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Abstract. The aim of this paper is to show a polynomial algorithm
for the problem minimum directed sumcut for a class of series parallel
digraphs. The method uses the recursive structure of parallel composi-
tions in order to define a dominating set of orders. Then, the optimal
order is easily reached by minimizing the directed sumcut. It is also
shown that this approach cannot be applied in two more general classes
of series parallel digraphs.
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1. Introduction

Graph ordering problems under a cost criterion lead to many applications in
computer science (e.g. the minimization of the required number of registers for
the execution of a program on a single machine [6]). Let G = (V, A) be a digraph,
a bijection ϕ �→ {1, 2, . . . , |V |} is called an order of G if ∀(u, v) ∈ A, ϕ(u) < ϕ(v).

The scope of this paper is the criterion directed sumcut (DSC), which is a
generalization to directed graphs of the criterion sumcut [7]. It was proven in [1]
that DSC models the sum of variable lifespans for a program. It is defined in the
following way: for any order ϕ, the cost of a vertex u ∈ V is

C(ϕ, u) = max
v∈Γ+(u)

ϕ(v) − ϕ(u),
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1 LIP6 - Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, France;
Alix.Munier@lip6.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2009

http://dx.doi.org/10.1051/ro/2009009
http://www.rairo-ro.org
http://www.edpsciences.org


146 S. ACHOURI ET AL.

where Γ+(u) is the set of immediate successors of u. The cost of ϕ for G is

C(ϕ, G) =
∑
u∈V

C(ϕ, u).

Let V ′ ⊂ V , and let G′ = (V ′, A′) be a partial subgraph of G. The cost of ϕ for
G′ is simply

C(ϕ, G′) =
∑

u∈V ′
C(ϕ, u).

The directed sum cut (DSC) of G is the minimum value C(G) = minϕ C(ϕ, G).
minDSC was proven to be NP-complete for bipartite graphs [2] and polynomial for
intrees and outtrees in [1]. The aim of this paper is to show a polynomial algorithm
for another recursively-described graph class, the series parallel graphs. The most
common definitions of this class are 2TSPG (2-terminal series parallel graphs) [5,8]
and SP [3]. However, we show in Section 4 that the recursive structure does not
yield a dominating set of orders for both classes. The class we are interested in this
paper is a subclass of both, denoted r-2TSPG (for reduced 2-terminal series
parallel graphs). The main interest of r-2TSPG is the limitation of the num-
ber of arcs between a component and the corresponding upper-level component.
This caracteristic allows us to simplify the criterion evaluation. This class was
previously introduced in [4] for a scheduling problem with communication delays.

Definition 1.1 (r-2TSPG graph). The graph consisting of 2 vertices s and t con-
nected by a single arc (s, t) is the basic series parallel graph for r-2TSPG.
Compound graphs can be obtained from K smaller ones Gi, 1 ≤ i ≤ K, of respec-
tive source and sink si and ti according to two composition rules:

Series: Identify pi with ti+1, ∀i, 1 ≤ i ≤ K − 1. The source and sink of G
are respectively s1 and tK .

Parallel: Create the source and sink of G s and t. Create the arcs (s, si)
and (ti, t) ∀i, 1 ≤ i ≤ K.

In Section 2, we show the dominance of block orders for DSC on r-2TSPG.
In Section 3, we prove that an optimal order can be reached in polynomial time.
Finally, we conclude (Sect. 4) that the algorithm does not apply in 2TSPG and in
SP, with simple counter examples.

2. Dominance of block orders

Let G = (V, A) ∈ r-2TSPG be the parallel composition of Gi = (Vi, Ai), 1 ≤
i ≤ K. Let s and t denote the source and sink vertices of G, and let si and ti be
the respective source and sink vertices of Gi. An example can found in Figure 1.

