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ON THE REFLECTED RANDOM WALK ON R+

Jean−Baptiste Boyer1

Abstract. Let ρ be a borelian probability measure on R having a moment of order 1 and a drift
λ =

∫
R

ydρ(y) < 0. Consider the random walk on R+ starting at x ∈ R+ and defined for any n ∈ N by

{
X0 = x

Xn+1 = |Xn + Yn+1|

where (Yn) is an iid sequence of law ρ. We denote P the Markov operator associated to this random walk
and, for any borelian bounded function f on R+, we call Poisson’s equation the equation f = g − Pg
with unknown function g. In this paper, we prove that under a regularity condition on ρ and f , there
is a solution to Poisson’s equation converging to 0 at infinity. Then, we use this result to prove the
functional central limit theorem and it’s almost-sure version.
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1. Introduction

Let ρ be a borelian probability measure on R having a moment of order 1 and a negative drift λ =∫
R
ydρ(y) < 0.
Consider the random walk on R+ starting at x ∈ R+ and defined for any n ∈ N by{

X0 = x
Xn+1 = |Xn + Yn+1|

where (Yn) is an iid sequence of law ρ.
We denote P the Markov operator associated to this random walk. This is the operator defined for any

borelian and bounded function f on R+ and any x ∈ R+ by

Pf(x) =
∫

R

f(|x+ y|)dρ(y).

The aim of this article is to study this Markov chain and to do so, we will use a standard technique (known
as Gordin’s method) which consists in finding a solution g to the “Poisson equation” g − Pg = f for f in a
certain Banach space.
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Using results of Glynn and Meyn, we will prove that under a regularity assumption on the measure ρ, there
always is a solution to this equation if f is borelian and bounded but this solution will not be bounded in general
and this prevents us from studying the large deviation principle and complicates the study of the central limit
theorem.

However, we will see in Section 2 that the solution to Poisson’s equation satisfies some equations (see Prop. 2.3)
and using a “stopped” renewal theorem that we will state in Section 3 (see Cor. 3.6) we will prove the following

Corollary 1.1 (4.7). Let ρ be an absolutely continuous probability measure on R having a moment of order 1,
a negative drift λ =

∫
R
ydρ(y) < 0 and such that ρ(R∗

+) > 0. Let (Xn) be the reflected random walk on R+

defined by ρ.
Let ν be the unique stationary probability measure on R+ (it exists according to [6] or [8]).
Then, for any directly Riemann-integrable function f on R+ such that

∫
fdν = 0, there is a bounded and a.e.

continuous function g on R+ such that

f = g − Pg and lim
x→+∞ g(x) = 0

This will allow us to prove the following

Theorem 1.2 (4.8 and 4.11). Let ρ be an absolutely continuous probability measure on R having a moment of
order 1, a negative drift λ =

∫
R
ydρ(y) < 0 and such that ρ(R∗

+) > 0.
Let (Xn) be the reflected random walk on R+ defined by ρ.
For any directly Riemann-integrable function f on R+ such that

∫
fdν = 0, there are constants C1, C2 ∈ R

∗
+

such that for any ε ∈]0, 1], any x ∈ R+ and any n ∈ N
∗,

Px

({∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)

∣∣∣∣∣ � ε

})
� C1e−C2ε2n

In particular, for any x ∈ R+,

1
n

n−1∑
k=0

f(Xk) −→ 0 Px-a.e. and in L1(Px)

Moreover, if ρ as a moment of order 2 + ε for some ε ∈ R
∗
+, then, for any directly Riemann-integrable function

f on R+ with
∫
fdν = 0 we denote g the bounded function given by Corollary 4.7 and such that f = g − Pg

and we set
σ2 =

∫
R+

g2 − (Pg)2dν

and for any x ∈ R+ and any n ∈ N
∗, we set Snf(x) =

∑n−1
k=0 f(Xk) where (Xn) is the reflected random walk

defined by ρ and starting at x.
Then, if σ2 = 0, we have that for a.e. any x ∈ R+, (Snf(x)) is bounded in L∞(Px).
On the other hand, if σ2 �= 0, we set, for t ∈ [0, 1] and any x ∈ R+,

ξn(t) =
1√
n

(
Sif(x) + n

(
t− i

n

)
f(Xi)

)
for

i

n
� t � i+ 1

n
and 0 � i � n− 1

and we have that, for any bounded continuous function F : C0([0, 1]) → R,

EF (ξn) −→ EF (Wσ2 ) and
1

lnn

n∑
k=1

1
k
F (ξk) −→ EF (Wσ2 ) a.e.

