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BOOTSTRAPPING PERIODICALLY AUTOREGRESSIVE MODELS *

GABRIELA CIOLEK! AND PAWEL POTORSKI?

Abstract. The main objective of this paper is to establish the residual and the wild bootstrap proce-
dures for periodically autoregressive models. We use the least squares estimators of model’s parameters
and generate their bootstrap equivalents. We prove that the bootstrap procedures for causal periodic
autoregressive time series with finite fourth moments are weakly consistent. Finally, we confirm our
theoretical considerations by simulations.
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1. INTRODUCTION

Periodically correlated time series (PC) have been recently extensively investigated due to numerous appli-
cations in real data problems. One of the first applications of PC time series can be found in [32] where PC
sequences have been used to model monthly stream flow of the rivers. Since then, PC processes have been
applied to model many phenomena in numerous fields, for instance in climatology (see [8,11,19]), finance and
econometrics (see [4,5,17]) or analysis of genome and biological signals (see [1,12,25]).

The concept of PC times series comes from Gladyshev (see [13] for details). The fundamental statistical prop-
erties of periodic autoregressive sequences (PAR) has been studied in [18] where moment estimation for PAR
sequences were investigated. Pagano in [27] showed the asymptotic normality of parameter estimates based on
periodic Yule-Walker equations. Vecchia (see [34]) analyzed the correlation structure and the parameter estima-
tion of the periodic autoregression moving average processes (PARMA) with a focus on the moment estimation
and maximum likelihood estimation. Basawa and Lund in [3] have investigated large sample properties of pa-
rameter estimates for PARMA models and derived a general limit result for coefficients of such models. Shao
and Ni in [30] have studied the least-squares estimation and ANOVA for PAR series. They showed that the
limit results for PARMA from [3] also hold exclusively for PAR sequences. Ursu and Duchesne (see [33]) have
generalized limit results from [3,30] to vector periodic autoregressive time series model (PVAR).

There is a vast literature on block bootstrap methods for data which are correlated. The first procedures for
time series were introduced in [6,14,21,23]. Politis in [29] proposed the block bootstrap for series with seasonal
component. The Seasonal Block Bootstrap (SBB) presented in this paper requires that the block of size b must
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be at least of order of the period d. Chan et al. in [7] formulated a block bootstrap procedure for periodic time
series (also nonstationary). This method relies on dividing the observations within each period into blocks of
length b and resampling these blocks so that new periods of pseudo-observations are generated. It is noteworthy,
that the block bootstrap procedure proposed in [7] is valid for periodic time series with long periodicities, so
this method is not consistent with fixed periodicity (since this procedure implores that the period length d
has to tend to infinity as the sample size n increases). Dudek et al. in [9] propose the Generalized Seasonal
Block Bootstrap (GSBB) that works also with fixed length periodicities that deals with the problems with
inconsistency of the method introduced in [7]. However, all of these block bootstrap methods struggle with
the problem of choosing the length of the blocks of data in order to reflect the dependence structure of the
original sample. This motivated us to formulate bootstrap methods that do not require a choice of the length
of bootstrap blocks. Presented methods are data driven, thus recommended to practitioners.

The paper is organized as follows. In Section 2, we introduce the notation and preliminary assumptions
for PAR processes. Next, we derive the least squares estimates of models’ parameters. We also discuss briefly
the asymptotic properties of parameter estimates and recall the crucial limit result of Shao and Ni (presented
in [30]) for these estimates. In Section 3, we show that the residual bootstrap procedure for simple autoregressive
processes (AR) from [22] can be generalized to PAR time series. This generalization is feasible mainly due to
the fact that PAR models can be considered as different AR models for different seasons v. This observation
allows us to establish a valid bootstrap procedure for causal PAR processes with finite fourth moments. We
construct the least squares estimates of PAR model parameters and utilize limit results from [3] and [30] for
those estimates in order to show the weak consistency of proposed residual bootstrap method. In Section 4, we
introduce the wild bootstrap procedure for PAR processes and prove its weak consistency. Finally, in Section 5,
we present a simulation study which illustrates the theory from the previous two sections.