Let ϕ = ϕ(0) be an order of G. For i ∈ {1, . . . , K} and j ∈ {1, . . . , ki}, we
denote Bj

i the jth maximal sequence of consecutive vertices of Gi w.r.t. ϕ. ki is
thus the number of such Bj

i ’s. For the example pictured by Figure 2, we obtain
k1 = 3 and k2 = k3 = 2.
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Figure 1. A graph G = (V, A) corresponding to a parallel
composition of the subgraphs G1 = ({s1, a, b, c, d, t1}, A), G2 =
({s2, e, t2}, A) and G3 = ({s3, f, t3}, A).

s B1
1 B1

2 B1
3 B2

1 B2
3 B3

1 B2
2 t

s s1 a s2 e s3 c f t3 d b t1 t2 tϕ

Figure 2. An order ϕ for the graph pictured by Figure 1 and
the corresponding blocks.

Lastly, Ωϕ denotes the set of arcs which actually bear a cost in terms of the
DSC criterion:

Ωϕ = {(z, w) ∈ G, ϕ(w) = max
v∈Γ+(z)

ϕ(v)}.
For all z ∈ V − {t}, the vertex v ∈ V such that (z, v) ∈ Ωϕ is called the last
successor of z.

Definition 2.1 (Block order). ϕ is a block order if ∀i ∈ {1, . . . , K}, ∀(x, y) ∈
Vi × Vi, ∀z ∈ V such that ϕ(x) < ϕ(z) < ϕ(y), then z ∈ Vi.

For the example pictured by Figures 1 and 2, we get

Ωϕ = V \ {(s, s1), (s, s2), (s1, a)}.

When ϕ is a block order, we can also consider an order called block labelling
function, which consists in numbering blocks (see Sect. 3 for a more formal
definition). Throughout this paper, we only consider parallel compositions, as
series compositions are trivial in terms of DSC cost since all vertices from Gi,
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Figure 3. Reordering ϕ(i−1) to ϕ(i).

i ∈ {1, . . . , K−1} must be ordered before vertices from Gi+1. We show in this sec-
tion that for any order, it is always possible to build a block order with no greater
cost. We build a block order by successive concatenations of vertex sets belonging
to the same subgraph. Step i, i ∈ {1, . . . , K − 1} consists in the concatenation of
sets Bj

i , j ∈ {1, . . . , ki} with B1
i , i being the lowest index of not-yet-concatenated

subgraphs (see Fig. 3). For every i0 ∈ {1, . . . , K} such that ki0 = 1, we simply
consider that ϕ(i0) = ϕ(i0−1). Therefore, we only consider in the following steps i
verifying ki > 1.

Clearly, ϕ(K−1) is a block order. We show in the following that for every
i ∈ {1, . . . , K − 1},

C(ϕ(i), G) − C(ϕ(i−1), G) ≤ 0.

Since C(ϕ(i), Gl) = C(ϕ(i−1), Gl), ∀l ∈ {1, . . . , i − 1}, we can write

C(ϕ(i), G) − C(ϕ(i−1), G) = C(ϕ(i), s) − C(ϕ(i−1), s) + C(ϕ(i), Gi) − C(ϕ(i−1), Gi)

+ C(ϕ(i), Gi+1) − C(ϕ(i−1), Gi+1)

+
K∑

l=i+2

C(ϕ(i), Gl) − C(ϕ(i−1), Gl).

Lemma 2.2. ∀i∈{1, . . . ,K−1}, C(ϕ(i), s)−C(ϕ(i−1), s) ≤ ϕ(i)(si+1)−ϕ(i−1)(si+1).

Proof. The last successor of s in ϕ(i) and ϕ(i−1) is sK . Therefore,

C(ϕ(i), s) − C(ϕ(i−1), s) = ϕ(i)(sK) − ϕ(i−1)(sK).

From ϕ(i−1) to ϕ(i), the number of vertices of V renumbered between si and sK

is at most |Vi| − |B1
i |. Therefore,

|Vi| − |B1
i | ≥ ϕ(i)(sK) − ϕ(i−1)(sK).

Now, ϕ(i)(si+1) = ϕ(i)(si) + |Vi| and ϕ(i−1)(si+1) = ϕ(i−1)(si) + |B1
i | = ϕ(i)(si) +

|B1
i |. By adding both equations we have |Vi| − |B1

i | = ϕ(i)(si+1) − ϕ(i−1)(si+1),
hence the result. �



A POLYNOMIAL ALGORITHM FOR MINDSC ON SERIES PARALLEL GRAPHS 149

j 1 2 3
Θj

1 {s1, a} {c} {t1}
Θj

2 {e} {t2} undefined
Θj

3 {s3} {t3} undefined

Table 1. Sets Θj
i with i ∈ {1, . . . , K} and j ∈ {1, . . . , ki} for the

example pictured by Figures 1 and 2.