Where we denoted Wσ2 the Wiener measure with variance σ2.
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Moreover, for any a.e. continuous function ϕ on R such that x2ϕ(x) is bounded,

1
lnn

n∑
k=1

1
k
ϕ

(
Skf(x)√

k

)
−→ Eϕ(Wσ2 (1)) a.e.

Remark 1.3. The functional central limit theorem and the almost sure functional central limit theorem that
we state here have many corollaries such as the CLT (taking Fϕ(ξ) = ϕ(ξ(1)) for any continuous and bounded
function ϕ on R), the law of the iterated logarithm (see Thm. 2.4 in [1]), a control of maxk∈[0,n] Skf(x)√

n
(taking

F (ξ) := supt∈[0,1] ξ(t)), or an estimation of σ2 (taking ϕ(x) = x2).

2. Induced Markov chains

The aim of this section is to study the process of induction of Markov chains by stopping times and to link
the induced chain to the original one. We study it in a general case as it doesn’t use any particular property of
the reflected random walk.

2.1. Definitions

Let (Xn) be a Markov chain on a standard Borel space X. We define a Markov operator on X setting, for a
borelian function f and x ∈ X,

Pf(x) = E[f(X1)|X0 = x]

Given a stopping time τ , we can study the Markov chain (Xτn)n∈N where τn is defined by{
τ0((Xn)) = 0

τk+1((Xn)) = τk((Xn)) + τ(θτk((Xn))(Xn))

where θ stands for the shift on XN.
We denote Q the sub-Markov operator associated to (Xτn), that is, for a borelian function g on X and x ∈ X,

Q(g)(x) =
∫
{τ<+∞}

g(Xτ )dPx((Xn)).

If, for any x ∈ X, Px({τ < +∞}) = 1, then Q is a Markov operator.
Finally, we define two other operators on X setting, for a borelian non negative function f and x ∈ X,

Sf(x) =
∫
{τ=1}

f(X1)dPx((Xn)) (2.1)

Rf(x) =
∫
{τ<+∞}

f(X0) + . . .+ f(Xτ−1)dPx((Xn)) (2.2)

Definition 2.1 (θ−compatible stopping times).
We say that a stopping time τ is θ−compatible if for all x ∈ X, Px({τ = 0}) = 0 and for Px−a.e. (Xn) ∈ XN,

τ((Xn)) � 2 implies that τ(θ(Xn)) = τ((Xn)) − 1.

Example 2.2. Let Y be a borelian subset of X and τY the time of first return in Y:

τY((Xn)) = inf{n ∈ N
∗; Xn ∈ Y}.

Then, τY is θ−compatible.
Moreover, τn

Y as we defined it coresponds to the time of n-th return to Y.
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For x ∈ X, we set u(x) = ExτY and we call Y strongly Harris-recurrent if u is finite on X. This imply in
particular that for any x in X, τY is Px−a.e. finite.

Indeed for any borelian non negative function f and any x ∈ X, we have that

Qf(x) =
∫
{τ<+∞}

f(Xτ )dPx =
+∞∑
n=1

Exf(Xn)1{τ=n} =
+∞∑
n=1

Exf(Xn)1Yc(X1) . . .1Yc(Xn−1)1Y(Xn)

=
+∞∑
n=1

(P1Yc)n−1P (f1Y) =
+∞∑
n=0

(P1Yc)nP (f1Y)

Rf(x) =
∫
{τ<+∞}

f(X0) + . . .+ f(Xτ−1)dPx =
+∞∑
n=0

Exf(Xn)1{τ�n+1}

= f(x) +
+∞∑
n=1

Exf(Xn)1Yc(X1) . . .1Yc(Xn) = f(x) +
+∞∑
n=1

(P1Yc)nf(x) =
+∞∑
n=0

(P1Yc)nf(x)

Sf(x) =
∫
{τ=1}

f(X1)dPx =
∫
f(X1)1Y(X1)dPx = P (f1Y)

Thus, we have that (R+Q)f = (Id +RP )f , RSf = Qf , (P −S)Qf = P (1YcQf) = Qf −Sf and (P −S)Rf =
P (1YcRf) = Rf − f .

Note that P,Q,R, S, P − S,Q− S and R− Id are positive operators and so the computations we made make
sense for any non negative borelian function f .

Next lemma generalizes those relations for any θ−compatible stopping time.