2. PRELIMINARIES

In this section we introduce some notation and formulate preliminary assumptions for periodically autore-
gressive sequences. We will work with the least squares estimators of PAR parameters which are consistent and
asymptotically normal due to the limit results given in [3] by Basawa and Lund and in [30] by Shao and Ni.

2.1. Assumptions and notation

The periodic autoregressive model is given by
P
XnTio = Z ¢k(v)XnT+v7k + enT4v, (21)
k=1

where
él = [¢1(1)a ¢2(1)7 L) ¢P(1)a ¢1(2)a ) ¢p(2)a cee ¢1(T)a ey ¢p(T)]

denotes the vector of parameters and ’ is a transpose. The {X,7.,} denotes the series during the n-th cycle
(0 <n < N —1) during v-th season (1 < v < T'). The {€,74+,} is the mean zero white noise with variance
of the form Var(e,ry,) = 03 > 0 for all seasons v. It is noteworthy that the other periodic notations for the
process (2.1) are used (see for instance [2] and references therein). We have chosen the form (2.1) to emphasize
that the process (2.1) is AR difference equation with periodically varying coefficients. Observe that for T =
1, (2.1) is AR process.

In the following, the periodic notations will be used interchangeably with the non-periodic ones, namely
{X:}, {e:}. There is no loss of generality in considering the autoregressive model order equal to p instead of p(v)
(for each season) as we can take

p= 1r§nUaSXTp(v)
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and set
or(v) =0 for p(v) <k <p.

The model given by (2.1) may be written as T-variate AR (see also [3] for details). We keep our notation
consistent with [3]. The T-variate AR is given by the difference equation

*

P
— —
Dy X, — stan—k = €n, (2.2)
k=1
where )_()n = [Xors1,-- s Xnrar) and €, = [enri1,---,enrir). We denote by p* = [p/T] the order

of T-variate AR and write [y] for the smallest integer greater than or equal to y. The T" x T autoregressive
coefficients of (2.2) are of the form

1 it i=j
(@), ;=3 0 it i<
—pii(@) i P>

and
(djk)i,j = opr4i—j(i), 1<k <p”

with the convention ¢ (v) =0 for k& > p.
We say that PAR model is causal if

"
det | &9 — Z@kzk #0
k=1

for all complex z such that |z| < 1. It is known that when the model is causal, then the unique T-variate

=
solution { X ,, } to (2.2) is multivariate stationary. Process { X} is periodically correlated since we have periodic
stationarity of the moments, namely

E(X,i7) =E (X)) and Cov (Xni1, Ximtr) = Cov (Xp, Xpm) -

Models X; which fulfill above moment conditions are called periodically correlated or cyclostationary (see [2,13]
for further details).

2.2. The least squares estimation for model’s parameters

To generate valid bootstrap approximations we have to obtain the least squares estimators of ¢, namely

5/ = él(l)v éQ(l)v R ¢P(1)7 ¢1(2)7 R ¢P(2)’ R ¢1(T)’ R ¢P(T) :
We rearrange (2.1) as follows

p
EnT+v = XnTJrv - Z ¢k: ('U)XnTJrvflo (23)
k=1

Next, we minimize the sum of squared errors

S(@) =) ¢ (v)e(v),

v=1
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where

e(v) = [Gm €T +v, -+ G(Nfl)TJrv]
is 1 x N vector of errors. In order to obtain the least squares estimator of @ we differentiate S(®) with respect
to each parameter ¢ (v), k =1,...,p(v); v=1,...,T. Thus, we have

N-1
05 ()
= -2 XnT+v7k€nT+v~
O (v) nz:%
Next, we set the derivatives equal to zero (for k =1,...,p(v)) and obtain for a given season v
N-1 .
Z Wy (v)enrio = 0, (2.4)
n=0
-
where 0 is p(v) x 1 vector of zeros and
/
Wn(v) = [XnT+v—1a cee 7XnT+'u7p(v)] (25)
are p(v) x 1 random vectors, n = 0,1,..., N — 1. Vectors defined in (2.5) form a N x p(v) random matrix

W(U) = [Wo(’l}), ‘e WN_l(U)}/ .