Lemma 2.3. ∀i ∈ {1, . . . , K − 1},
K∑

l=i+2

(
C(ϕ(i), Gl) − C(ϕ(i−1), Gl)

)
≤ 0.

Proof. Let (v, w) ∈ Ωϕ(i) with (v, w) ∈ Vl × (Vl ∪ {t}), l ∈ {i + 2, . . . , K}.
(a) If there exists β ∈ {1, . . . , kl} such that v and w belong to a same subset

Bβ
l , then

C(ϕ(i−1), v) = ϕ(i−1)(w) − ϕ(i−1)(v)

= ϕ(i)(w) − ϕ(i)(v)

= C(ϕ(i), v).

(b) Otherwise, let β1, β2 ∈ {1, . . . , kl}2 with v ∈ Bβ1
l and w ∈ Bβ2

l . Then, all
vertices from subsets Bj

i numbered by ϕ(i−1) between Bβ1
l and Bβ2

l are
numbered by ϕ(i) before B1

l . Therefore,

C(ϕ(i−1), v) = ϕ(i−1)(w) − ϕ(i−1)(v) ≥ ϕ(i)(w) − ϕ(i)(v) = C(ϕ(i), v).

We deduce that for every l ∈ {i + 2, . . . , K},

C(ϕ(i), Gl) − C(ϕ(i−1), Gl) ≤ 0. �

We define for every i ∈ {1, . . . , K} and for every j ∈ {1, . . . , ki − 1},

Θj
i (ϕ) =

{
z, (z, v) ∈ Ωϕ, z ∈ Bj

i and v ∈
ki⋃

l=j+1

Bl
i

}
.

We also define Θki

i (ϕ) = {ti} = {z, (z, t) ∈ Ωϕ, z ∈ Bki

i }. Finally, for every
i ∈ {1, . . . , K} and for every j ∈ {1, . . . , ki}, we set θj

i (ϕ) = |Θj
i (ϕ)|. Sets Θj

i

corresponding to our example pictured by Figures 1 and 2 are given by Table 1.

Lemma 2.4. Let ϕ be an order of G. For every i ∈ {1, . . . , K} and for every
j ∈ {1, . . . , ki}, θj

i (ϕ) > 0.

Proof.
(a) θki

i (ϕ) = |Θki

i (ϕ)| = 1.
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u1 v2 u2 v3 u3 vα uα

Bm1
l = B1

l Bm2
l Bm3

l Bmα

l = Bkl

l

Figure 4. Sequences (uβ)β∈{1,··· ,α} and (vβ)β∈{2,··· ,α}.

(b) For any j ∈ {1, . . . , ki − 1}, let u be the last element from Bj
i following

ϕ. There exists a path in G from u to ti, so Γ+(u) 
= ∅. Moreover,
Γ+(u) ⊆ ⋃ki

l=j+1 Bl
i. Then, there exists v ∈ ⋃ki

l=j+1 Bl
i with (u, v) ∈ Γϕ,

so u ∈ Θj
i (ϕ) and θj

i (ϕ) > 0. �
Particular paths from G will be pointed up in the following lemmas. For a couple
of fixed values i ∈ {1, . . . , K−1} and l ∈ {i, . . . , K}, a strictly increasing sequence
of α > 0 integers mβ ∈ {1, . . . kl} and two sequences of vertices uβ, β ∈ {1, . . . , α}
and vβ , β ∈ {2, . . . , α} are defined as follows:

(1) m1 = 1, mα = kl;
(2) for every β ∈ {1, . . . , α − 1}, (uβ , vβ+1) ∈ Ωϕ(i−1) with uβ ∈ B

mβ

l and
vβ+1 ∈ B

mβ+1
l ;

(3) uα = tl.
Figure 4 illustrates the definition of these 3 sequences. By Lemma 2.4, θk

l (ϕ(i−1)) >
0 for every k ∈ {1, . . . , kl}, so these sequences exist.

