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TRACTABLE ALGORITHMS
FOR CHANCE-CONSTRAINED COMBINATORIAL

PROBLEMS

Olivier Klopfenstein
1, 2

Abstract. This paper aims at proposing tractable algorithms to find
effectively good solutions to large size chance-constrained combinato-
rial problems. A new robust model is introduced to deal with uncer-
tainty in mixed-integer linear problems. It is shown to be strongly
related to chance-constrained programming when considering pure 0–
1 problems. Furthermore, its tractability is highlighted. Then, an op-
timization algorithm is designed to provide possibly good solutions to
chance-constrained combinatorial problems. This approach is numer-
ically tested on knapsack and multi-dimensional knapsack problems.
The results obtained outperform many methods based on earlier liter-
ature.
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1. Introduction

Dealing with uncertainty in optimization problems has been a central topic
since the fifty’s [12]. Mainly because of the various natures of uncertainty in real-
world issues, different frameworks of analysis have been proposed (for surveys,
we refer to [23,25]). Among them, stochastic and robust approaches have to be
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distinguished. Stochastic programming relies on probabilistic information char-
acterizing uncertainty, and it aims most of the time at optimizing the expected
objective value. Chance-constrained programming appears as a specific model of
stochastic optimization, where the goal is to optimize the objective, given an unfea-
sibility probability tolerance. The current paper focuses on this model. While this
approach of uncertainty was introduced also in the fifty’s [10], it is still considered
as very difficult and widely intractable (see for instance [7,17]). For instance, the
convexity of the set of solutions remains often an open question, even though some
results clarify some specific cases. However, this stochastic model remains one of
the most appropriate to deal with many decision problems, where unfeasibility is
acceptable, provided that it occurs with a controlled probability.

By comparison with stochastic programming, robust optimization appears usu-
ally as simple and tractable. Its goal is to find the best solution which remains
feasible for a whole set of possible events. The main criticism for robust mod-
els is the so-called over-conservatism: the obtained solution will be feasible for
all the possible events, regardless their occurrence probability. In practice, the
worst case may impose a large cost, while being highly improbable. To remedy
this disadvantage, some previous works have proposed to relax this worst case
condition [2,5]. The proposed robust models enable to obtain solutions which
are known to remain feasible with high probability under quite weak probability
assumptions (that is sometimes referred to as ambiguous chance constrained op-
timization, [13,21]). In these papers, the concept of robustness applies not to the
entire set of events, but only to a subset of events. Hence, these robust approaches
provide some feasible solutions to the corresponding chance-constrained problem.
The central question is to know how good the robust solutions are, compared
with an optimal solution to the chance-constrained problem. Several papers un-
derlined explicitly the link between robust optimization and chance-constrained
programming (e.g. [11,21]). The authors of [21] developed convex approximations
of the set of chance-constrained feasible solutions. In particular, the obtained
results, namely the so-called Bernstein approximation, improve the simpler frame-
work of [2]. Furthermore, [18] tried to clarify the relations between the framework
of [5] and chance-constrained programming for the specific case of the knapsack
problem.

With respect to combinatorial chance-constrained problems, the literature is
scarce. When considering a finite number of scenarios, a chance-constrained in-
teger linear problem can be equivalently written as an integer linear program
(see e.g. [15]). This equivalent model, while being natural, is highly intractable
(see [24] for a work elaborating on this approach). Still with finite discrete sce-
narios, a branch-and-bound algorithm is proposed in [3] when only the right hand
side of constraints is random, with joint probability constraints. [26] proposed a
non-standard integer programming approach, based on Gröbner basis theory, to
solve general chance-constrained integer programs to optimality. Unfortunately,
without further improvements, the application of this method is restricted to small-
size problems. Some other methods rely on sampling, and are readily usable with
integer variables [8,13,22]. Their simplicity makes them very attractive at first
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sight. However, they may require a very large number of scenarios, and tend to
provide too conservative solutions (see [21] for a comparison with the Bernstein
approximation). Finally, metaheuristics have also been used to deal with chance-
constrained problems, especially with integer variables (see e.g. [1,6]). The main
practical difficulty in using metaheuristics lies in the tuning of parameters, which
may require lots of tests.

Our aim in the current paper is to propose simple heuristic algorithms to find
good solutions to general chance-constrained integer linear problems. A new ro-
bust optimization framework is introduced. It is shown to be strongly related to
chance-constrained programming, while being highly tractable. In fact, this model
enables a generalization of the results obtained in [18] for the specific case of knap-
sack problems. Relying on this robust model, an algorithm is designed to obtain
satisfactory feasible solutions to chance-constrained integer linear problems. This
solution method is applied on the knapsack problem and its multi-dimensional
version. Numerical experiments illustrate the relevance and effectiveness of the
proposed framework. Furthermore, it is simple to implement, highly tractable and
scalable, and thus practically usable for large size real-life problems.

2. Problems and formulations

2.1. Pure integer linear programs

We consider the following integer linear problem (ILP):

max cx
s.t. Ax ≤ b

x ∈ {0, 1}n
(2.1)

where A ∈ IRm×n is the constraint matrix, b ∈ IRm and c ∈ IRn. We denote
I = {1, . . . , n} and J = {1, . . . , m}. Suppose now that the matrix A is not known
with certainty. More precisely, let us denote by Iu(j) ⊆ I the set of uncertain
coefficients for each row j ∈ J , any coefficient of I \Iu(j) being precisely known.
Furthermore, we focus on the case where for all j ∈ J , for all i ∈ Iu(j), Aji

lies in an interval [Aji, Aji], with Aji > Aji. In the remaining, we will denote
δji = Aji −Aji. When i /∈ Iu(j), the notation Aji will sometimes be used instead
of Aji to simplify notations.

Note that considering that only the coefficients of A can be uncertain is not
restrictive: this setting includes the cases where cost coefficients or right hand
side coefficients are uncertain. Indeed, when b is uncertain, it is sufficient to
add a dummy variable xn+1 = 1 and to write: Ax − bxn+1 ≤ 0. When the
objective vector c is subject to uncertainty, we may add a new variable z ∈ IR
and consider the problem: maxx,z

{
z | z ≤ cx, Ax ≤ b, x ∈ {0, 1}n, z ∈ IR

}
. Even

though a continuous variable is added, all the analysis of the current paper remains
applicable (see Sect. 2.2).

Let A denote the set of constraint matrices A satisfying the above description.
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Each uncertain coefficient is associated with a random variable, also denoted
by Aji, taking values in [Aji, Aji]. We also introduce: ηji = (Aji−Aji)/δji, which
is a random variable taking values in [0, 1]. Then, let us introduce the associated
chance-constrained problem (CCILP):

max cx
s.t. P (Ax ≤ b) ≥ 1− ε,

x ∈ {0, 1}n.
(2.2)

P denotes the probability measure, and ε ∈ [0, 1) is the unfeasibility tolerance for
a given solution. In other words, solving CCILP means finding the best solution
x feasible with probability at least 1− ε.

CCILP is the main problem we want to tackle. However, since chance-constrain-
ed programming is known to be very hard, our aim is to use a simpler parameter-
ized robust model to approximate it. That is the reason for introducing the robust
problem RILP(γ), parameterized by a vector γ ∈ [0, 1]m:

max cx
s.t.

∑
i∈I Ajixi + Δj(x) ≤ bj , ∀j ∈ J

x ∈ {0, 1}n
(2.3)

with:

Δj(x) = min

⎧⎨
⎩
∑

i∈Iu(j)

δjixi, γj .
∑

i∈Iu(j)

δji

⎫⎬
⎭.

RILP(γ) will often be simply denoted RILP. Δj(x) is the protection term of the
robust constraint j ∈ J . Observe that if γj = 0, the protection term is zero,
that implies that only the best scenario is taken into account for row j. On the
contrary, γj = 1 means that the worst case is taken into account, when all the
coefficients of row j can take their largest values.

2.2. Mixed integer linear programs

For the sake of simplicity, all the paper is written in a pure integer linear context.
However, all the results are readily available for mixed integer linear problems of
the following form:

max cx
s.t. Ax ≤ b

xi ∈ {0, 1}, ∀i ∈ I1

xi ≥ 0, ∀i ∈ I2

when considering that for each row j, the uncertain coefficients only impact integral
components of x, i.e.: Iu(j) ⊆ I1.

If Iu(j) �⊆ I1, the robust model proposed may also be used. In this case, several
results of the paper would remain correct, in particular those related to probability
and complexity analysis. Some others can be easily, but carefully, adapted by
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considering that continuous variables lie in [0, 1] (see for instance the reformulation
of Sect. 4.2). However, the relation to chance-constrained programming becomes
unclear, and the algorithms designed cannot be used.

2.3. On separate probability constraints

So far, only joint chance constraints have been considered (cf. model (2.2)).
But some applications may require to consider separate chance constraints:

max cx
s.t. P (Ajx ≤ bj) ≥ 1− εj , ∀j ∈ J

xi ∈ {0, 1}, ∀i ∈ I
(2.4)

where εj ∈ [0, 1). For the sake of simplicity, all the results will be stated and proved
for joint probability constraints. However, they can all be easily transposed to the
case of separate probability constraints.

3. On the link between RILP and CCILP

Let I ′ ⊆ I and γ ∈ [0, 1]m. We introduce the problem RILP(I ′,γ):

max cx

s.t.
∑

i∈Iu(j)∩I′ Ajixi + Δj(I ′, x) +
∑

i∈Iu(j)\I′ Ajixi

+
∑

i/∈Iu(j) Ajixi ≤ bj , ∀j ∈ J

x ∈ {0, 1}n
(3.1)

where: Δj(I ′, x) = min
{∑

i∈Iu(j)∩I′ δjixi, γj .
∑

i∈Iu(j)∩I′ δji

}
. When considering

the problem RILP(I ′,γ), all uncertain coefficients {Aji}j∈J,i/∈I′ are assumed to take
their maximal values. Hence, for a row j ∈ J , the robustness parameter γj impacts
only coefficients {Aji}i∈I′ . Note that in this setting, RILP(γ) is equivalently
denoted by RILP(I,γ).