Proposition 2.3. Let τ be a θ−compatible stopping time such that for any x ∈ X, τ is Px−a.e. finite.
For any non negative borelian function f on X, we have:

(R+Q)f = (Id +RP )f

(Id + PR)f = (Id + S)Rf

(Id + S)Qf = (S + PQ)f

RSf = Qf

Proof. Let f be a borelian non negative function on X and x ∈ X.
Using the Markov property and τ being a θ−compatible stopping time, we have that for any n ∈ N

∗,

Exf(Xn)1{τ�n} = ExPf(Xn−1)1{τ�n}

And so,

(R+Q)f(x) = Exf(X0) + . . .+ f(Xτ )dPx = Ex

+∞∑
n=0

f(Xn)1{τ�n}

= f(x) +
+∞∑
n=1

ExPf(Xn−1)1{τ�n} = f(x) +RPf(x)
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Moreover, as τ is θ−compatible,∫
{τ�2}

Rf(X1)dPx((Xn)) =
∫
{τ�2}

f(X1) + . . .+ f(Xτ−1)dPx((Xn)).

Thus,

f(x) + PRf(x) = f(x) +
∫
{τ=1}

Rf(X1)dPx((Xn)) +
∫
{τ�2}

Rf(X1)dPx((Xn))

= f(x) + SRf(x) +
∫
{τ�2}

f(X1) + . . .+ f(Xτ−1)dPx((Xn))

= SRf(x) +
∫
f(X0) + . . .+ f(Xτ−1)dPx((Xn)) = SRf(x) +Rf(x).

Then, by definition of S,
∫
{τ=1} f(X1)dPx((Xn)) =

∫
{τ=1} f(Xτ )dPx((Xn)), so,

Sf(x) + PQf(x) =
∫

1{τ=1} (f(X1) +Qf(X1)) + 1{τ�2}f(Xτ )dPx((Xn)) = SQf(x) +Qf(x).

Finally, using Markov’s property, we have that for any n ∈ N
∗,

ExSf(Xn−1)1{τ�n} =
∫
{τ=n+1}

f(Xn+1)

therefore,

RSf(x) = Ex

+∞∑
n=1

Sf(Xn−1)1{τ�n}

=
+∞∑
n=1

ExSf(Xn−1)1{τ�n} =
∞∑

n=1

Exf(Xn+1)1{τ=n+1} = Qf(x).

And this finishes the proof of this proposition. �

Lemma 2.4. Let (Xn) be a Markov chain on a standard borelian space X.
Let ν be a finite P−invariant measure on X and τ a θ−compatible stopping time such that for ν-a.e x ∈ X,

limn→+∞ Px(τ � n) = 0.
Then, for any non negative borelian function f on X, we have∫

X

fdν =
∫
X

SRfdν.

Proof. According to Proposition 2.3, f + PRf = Rf + SRf . So, if Rf ∈ L1(X, ν), as ν is P−invariant, we get
the lemma.

If f �∈ L1(X, ν), we will get the lemma by approximation.
First, we assume that f is bounded. In general, Rf �∈ L1(X, ν) so, we approximate it with a sequence of

integrable functions.
More precisely, for n ∈ N

∗, we denote by Rn the operator defined like R but associated to the stopping time
min(n, τ) (which is not θ−compatible).

That is to say, for a borelian non negative function f and any x ∈ X,

Rnf(x) = Ex

min(τ,n)−1∑
k=0

f(Xk).
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As {min(τ, n) = 1} = {τ = 1} for n � 2, the operator S associated to min(τ, n) does not depend on n
for n � 2.

As min(τ, n) is not θ−compatible, we can’t use Proposition 2.3, but we have for n � 2, that

PRnf(x) = Ex

min(τ◦θ,n)−1∑
k=0

f(Xk+1) = SRnf(x) +
∫
{τ�2}

min(τ−1,n)−1∑
k=0

f(Xk+1)dPx

= SRnf(x) +
∫
{τ�2}

min(τ,n+1)−1∑
k=1

f(Xk)dPx = SRnf +Rn+1f − f

And, as f is bounded, for any x ∈ X, |Rnf(x)| � n‖f‖∞ and so Rnf is integrable since μ is a finite measure
and, ∫

SRnf − fdν =
∫
PRnf −Rn+1fdν =

∫
Rnf −Rn+1fdν =

∫
f(Xn)1{τ�n}dPx((Xn))dν(x)

=
∫
Pf(Xn−1)1{τ�n}dPx((Xn))dν(x)

So, ∣∣∣∣
∫
SRnf − fdν

∣∣∣∣ � ‖f‖∞
∫

X

Px({τ � n})dν(x) −→ 0 (by monotone convergence)

and using the monotone convergence theorem, we get the expected result for borelian bounded functions.
If f is not bounded and non-negative, we take an increasing sequence (fn) of bounded positive functions

which converges to f and we get the expected result by monotone convergence. �

Example 2.5. If τ is the return time to some strongly Harris-recurrent set Y, then Sf(x) = P (f1Y)(x).
Moreover for every P−invariant measure ν and every f ∈ L1(X, ν), such that Rf is ν−a.e. finite,

∫
X SRfdν =∫

Y
Rfdν.
In particular, with f = 1, we have that,

∫
Y

Eτdν = ν(X). This is Kac’s lemma for dynamical systems.