We consider
EnT+o = XnT+v — Wylz (0)P(v), (2.6)

where @(v) = [¢1(v), ..., dp)(v)]". The normal equations for (2.6) at the season v are of the form

N-1 N-1
> W) Xnrgo = (Z Wn(v)Wg(v)> B(v).
n=0 n=0

The least squares estimators of @(v) satisfy the following relation

) = (W W ()" W' W) 2(v),
where )
2(v) = [Xo, X145 - - -, X(N_1)T40)
is N x 1 random vector and R )
@(’U) = [Qsl (U)v L) ¢p(v)(v)]

is p(v) x 1 vector of the least squares estimates of parameters of model (2.6) at the season v, v =1,...,T. The
invertibility of W'(v)W (v) is ensured by Proposition 4.1 from [2]. For the sake of completeness, we recall this
proposition below.

Remark 2.1. If 0, > 0 for each 1 < v < T, then for a causal PAR model, W’ (v)W (v) is invertible for
each n > 1.

Thus, the residuals are of the form
et = XnTio — (Wg(v)és(v)) . (2.7)

In the next subsection we discuss the asymptotic normality of 5(1}), 1 < v < T. This result is essential for
our bootstrap theory to work.
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2.3. Asymptotic properties of parameters’ estimates

In order to establish a bootstrap procedure for (2.6), we make use of the theorems from [3,30]. For completeness
of exposition, we now recall the theorem of Shao and Ni from [30] which is the general limit result for PAR(p)

process. In the following we denote by L, the convergence in distribution.

Theorem 2.2. Assume that a periodic autoregressive series { X4, } defined in (2.1) is causal with finite fourth
moment. Then,

W(@—@) AN(O,FA) as n — oo,

where F' = Fy(v1,v2) and is defined in the following way: for any k> 1,1 <p andvy > 1, v <T

== (525) (725 )

~  ~ ~/ EnT+1 €EnT+2 E’I’LT+T:|

~/ ~/
€ — [€gy€qy...,€ €, =
1 N—-1
[Oa 9 ’ ]; n |: 1 9 5 i ’

where

and o, 1is the standard deviation of €,y at the season v (1 <v <T).

Remark 2.3. In the above theorem we assumed that o, is known for each season v (1 < v < T'). However, if o,

is unknown, it can be replaced by v/ N-consistent estimator. The limiting distribution of ® remains unchanged
(see [3] for details).

3. BOOTSTRAP VALIDITY FOR PAR(p) PROCESS

In this section we formulate the residual and the wild bootstrap procedures for PAR(p) processes in order
to define confidence intervals of parameters and validate the model given by (2.1). We have decided to work
with those methods in order to avoid block resampling when dealing with dependent random variables X;’s
(see [22] for details). It is noteworthy that the residual bootstrap method is designed for heteroscedastic models,
however we adapt it in order to make it applicable for PAR sequences. The second method we present is the
wild bootstrap which is tailor-made for heteroscedastic models. In both methods, the first step is to obtain the
ordinary least squares estimator & of @ and secondly to compute residuals

p
é'rLTJr'u - XnTJrv - Z ¢k(U)XnT+'u7k:~ (31)
=1

The difference between those two methods relies on different way of computing bootstrap version of residuals. In
residual bootstrap one draws randomly with replacement centred and scaled residuals in order to get bootstrap
random variables 7. In order to have the same periodic structure of the bootstrap version of X, ., we
multiply 7,7, , by standard deviation of corresponding season and X, r4,. Finally, we generate the bootstrap

version X ..~ of PAR process and compute bootstrap estimates &*. In the wild bootstrap method we obtain

bootstrap version of residuals (3.1) by multiplying é,7., by random variables drawn from normal distribution
with zero mean and variance 1. From now, we generate bootstrap version of process X, 74, with bootstrap
residuals ELT 4v- Thus, the wild bootstrap method results in obtaining bootstrap estimates Pt

Usually, one uses the wild bootstrap when there is heteroscedasticity in the model. Residual bootstrap method
is designed for models that are homoscedastic. PAR models are heteroscedastic, thus a natural way is to use
the wild bootstrap method. However, in our paper we adapt residual bootstrap procedure (by diving residuals
by o, in Step 4 and multiplying residuals by o, in Step 5) such that it can be used for PAR sequences.
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It is noteworthy that from a second order theory point of view (see [15]) the residual bootstrap outperforms the
wild bootstrap (generated by Gaussian noise). Indeed, the second one can not correct adequately the skewness
of the distribution. However, in practice, this difference between two methods is difficult to distinguish (except
for very small samples, see our simulation studies in the last chapter).