Theorem 3.1. There exists I∗ ⊆ I and γ∗ ∈ [0, 1]m such that any optimal solution
of RILP(I∗,γ∗) is an optimal solution of CCILP.

Proof. Let x∗ be an optimal solution of CCILP. Let us introduce: I∗ = {i ∈ I|x∗
i =

1}; to simplify notations, we also denote: I∗(j) = I∗ ∩ Iu(j) for all j ∈ J . x∗ is
feasible with probability at least 1 − ε, i.e.: P (Ax∗ ≤ b) ≥ 1 − ε. Let us denote
A∗ = {A ∈ A|Ax∗ ≤ b}, and consider the following problem:

max cx
s.t. Ax ≤ b, ∀A ∈ A∗

x ∈ {0, 1}n.
(3.2)

Let us prove first that any optimal solution x′ of (3.2) is also optimal for CCILP.
We have: P (Ax′ ≤ b) ≥ P (A ∈ A∗) = P (Ax∗ ≤ b) ≥ 1− ε. Thus, x′ is a feasible
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solution of CCILP, that implies: cx∗ ≥ cx′. But as x∗ is feasible for (3.2), we also
have: cx∗ ≤ cx′. Hence, x′ is a feasible solution of CCILP with the same cost than
x∗: x′ is optimal for CCILP.

The goal now is to find parameters (γ∗
j )j∈J such that (3.2) is equivalent to

RILP(I∗,γ∗). Let j ∈ J , we have: Ajx
∗ ≤ bj ⇔

∑
i∈Iu(j) Ajix

∗
i ≤ bj−∑

i/∈Iu(j) Ajix
∗
i ⇔

∑
i∈Iu(j) δjiηjix

∗
i ≤ bj−

∑
i/∈Iu(j) Ajix

∗
i −
∑

i∈Iu(j) Ajix
∗
i . Let us

denote: γ∗
j = min

{
1,
(
bj −

∑
i/∈Iu(j) Ajix

∗
i −

∑
i∈Iu(j) Ajix

∗
i

)
/
∑

i∈Iu(j) δji

}
. Note

that since A∗ �= φ, γ∗
j ≥ 0. Then: (a) A ∈ A∗ ⇔ ∀j ∈ J,

∑
i∈I∗(j) δjiηji ≤

γ∗
j

∑
i∈I∗(j) δji.

Let us prove that x is a feasible solution of (3.2) if and only if it is feasible for
RILP(I∗,γ∗). Let x be a feasible solution of (3.2). Let j ∈ J . If

∑
i∈I∗(j) δjixi ≤

γ∗
j

∑
i∈I∗(j) δji, let Aj be defined by: ηji = xi if i ∈ I∗(j), and ηji = 1 if i ∈

Iu(j)\I∗. We have:
∑

i∈I∗(j) δjiηji =
∑

i∈I∗(j) δjixi ≤ γ∗
j

∑
i∈I∗(j) δji. According

to (a), this ensures that A ∈ A∗.
If on the contrary

∑
i∈I∗(j) δjixi > γ∗

j

∑
i∈I∗(j) δji, let Aj be defined by:

if i ∈ I∗(j) : ηji = xi.γ
∗
j .
∑

k∈I∗(j) δjk/
∑

k∈I∗(j) δjkxk

if i ∈ Iu(j)\I∗ : ηji = 1.

For the {ηji}i∈Iu(j) to be admissible, we have to check that they are not larger
than 1. This is clear when i ∈ Iu(j)\I∗. When i ∈ I∗(j), since

∑
i∈I∗(j) δjixi >

γ∗
j

∑
i∈I∗(j) δji, we have ηji ≤ xi, and thus ηji ≤ 1. Moreover:

∑
i∈I∗(j) δjiηji =

∑
i∈I∗(j) δjixi.γ

∗
j .
∑

k∈I∗(j) δjk/
∑

k∈I∗(j) δjkxk

= γ∗
j .
∑

k∈I∗(j) δjk.

Thus, it is shown that A ∈ A∗.
So far, A has been built in each case so that it belongs to A∗. Moreover, for

j ∈ J , let us show that: Ajx =
∑

i∈I∗(j) Ajixi + Δj(I∗, x) +
∑

i∈Iu(j)\I∗ Ajixi +∑
i/∈Iu(j) Ajixi. In the first case (

∑
i∈I∗(j) δjixi ≤ γ∗

j

∑
i∈I∗(j) δji): Δj(I∗, x) =∑

i∈I∗(j) δjixi. As a consequence, from the definition of ηj in this case: Ajx =∑
i∈Iu(j)(Aji + ηjiδji)xi +

∑
i/∈Iu(j) Ajixi =

∑
i∈I∗(j) Ajixi + Δj(I∗, x)+∑

i∈Iu(j)\I∗ Ajixi +
∑

i/∈Iu(j) Ajixi (observing that x2
i = xi). Let us now consider

the second case (
∑

i∈I∗(j) δjixi > γ∗
j

∑
i∈I∗(j) δji): Δj(I∗, x) = γ∗

j

∑
i∈I∗(j) δji.

Hence: Ajx =
∑

i∈Iu(j)(Aji + ηjiδji)xi +
∑

i/∈Iu(j) Ajixi =
∑

i∈I∗(j) Ajixi+
Δj(I∗, x) +

∑
i∈Iu(j)\I∗ Ajixi +

∑
i/∈Iu(j) Ajixi.

Thus, in both cases: Ajx =
∑

i∈I∗(j) Ajixi + Δj(I∗, x) +
∑

i∈Iu(j)\I∗ Ajixi +∑
i/∈Iu(j) Ajixi. As x is feasible for (3.2), we have: Ajx ≤ bj , which implies that x

is feasible also for RILP(I∗,γ∗).
Suppose now that x is a feasible solution of RILP(I∗,γ∗). Let any A ∈ A∗, we

have for j ∈ J : Ajx =
∑

i∈Iu(j)(Aji+δjiηji)xi+
∑

i/∈Iu(j) Ajixi ≤
∑

i∈I∗(j) Ajixi+
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∑
i∈I∗(j) δjiηjixi +

∑
i∈Iu(j)\I∗ Ajixi +

∑
i/∈Iu(j) Ajixi. Since A ∈ A∗, the state-

ment:
∑

i∈I∗(j) δjiηji ≤ γ∗
j

∑
i∈I∗(j) δji holds. This implies, since xi ≤ 1 for all

i ∈ I∗(j):
∑

i∈I∗(j) δjiηjixi ≤ γ∗
j

∑
i∈I∗(j) δji. On the other hand, since ηji ≤ 1 for

all i ∈ I∗(j):
∑

i∈I∗(j) δjiηjixi ≤
∑

i∈I∗(j) δjixi. As a result:
∑

i∈I∗(j) δjiηjixi ≤
Δj(I∗, x). Thus, we obtain: Ajx ≤

∑
i∈I∗(j) Ajixi+Δj(I∗, x)+

∑
i∈Iu(j)\I∗ Ajixi+∑

i/∈Iu(j) Ajixi. As x is feasible for RILP(I∗,γ∗), we obtain: Ajx ≤ bj. Thus, it is
proved that x is feasible for (3.2).

Finally, we have that x is a feasible solution of (3.2) if and only if it is feasible
for RILP(I∗,γ∗). As both problems have the same objective function, they are
completely equivalent. As a consequence, any optimal solution of RILP(I∗,γ∗) is
optimal also for CCILP. �

This establishes the theoretical link between CCILP and RILP. Note in partic-
ular that this result does not require any probability assumption.

4. Tractability of RILP

4.1. Theoretical complexity

That RILP is NP-hard if ILP is NP-hard is immediate, since ILP is a special
case of RILP (consider γj = 0 for all j ∈ J). More precise complexity connections
can be established between ILP and RILP. Hereafter, m′ denotes the number of
constraints j ∈ J such that Iu(j) �= φ.

Proposition 4.1. An optimal solution of RILP can be obtained by solving 2m′

problems ILP.

Proof. In this proof, for the sake of simplicity, it is assumed that all sets Iu(j)
are non-empty; as a result, we have here: m′ = m. Let V be the optimal value
of RILP. Let α ∈ {0, 1}m′

, let j ∈ J , we denote within this proof: Δj(x, αj) =

(1− αj).
(∑

i∈Iu(j) δjixi

)
+ αj .

(
γj

∑
i∈Iu(j) δji

)
. Then, let us introduce:

V (α) = max cx
s.t.

∑
i∈Iu(j) Ajixi + Δj(x, αj) +

∑
i/∈Iu(j) Ajixi ≤ bj , ∀j ∈ J

xi ∈ {0, 1}, ∀i ∈ I.

For any α ∈ {0, 1}m, a feasible solution of the above problem is feasible also for
RILP, since Δj(x, αj) ≥ Δj(x). It follows that: max{V (α) | α ∈ {0, 1}m} ≤ V .
Furthermore, there exists necessarily α∗ ∈ {0, 1}m such that V ≤ V (α∗). Indeed,
given an optimal solution x∗ of RILP, it is sufficient to consider: α∗

j = 1 ⇔∑
i∈Iu(j) δjix

∗
i ≥ γj

∑
i∈Iu(j) δji. In this case, x∗ is a feasible solution of the

corresponding problem.
Thus, it is shown that V = max{V (α) | α ∈ {0, 1}m}. �
Thus, for instance, if the number m′ of constraints subject to uncertainty does

not impact the complexity of ILP, i.e. any instance of ILP has a fixed number of
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uncertain constraints, its robust version RILP can be solved through a constant
number of problems ILP. For instance, this is the case for knapsack problems,
where the classical formulation presents only one constraint. This result brings
a similar consequence for the case where only cost coefficients are assumed to be
uncertain, which can be solved through only 2 nominal problems.