2.2. Application to the study of invariant measures

In this subsection, X is a complete separable metric space endowed with its Borel σ−algebra and “measure”
stands for “borelian measure”. We assume that there exist (at least) a P−invariant probability measure on X.

We also fix a θ−compatible stopping time τ such that for any x in X, Exτ is finite.
For a non-negative operator T defined on borelian functions on X and a borelian probability measure ν on

X we denote T ∗ν the borelian measure defined by T ∗ν(A) =
∫
T1Adν.

Lemma 2.6. Let μ be a finite non-zero P−invariant borelian measure on X. Then, S∗μ is a finite non-zero
Q−invariant measure on X.

Moreover, R∗S∗μ = μ and S∗μ is absolutely continuous with respect to μ.

Proof. First, for any non negative f ∈ B(X) and any x ∈ X, Sf(x) � Pf(x).
So,

∫
Sfdμ �

∫
Pfdμ =

∫
fdμ since μ is P−invariant and f is bounded. And this proves that S∗μ is

absolutely continuous with respect to μ. So, as Fubuni’s theorem proves that it is σ−additive, S∗μ is a finite
measure on X.

Moreover, we saw in Lemma 2.4 that for all non negative borelian function f on X,
∫
SRfdμ =

∫
fdμ and

this proves that R∗S∗μ = μ.
Then, we need to prove that S∗μ(X) > 0. But, for all x ∈ X,

P kS(1)(x) = ExS1(Xk) � Px({τ = k + 1})
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So,
∑n−1

k=0 P
kS(1) � Px({τ � n + 1}). And, as μ is P−invariant, taking the integral on both sides, we get

that,

nS∗μ(X) �
∫

x∈X

Px({τ � n})dμ(x).

Finally, we use that for μ-a.e. x ∈ X, limn Px(τ � n) = 1 and the dominated convergence theorem, tells us that
0 < μ(X) � limnS∗μ(X), so S∗μ(X) > 0. �

Lemma 2.7. Let ν be a non-zero Q−invariant borelian measure on X. Then, R∗ν is a non zero P−invariant
measure on X.

Moreover, S∗R∗ν = ν and ν is absolutely continuous with respect to R∗ν.
Finally, if QR(1) is bounded on X, then R∗ν is a finite measure if and only if ν is.

Remark 2.8. The technical assumption QR1 bounded on X is reasonable.
More specifically, using the same notations as in Remark 2.2, we call Y linearily recurrent if supy∈Y EyτY is

finite.
In this case,R1(x) = ExτY andQR1(x) = ExR1(XτY) � supy∈Y EyτY since for any x ∈ X, Px(XτY ∈ Y) = 1

be definition of τY.

Proof. To prove that R∗μ is a measure, one just have to prove that it is σ−additive.
Let (An) be a sequence of pairwise disjoint borelian subsets of X and n ∈ N. As R is a linear operator, we

have that
∫
R(1∪n

k=0Ak
)dν =

∑n
k=0

∫
R1Ak

dν, thus, R∗ν is finitely additive. But, according to the monotone
convergence theorem, the left side of this equation converges to

∫
R(1∪An)dν and this finishes the proof that

R∗ν is σ−additive.
Moreover, for all non negative f ∈ B(X), f � Rf , so ν(f) � ν(Rf) and ν is absolutely continuous with

respect to R∗ν and R∗ν(X) > 0.
Then, Proposition 2.3 shows that for any positive borelian function f , Rf +Qf = f +RPf . Applying this to

f = 1A for some borelian set A, and taking the integral over ν, we get that
∫
R1A +Q1Adν =

∫
1A +RP1Adν.