The bootstrap procedure for PAR(p) processes is formulated as follows.

Algorithm 3.1.

(1) Compute the ordinary least squares estimator o of @.
(2) Compute the residuals of the estimated model

P
énT+v = XnT+v - Z ¢k (U)XnT+v—k7
k=1
where 1 <v<T,0<n<N-—1.
(3) Compute the centred residuals

~ T .

77 o EnT+ov 1 EnT+ov
T - s

i Ty NT >

where NT' is the number of all observations in the model.

Remark 3.2. In the case when 05 are known, we divide €,74, by the true standard deviation o,. When
o2 are unknown, we replace it by a v/ N-consistent estimator of ¢2; e.g., one can use the sample variance of

v v

the residuals obtained in the second step of Algorithm 3.1, that is from sample {€nT+v}2/=_01.

(4) Generate bootstrap variables 7y, by drawing randomly with replacement from {71, ..., N7}

Remark 3.3. Note that UZT-H}, 0<n<N-1,1<wv <T are conditionally independent on the data.
Their common distribution is defined as

1

P (i = Mrso) = (3.2)

(5) Generate the bootstrap version of the model (2.1)

p
;T+v = Z Pk ('U)XTLTJrv*k + UWZT+U»
k=1

1<v<T.
(6) Calculate the bootstrap estimators of parameters for each season v, 1 <v <T
T ()2 (v),

where

Remark 3.4. Note that 5* can be written as
P (v) = (W' ()W (v)) " W' (0)(W(©)B(v) + g*(v))
= B(v) + (W' (0)W ()" W (0)g" (v),

—1

where
/

/
g (v) = {ez, ey €>(kN—1)T+v:| = |:0'U77:, e 7UUU?N—1)T+U} .
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3.1. Consistency of the bootstrap procedure

In this subsection we prove that the bootstrap procedure for a periodic autoregressive series X, 1, formulated
in the Section 3 is weakly consistent.

Definition 3.5. We say that the bootstrap procedure is weakly consistent if the distribution of the bootstrap
approximation L(v N (P* — @)) converges weakly in probability to the same distribution as the distribution of
the estimation error of the original estimator L(vVN(® — @)).

The proof of the validity of bootstrap is kept in spirit of the proof of Theorem 3.1 from [31]. We denote by

P, wealk convergence conditionally on the data in probability.

Theorem 3.6. Suppose that a periodic autoregressive series X,ri, defined in (2.1) is causal and has finite
fourth moment. Then, the residual bootstrap procedure given by the Algorithm 3.1 is weakly consistent, i.e.

VR (- 8) TN (0.5,
Proof. The theorem from [30] guarantees that

VN (8-2) 2N (0,F ),

where oe oe
€n €n
F=F,(vi,v) =E . 1 <wv, v <T
» (o 2) (5%(”1) 8@(1}2)) b
and
g/ _ EnT+1 EnT+2 EnT+T
—01 ,—02 ,...,—UT

and o, is the standard deviation of €74, for 1 <v <T.
Moreover, in [30] Shao and Ni have shown that the estimates of @¢(v;) and $(v2) are asymptotically indepen-

dent if v; # vy. It follows from Remark 3.4 that

—1

P*(v) — D(v) = (W' (0)W(v))  W'(v)g"(v). (3.3)
Note, that the analysis of the PAR(p) model corresponds to the analysis of AR(p(v)) model for each fixed
v (1 < v < T), respectively. This observation allows us to apply directly the asymptotic results from [16].
Note however, that our method is more general and the proof based on [30] also allows us to use dependent
heteroscedastic residuals.
By the Hamilton’s remarks (see [16], Chap. 8, p. 215), we have for a given v, 1 <v <T,

1 ! P
NW (V)W (v) — F, (3.4)

where = denotes convergence in probability. Thus, by the virtue of (3.4) combined with the Slutsky theorem,
it remains to prove that

\/LNW’(U)Q*(U) PN (0,0%F) .