The above proposition leads to the following observation:

Corollary 4.1. Suppose that any instance of ILP has O(log(n)) constraints. If
ILP can be solved in polynomial time, this is true also for RILP.

However, most of the time, the complexity of ILP also involves the number m
of constraints, which may not be O(log(n)). In this case, Proposition 4.1 leads
to solve an exponential number of ILP instances. Nevertheless, in some specific
cases, this can be a lot improved:

Proposition 4.2. Suppose that for all j ∈ J , Iu(j) = Iu ⊆ I and: ∀i ∈ Iu, δji =
δj. Then an optimal solution of RILP can be obtained by solving m′ + 1 problems
ILP.

Proof. We continue the previous proof, where it has been shown that: V =
max{V (α)|α ∈ {0, 1}m}. As before, we denote by x∗ an optimal solution of
RILP, and α∗ ∈ {0, 1}m such that: α∗

j = 1⇔∑
i∈Iu(j) δjix

∗
i ≥ γj

∑
i∈Iu(j) δji. We

know that V = V (α∗). Let us assume now that for all j ∈ J , Iu(j) = Iu and all
variations satisfy: δji = δj . We sort the indices so that: j < k ⇒ γj ≤ γk. Let
any j ∈ J . Consider the case where

∑
i∈Iu

δjx
∗
i < γj

∑
i∈Iu

δj , i.e.: α∗
j = 0. This

implies that for all k ≥ j:
∑

i∈Iu
x∗

i < γk|Iu|, and thus:
∑

i∈Iu
δkx∗

i < γk

∑
i∈Iu

δk.
As a result, for all k ≥ j: α∗

k = 0. Thus, we have: α∗
j = 0⇒ ∀k ≥ j, α∗

k = 0.
This implies that: V = max

{
V (α)|α ∈ {0, 1}m, j ≤ k ⇒ αj ≥ αk

}
. As

a consequence, an optimal solution of RILP can be obtained by solving m + 1
problems ILP, and keeping the best solution encountered. �

In this latter case, if ILP is solved in polynomial time, this remains true also for
RILP. Note that Proposition 4.2 applies in particular when only right hand side
data of a mixed integer linear program are subject to uncertainty.

In the case of “proportional variations”, RILP is related to a simpler robust
model, equivalent to ILP:

Proposition 4.3. Suppose that for all j ∈ J , Iu(j) = I and there exists κj > 0
such that: ∀i ∈ I, δji = κjAji. Let γ ∈ [0, 1]m, there exists γ′ ∈ [0, 1]m such that
any optimal solution of the problem (4.1) below is optimal also for RILP(γ):

max cx
s.t.

∑
i∈I Ajixi + γ′

j .
∑

i∈I δji ≤ bj , ∀j ∈ J,
x ∈ {0, 1}n ∀i ∈ I.

(4.1)

Proof. Let x∗ be an optimal solution of RILP(γ). We define γ′ through, for all
j ∈ J : γ′

j =
(
bj −

∑
i∈I Ajix

∗
i

)
/
∑

i∈I δji. Observe that: γ′
j

∑
i∈I δji ≥ Δj(x∗).
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This implies that, when Δj(x∗) = γj .
∑

i∈I δji, we have γ′
j ≥ γj . As a result,

γ′
j < γj only if Δj(x∗) =

∑
i∈I δjix

∗
i .

Let x′ be an optimal solution of (4.1). By construction, x∗ is a feasible solution
of (4.1), and then: cx∗ ≤ cx′. On the other hand, let us prove by contradiction that
x′ is feasible for RILP(γ). Suppose that this is not the case: there exists j ∈ J such
that Δj(x′) > γ′

j .
∑

i∈I δji. It is equivalent to say:
∑

i∈I δjix
′
i > γ′

j .
∑

i∈I δji and
γj

∑
i∈I δji > γ′

j .
∑

i∈I δji. The latter condition means that γ′
j < γj , that occurs

only when Δj(x∗) =
∑

i∈I δjix
∗
i . By definition of γ′

j , we have also: Δj(x∗) ≤
γ′

j.
∑

i∈I δji. Then, we deduce:
∑

i∈I δjix
′
i >

∑
i∈I δjix

∗
i .

As we assumed that δj = κjAj , we obtain:
∑

i∈I Ajix
′
i >

∑
i∈I Ajix

∗
i . But, as

x′ is feasible for (4.1):
∑

i∈I Ajix
′
i ≤ bj − γ′

j .
∑

i∈I δji. Furthermore, by definition
of γ′

j :
∑

i∈I Ajix
∗
i = bj − γ′

j

∑
i∈I δji. This is a contradiction.

Hence, it is proved that x′ is feasible for RILP(γ). This ensures that x′ is an
optimal solution of RILP(γ). �

The parameter γ′ may not be directly deduced from γ. However, this result
is of importance in the context of the iterative approaches detailed in Section 5.
Indeed, under the assumptions of Proposition 4.3, the robust model RILP can be
replaced by the simpler robust model (4.1).

4.2. An integer linear formulation of RILP

The continuous relaxation of RILP as written in (2.3) is not linear, it is even
not convex since:

Lemma 4.1. Let j ∈ J , x �−→ Δj(x) is concave on [0, 1]n.

Proof. Suppose that x = λx1+(1−λ)x2 for some λ ∈ [0, 1], we have:
∑

i∈Iu(j) xi =
λ
∑

i∈Iu(j) x1
i + (1− λ)

∑
i∈Iu(j) x2

i . Then:

min

⎧⎨
⎩
∑

i∈Iu(j)

δjixi, γj .
∑

i∈Iu(j)

δji

⎫⎬
⎭ = min

⎧⎨
⎩λγj .

∑
i∈Iu(j)

δji + (1− λ)γj .
∑

i∈Iu(j)

δji,

λ
∑

i∈Iu(j)

δjix
1
i + (1 − λ)

∑
i∈Iu(j)

δjix
2
i

⎫⎬
⎭ ≥ λmin

⎧⎨
⎩γj .

∑
i∈Iu(j)

δji,
∑

i∈Iu(j)

δjix
1
i

⎫⎬
⎭

+ (1 − λ)min

⎧⎨
⎩γj .

∑
i∈Iu(j)

δji,
∑

i∈Iu(j)

δjix
2
i

⎫⎬
⎭.

This shows that: Δj(x) ≥ λ ·Δj(x1) + (1− λ) ·Δj(x2). �
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However, we have this equivalent formulation of RILP:
Proposition 4.4. RILP can be equivalently written:

max cx

s.t.
∑

i∈Iu(j) Ajixi +
(
γj .
∑

i∈Iu(j) δji

)
.zj

+
∑

i∈Iu(j) δjiyji +
∑

i/∈Iu(j) Ajixi ≤ bj , ∀j ∈ J

zj + yji ≥ xi, ∀j ∈ J, i ∈ Iu(j)
xi ∈ {0, 1}, ∀i ∈ I

zj ≥ 0, yji ≥ 0, ∀j ∈ J, i ∈ Iu(j)
(4.2)

Proof. For any x ∈ {0, 1}n, it is easy to see that for all j ∈ J :

Δj(x) = min
{(

γj ·
∑

i∈Iu(j) δji

)
· zj +

(∑
i∈Iu(j) δjixi

)
· (1− zj)|zj ∈ [0, 1]

}
.

This can be classically linearized by introducing yji = xi.(1−zj) = max{0, xi−zj}:

Δj(x) = min
(
γj ·

∑
i∈Iu(j) δji

)
· zj +

∑
i∈Iu(j) δjiyji

s.t. zj + yji ≥ xi, ∀i ∈ Iu(j)
yji ≥ 0, ∀i ∈ Iu(j)

zj ∈ [0, 1].

Finally, the constraints zj ≤ 1 can be omitted. Indeed, any optimal solution
(x, y, z) of (4.2) can be changed into (x, y′, z′) satisfying z′j +y′

ji = xi, for all j ∈ J

and i ∈ Iu(j). As xi ≤ 1 for i ∈ I and y ≥ 0, this implies that z′j ≤ 1 for all j ∈ J .
Thus, constraints zj ≤ 1 are unnecessary.

Hence, from any solution of RILP, one can build a solution of (4.2), and recip-
rocally. �

Hence, relaxing the integrality constraints of (4.2), we obtain a fully linear
relaxation of RILP; we denote it by RILP-L.

Remark 4.1. The integrality constraints on z can be relaxed in (4.2) because x
is a {0, 1}-vector. But if the problem considered contains non-integral variables
xi ∈ [0, 1] associated to some uncertain coefficient Aji, the exact reformulation of
the robust problem requires to keep the constraint zj ∈ {0, 1}.

The formulation (4.2) can readily be compared with the robust model intro-
duced in [5], which is:

max cx
s.t.

∑
i∈Iu(j) Ajixi + Γjzj +

∑
i∈Iu(j) δjiyji

+
∑

i/∈Iu(j) Ajixi ≤ bj, ∀j ∈ J

zj + δjiyji ≥ δjixi, ∀j ∈ J, i ∈ Iu(j)
xi ∈ {0, 1}, ∀i ∈ I

zj ≥ 0, yji ≥ 0, ∀j ∈ J, i ∈ Iu(j)
(4.3)
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with robustness parameters Γj ∈ [0, |Iu(j)|] for j ∈ J . In particular, observe
that if all the coefficient variations δji are equal to a same value δ, then (4.3) is
completely equivalent to RILP by considering Γj = γj |Iu(j)|. That is the reason
for the results of [18], where the approach of [5] was proved to be strongly related
to chance-constrained programming for the uncertain knapsack problem when all
coefficients variations were identical.