For the example pictured by Figures 1 and 2 and fixed values i = l = 1, a
sequence with α = 3 terms can be defined as m1 = 1, m2 = 2 and m3 = 3 with
u1 = s1, u2 = c, u3 = t1, v2 = c and v3 = d.

For every i ∈ {1, . . . , K − 1} and j ∈ {1, . . . , ki}, hj
i denotes the first vertex

of Bj
i .

Lemma 2.5. ∀i ∈ {1, . . . , K − 1}, C(ϕ(i), Gi) − C(ϕ(i−1), Gi) ≤ 0.

Proof. Clearly,

C(ϕ(i), Gi) − C(ϕ(i−1), Gi) =
∑
v∈Vi

(
C(ϕ(i), vi) − C(ϕ(i−1), vi)

)
.

(a) C(ϕ(i−1), ti) = ϕ(i−1)(t) − ϕ(i−1)(ti) ≥ 0.

C(ϕ(i), ti) = ϕ(i)(t)− ϕ(i)(ti) =
K∑

l=i+1

|Vl| since vertices numbered between

ϕ(i)(ti) + 1 and ϕ(i)(t) − 1 in ϕ(i) are exactly those from
K⋃

l=i+1

Vl.

Therefore, C(ϕ(i), ti) − C(ϕ(i−1), ti) ≤
K∑

l=i+1

|Vl|.
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(b) Let (mβ), (uβ) and (vβ) be the sequences previously defined, with l = i.
We set U = {uβ, β ∈ {1, . . . , α}}. For every β ∈ {1, . . . , α − 1} and
q ∈ {i+ 1, . . . , K}, we also define Lβ,q as the set of indices p ∈ {1, . . . , kq}
of blocs Bp

q numbered between B
mβ

i and B
mβ+1
i by ϕi−1. More formally,

Lβ,q = {p ∈ {1, . . . , kq}, ϕ(i−1)(hmβ

i ) < ϕ(i−1)(hp
q) < ϕ(i−1)(hmβ+1

i )} and

Lα,q = {p ∈ {1, . . . , kq}, ϕ(i−1)(hmα

i ) < ϕ(i−1)(hp
q)}.

Then, for every uβ ∈ U , we have

C(ϕ(i), uβ) − C(ϕ(i−1), uβ) = −
K∑

q=i+1

∑
p∈Lβ,q

|Bp
q |.

Therefore

∑
u∈U

C(ϕ(i), u) − C(ϕ(i−1), u) = −
K∑

q=i+1

α∑
β=1

∑
p∈Lβ,q

|Bp
q |.

Now, for every q ∈ {i + 1, . . . , K},
α⋃

β=1

Lβ,q = {p ∈ {1, . . . , kq}, ϕ(i−1)(h1
i ) < ϕ(i−1)(hp

q)}.

Since all vertices from Vq, q ∈ {i+ 1, . . . , K} are numbered by ϕ(i−1) after

B1
i , we get

α⋃
β=1

Lβ,q = {1, . . . , kq} and

∑
u∈U

C(ϕ(i), u) − C(ϕ(i−1), u) = −
K∑

q=i+1

kq∑
p=1

|Bp
q |

= −
K∑

q=i+1

|Vq |.

(c) Lastly, for every vertex v ∈ Vi−{ti}−U and for every w ∈ Γ+(v), ϕ(i)(w)−
ϕ(i)(v) ≤ ϕ(i−1)(w) − ϕ(i−1)(v). Therefore

C(ϕ(i), v) − C(ϕ(i−1), v) ≤ 0. �

Hence the result.

Lemma 2.6. For every i ∈ {1, . . . , K − 1} and for every l ∈ {i + 1, . . . , K}, we
have

C(ϕ(i−1), Gl) − C(ϕ(i), Gl) ≥
∑
j∈Ll

|Bj
i |
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where Ll is the set of index j ∈ {2, . . . , ki} such that Bj
i is ordered in ϕ(i−1) after

B1
l , i.e.,

Ll = {j ∈ {2, . . . , ki}, ϕ(i−1)(h1
l ) < ϕ(i−1)(hj

i )}.
Proof. Let (mβ), (uβ) and (vβ) be the sequences previously defined, for a fixed
value l ∈ {i + 1, . . . , K}. We set U = {uβ, β ∈ {1, . . . , α}}. For every β ∈
{1, . . . , α− 1}, the set L′