Note that for a given season v we have
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We introduce one more piece of notation. We write

o EnrtoWn (v) )

yn \/N

In order to show the consistency of bootstrap procedure formulated in 3.1, we check whether the conditions of
Lyapunov’s central limit theorem hold. Firstly, observe that

E* (y) = } () (€h740) =0,

because €, = o(v)ny ., and E(n)p, ) = 0since {97, }o<n<n -1 are drawn from the empirical distribution
function given by (3.2). Next, we have

N—1
* * ok 1 * *
Z E* (yn9r) = w5 D Wa)Wa(0)E" (674,) -
n=0
For a given season v we obtain
| V-1
B () = v O 002 (0)
n=0
N—1
1
=+ @) -
n=0
N—1
1 ~ _
=N e2(v) — &
n=0
=E (,(v) = E*(en(v)) + 0p(1), (3.5)
where ,
12(0) = [Dirsumts e oo
and )
gn(v) = [gnTJrvfla ) énT—i—v—p(v)] .
Thus, by (3.4) and (3.5) we can deduce that
1 N-1 -
Z E* (yr07) = 3 D Wa0)Wh(0)E™ (6F,) = o) F. (3.6)
n=0
Let ¢ € RP and
N—1
s34 = E* (c'y;i)2 e 'o2Fc
n=0

by (3.6) and the Cramér—Wold device. We check the Lyapunov’s condition for v = 1.

N-— ;N s
L /* _ = "W 3
NZ il = o 3 e el R )
N-1
1 1 31 3
= — —E* |e), — [W,(v)]”. 3.7
T L T |l 5 ) (37)
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Notice, that by the similar arguments as in (3.5) we have for a given v

* | _* 3 1 ~ —13
E* |enrio] = N 2 [Ea(v) —&" = 0r(1). (3.8)
n=0
Moreover,
1 3
& |CWa()]” = 0(1) (3.9)
since we assumed that X, 7, has finite fourth moment.
In a view of above discussion, we conclude that
; Nl
o 2Byl = oe(1).
N pn=0

We have checked that the Lyapunov’s conditions for the central limit theorem hold. Next, consider the
sequence c¢4yg,--->Cv_1Yn_1- We apply to that sequence the Cramér—Wold theorem and the central limit
theorem for triangular arrays. Thus, we obtain the following convergence

N—-1
VLN Sy TN (0,02F). (3.10)

Combining (3.4) and (3.10) with the Slutsky theorem we obtain immediately that

n=0

VN (& &) Lo (0,77

o s oS / /
taking scaled versions of {€, }o<n<n—1 and {€}o<n<n_1, namely

g/ o EnT+1 EnT+T
o om
and
* *
s | EnT+1 EnT+T 0
€, = e .
g1 ar

It is easy to see that Theorem 3.6 generalizes the results for AR processes (compare with Chap. 8 in [22]).
In the next section we present simulation study which demonstrates the large sample properties of the residual
bootstrap for PAR sequences.

4. THE WILD BOOTSTRAP

In this section we present the wild bootstrap method for periodically autoregressive models as an alternative
to the residual bootstrap procedure from the previous section. We investigate the behaviour of those two
methods through simulations study in Section 5. As mentioned before, in the wild boostrap procedure one
obtains the bootstrap version of residuals GLT 4 by multiplying the residuals €,7.+, by realizations from normal
distribution A/(0,1). This procedure is described for example in [20] or [23]. The wild bootstrap procedure
for PAR(p) processes is formulated as follows.

Algorithm 4.1.

(1) Compute the ordinary least squares estimator o of @.
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(2) Compute the residuals of the estimated model

p
énT+v = XnT+v - Z ¢k (U)XnT+v—k7
k=1

where 1 <v<T, 0<n<N-—1.
(3) Generate the bootstrap process X,TLT_HJ for each season v, 1 <v<T

P
XVTLT+U = Z¢k(v)XnT+v—k + €ILT+U
k=1

and

T _ 2 T
EnT4v = EnT+ollpT 4o

where nTTLTJrv ~ N(0,1) and (nTTLTJrv)nTJrUeR is independent of €nriy-
(4) Calculate the bootstrap estimator of parameters, namely

Pf(v) = (W' ()W (1)) W' (0)21 (v)

for each season v, 1 < v < T, where

Remark 4.2. Note that &' can be written as

Bt (v) = (W ()W () " W' () (W(0)®(0) + g (v))
1

= &) + (W ()W () W (v)g(v),

where

!