The robust model (4.3) will be denoted by RILP2(Γ). The model RILP, related
to RILP2, has been proposed because of its lower theoretical complexity (compare
the results given in Section 4.1 with those in [4]), and because of its very easy
approximability (see the “alternative fast algorithm” in Sect. 5.3).

5. Obtaining good solutions to CCILP:

algorithmic aspects

5.1. Computing the feasibility probability of a solution

One of the key issues in solving optimization problems under probabilistic con-
straints is to assess the feasibility probability P (Ax ≤ b) of a given point x. To
calculate exactly this would require complicated multivariate numerical integra-
tions, that appears far too hard to design a tractable resolution process. This
motivates the approximation of P (Ax ≤ b), which can be performed through sev-
eral classical ways. We present hereafter three different approaches, depending on
the probability assumptions made.

Probability bounds. If the probability distributions of uncertain coefficients are
unknown, we can rely on some Hoeffding-type bound [16]:

Theorem 5.1 (Hoeffding 1963). Let X1,...,Xn be independent random variables
such that, for all i ∈ {1, . . . , n}: P (Xi ∈ [αi, βi]) = 1. Then, denoting S =∑n

i=1 Xi:

∀τ ≥ 0, P (S ≥ E[S] + τ) ≤ exp
(
− 2τ2∑n

i=1(βi − αi)2

)
·

This result can be applied in our context, by observing that: P (Ajx ≥ bj) =
P
(
Ajx ≥ E[Ajx] + (bj −E[Ajx])

)
. Then, with S = Ajx and τ = bj −E[Ajx], the

following lemma comes:

Lemma 5.1. Consider any x ∈ IRn. Let j ∈ J , we denote: μj(x) =

E
[∑

i∈Iu(j) Ajixi

]
. Suppose that: bj ≥ μj(x) +

∑
i/∈Iu(j) Ajixi, and that the ran-

dom variables {Aji}i∈Iu(j) are independent:

P (Ajx ≥ bj) ≤ exp

(
− 2dj(x)2∑

i∈Iu(j) δ2
jix

2
i

)
(5.1)

where: dj(x) = bj −
∑

i/∈Iu(j) Ajixi − μj(x).
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When considering joint probability constraints, the global probability must be
assessed: P (Ax ≤ b) = P (∀j ∈ J, Ajx ≤ bj). For instance, if independence is
assumed between random variables associated to uncertain coefficients of different
constraints, we have: P (Ax ≤ b) =

∏
j∈J P (Ajx ≤ bj).

Note that the use of such analytical bounds B(x) ≤ P (Ax ≤ b) means that the
chance-constrained problem CCILP is in fact approximated through the following
integer program:

max cx
s.t. B(x) ≥ 1− ε

xi ∈ {0, 1}, ∀i ∈ I.
(5.2)

This problem is in general non-linear, and thus often intractable. But in some
special cases, it may be linearized. This is the case, for instance, when considering
the bound (5.1) and separate probability constraints (cf. model (2.4)). Indeed,
the constraint P (Ajx ≤ bj) ≥ 1 − εj leads to: exp

(
− 2dj(x)2∑

i∈Iu(j) δ2
jix2

i

)
≤ εj ⇔

−2dj(x)2 ≤ ln(εj).
∑

i∈Iu(j) δ2
jix

2
i . Since all the variables are boolean, we have:

x2
i = xi for all i ∈ I, and we can classically introduce for all (k, l) ∈ I2 with

k < l: ykl = xkxl, adding constraints ykl ≤ xk and ykl ≤ xl, plus the implicit
non-negativity constraints ykl ≥ 0.

Note also that it is necessary to add some constraints defining the domain of
validity of the used bound: μj(x)+

∑
i/∈Iu(j) Ajixi ≤ bj for all j ∈ J . In the case of

bound (5.1), such a linearization implies the adding of n(n−1)/2 new non-integer
variables, as well as n(n− 1) + m new constraints.

Hence, with respect to approximation bound (5.1), the separate probability
constraints problem (2.4) can be approximated through:

max cx

s.t.
∑

i∈I

(
4bjE[Aji]− 2E[Aji]2 − ln(εj)δ2

ji

)
.xi

−2
∑

(k,l)∈I2,k �=l E[Ajk].E[Ajl].ykl ≤ 2b2
j , ∀j ∈ J

ykl ≤ xk, ∀(k, l) ∈ I2, k �= l
ykl ≤ xl, ∀(k, l) ∈ I2, k �= l

x ∈ {0, 1}n, y ≥ 0
(5.3)

with the clear convention: δji = 0 when i /∈ Iu(j). Such a model will be referred
to as an Hoeffding approximation of a problem with separate chance constraints.

Sampling methods. If the probability distributions are known, the use of sam-
pling techniques may lead to good estimations of P (Ax ≤ b). From the weak law
of large numbers (cf. for instance [20]), the sampling size can be computed so as
to ensure a probabilistically good assessment of P (Ax ≤ b). More precisely, we
have:
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Lemma 5.2. Let x ∈ IRn, we denote Ψ = P (Ax ≤ b). Let μ1, . . . , μk be a random
sample from density 1I{A:Ax≤b}, we denote: μ̄ =

∑k
p=1 μp/k. Furthermore, let us

introduce D = |μ̄− 1 + ε|:
• if μ̄ > 1− ε, we have: P

(
Ψ < 1− ε

)
≤ 1

4kD2
;

• if μ̄ < 1− ε, we have: P
(
Ψ > 1− ε

)
≤ 1

4kD2
.

Proof. Let us denote: T = 1I{A:Ax≤b}. Observe that: Ψ = P (Ax ≤ b) = E[T ].

Suppose that μ̄ > 1−ε, then: P
(
Ψ < 1−ε

)
≤ P

(
| Ψ− μ̄ |> D

)
. Then, from the

weak law of large numbers: P
(
Ψ < 1−ε

) ≤ σ2/(kD2), where σ2 is the variance of
T . Furthermore, we have: σ2 = E[T 2]−E[T ]2 = E[T 2]−Ψ2. Since T takes values
in {0, 1}, we obtain: σ2 = E[T ]−Ψ2 = Ψ(1−Ψ) ≤ 1/4.

The case μ̄ < 1− ε is exactly similar. �

Hence, if the sample size k is large enough, μ̄ and P (Ax ≤ b) are either both
more than 1 − ε, or both less than 1 − ε, with high probability. One practical
advantage of this method is that correlations between random variables can very
easily be taken into account by simulating events accordingly.

Gaussian approximations. A third way to assess the probability P (Ax ≤ b)
is to rely on normal distributions assumptions. Hence, each random variable
Aji is assumed to have a normal distribution, defined so that the probability
P (Aji /∈ [Aji, Aji]) is small enough. This approach makes exact calculations pos-
sible (cf. e.g. [7,17]), but may often be too constraining from a model point of
view. However, [9] has proposed interesting extensions from this classical Gaussian
framework to a more general class of so-called radial distributions. It is proved that
separate chance constraints can be equivalently written as second-order cone con-
vex constraints. In our specific combinatorial framework, such constraints could
be linearized, using the same tricks as above for the Hoeffding bound.

5.2. Difficulties and restrictions

From now on, the emphasis is put on tractability and scalability of the reso-
lution method. Our goal is to find a good solution provided by robust problems
RILP(I,γ). That is, we look for a parameter vector γ ∈ [0, 1]m corresponding to
the best solution of CCILP available from this family of problems. Note that from
Theorem 3.1, finding an optimal solution of CCILP would require to consider in
fact problems RILP(I ′,γ), with varying subset I ′ ⊆ I. This is even more complex
than to enumerate all the points of {0, 1}n. To overcome this difficulty and to
remain as tractable as possible, the search is limited to problems RILP(I,γ), also
denoted by RILP(γ). Note however that refinements of the proposed algorithms
can be obtained by investigating several subsets I ′, but this would impact the
method tractability.
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The main fact used in our algorithmic approach is the “non-increasingness” of
objective value with γ. Indeed, consider two parameters γ and γ′ and the respec-
tive optimal solutions x and x′: if γ ≥ γ′, then cx ≤ cx′, since RILP(γ′) is a
relaxation of RILP(γ). Despite this useful property, some difficulties remain.

Missing the optimal solution. Unfortunately, the above restriction can lead
to miss the optimal solution of the chance-constrained program, as illustrated in
the following example.

Example 5.1. Consider the following knapsack problem:

max 2x1 + 2x2 + 3x3

s.t. w1x1 + w2x2 + w3x3 ≤ 2.5
x ∈ {0, 1}3

where the weights wi are supposed independent and uniformly distributed on their
respective interval of existence: w1 ∈ [0.5, 1.5], w2 ∈ [0.5, 1.5] and w3 ∈ [1.6, 2.6].
Suppose that we want to solve the associated chance-constrained problem with
ε = 0.1.

By enumerating all the solutions and calculating their respective feasibility
probabilities, it comes that the optimal solution x∗ of the chance-constrained
problem is: x∗ = (0, 0, 1), with associated value V ∗ = 3 and feasibility proba-
bility P∗ = 0.9 (note that P∗ = 1− ε).
Now, let us write the robust problem for γ ∈ [0, 1]:

max 2x1 + 2x2 + 3x3

s.t. 0.5x1 + 0.5x2 + 1.6x3 + min{x1 + x2 + x3, 3γ} ≤ 2.5
x ∈ {0, 1}3.