β contains the indices j ∈ {1, . . . , ki} of blocks Bj
i ordered

by ϕ(i−1) between B
mβ

l and B
mβ+1
l . More formally,

∀β ∈ {1, . . . , α − 1},
L′

β = {j ∈ {2, . . . , ki}, ϕ(i−1)(hmβ

l ) < ϕ(i−1)(hj
i ) < ϕ(i−1)(hmβ+1

l )}

and L′
α = {j ∈ {2, . . . , ki}, ϕ(i−1)(hmα

l ) < ϕ(i−1)(hj
i )}.

(a) ∀β ∈ {1, . . . , α}, C(ϕ(i−1), uβ) − C(ϕ(i), uβ) =
∑

j∈L′
β
|Bj

i |.

Since Ll =
α⋃

β=1

L′
β , we get

α∑
β=1

(
C(ϕ(i−1), uβ) − C(ϕ(i), uβ)

)
=

α∑
β=1

∑
j∈L′

β

|Bj
i | =

∑
j∈Ll

|Bj
i |.

(b) Lastly, for every vertex v ∈ Vl − U and for every w ∈ Γ+(v), ϕ(i)(w) −
ϕ(i)(v) ≤ ϕ(i−1)(w) − ϕ(i−1)(v). Therefore

C(ϕ(i), v) − C(ϕ(i−1), v) ≤ 0,

hence the result. �

Lemma 2.7. For every i ∈ {1, . . . , K − 1},

C(ϕ(i), Gi+1) − C(ϕ(i−1), Gi+1) ≤ ϕ(i−1)(si+1) − ϕ(i)(si+1).

Proof. Vertices from Vi are ordered consecutively by ϕ(i), so ϕ(i)(si+1) = ϕ(i)(si)+
|Vi|. Moreover,

ϕ(i−1)(si+1) = ϕ(i−1)(si) + |B1
i | = ϕ(i)(si) + |B1

i |.

Therefore
ϕ(i−1)(si+1) − ϕ(i)(si+1) = |B1

i | − |Vi|.
Moreover, Li+1 = {j ∈ {2, . . . , ki}, ϕ(i−1)(h1

i+1) < ϕ(i−1)(hj
i )} = {2, . . . , ki}.

Therefore,
∑

j∈Li+1

|Bj
i | = |Vi| − |B1

i |, and we get the result by Lemma 2.6. �
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Theorem 2.8 (Dominance of block orders). Let G ∈ r-2TSPG be the result of
the parallel composition of K graphs Gi ∈ r-2TSPG, ∀i ∈ {1, . . . , K}, and let ϕ be
an order of G. It is possible to build a block order ϕ′ with no greater cost, i.e.,

C(ϕ′, G) ≤ C(ϕ, G).

Proof. In this section we have built a series of transformations of ϕ = ϕ(0) leading
to a block order ϕ(K−1). Lemmas 2.2, 2.3, 2.5, 2.7 show that at each step i ∈
{1, . . . , K − 1}, we have

C(ϕ(i), G) − C(ϕ(i−1), G) = C(ϕ(i), s) − C(ϕ(i−1), s) + C(ϕ(i), Gi) − C(ϕ(i−1), Gi)

+ C(ϕ(i), Gi+1) − C(ϕ(i−1), Gi+1)

+
k∑

l=i+2

C(ϕ(i), Gl) − C(ϕ(i−1), Gl)

≤ 0.

Therefore, C(ϕ(K−1), G) ≤ C(ϕ(0), G), hence the result. �

3. Optimal block order

The aim of this section is to characterize an optimal block order. An O(|V |2)
time complexity algorithm is then derived. Let us first evaluate the cost of a block
order for a parallel composition:

Lemma 3.1. Let G = (V, A) the parallel composition of K graphs Gi = (Vi, Ai), i ∈
{1, . . . , K} and let ϕ be a block order such that, for any couple of integers (i, j) ∈
{1, . . . , K}2 with i < j, ∀x ∈ Vi, ∀y ∈ Vj , ϕ(i) < ϕ(j). Then,

C(ϕ, G) = (K + 1) +
K∑

i=1

C(ϕ, Vi \ {ti}) +
K−1∑
i=1

i|Vi| + (K − 1)|VK |.

