A\ = 0
with a suitable initial condition. This asymptotic value hopefully is a point that
solves (2.2) and satisfies (2.3) and (2.4).

Note that the function F; depends only on §j, J € L;, that is can be computed in
the location §Z using only information available in §Z_, i=1,2,...,N. Approximating
the gradient of ' with the appropriate pieces of the gradients of the functions Fj,
i =1,2,..., N, and using (2.6) instead than (2.5) we can find an approximation
of the solution of (2.2) integrating numerically the initial value problem for (2.6).
Note that the solution of the ith differential equation of (2.6) is computed in the
location éi, it =1,2,..., N. This approximation of the solution of (2.2) is obtained
using only local information so that it is “network centric”. When the asymptotic
value as \; goes to infinity of the solution of (2.6) considered coincides with an
asymptotic value of a solution of (2.5), solving numerically (2.6), we can obtain in
a network centric manner a solution of (2.2).

The choices of the optimal Voronoi partition and of the steepest descent method
to determine it are only one of the many other legitimate choices. A comparison
between some of these choices will be presented elsewhere.

Note that we have introduced a kind of “network centric” steepest descent
method to solve the optimization problem (2.2), (2.3) that models the deployment
problem. Similarly other well known methods of nonlinear optimization such as
the Newton method or the quasi Newton methods could be transformed into “net-
work centric” methods and used to solve the deployment problem. Moreover when
we add condition (2.4) to problem (2.2), (2.3) the problem becomes a global op-
timization problem while the methods mentioned above are only local methods.
That is: there is room for the development of network centric global optimization
methods. However, for the purpose of the elementary application discussed below
and shown in Figure 1, the “network centric” steepest descent method seems to be
good enough. Note that several simplifying assumptions are used in the deploy-
ment problem considered above, for example: the region €2 is homogeneous, there
are no constraints on the movement of the sensors in €2, the only constraint to the
positioning of the sensors in 2 is expressed by (2.3). In many practical circum-
stances these assumptions are unrealistic. It is easy to see how to reformulate the
optimization problem (2.2), (2.3) and the condition (2.4)to model more realistic
situations.

In Figure 1 the polygonal region shown represents €2, we choose N = 20 and for
i =1,2,...,20 we denote with the full circle the position of the center of mass B,
of the subset ; (shown in the figure), and with the empty circle the position of
the sensor £ . In Figure la we show the Voronoi partition of the the domain (2
associated to 20 Voronoi centers £ X £ g e £ 20 shown and the corresponding centers
of mass B, Bs, ..., By, of the associated Voronoi cells 21, s, ..., Q29. Note that in
Figure 1a we have él # B,,i=1,2,...,20. In Figure 1b we show an optimal Voronoi
partition. Note that in Figure 1b we have §l = B,,1=1,2,...,20. The Voronoi
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partition shown in Figure 1b satisfies (2.2), (2.3), (2.4). The centers of Figure 1b
have been obtained integrating numerically using the explicit Euler method (2.6)
equipped with the initial condition given by the centers shown in Figure la. In
Figure 2 we show the graph associated to the optimal Voronoi partition of {2 shown
in Figure 1b. The graph is obtained joining with branches the Voronoi centers that
are (distinct) neighbours. In Figures 1 and 2 we have chosen r = k(area(Q))/?,
where k is a parameter that can be changed during the optimization procedure
used to solve (2.2), (2.3), (2.4). The way of choosing k will not be discussed here.

3. THE CONSENSUS VALUES AND THE DETECTION

Remind that we have assumed that the graph G associated to the optimal
deployment determined in Section 2 is connected (see Figs. 2 and 1b). Moreover
we remind that, since there is not a fusion center, each node of the graph G does
not know the positions of all the remaining nodes of the graph, in fact it knows
only the positions of its neighbour nodes. Let L be the Laplacian matrix associated
to G [2]. The matrix L is a symmetric positive semidefinite N x N matrix. Let
z(X2) = (r1(X2),22(A2), ... znv(A2))T, A2 > 0, be a real N dimensional vector
depending on the real parameter \o. The superscript © means transposed. We
consider the system of ordinary differential equations:

i(A2) = —Lz(h2), A2 >0, (3.1)
equipped with the initial condition:

z(0) = o (3.2)
where Lz denotes the usual matrix vector multiplication, a = (a1, ag, ..., an)7T is
a known initial condition and " denotes differentiation with respect to As. Since G
is connected we have:

XN
A21312003014(&) = Nz;aj, i=1,2,..,N, (3.3)
=

where z(A2), A2 > 0, is the solution of (3.1), (3.2). This result follows easily
from the spectral properties of L [2]. Note that the right hand side of (3.3) is
the “average” of the initial condition a. Note that (3.1) can be interpreted as the
“heat equation” on the graph G, that the problem (3.1), (3.2) can be seen as an
initial value problem for the heat equation on G' and that (3.3) can be understood
as the approach to an asymptotic equilibrium “temperature” in an “heat transfer”
problem.