It can be checked that:
• if 0.4 < 3γ ≤ 1.5, the robust solution is (1, 1, 0), with associated value

V = 4 and feasibility probability P = 7/8 < 0.9 (easy to calculate from
classical probability results on the sum of two random variables).
• if 3γ > 1.5, the robust solution is (1, 0, 0), with associated value V = 2

and feasibility probability P = 1.
Hence, the optimal solution x∗ is an optimal solution for none of the robust prob-
lems tested. However, observe that x∗ is an optimal solution of RILP(I ′,γ) when
I ′ = {3} and γ = 0.

Non-monotonicity of the feasibility probability. On the other hand, it would
be useful to characterize the behavior of the feasibility probability P (Ax ≤ b).
More precisely, for a given γ ∈ [0, 1]m, let us denote by x(γ) an optimal solu-
tion of RILP(γ): it could seem natural that when γ ≤ γ′, then P

(
Ax(γ) ≤ b

) ≥
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P
(
Ax(γ′) ≤ b

)
. Unfortunately, this is not the case, as shown in the example be-

low. This makes the use of dichotomy-type search hardly reliable when looking
for a good robust parameter γ.

Example 5.2. Consider the following knapsack problem:

max 2x1 + 2x2 + 3x3

s.t. w1x1 + w2x2 + w3x3 ≤ 3.5
x ∈ {0, 1}3

where the weights wi are supposed independent and uniformly distributed on their
respective interval of existence: w1 ∈ [1, 2], w2 ∈ [1, 2] and w3 ∈ [1.5, 5.5]. The
associated robust problem for γ ∈ [0, 1] is:

max 2x1 + 2x2 + 3x3

s.t. x1 + x2 + 1.5x3 + min{x1 + x2 + 4x3, 6γ} ≤ 3.5
x ∈ {0, 1}3.

The robust solutions can be described for all values of γ:
• if γ = 0, the robust solution is (1, 1, 1), with value V = 7 and feasibility

probability P = 0;
• if 0 < 6γ ≤ 1, the robust solution is (1, 0, 1), with value V = 5. The fea-

sibility probability can be calculated from the classical probability results
about sums of random variables (rvs): P = 1/8;
• if 1 < 6γ ≤ 1.5, the robust solution is (1, 1, 0), with value V = 4 and (after

calculations) feasibility probability P = 7/8;
• if 1.5 < 6γ ≤ 2, the robust solution is (0, 0, 1), with value V = 3 and

feasibility probability P = 0.5;
• if 2 < 6γ, the robust solution is (0, 0, 0), with value V = 0 and feasibility

probability P = 1.
This enumeration shows that the feasibility probability of solutions obtained from
RILP(γ) is not non-decreasing with γ for the above simple uncertain knapsack
problem.

5.3. Algorithms

Despite these difficulties, the robust framework remains practically attractive.
We propose hereafter an algorithm to obtain good solutions to chance-constrained
combinatorial problems in a tractable way. But let us first state a useful result:

Lemma 5.3. Let x∗ be an optimal solution of RILP(γ). Then, x∗ is also optimal
for RILP(γ′), where for each j ∈ J :

• if
∑

i∈Iu(j) δjix
∗
i ≤ γj

∑
i∈Iu(j) δji: γ′

j = 1;
• otherwise: γ′

j =
(
bj −

∑
i∈I Ajix

∗
i

)
/
∑

i∈Iu(j) δji.
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Proof. That x∗ is feasible for RILP(γ′) is immediate. Moreover, since γ′ ≥ γ,
RILP(γ) is a relaxation of RILP(γ′). Thus, x∗ is optimal for RILP(γ′). �

Hence, it is useless to investigate robust parameters “between” γ and γ′, since
they have optimal solutions in common.

Lemma 5.4. Suppose that the {Aji}i∈I are integers. Let γ ∈ [0, 1]m and γ′

computed as explained in Lemma 5.3. Consider γ′′ equal to γ′, except: γ′′
j =

min
{
1, γ′

j + 1/
∑

i∈Iu(j) δji

}
for one given index j ∈ J such that γ′

j < 1. Let x′′

be an optimal solution of RILP(γ′′). For any g �= γ′ such that γ′ ≤ g ≤ γ′′, x′′ is
an optimal solution of RILP(g).

Proof. Let x be an optimal solution associated to γ, we define γ′ from Lemma 5.3,
assuming that there exists j ∈ J such that γ′

j < 1:
∑

i∈I Ajixi + γ′
j

∑
i∈Iu(j) δji =

bj. Consider any g ∈ [γ′, γ′′], g /∈ {γ′, γ′′}, and let us denote by x̂ the associated
optimal solution. Let us prove that x̂ is feasible for RILP(γ′′). If

∑
i∈I Ajix̂i +∑

i∈Iu(j) δjix̂i ≤ bj , this is clear. If
∑

i∈I Ajix̂i + gj

∑
i∈Iu(j) δji ≤ bj, we have:∑

i∈I Ajix̂i −
∑

i∈I Ajixi ≤ (γ′
j − gj)

∑
i∈Iu(j) δji < 0. As all coefficients {Aji}i∈I

have been supposed integral, this means in fact:
∑

i∈I Ajix̂i−
∑

i∈I Ajixi ≤ −1, or
equivalently:

∑
i∈I Ajix̂i + 1 ≤∑i∈I Ajixi. Then:

∑
i∈I Ajix̂i + γ′

j

∑
i∈Iu(j) δji +

1 ≤ ∑i∈I Ajixi + γ′
j

∑
i∈Iu(j) δji = bj. As a direct consequence, x̂ is a feasible

solution of RILP(γ′′).
Then, it has been proved that x̂ is a feasible solution of RILP(γ′′). Since γ′′ ≥ g,

x̂ is in fact optimal for RILP(γ′′). Hence, RILP(γ′′) and RILP(g) have the same
optimal value. Furthermore, x′′ is feasible for RILP(g), since g ≤ γ′′. Thus, x′′ is
optimal for RILP(g). �
This shows that it is also useless to consider the robust parameters “between” γ′

and γ′′. Lemma 5.3 and 5.4 are used in the following algorithm:
Fast algorithm
Step 0: Set γ = 0.
Step 1: Solve RILP(γ), and let x be the corresponding optimal solution.
Step 2: Compute (or bound) P (Ax ≤ b).
Step 3: If P (Ax ≤ b) < 1− ε:

compute γ′ ≥ γ as described in Lemma 5.3, and set γ ← γ′;
select j such that: j = argmink∈J:γ′

k<1

{
bk −

∑
i∈I E[Aki]xk

}
;

set γj ← γj + 1/
∑

i∈Iu(j) δji and go to Step 1.
Step 4: If P (Ax ≤ b) ≥ 1− ε: STOP.

The idea is to investigate an increasing sequence of parameters γ. At each loop,
the current robust problem is solved (Step 1). Then, the feasibility probability
of the obtained solution is computed (Step 3). If this solution is feasible for
CCILP, the algorithm stops (Step 4). Otherwise, γ is increased according to Step 3.
Note that this latter process ensures that the algorithm stops in finite time with
a feasible solution for CCILP. The number of iterations is upperly bounded by∑

j∈J

⌈∑
i∈Iu(j) δji

⌉
; in practice, it is much lower.
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Some more explanations are needed for Step 3. The index j is chosen with the
aim to improve effectively the feasibility of a solution. Hence, in the proposed im-
plementation, we increase the protection term corresponding to the smallest gap
between right hand side and the expected value of left hand side. This is motivated
by observing that many probability inequalities involve this gap (cf. the Markov
inequality, the Hoeffding inequality...). But other more relevant criteria may be
thought of, depending on the specific problem dealt with. Suppose for instance that
all data A and b are positive, inspired by the Markov inequality, we could take:
j = arg mink∈J

{
1− (

∑
i∈I E[Aki]xk)/bk

}
= arg maxk∈J

{
(
∑

i∈I E[Aki]xk)/bk

}
.

In our practical tests, we observed that the criterion chosen did not have a signif-
icant impact on results.

The fast algorithm described above may still be difficult in practice, due to the
exact resolution of RILP, for instance through the integer linear program (4.2).
A natural idea is to replace the protection term Δj(x) by the constant: Δ′

j(x) =
γj.
∑

i∈Iu(j) δji. Observe that this latter option corresponds to change simply the
right hand side bj . When this constant protection term becomes “too large”,
the constraint j may be replaced by the worst case: Ajx ≤ bj. These ideas are
precisely described in the following algorithm:

Alternative fast algorithm
Step 0: Set γ = 0.
Step 1: Let x be an optimal solution of the problem:

max cx
s.t.

∑
i∈Iu(j) Ajixi+γj.

∑
i∈Iu(j) δji+

∑
i/∈Iu(j) Ajixi ≤ bj , ∀j∈J

x ∈ {0, 1}n
Step 2: Compute (or bound) P (Ax ≤ b).
Step 3: If P (Ax ≤ b) < 1− ε:

compute γ′ ≥ γ as described in Lemma 5.3, and set γ ← γ′;
for each j ∈ J , if γ′

j = 1, then replace the corresponding
constraint with:∑

i∈Iu(j) Ajixi +
∑

i/∈Iu(j) Ajixi ≤ bj ;
select j such that: j = arg mink∈J:γ′

k
<1

{
bk −

∑
i∈I E[Aki]xi

}
;

set γj ← γj + 1/
∑

i∈Iu(j) δji and go to Step 1.
Step 4: If P (Ax ≤ b) ≥ 1− ε: STOP.

In this alternative algorithm, at each loop, only one nominal ILP problem has to
be solved (cf. Step 1). The simplicity and tractability of the proposed algorithms
appear clearly. Furthermore, by contrast with many meta-heuristic based meth-
ods, no specific tuning is necessary here. This is especially important in practice,
since a lot of time is usually spent looking for good parameters of meta-heuristic.