Proof. C(ϕ, G) can be decomposed into three terms:

C(ϕ, G) = C(ϕ, s) +
K∑

i=1

C(ϕ, Vi \ {ti}) +
K∑

i=1

C(ϕ, {ti}).

(1) C(ϕ, s) = ϕ(sK) − ϕ(s) = 1 +
∑K−1

i=1 |Vi|;
(2) For any i ∈ {1, . . . , K}, C(ϕ, {ti}) = ϕ(t) − ϕ(ti) = 1 +

∑K
j=i+1 |Vj |. So,

K∑
i=1

C(ϕ, {ti}) = K +
K∑

i=1

(i − 1)|Vi|.
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Adding these two terms, we get

C(ϕ, s) +
K∑

i=1

C(ϕ, {ti}) = (K + 1) +
K−1∑
i=1

i|Vi| + (K − 1)|VK |,

hence the lemma. �
Theorem 3.2. Let G = (V, A) be the parallel composition of K graphs G1, . . . , GK

such that |V1| ≥ . . . ≥ |VK−2| and |VK−2| ≥ max(|VK−1|, |VK |). Let ϕ� be a block
order such that

(1) ∀i ∈ {1, . . . , K}, C(ϕ�, Vi \ {ti}) is minimum;
(2) for every couple of integers (i, j) ∈ {1, . . . , K}2 with i < j, ∀(x, y) ∈

Vi × Vj, ϕ�(x) < ϕ�(y).
Then, ϕ� is optimal.

Proof. From Theorem 2.8, block orders are dominant. ϕ� also minimizes the cost
function C(ϕ, G) expressed by Lemma 3.1 thus the result. �
Theorem 3.3. Let G = (V, A) be a r-2TSPG graph. An optimal order for
minDSC can be computed polynomially with a time complexity bounded by O(|V |2).
Proof. A simple algorithm to compute an optimal block order can be derived
from Theorem 3.2. Assuming that an optimal order was previously computed for
subgraphs G1, . . . , GK , the complexity for parallel composition is in O(K log K).

Let us now denote un the complexity of the computation of an optimal order
for a graph with n vertices. We prove that un ∈ O(n2) by recurrence. Let
G = (V, A) be a series or parallel composition of subgraphs G1, . . . , GK . Then,
n = n1 + . . . + nK + 2, with ni = |Vi| for i ∈ {1, . . . , nK}. Then, there exists a
constant M > 0 such that

un ≤ un1 + . . . + unK + MK log K.

Setting M� = max(u2, M), we prove by recurrence that ∀n ≥ 2, un ≤ M�n2.
Let us assume that unj ≤ M�n2

j , ∀j ∈ {1, . . . , K}. Then,

un ≤ M�(n2
1 + . . . + n2

K + K log K).

Now, since nj ≥ 2, ∀j ∈ {1, . . . , K},

2
K−1∑
i=1

ni

K∑
j=i+1

nj ≥ 8
K−1∑
i=1

(K − i) = 4K(K − 1).

As 4K(K − 1) ≥ K log K,

2
K−1∑
i=1

ni

K∑
j=i+1

nj ≥ K log K and
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G1

G2

ϕ

ϕ′

Figure 5. C(ϕ) = 18 > C(ϕ′) = 17.

G3

G2

G1

ϕ′

ϕ

Figure 6. C(ϕ) = 14 > C(ϕ′) = 13.

un ≤ M�(n2
1 + . . . + n2

K + 2
K−1∑
i=1

ni

K∑
j=i+1

nj) = M�n2,

which completes the proof. �

4. Conclusion

Our work leads to another polynomial class for minDSC. In an attempt to
loosen the algorithm hypothesis, we tried to apply the block method to the class
of 2-terminal graphs. This study leads to a counter example, as shown in Figure 5.
We also tried to apply the block method in order to find a polynomial algorithm
for the class SP. A counter example is shown in Figure 6. These examples show
that Theorem 2.8 cannot be extended to 2TSPG nor SP. One prospect of our
work is therefore to study the complexity of minDSC for graphs belonging to such
classes.
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