But, ν is Q−invariant so if ν(A) is finite, we get that
∫
R1Adν =

∫
RP1Adν. If ν(A) is infinite, the result

still holds since in this case,
∫
R1Adν = ν(A) = Q∗ν(A) =

∫
RP1Adν = +∞. Thus, for any borelian set A,

R∗ν(A) = P ∗R∗ν(A) that is to say, R∗ν is P−invariant.
As RS = Q and ν is Q−invariant, we directly have that S∗R∗ν = ν.
For the last point, assume that QR(1) is a bounded function on X.
If R∗ν is finite, then so is ν since ν(X) � R∗ν(X).
Assume that ν is finite. Then according to Chacon−Ornstein’s ergodic theorem (see [5], Chap. 3 Thm. 3.4),

there exist a Q−invariant non negative borelian function g∗ such that
∫
g∗dν =

∫
R1dν and for ν−almost

every x ∈ X,
1
n

n−1∑
k=0

QkR1(x) −→ g∗(x)

And, since QR is bounded on X and R1(x) = Exτ is finite, we get that g∗(x) � ‖QR‖∞ for ν−a.e x ∈ X. So,
g ∈ L∞(X, ν) ⊂ L1(X, ν) since ν(X) < +∞ and

∫
R1dν � ‖QR‖∞ν(X) < +∞. �

We saw in the previous lemmas that R and S act on invariant measure. As they are linear operators and
the set of invariant measures is convex, next proposition shows that they also preserve the ergodic measures (in
some sense since they do not preserve probability measures).

Corollary 2.9. Let (Xn) be a Markov chain on a complete separable metric space X and τ a θ−compatible
stopping time such that for any x ∈ X, Exτ is finite. Define P , Q, R and S as previously and assume that QR1
is bounded on X.

Then, S∗ and R∗ are linear bijections between the P−invariant finite measures and the Q−invariant ones
which preserve ergodicity and are inverse of each other.
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Proof. We already saw in Lemmas 2.6 and 2.7 that S∗ (resp. R∗) maps the P−invariant (resp. Q−invariant)
finite non zero measures onto the Q−invariant (resp. P−invariant) ones and that they are inverse of each-other.

Thus, it remains to prove that the image by S∗ or R∗ of an ergodic measure still is ergodic. To do so, we
use the linearity of S∗ and R∗ and that ergodic probability measures are extreme points of the set of invariant
probability measures for a Markov chain in a complete separable metric space.

Let μ be a P−ergodic finite non zero measure. We assume without any loss of generality that μ is a probability
measure. We saw in Lemma 2.6 that S∗μ is a Q−invariant non zero finite measure.

Assume that S∗μ = S∗μ(X)(tν1 + (1 − t)ν2) where ν1 and ν2 are two Q−invariant probability measures
and t ∈ [0, 1].

Then, we get that μ = R∗S∗μ = S∗μ(X)(tR∗ν1 + (1 − t)R∗ν2). But μ is ergodic, so 1
R∗ν1(X)R

∗ν1 =
1

R∗ν2(X)R
∗ν2. And applyting S∗ again, we obtain that ν1 = ν2, hence, S∗μ is Q−ergodic.

The same proof holds to show that if ν is Q−ergodic, then R∗ν is P−ergodic. �

3. Induction and the renewal theorem

In this section, we use the renewal theorem on R to prove a “stopped renewal theorem” in Corollary 3.6.
Let ρ be a borelian probability measure on R and define a random walk on R starting at x ∈ R by{

X0 = x
Xn+1 = Xn + Yn+1

(3.1)

where (Yn) has law ρ⊗N.
We assume that ρ has a moment of order 1 and a negative drift λ =

∫
R
ydρ(y) < 0.

In particular, for ρ⊗N−a.e (Yn) ∈ R
N,
∑n

k=0 Yk converges to −∞.
We denote by P the Markov operator associated to ρ. This is the operator defined for any bounded borelian

function f on R and any x ∈ R by

Pf(x) =
∫

R

f(x+ y)dρ(y)

Let τ be the time of first return to ] −∞, 0]:

τ((Xn)) = inf{n ∈ N
∗, Xn ∈] −∞, 0]}

This is a ϑ−compatible stopping time and our assumption on ρ implies (see P1 in Sect. 18 of [9]) that for any
x ∈ R,

Exτ < +∞
In this section, we are interested in the operator R defined as in Section 2 for any non negative borelian

function f on R and any x ∈ R by

Rf(x) := Ex

τ−1∑
k=0

f(Xk)

The study of this operator is very close from renewal theory: indeed, if ρ(R+) = 0 and f is null on R
∗
−, then

for any x ∈ R,

Rf(x) =
+∞∑
n=0

Pnf(x)

Therefore, we make the following definition that is usual in renewal theory:

Definition 3.1. Let f be a borelian function on R. We say that f is directly Riemann-integrable if

lim
h→0+

h
∑
n∈Z

inf
x∈[nh,(n+1)h]

|f(x)| = lim
h→0+

h
∑
n∈Z

sup
x∈[nh,(n+1)h]

|f(x)| < +∞

In the sequel, we will use the following characterisation.
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Lemma 3.2 (Lebesgue’s criterion for Riemann-integrability). Let f be a bounded function on R.
Then, f is directly Riemann integrable if and only if it is a.e. continuous and for some h ∈ R

∗
+,∑

n∈Z

sup
x∈[nh,(n+1)h]

|f(x)| < +∞.

In the next three lemmas, we are going to prove that, denoting by R,S the operators defined as in Section 2
and associated to τ , for any directly Riemann-integrable function f , SRf is also directly Riemann-integrable.

Lemma 3.3. Let ρ be a borelian probability measure on R having a moment of order 1 and a negative drift
λ =

∫
R
ydρ(y) < 0.

Note τ the time of first return to ] −∞, 0] and R the associated operator defined as in Section 2.
Then, for any directly Riemann-integrable function f on R, the function Rf is bounded on R.

Proof. To prove this proposition, we are going to use the classical renewal theorem. Indeed, for any x ∈ R we
have that

|Rf(x)| � R|f |(x) = Ex

τ−1∑
k=0

|f(Xk)| � Ex

+∞∑
n=0

|f(Xn)| =
+∞∑
n=0

Pn|f |(x).

But, if the measure is non-lattice2, according to the renewal theorem (see [2]), we have that

lim
x→−∞

+∞∑
n=0

Pn|f |(x) = 0 and lim
x→+∞

+∞∑
n=0

Pn|f |(x) =
−1
λ

∫
R

|f |dν

and this proves our lemma in the non-lattice case. The same kind of arguments holds in the lattice case and
allows us to conclude. �
Lemma 3.4. Let ρ be a borelian probability measure on R having a moment of order 1 and a negative drift
λ =

∫
R
ydρ(y) < 0.

Then, for any directly-Riemann integrable function f on R that is null on R−, we have that∑
n∈Z

sup
x∈[n,(n+1)]

|SRf(x)| < +∞.

Proof. First, according to Lemma 3.3, Rf is bounded and for any x ∈ R,

|SRf(x)| � ‖Rf‖∞S1(x) = ‖Rf‖∞ρ(] −∞,−x]).
So, as the function (x 	→ ρ(] −∞,−x])) is decreasing, we have that∑

n∈N

sup
x∈[n,(n+1)]

|SRf(x)| � ‖Rf‖∞
∑
n∈N

ρ(] −∞,−n]).

Moreover, using that

ρ(] −∞,−n]) =
+∞∑
m=n

ρ(] −m− 1,−m]).

We have that

∑
n∈N

+∞∑
m=n

ρ(] − (m+ 1),−m]) =
∑
m∈N

(m+ 1)ρ(] − (m+ 1),−m]) = ρ(R−) +
∑
m∈N

mρ(] − (m+ 1),−m])

� 1 +
∑
m∈N

∫ −m

−(m+1)

|y|dρ(y) � 1 +
∫

R

|y|dρ(y).

2For any α ∈ R, ρ(αZ) < 1.
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And this proves that ∑
n∈N

sup
x∈[n,n+1]

|SRf(x)| < +∞

We now have to control the sum over Z−.
Since for any x ∈ R−, f(x) = 0, we have, using Markov’s property, that for any x ∈ R,

SRf(x) = Ex1{τ=1}
τ2−1∑
k=1

f(Xk) = Ex1{τ=1,τ2>2}
τ2−1∑
k=2

f(Xk) = Ex1{τ=1,τ2>2}Rf(X2)

So,

|SRf(x)| � Ex1{τ=1}∩{τ2>2}|Rf(X2)| � ‖Rf‖∞Px(τ = 1, τ2 > 2)

But,

Px(τ = 1, τ2 > 2) =
∫

R2
1{x+y1�0,x+y1+y2>0}dρ(y1)dρ(y2) � ρ∗2(] − x,+∞[)

So, using the fact that the function (x 	→ ρ∗2(] − x,+∞[)) is non-decreasing, we have that

0∑
n=−∞

sup
x∈[n−1,n]

|SRf(x)| � ‖Rf‖∞
+∞∑
n=0

ρ∗2(]n,+∞[) = ‖Rf‖∞
+∞∑
n=0

+∞∑
m=n

ρ∗2(]m,m+ 1])

� ‖Rf‖∞
+∞∑
m=0

(m+ 1)ρ∗2(]m,m+ 1]) � ‖Rf‖∞
(

1 +
∫ +∞

0

ydρ(y)
)

And this finishes the proof of the lemma. �

Lemma 3.5. Let ρ be a borelian probability measure that is the sum of an absolutely continuous measure ρ1

and a discrete measure ρ2.
Then, for any bounded and a.e. continuous function f on R, Rf and Sf are also a.e. continuous.