/
T(v) = [6;5, ceey 6EN—1)T+1;] = [évnz, ceey é(Nfl)T+v77(TN_1)T+U} .

g

4.1. Consistency of the wild bootstrap procedure

In this subsection we show weak consistency of the wild bootstrap procedure for PAR sequences formulated
in Algorithm 4.1.

Theorem 4.3. Assume that a periodic autoregressive series Xpri., defined in (2.1) is causal and has finite
fourth moment. Then, the wild bootstrap procedure defined in Algorithm 4.1 is weakly consistent, i.e.

VN@ - &) Z5 N0, F Y,

where oe oe
€n €n
F=F,(vi,v) =E . 1 <wv, v <T
» (o 2) (5%(”1) 8@(1;2)) b
and
g/ _ EnT+1 €EnT+2 EnT+T
" o oy 7 orp

and o, is the standard deviation of €,p4, for 1 <v <T.

Proof. The proof of Theorem 4.3 is analogous to the proof of Theorem 3.6 and it comes down to checking
conditions of Lyapunov’s central limit theorem. O
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5. SIMULATIONS

The purpose of these simulations is to check the performance of the proposed procedures, namely the residual
and the wild bootstrap for PAR processes. Firstly, we compare densities of /N (¢* —®) and v N (&—&). Secondly,
we compare densities VN (& — ®) and vV N (QA5 — @). Next, we compute actual coverage probabilities (ACP) for
simulated PAR sequences. We perform simulations for three different PAR(p) processes in order to show that
both methods work well for simple and more complicated models with different number of periods and seasons.
In the residual bootstrap procedure in the third step of Algorithm 3.1 we used the sample variance of the
residuals obtained in the second step of Algorithm 3.1 since for simulations we assume that o2 are unknown
(see Rem. 3.2). We consider the following PAR models:

M1 PAR(l), T = 3, g1 = 1, 09 = 1, g3 — 1, ¢1(1) = 027 ¢1(2) = 03, ¢1(3) = 02,

M2 PAR(3), T=3,01 =1, 00 =1, 03 = 1, ¢1(1) = 0.2, ¢2(1) = 0.1, ¢5(1) = 0.05, $1(2) = 0.3, ¢2(2) = 0.2,
$3(2) = 0.1, ¢1(3) = 0.2, $2(3) = 0.1, ¢3(3) = 0.05,

M3 PAR(2), T =2, 01 =1, 00 =2, $1(1) = 0.2, ¢o(1) = 0.1, ¢1(2) = 0.3, ¢2(2) = 0.2,

In our simulations we take 599 bootstrap repetitions. We observe that both bootstrap methods work well for
n = 100 and larger samples, below we illustrate the case when n = 300. Our simulations revealed that the
residual and the wild bootstrap methods struggle when sample size n < 100. We show that the wild bootstrap
method behaves worse than the residual bootstrap when the samples are small, below we give an example for
n = 30.

Figures 1—6 show that for all considered models tails of distributions are well estimated (when applying the
residual and the wild bootstrap procedures). Figures show that especially for the residual bootstrap the centres

4 3 2 4 o0 1 2 3 4

b)k=1v=2 (c) k=1,v=3

7 6 5 -4 3 -2 -1 0 1 2 3 4 -6

FIGURE 1. Comparison of performance: the residual bootstrap (thick dashed lines: \/N(@Zz (v)—

on (v))) and the least squares estimators (thin lines: \/N(t/b\k(v) — ¢r(v))) for M1 and sample
size n = 300.