We assume that during the monitoring phase the sensor s; measures a physical
quantity, such as, for example, the temperature, of the region 2; where it is located,
i = 1,2,...,N. The sensors are identical, the measures made by the sensors are
synchronous, repeated periodically in time and of course they are noisy. Moreover
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they are assumed to be independent. A first set of measures is taken by the sensors
at time ¢t = ¢ty and is collected in the vector Eo = (Bo.1, 50,2, - Bo.n) T, where By
is the measure done by the sensor s;, i = 1,2, ..., V. The set of measures QO will be

used to obtain the “consensus” value Bo of the quantity monitored in €2 at time
t = tg. We choose:

1
b=+ Z; Bo,i- (3.4)

Remind that the sensor s; located in £ knows Bo,; and communicates with the
sensors s; located in §j, j€L;,i=1,2,...,N. In order to provide to the sensor

si, t =1,2,..., N, the consensus value Bo in a network centric manner we proceed
as follow: we choose @ = (3 in (3.2) and we integrate numerically the initial value
problem (3.1), (3.2) using the explicit Euler method in order to obtain a numerical
approximation of limy, 1 2(A2). Note that the ith differential equation of (3.1)
is integrated in the location § o and that using the explicit Euler method this can be
done using only information available in the location §i, i=1,2,...,N. Note that
the analytic solution of (3.1), (3.2) is not “network centric” but its approximation
with the explicit Euler method it is “network centric’. Once obtained /3, we
consider the vector Y = %((60,1 — B0)%, (Boz2 — By)?%s s (Bon — By)?)T, we
choose a = 7, in (3.2) and we integrate (3.1), (3.2) with the explicit Euler method
as done above. In this way we obtain asymptotically a numerical approximation
of 7, where:
N & -
To=N1 ;wo,i ~Bo)*. (3.5)
This approximation of %, is provided to each sensor in a network centric manner.
Note that 7%, is an estimate of the magnitude of the noise contained in the data,
in fact %, is the “sample” variance of the measures 3y ;, ¢ = 1,2,..., N, made by
the sensors at time ¢ = ty. The approximations of 3, and 7, obtained integrating
numerically (3.1), (3.2) are the consensus values announced in the Introduction.
These values are “global” values (that is they depend on all the measures made
by the sensor network at time ¢ = ¢y) and have been provided to each sensor in a
network centric manner (that is using only “local” interactions between sensors).
The sensor s; repeats periodically in time the measure of the quantity of interest
and after a given time interval has as its disposal a set of measures that can be
compared with the consensus values (3, and 7, to detect (local) anomalies, i =
1,2, ..., N. Let us assume that the set of measures made by the sensor s; is a sample
taken from a set of independent identically distributed Gaussian random variables
of mean p; and variance o2, i = 1,2,..., N. In these hypotheses the Student t-test
and the Chi-square test [3] are the elementary statistical tools that must be used
to compare y; and o? (that are unknown) to 3, and ¥, i = 1,2, ..., N. The result
of this comparison is the detection of local anomalies. To the anomalies detected
a (statistical) significance is associated. The statistical tests used are based on
the assumption that the measures come from a set of independent identically
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distributed Gaussian random variables. Note that the estimators 3, and 7, can
be used in more general circumstances.

When we consider spatially distributed measurements made by sensor networks
the hypothesis of that the sets of measurements studied are sampled from inde-
pendent identically distributed Gaussian random variables is not satisfied in most
of the practical cases. This hypothesis is made with the only purpose of making
possible the use of elementary statistical tests (Student T and x? tests) in order
to associate a statistical significance to the conclusions drawn from the measure-
ments. When more realistic hypotheses are made about the statistical properties of
the sets of measurements studied ad hoc statistical tests must be developed. These
tests may involve the numerical solution of nontrivial optimization problems. The
formulation of realistic hypotheses on the measurements and the development of
the relevant ad hoc statistical tests is beyond the scope of this paper and will not
be considered.

We conclude this paper noting that the work presented in this paper can be
developed and extended in several directions. Let us mention some of them: (i)
the study of the deployment problem in more general circumstances than those
considered here; (ii) the strategy necessary to implement the action that must be
taken when the presence of an intruder is detected; (iii) the study of the behaviour
of networks with thousands or tens of thousands sensors.

For example in the case of a mobile intruder that pursues the goal of reaching
a point in the territory € the attempt of some defenders (i.e.: sensors) of reaching
the intruder is the so called rendez vous problem. This problem can be modeled
as a differential game. The constraints of the game written as ordinary differential
equations are simple forms of the Newton second law of dynamics. While some
of the sensors are busy in the rendez vous attempt the remaining ones must be
redeployed to keep control of the territory. The redeployment problem can be
formulated as an optimization problem similar to problem (2.2), (2.3), (2.4) where
some extra constraints are added to express the fact that some sensors are busy
pursuing the rendez vous. Finally we point out that in order to make the model
more realistic uncertainty can be introduced in the problems considered and in
particular can be introduced in the differential game modeling the rendez vous.
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