Proof. For any x ∈ R, we have that

Sf(x) =
∫

R

f(x+ y)1{x+y�0}dρ(y)

=
∫

R

f(x+ y)1{x+y�0}ϕ(y)dy +
∑

y∈suppρ2

f(x+ y)1{x+y�0}ρ2(y)

Where we denoted ϕ the density of ρ1 and we used the fact that ρ2 is atomic.
But, x 	→ f(x)1{x�0} is bounded and ϕ is integrable so the function

x 	→
∫

R

f(x+ y)1{x+y�0}ϕ(y)dy

is continuous on R (as a convolution product of an integrable and a bounded function).
And, as supp ρ2 is denumerable and f is a.e. continuous, the function

x 	→
∑

y∈suppρ2

f(x+ y)1{x+y�0}ρ2(y)

still is a.e. continuous.
This proves that Sf is a.e. continuous.
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To prove that Rf is a.e. continuous, note that for any x ∈ R, we can write

Rf(x) =
+∞∑
n=0

Exf(Xn)1{τ>n}.

Moreover, we have that ∣∣Exf(Xn)1{τ>n}
∣∣ � ‖f‖∞Px(τ > n)

so, using the fact that the function (x 	→ Px(τ > n)) is non-decreasing, we have that for any x0 ∈ R and any
x ∈] −∞, x0], ∣∣Exf(Xn)1{τ>n}

∣∣ � ‖f‖∞Px0(τ > n).

So the convergence in the series is uniform on every compact subset of R since we already saw that∑
n

Px0(τ > n) = Ex0τ < +∞.

Therefore, the set of continuity points of Rf contains the intersection of the sets of continuity points of the
functions

(
x 	→ Exf(Xn)1{τ>n}

)
for n ∈ N. Moreover, for any x ∈ R and any n ∈ N,

Exf(Xn)1{τ>n} =
∫

Rn

f(x+ y1 + . . .+ yn)1∀k∈[1,n], x+y1+...+yk>0dρ⊗n((yi)).

And we can see that this function is a.e. continuous by using the same kind of arguments than in the proof of
the a.e. continuity of Sf . �

Corollary 3.6. Let ρ be a borelian probability measure on R having a moment of order 1 and a negative drift
λ =

∫
R
ydρ(y) < 0. Assume that ρ is non lattice3 and the sum of an absolutely continuous measure and of a

discrete one.
Note τ the time of first return to ]−∞, 0] and denote R and S the Markov operators defined for any borelian

bounded function f on R and any x ∈ R by

Rf(x) = Ex

τ−1∑
k=0

f(Xk) and Sf(x) =
∫
{τ=1}

f(X1)dPx((Xn)).

Then, for any directly Riemann-integrable function f on R,

lim
x→+∞Rf(x) =

−1
λ

∫
R

(Id − SR)f(u)du.

Proof. By definition of the operator R, we shall assume without any loss of generality that f = 0 on R−.
According to the previous lemmas (3.2, 3.3, 3.4 and 3.5) we have that f−SRf is directly Riemann-integrable.

Thus, we can apply the renewal theorem to get that

lim
x→+∞

+∞∑
n=0

Pn(Id − SR)f(x) =
−1
λ

∫
R

(Id − SR)f(u)du.

But, for any n ∈ N,

n−1∑
k=0

P k(Id − SR)f(x) =
n−1∑
k=0

P k(Id − P )Rf(x) = Rf(x) − PnRf(x)

3For any α ∈ R, ρ(αZ) < 1.
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and, as f is null on R− and Rf is bounded according to Lemma 3.3, we have that

lim
n→+∞PnRf(x) = 0

Thus, for any x ∈ R,

Rf(x) =
+∞∑
n=0

Pn(Id − SR)f(x)

Which is what we intended to prove. �

4. Application to the relfected random walk on R+

In this section, we use the previous results for the stopped renewal theorem to study the regularity at infinity
of the solution of Poisson’s equation for the reflected random walk on R+.