5.4. Computing upper bounds for CCILP

So far, heuristics have been designed to obtain feasible solutions for CCILP. In
order to be able to assess the quality of the provided solutions, an upper bound on
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the optimal value of CCILP is needed. An obvious bound is obtained by consid-
ering that all the uncertain coefficients take their minimal value, that corresponds
to the best scenario. This can be improved with the following result:

Proposition 5.1. For all j ∈ J , let us introduce:
• pj ≥ 0 such that, for any optimal solution x∗ of CCILP: pj ≤

∑
i∈Iu(j) x∗

i ;
• I ′j ⊆ Iu(j) such that |I ′j | = pj and: max{δji | i ∈ I ′j} ≤ min{δji | i ∈

Iu(j)\I ′j}.
Suppose that the {ηji}i∈Iu(j) are i.i.d. Then, consider γ ∈ [0, 1]m such that, for
all j ∈ J :

P

⎛
⎝∑

i∈I′
j

δjiηji ≤ γj

∑
i∈Iu(j)

δji

⎞
⎠ < 1− ε.

Any optimal solution x∗ of CCILP satisfies, for all j ∈ J :
∑
i∈I

Ajix
∗
i + γj

∑
i∈Iu(j)

δji ≤ bj.

Proof. Let x∗ be an optimal solution of CCILP. We prove by contradiction that
x∗ satisfies the above inequalities. Suppose that there exists j ∈ J such that:∑

i∈I Ajix
∗
i + γj

∑
i∈Iu(j) δji > bj . Then:

P (Ajx
∗ ≤ bj) ≤ P

(
Ajx

∗ ≤ Ajx
∗ + γj

∑
i∈Iu(j) δji

)
= P

(∑
i∈Iu(j) δjiηjix

∗
i ≤ γj

∑
i∈Iu(j) δji

)
≤ P

(∑
i∈I′

j
δjiηji ≤ γj

∑
i∈Iu(j) δji

)
.

The latter inequality comes from the fact that the {ηji}i∈Iu(j) are i.i.d., and from
the definition of I ′j . Then, observe that: P (Ax∗ ≤ b) ≤ P (Ajx

∗ ≤ bj) < 1 − ε.
This is a contradiction. �

Often, the {pj}j∈J can be computed quite easily. From pj , the corresponding
set I ′j is built in linear time by considering the smallest variations δji for i ∈ Iu(j).
Then, the γj may be found by dichotomy. Note that to reach upper bounds as
good as possible, we have to find γ as large as possible.

When dealing with separate chance constraints (2.4), Proposition 5.1 can be
easily adapted. It is sufficient to consider γ such that, for all j ∈ J :

P
(∑

i∈I′
j
δjiηji ≤ γj

∑
i∈Iu(j) δji

)
< 1− εj.

In this latter case, and when only one coefficient per row is subject to uncertainty,
the bound obtained from Proposition 5.1 is the optimal value of CCILP if γ is
chosen large enough. (This occurs for instance when right hand side data only are
uncertain.)

Proposition 5.1 also enables us to accelerate again the Fast Algorithm. Indeed,
instead of beginning with γ = 0 at Step 0, we can begin directly with a parameter
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γ satisfying the requirements of Proposition 5.1. This pre-optimization procedure
avoids useless iterations.

Finally, when relying on the Hoeffding bound to assess the feasibility proba-
bility, the analytical expression of the chance constrained problem may provide
upper bounds, by relaxing integrality constraints or considering some lagrangean
relaxations, for instance.

Other upper bounds have been investigated, see the long version of the current
paper [19]. Despite their theoretical interest, they did not lead to significant
improvements.

6. Applications and numerical tests

The framework proposed is suitable for a wide range of application problems,
such as:

• the 0–1 knapsack problem with uncertain weights, as well as its classical
extensions, multiple knapsack and multi-dimensional knapsack problems;
• shortest paths problems with uncertain edge weights;
• unsplittable multicommodity flow problems with uncertain demands;
• some capacitated location problems.

Hereafter, numerical results will be provided for the knapsack and multi-dimensional
knapsack problems with uncertain weights. The computer programs have been
written in C++ with CPLEX 9.0. All the tests have been performed on a com-
puter running an Intel(R) Xeon(TM) processor 2.8 GHz with 2 Go of RAM.

6.1. Instances and resolution methods

Two different types of instances have been generated. With the first ones, all
weight variations δji are 10% of the minimal weight (“proportional variations”).
With the second type of instances, these weight variations are randomly chosen
in an interval. This means that the variations are not correlated to the minimal
coefficient value (“uncorrelated variations”).

For each type of problem, two different series of tests have been performed, the
first one using sampling methods to estimate the feasibility probability, and the
second one relying on the Hoeffding probability bound (see Sect. 5.1). When deal-
ing with multi-dimensional knapsack problems, tests have been run for separate
and joint probability constraints (cf. Sect. 2.3).

When considering separate probability constraints, several resolution methods
are compared on each problem.

• Worst: it corresponds to the worst case value, that is the value when all
coefficients Aji take their maximal value Aji.
• M1: the first one, denoted by M1, relies on the ideas of [5], where the ro-

bust model RILP2 (cf. Eqs. (4.3)) has been introduced. The authors
pointed out the fact that, given a parameter vector Γ, the feasibility
probability of any optimal solution x of RILP2(Γ) could be bounded by:
∀j ∈ J, P (Ajx ≤ bj) ≥ P

(∑
i∈Iu(j) ηji ≤ Γj

)
. Hence, for each j ∈ J , we
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look for the lowest Γj satisfying: P
(∑

i∈Iu(j) ηji ≤ Γj

)
≥ 1 − εj. Then,

the problem RILP2(Γ) is solved. Observe that only one robust problem
needs to be solved with this approach.
• M2: a second resolution method, denoted by M2, has been directly in-

spired by the work of [18], that also relies on the robust model RILP2.
Starting with Γ = 0, a sequence of increasing parameter vectors Γ is pro-
gressively generated. At each new Γ, the corresponding robust problem
RILP2(Γ) is solved. The choice of a new parameter vector exploits ideas
very similar to those exposed in Section 5.3 for the fast algorithm: from
the current Γ and the associated robust solution, a new vector Γ′ ≥ Γ
is built, which corresponds to the same optimal value. Then, its lowest
component Γj is increased by 1/ maxi∈Iu(j) δji. For more technical details,
we refer to [18], where the same ideas are introduced on the restricted case
of the knapsack problem.
• FA: a third approach is the fast algorithm, as introduced in Section 5.3.
• AFA: this fourth method is the alternative fast algorithm of Section 5.3.
• Optimum: when possible, the optimal solutions have also been computed.

When using the Hoeffding bound with separate probability constraints, the
optimal solution can be found through the models developed in Section
5.1; this approach will be denoted by HA. In the other cases, with sampling
estimation or joint probability constraints, all solutions are enumerated.
Of course, this is possible only for small size instances.
• Upper bound: when using the sampling estimation of the feasibility

probability, an upper bound on the optimal value of CCILP is computed
according to Proposition 5.1. Since we deal with knapsack problems, each
value pj is computed in linear time by filling knapsack j with the largest
maximal coefficients Aji first.
• Best: it corresponds to the best case value, that is the value when all

coefficients Aji take their minimal value Aji.
The approaches “worst”, “M1”, “M2”, “FA”, “AFA” and “optimum” provide
feasible solutions to the chance-constrained problem. On the contrary, “upper
bound” and “best” correspond only to bounds on the optimal value investigated;
that is the reason for writing the corresponding results in italic in the result tables.

When dealing with joint probability constraints, method M1 is no more usable.
Furthermore, as the Hoeffding approximation model cannot be linearized with
joint probability constraints, it has not been implemented.

The solution values obtained are always compared to the worst case value.

6.2. The knapsack problem

This problem is one of the simplest applications, since it contains only one
constraint:

max
∑

i∈I pixi

s.t.
∑

i∈I wixi ≤ c
x ∈ {0, 1}n
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c > 0 denotes the knapsack capacity. For each i, pi > 0 is the profit of taking
element i, while wi > 0 is the weight of this element. In the following, all the
weights are assumed to be unprecisely known: ∀i ∈ I, wi ∈ [wi, wi + δi].

Following the ideas of Section 5.3, the chance-constrained problem will be
heuristically solved through a sequence of robust problems. With clear nota-
tions, RKP(γ) will denote the robust version of the uncertain knapsack problem
for γ ∈ [0, 1], while CCKP will be its chance-constrained version. According to
Theorem 4.1, solving RKP(γ) requires to solve only 2 knapsack problems, namely:

(a) max
{
p · x|w · x ≤ c, x ∈ {0, 1}n}

and: (b) max
{
p · x|w · x + γ

∑
i∈I δi ≤ c, x ∈ {0, 1}n

}
.

The optimal solution of RKP(γ) is obtained as the best solution among this of
(a) and this of (b). The problem (a) can be solved only once at the beginning,
the problem (b) being solved for each value of γ tested. Hence, the fast algorithm
proposed in Section 5.3 can be very easily used here:

Chance-constrained knapsack algorithm (CCKA)
Step 0: Solve problem (a), and let x be its optimal solution. Set γ = 0.
Step 1: Solve (b), and let x be the corresponding optimal solution.
Step 2: If p.x ≤ p.x: set x = x and STOP.
Step 3: Estimate or bound P (Ax ≤ b).
Step 4: If P (Ax ≤ b) < 1− ε:

compute γ′ ≥ γ as described in Lemma 5.3;
set γ = γ′ + 1/

∑
i∈I δi and go to Step 1.

Step 5: If P (Ax ≤ b) ≥ 1− ε: STOP.

Some of the results from [18] can be adapted here, showing that algorithm
CCKA may provide optimal solutions to chance-constrained problems in some
cases. Let x ∈ {0, 1}n, we say that x is non-increasing if: i < j ⇒ xi ≥ xj . This
means that x looks like: 1, 1, . . . , 1, 0, . . . , 0.