-4 3 2 -1 ] 1 2 3 4

b)k=1v=2 (c)k=1,v=3

FIcURE 2. Comparison of performance: the wild bootstrap (thick dashed lines: \/N(ggi(v) -

b (v))) and the least squares estimators (thin lines: VN (¢ (v) — ¢i(v))) for M1 and sample
size n = 300.
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T . L L L n ——
% -5 4 3 -2 1 0 1 2 3 4

(b) k=2,v=1

-5 -4 3 2 1 0 1 2 3 4

(f) k=3, v=2

. L L L L h
5 -4 3 2 -1 0 1 2 3 4

(h) k=2,v=3

F1cURE 3. Comparison of performance: the residual bootstrap (thick dashed lines: \/N(QASZ(U) -

on (v))) and the least squares estimators (thin lines: \/N(t/b\k(v) — ¢r(v))) for M2 and sample
size n = 300.

of the distributions are not very well estimated, however this problem occurs also when bootstrapping i.i.d.
data.

When a sample is small n = 30 the distributions are not well estimated (see Figs. 7 and 8). Moreover, in this
case we observe worse behaviour of the wild bootstrap method.

To determinate whether \/N(QAS;:(U) - ngSk(v)) and \/N(ggi(v) - ngSk(v)) follow a normal distribution we use the
Lilliefors test. The received p-values for M3 are gathered in Table 7. One can see that the p-values are larger
than the significance level, the decision is to fail to reject the null hypothesis because we do not have enough
evidence to conclude that the data do not follow a normal distribution. The Lilliefors test confirm that the data
come from normal distribution when n = 300, and we reject that hypothesis when n = 30.

In our simulations we have considered 95% confidence intervals. Results gathered in Tables 1—3 show that
the actual coverage probabilities for simulated PAR models with n = 300 are very well estimated. The results
for both bootstrap methods are very similar but in most of the cases the ACP for all coefficients is closer to
the nominal confidence level in the residual bootstrap method, especially when sample size is small (see 1).
For M2, where we estimate relatively many parameters and additionally number of cycles is smaller comparing
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FIGURE 4. Comparison of performance: the wild bootstrap (thick dashed lines: \/N(ggi (v) —

b (v))) and the least squares estimators (thin lines: VN (1 (v) — ¢i(v))) for M2 and sample
size n = 300.

with M1 or M3 of the same size n = 300, the ACP is 3.8% lower than the nominal confidence level for the wild
bootstrap method for ¢2(2) and 2.8% lower than the nominal confidence level for residual bootstrap method
for coefficient ¢1(1). We obtain similar result for ¢5(3), this time ACPs are too large, but not larger by 2.8%
than the nominal level. However, obtained results for M2 are still satisfactory.

6. CONCLUSION

In this paper, we have formulated two bootstrap procedures for periodically autoregressive time series. We
have established a general limit results for bootstrap estimates of models’ coefficients. We have shown that
the residual and the wild bootstrap methods for periodic sequences is a natural generalization of bootstrap
procedure for simple autoregressive processes given in [22]. Finally, we have illustrated our theoretical results
by simulations. The simulations confirmed the weak consistency of the residual and the wild bootstrap for PAR
sequences.
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(d)k=2,v=2

FIGURE 5. Comparison of performance: the residual bootstrap (thick dashed lines: \/N((Z’,; (v)—

on (v))) and the least squares estimators (thin lines: \/N(ggk(v) — ¢r(v))) for M3 and sample
size n = 300.
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FIGURE 6. Comparison of performance: the wild bootstrap (thick dashed lines: \/N((Zz(v) -

on (v))) and the least squares estimators (thin lines: \/N(QAS;C(U) — ¢r(v))) for M3 and sample
size n = 300.
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FIGURE 7. Comparison of performance: the residual bootstrap (thick dashed lines: \/N(&,;( )—
$r(v))) and the least squares estimators (thin lines: /N (¢p(v) — ér(v))) for M3 and sample

size n = 30.
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FIGURE 8. Comparison of performance: the wild bootstrap (thick dashed lines: \/N((Zz( ) —
ér(v))) and the least squares estimators (thin lines: /N (¢p(v) — ér(v))) for M3 and sample

size n = 30.
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TABLE 1. Actual coverage probabilities for M 1. Rows 4 and 5 contain results for the residual
and the wild bootstrap, respectively. For both methods ACPs when sample sizes n = 300 are
presented.