Proposition 6.1. Suppose that weights and profits can be sorted so that:

i < j ⇒
⎧⎨
⎩

pi > pj

wi ≤ wj

δi ≤ δj .
(6.1)

Moreover, suppose that random variables (rvs) {ηi}i∈I are independent and identi-
cally distributed (i.i.d.). Then, there exists γ∗ ∈ [0, 1] such that an optimal solution
of RKP(γ∗) is also optimal for CCKP.

This result is close to Theorem 2 in [18]. A specific proof can be found in the
long version [19].

Corollary 6.1. Suppose that conditions (6.1) hold and that the {ηi}i∈I are i.i.d.
Let γ ∈ [0, 1], the optimal solution x∗ of RKP(γ) is an optimal solution of CCKP
with ε = P (wx∗ ≥ c).
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Proof. Let ε = P (wx∗ ≥ c). We know from Proposition 6.1 that there exists γ′

such that an optimal solution x′ of RKP(γ′) is optimal for CCKP. By construction,
x∗ is feasible for CCKP. Since both vectors x′ and x∗ are non-increasing, we have:
x′ ≥ x∗ (otherwise, px′ < px∗). If x′ �= x∗, we have then: P (wx′ ≤ c) < P (wx∗ ≤
c) = ε. This means that x′ = x∗, that shows that x∗ is optimal for CCKP. �

Thus, under condition (6.1), the algorithm CCKA can be used to obtain an
optimal solution of CCKP. It is sufficient, for each value γ tested, to consider
non-increasing solutions. This is not of great practical interest, since under condi-
tions (6.1), the problem can be easily solved by adding successively the elements
of largest profit, until the probability condition is reached. However, the above
results indicate the relevance of algorithm CCKA, at least when dealing with some
particular types of instances.

To build the test instances, the minimal weights {wi}i∈I , as well as the profits
{pi}i∈I , are randomly chosen in [100, 1000], and the capacity c is randomly chosen
between

∑
i∈I wi/3 and 2

∑
i∈I wi/3. All data c, wi and δi are positive integers.

When using sampling methods to estimate the feasibility probability of a given
solution, the rvs {wi}i∈I are supposed independent and uniformly distributed on
their definition intervals. We rely on Lemma 5.2 to ensure that we have a feasible
solution for CCKA with probability at least 99.99%. The average probabilities
appearing in result tables are then approximative. When using the Hoeffding
probability bound (5.1), the rvs {wi}i∈I are supposed independent and centered:
∀i ∈ I, E[wi] = wi +δi/2. The goal is to find a good knapsack filling being feasible
with probability at least 90%, which means that ε = 0.1.

In the “proportional variations” case, we set: ∀i ∈ I, δi = 0.1wi (δi is possibly
rounded to be integral). With “uncorrelated variations”, the {δi}i∈I are randomly
chosen in [10, 100].

Results when using the sampling method. Instances with n = 25, n = 100
and n = 200 have been considered; for each size, one hundred instances have
been run. The optimal solution, found through a complete enumeration of all
possible solutions, is given only for n = 25. Some major trends can be underlined
from Table 1, which reports the average results for each case. First, M1 leads
to very small improvements: while being very fast, this algorithm remains far
less interesting than M2 and CCKA. Secondly, M2 and CCKA provide very close
results. CCKA appears as much faster than M2, that is due to the very easy
resolution of RKP(γ) through one knapsack problem. Thirdly, M2 and CCKA
provide both near-optimal solutions for n = 25. More precisely, we observed that
M2 always found the optimum for the case of proportional variations (see Tab. 3).

The careful observation of the obtained results leads to conclude that CCKA
provides slightly better solutions than M2 for proportional variations, while the
contrary occurs for uncorrelated variations (see also Tab. 2, which gives the num-
ber of instances where M2 or CCKA provided the best solution). This may be
explained from the protection terms used by robust models RILP and RILP2.
For RILP, Δ(x) = min

{
γ ·∑i∈I δi,

∑
i∈I δixi

}
; for RILP2, Δ(x) is replaced by
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Table 1. CCKP: Average results on 100 instances, when using
the sampling method to assess the feasibility probability.

Average Average Average Average
value improvement % proba. time (s)

worst 9567.89 – 1 0.01
M1 9578.7 0.11 1.00 0.02

n = 25 M2 9748.77 1.89 0.97 0.05
CCKA 9750.34 1.91 0.97 0.03

optimum 9751.09 1.91 0.97 12.99
upper bound 9987.68 4.39 – 0.00

best 10062.8 5.17 – 0.00
worst 38682.04 – 1 0.06

Proportional M1 38735.06 0.14 1.00 0.14
variations n = 100 M2 39566.08 2.29 0.93 3.54

CCKA 39568.24 2.29 0.93 0.91
upper bound 40445.15 4.56 – 0.01

best 40738.43 5.32 – 0.01
worst 77750.28 – 1 0.15
M1 77868.61 0.15 1.00 0.38

n = 200 M2 79582.06 2.36 0.92 30.00
CCKA 79586.44 2.36 0.92 5.41

upper bound 81280.36 4.54 0.01
best 81859.18 5.28 0.01

worst 9467.69 – 1 0.01
M1 9473.99 0.07 1.00 0.02
M2 9709.92 2.56 0.97 0.06

n = 25 CCKA 9709.23 2.55 0.97 0.04
optimum 9709.62 2.56 0.97 12.94

upper bound 10012.3 5.75 – 0.00
best 10094.73 6.62 – 0.00
worst 38657.14 – 1 0.05

Uncorrelated M1 38714.65 0.15 1.00 0.14
variations n = 100 M2 39749.17 2.82 0.93 4.19

CCKA 39744.02 2.81 0.93 1.12
upper bound 40879.29 5.75 – 0.01

best 41190.37 6.55 – 0.01
worst 77432.07 – 1 0.18
M1 77545.8 0.15 1.00 0.5

n = 200 M2 79708.09 2.94 0.92 40.52
CCKA 79700.84 2.93 0.92 7.64

upper bound 81898.31 5.77 – 0.02
best 82503.48 6.55 – 0.02

Δ2(x) = max
{∑

i∈S δixi : S ⊆ I, |S| = Γ
}
, when Γ is integral. It can be seen

that Δ2 will always penalize solutions involving coefficients with large variations.
Hence, for instance, if we have two elements i and j such that pi = pj, wi = wj

and δi < δj , RILP2 will “prefer” element i to element j, although RILP will make
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Table 2. CCKP: Number of instances where CCKA performs
better or worse than M2, when using the sampling method to
assess the feasibility probability.

CCKA > M2 CCKA = M2 CCKA < M2
Proportional n = 25 2% 98% 0%
variations n = 100 20% 71% 9%

n = 200 38% 50% 12%
Uncorrelated n = 25 0% 98% 2%

variations n = 100 11% 69% 20%
n = 200 9% 37% 54%

Table 3. CCKP: Number of instances where CCKA or M2 pro-
vide the optimal solution, when using the sampling method.

CCKA=optimum M2=optimum
Proportional variations, n = 25 100% 98%
Uncorrelated variations, n = 25 96% 98%

no difference between them most of the time. Indeed, with Δ, the variations are
taken into account mainly through their sum

∑
i∈I δi, since most of the time:

Δ(x) = γ ·∑i∈I δi. This may explain the better ability of RILP2 to select good
solutions when variations are not correlated to minimal weights.

Finally, upper bounds computed from Proposition 5.1 improve on the best case
value. However, they remain very weak. It appears that obtaining good upper
bounds on the optimal value of CCILP may require more sophisticated algorithms.

Results when using the Hoeffding bound. As before, one hundred instances
have been tested for each size n = 50, n = 100 and n = 200. From Table 4,
we see that the main observations detailed here-above remain true: M1 leads to
poor solutions; M2 and CCKA lead to similar quality solutions, but CCKA is
faster than M2. When n = 50, a comparison with the optimal solution, given by
HA, can be done. It appears that M2 and CCKA lead to near-optimal solutions.
For n = 100, HA has been solved by Cplex with a time limit of 30 min; as the
wide majority of the instances have not been solved to optimality within this time
limit, the average gap is reported in the last column of Table 4. It appears that
the solutions found by this latter process are worse than those provided by M2 or
CCKA in only a few seconds. As HA was so hard to solve already for n = 100, it
has not been tested when n = 200.

Hence, the solutions given by CCKA and M2 are shown to be very good quality
ones. More detailed comments may be done with respect to each method perfor-
mance. When dealing with proportional variations, the solutions of CCKA are
slightly better than those of M2 (cf. also Tab. 5). The contrary occurs for uncor-
related variations. The reasons for this are the same than those given when using
the sampling method.
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Table 4. CCKP: Average results on 100 instances, when using
the Hoeffding bound to assess the feasibility probability.

Average Average Average Average
value improvement % proba. time (s)

or gap (%)

Worst 19990.13 – 1 0.01 s
M1 19991.64 0.01 1.00 0.02 s

n = 50 M2 20268.33 1.39 0.94 0.41 s
CCKA 20268.32 1.39 0.94 0.12 s

HA 20268.54 1.39 0.94 50.03 s
Worst 38939.2 – 1 0.05 s

Proportional M1 38954.94 0.04 1.00 0.05 s
variations n = 100 M2 39614.8 1.74 0.92 4.15 s

CCKA 39617.11 1.74 0.92 0.79 s
HA 39611.01 1.73 0.92 0.66%

Worst 79704.63 – 1 0.16 s
n = 200 M1 79768.07 0.08 1.00 0.21 s

M2 81262.11 1.95 0.91 37.66 s
CCKA 81264.83 1.96 0.91 4.92 s

Worst 19428.92 – 1 0.02 s
M1 19432.77 0.02 1.00 0.02 s

n = 50 M2 19766.52 1.74 0.94 0.57 s
CCKA 19764.66 1.73 0.94 0.18 s

HA 19767.16 1.74 0.94 218.25 s
Worst 38537.29 – 1 0.07 s

Uncorrelated M1 38552.72 0.04 1.00 0.07 s
variations n = 100 M2 39357.63 2.13 0.92 5.63 s

CCKA 39352.04 2.11 0.92 1.13 s
HA 39351.06 2.11 0.92 0.94%

Worst 77473.05 – 1 0.16 s
n = 200 M1 77518.12 0.06 1.00 0.23 s

M2 79394.54 2.48 0.91 40.15 s
CCKA 79378.69 2.46 0.91 5.97 s

Table 5. CCKP: Number of instances where CCKA performs
better or worse than M2, when using the Hoeffding bound to
assess the feasibility probability.