ACP

M1
bootstrap | n d1(1) | ¢2(1) | ¢3(1)
residual 300 | 94.0% | 95.0% | 96.8%
wild 300 | 93.8% | 94.6% | 95.8%

TABLE 2. Actual coverage probabilities for M2. Rows 4 and 5 contain results for the residual
and the wild bootstrap, respectively. For both methods ACPs when sample sizes n = 300 are

presented.

ACP

M2
bootstrap | n | ¢1(1) | ¢2(1) | #3(1) | ¢1(2) | ¢2(2) | ¢3(2) | ¢1(3) | #3(3) | ¢3(3)
residual 300 | 92.2% | 93.8% | 92.8% | 93.2% | 92.6% | 93.2% | 92.2% | 97.8% | 95.4%
wild 300 | 91.6% | 94.0% | 92.6% | 93.6% | 91.2% | 92.2% | 92.4% | 97.0% | 94.2%

TABLE 3. Actual coverage probabilities for M3. Rows 4-5 and 6-7 contain results for the residual
and the wild bootstrap, respectively. For both methods ACPs for two sample sizes n = 30 and
n = 300 are presented.

ACP

M3
bootstrap | n | ¢1(1) | ¢2(1) | ¢1(2) | ¢2(2)
residual 30 | 85.8% | 86.0% | 87.4% | 92.8%
300 | 95.0% | 92.2% | 94.0% | 94.8%
wild 30 | 85.4% | 83.6% | 85.4% | 84.0%
300 | 95.0% | 92.8% | 93.2% | 94.0%

TABLE 4. Average lengths of confidence intervals for M1. Rows 4 and 5 contain results for
the residual and the wild bootstrap, respectively. For both methods the average lengths of
confidence intervals when sample sizes n = 300 are presented.

average lengths of CI
M1
bootstrap | n d1(1) @2(1) ¢3(1)
residual | 300 | 0.38057 | 0.38084 | 0.37138
wild 300 | 0.38456 | 0.38297 | 0.37376

TABLE 5. Average lengths of confidence intervals for M2. Rows 4 and 5 contain results for
the residual and the wild bootstrap, respectively. For both methods the average lengths of
confidence intervals when sample sizes n = 300 are presented.

average lengths of CI
M2
bootstrap | n | ¢1(1) | $2(1) | és(1) | ¢1(2) | $2(2) | ¢3(2) | ¢1(3) | #3(3) | ¢s(3)
residual | 300 | 0.38665 | 0.39142 | 0.38653 | 0.38419 | 0.39462 | 0.40491 | 0.39923 | 0.36842 | 0.39067
wild 300 | 0.38390 | 0.39003 | 0.38654 | 0.38650 | 0.39608 | 0.40737 | 0.39400 | 0.36586 | 0.38926
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TABLE 6. Average lengths of confidence intervals for M3. Rows 4-5 and 6-7 contain results
for the residual and the wild bootstrap, respectively. For both methods the average lengths of
confidence intervals for two sample sizes n = 30 and n = 300 are presented.

Average lengths of CI

M3
bootstrap | n | ¢1(1) | ¢2(1) | ¢1(2) | ¢2(2)
30 | 0.47100 | 1.94341 | 0.86581 | 0.95234
300 | 0.15566 | 0.63470 | 0.29701 | 0.33056
30 | 0.48486 | 1.97151 | 0.85201 | 0.91483
300 | 0.15580 | 0.63781 | 0.29656 | 0.32909

residual

wild

TABLE 7. p-values of the Lilliefors test that determinate normality of v N (ngS,’g(v) — ok (v)) and
\/N(gbi(@) — ¢ (v)) for model M3.

p-values of normality test
M3

bootstrap | n | ¢1(1) | ¢o(1) | ¢1(2) | $2(2)

30 | 0.0138 | 0.5276 | 0.1332 | 0.0312

300 | 0.4796 | 0.1746 | 0.9999 | 0.5738

30 | 0.5314 | 0.8883 | 0.5915 | 0.7716

300 | 0.8925 | 0.0899 | 0.5294 | 0.9267

residual

wild
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