CCKA > M2 CCKA = M2 CCKA < M2

n = 50 1% 98% 1%
Proportional variations n = 100 14% 84% 2%

n = 200 26% 72% 2%

n = 50 0% 90% 10%
Uncorrelated variations n = 100 2% 76% 22%

n = 200 6% 37% 57%
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Table 6. CCKP: Number of instances where CCKA or M2 pro-
vide the optimal solution when using the Hoeffding bound.

CCKA=optimum M2=optimum
Proportional variations, n = 50 99% 99%
Uncorrelated variations, n = 50 86% 95%

Remark 6.1. Note that the feasibility probability indicated in tables for solutions
of M1 is always “1.00”. In fact, this feasibility probability was not exactly 1, but
too close to 1 with respect to the numerical precision of the given results.

6.3. The multi-dimensional knapsack problem

We also study the following generalization of the knapsack problem, known as
the multi-dimensional Knapsack problem (MKP):

max
∑

i∈I pixi

s.t.
∑

i∈I wjixi ≤ cj , ∀j ∈ J
x ∈ {0, 1}n.

We present results only for five-dimensional knapsack problems, i.e. m = 5.
All data c, wji and δji are supposed positive and integral. As before, all the
weights are assumed to be uncertain, with either proportional or uncorrelated
variations. All data are randomly generated according to the same rules than for
knapsack problems. On the other hand, we keep similar probabilistic assumptions:
when using sampling methods, the rvs {wji}j∈J,i∈I are supposed independent
and uniformly distributed on their definition intervals; when using the Hoeffding
bound, the rvs are supposed independent and centered.

Two chance-constrained problems are considered. The first one, denoted by
CCMKP1, addresses the case of separate probability constraints:

max
∑

i∈I pixi

s.t. P
(∑

i∈I wjixi ≤ cj

) ≥ 1− εj , ∀j ∈ J.
x ∈ {0, 1}n.

The second one, denoted by CCMKP2, is with a joint probability constraint:

max
∑

i∈I pixi

s.t. P
(∀j ∈ J :

∑
i∈I wjixi ≤ cj

) ≥ 1− ε.
x ∈ {0, 1}n.

We aim at solving these problem for εj = 0.1, for all j ∈ J , or ε = 0.1 in CCMKP2.
When dealing with CCMKP1, as with the knapsack problem, the corresponding

Hoeffding approximation (HA) problem can be formulated as an integer linear pro-
gram (see Sect. 5.1). Hence, the results obtained with the proposed algorithm can
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Table 7. CCMKP1: average results on 100 instances, when using
the sampling method to assess the feasibility probability.

Average Average Average
value improvement % time (s)

Worst 6290.41 – 0.03
M1 6290.41 0.00 0.05
M2 6397.65 1.70 0.12

n = 20 FA 6399.13 1.73 0.12
AFA 6399.16 1.73 0.06

Optimal 6439.69 2.37 27.89
Upper bound 6665.18 5.96 0.01

Proportional Best 6720.95 6.84 0.01
variations Worst 32825.45 – 1.06

M1 32825.83 0.00 1.34
M2 33471.83 1.97 35.59

n = 100 FA 33476.27 1.98 33.9
AFA 33478.55 1.99 6.19

Upper bound 34707.99 5.74 0.08
Best 34976.34 6.55 0.08

Worst 6096.38 – 0.03
M1 6096.38 0.00 0.04
M2 6230.03 2.19 0.14

n = 20 FA 6232.25 2.23 0.13
AFA 6229.99 2.19 0.07

Optimal 6272.68 2.89 25.65
Upper bound 6500.00 6.62 0.01

Uncorrelated Best 6587.48 8.06 0.01
variations Worst 33261.65 – 0.82

M1 33262.35 0.00 0.98
M2 34071.59 2.44 38.16

n = 100 FA 34058.86 2.40 40.45
AFA 34056.91 2.39 7.67

Upper bound 35484.68 6.68 0.06
Best 35765.99 7.53 0.07

be compared with the best solution obtainable from our probabilistic hypothesis.
For CCMKP2, recall that the Hoeffding approximation would require to solve an
integer non-linear problem, that is difficult and beyond the scope of this paper.
On the other hand, recall that for CCMKP2 (joint probability constraints), M1
cannot be used.

When using sampling methods, tests have been run for n = 20 and n = 100,
with one hundred instances for each size. When considering the Hoeffding bound,
one hundred instances have been generated for both n = 50 and n = 100. Average
results are presented in Tables 7–9 (the results for CCMKP2 with the Hoeffding
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Table 8. CCMKP1: average results on 100 instances, when using
the Hoeffding bound.

Average Average Average Average
value improvement % gap time (s)

Worst 16451.21 – – 0.15
M1 16451.21 0.00 – 0.16

n = 50 M2 16640.05 1.15 – 2.33
FA 16637.62 1.13 – 2.21

AFA 16638.28 1.14 – 0.62
Proportional HA 16717.26 1.62 0.00% 117.3
variations Worst 16336.75 – – 0.28

M1 16336.75 0.00 – 0.30
n = 100 M2 16563.59 1.39 – 16.78

FA 16568.38 1.42 – 16.83
AFA 16566.81 1.41 – 2.79
HA 16649.65 1.92 0.56% 905.37

Worst 16160.2 – – 0.14
M1 16160.2 0.00 – 0.15

n = 50 M2 16362.68 1.25 – 2.80
FA 16356.13 1.21 – 2.89

AFA 16356.13 1.21 – 0.83
Uncorrelated HA 16454.76 1.82 0.02% 291.07

variations Worst 16456.5 – – 0.37
M1 16456.5 0.00 – 0.37

n = 100 M2 16739.52 1.72 – 20.84
FA 16739.39 1.72 – 20.74

AFA 16739.7 1.72 – 3.48
HA 16830.41 2.27 0.69% 903.55

bound are not reported here, since they are very similar to the other ones; see [19]).
As for the knapsack problem, M1 brings almost no improvement, while M2 and
FA provide very similar quality results. AFA appears as a very effective algorithm,
leading to solutions close to those of FA in far less time. However, it appears that
both feasible solutions and upper bounds are quite far from the optimal values,
although improving significantly both respectively on the worst case and the best
case values. Note that when using HA, a time limit of 30 min has been imposed.
Then, when instances are not solved to optimality, the gap to optimal value is
indicated.

7. Conclusion

A new and tractable robust model has been proposed. It has been shown to
be related to chance-constrained integer linear problems. Then, heuristic algo-
rithms based on this robust model have been developed to obtain good feasible
solutions to chance-constrained combinatorial problems. To the best of our knowl-
edge, that is the first time such algorithms are developed to deal with general
chance-constrained combinatorial problems. Extensive numerical tests have been
performed on knapsack and multi-dimensional knapsack instances. They show
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Table 9. CCMKP2: average results on 100 instances, when using
the sampling method.

Average Average Average Average
value improvement % proba. time (s)

Worst 5986.51 – 1 0.03
M2 6094.52 1.80 0.98 0.12
FA 6095.89 1.83 0.98 0.12

n = 20 AFA 6094.74 1.81 0.98 0.07
Optimal 6135.88 2.50 0.98 8.01

Upper bound 6355.64 6.17 – 0.01
Proportional Best 6424.05 7.31 – 0.01
variations Worst 32623.6 – 1 1.12

M2 33266.81 1.97 0.95 44.29
n = 100 FA 33285.01 2.03 0.95 41.19

AFA 33289.73 2.04 0.95 7.90
Upper bound 34507.54 5.77 – 0.08

Best 34788.63 6.64 – 0.09

Worst 6067.63 – 1 0.03
M2 6217.01 2.46 0.98 0.13
FA 6207.69 2.31 0.98 0.13

n = 20 AFA 6209.54 2.34 0.98 0.07
Optimal 6253.67 3.07 0.97 7.11

Upper bound 6506.03 7.23 – 0.01
Uncorrelated Best 6589.36 8.60 – 0.01

variations Worst 32569.07 – 1 0.85
M2 33370.85 2.46 0.94 43.93

n = 100 FA 33387.33 2.51 0.94 47.02
AFA 33387.08 2.51 0.94 9.07

Upper bound 34820.77 6.91 – 0.07
Best 35105.49 7.79 – 0.07

the practical effectiveness of the algorithms. In particular, their high tractability
make them usable for real-life large size problems. However, these numerical re-
sults also show that improvements are possible. Hence, future work will be devoted
to obtaining better feasible solutions for chance-constrained integer linear prob-
lems, as well as improving the upper bounds proposed to provide some theoretical
guarantee on the solutions.

References

[1] R. Aringheri, A Tabu search algorithm for solving chance-constrained programs, Note del
Polo 73, DTI – University of Milano (2005), available at http://www.crema.unimi.it/

Biblioteca/SchedaNota.asp?Nota=92.
[2] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems con-

tamined with uncertain data. Math. Program. (Ser. A) 88 (2000) 411–424.
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