Let ρ be a probability measure on R such that
∫

R
|y|ρ(dy) is finite,

∫
R
yρ(dy) < 0 and ρ(R∗

+) �= 0.
These last two asumptions means that for ρ⊗N−a.e (Yn) ∈ R

N,
∑n

k=0 Yk converges to −∞ but for any fixed
M ∈ R, ρ⊗N({(Yn) ∈ R

N; ∃n ∈ N
∑n−1

k=0 Yk � M}) > 0.
Let (Yn)n∈N be an iid seqence of random variables of law ρ. We define the reflected random walk starting at

x on R+ by {
X0 = x

for all n ∈ N, Xn+1 = |Xn + Yn+1|
Defined like this, (Xn, Yn)n∈N is a Markov chain on R+ × R. As Peigné and Woess in [8], we define a stopping
time which we call the time of first reflection by

τ((Xn, Yn)) = inf{n ∈ N
∗; Xn−1 + Yn < 0} (4.1)

We see that τ is θ−compatible since it is the time of first return in R
∗
− for the unreflected random walk on R

driven by ρ.
Since

∫
ydρ(y) < 0,

∑n−1
k=0 Yk −−−−→

n→∞ −∞ a.e., and τn
x is well defined (finite almost everywhere for all positive

real number x).
We define the operator P , Q, R and S as in Section 2.

Remark 4.1. For a borelian non negative function f on R+ ×R we defined P (f)(x, y) = E(x,y)f(X1, Y1). But,
since X1 and Y1 are independant of Y0, we have that P (f)(x, y) = Exf(X1, Y1) =

∫
R
f(|x + y|, y)ρ(dy). In

particular, if f itself does not depend of it’s second argument, we have P (f)(x, y) = E(x,y)f(X1) = Exf(X1)
and we find the usual Markov operator associated to (Xn).

The same argument applies to Q, R and S (defined as in Sect. 2)
Those considerations are just made to prove that τ is θ−compatible so we can apply the results of the previous

sections, but we can anyway “forget” about the second variable.
From now on, we identify functions on R+ and functions on R+ × R which don’t depend on their second

variable and we make the abuse of notations that come with this identification.

As we will need some regularity assumption on ρ, we make the following

Definition 4.2 (Spread-out probability measure on R). We say that a probability measure ρ on R is spread-out
if there exist m ∈ N

∗ such that ρ∗m is not singular with respect to Lebesgue’s measure on R.

First, we have the following
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Theorem 4.3 (Leguesdron [6], Peigné−Woess [8]). Let ρ be a spread-out probability measure on R having an
moment of order 1 and a negative drift λ =

∫
R
ydρ(y). Consider (Xn), the reflected random walk associated

to ρ.
There exist a unique P−invariant probability measure ν on R+. Moreover, if ρ(R∗

+) = 0, then supp ν = [0,M ],
else supp ν = R+ where M = − inf supp (ρ) (which may be infinite).

Finally, the reflected random walk is topologically irreducible on supp ν.

To solve Poisson’s equation, we are going to use the theory of petite sets developed by Glynn, Meyn and
Tweedie (see [3, 7]).

Definition 4.4. Let (Xn) be a Markov chain on a standard Borel space X and P the associated Markov
operator. Let a be a probability measure on N. A set C ⊂ X is called ν−petite where ν is a non trivial measure
on X if for any borelian subset A of X and any x ∈ C,∑

n∈N

anP
n(1A)(x) � ν(A)

Proposition 4.5. Let ρ be a spread out probability measure on R having a moment of order 1 and such
that ρ(R∗

+) > 0.
Then the reflected random walk on R+ defined by ρ is irreducible and every compact set is petite.

Proof. As we already saw in Theorem 4.3, if
∫ |y|ρ(dy) is finite, reflected random walk is open-set irreducible

on R+.
Therefore, if we prove that (Xn) is a T-chain (see [7]), using the first point of Theorem 6.0.1 in [7] we will

get that the chain is m−irreducible and then, using the second point of this theorem, we will get that every
compact set is petite.

We need to find (an) ∈ [0, 1]N such that
∑

n an = 1 and a substochastic transition kernel T such that
∀x ∈ X T (1)(x) > 0, for any borelian set A, T (1A) is lower semicontinuous and

∀x ∈ X ∀A ∈ B(X)
+∞∑
n=0

anP
n(1A)(x) � T (1A)(x).

We assume without any loss of generality that ρ is compactly supported and we denote by M ∈ R
∗
+ some

real number such that supp ρ ⊂ [−M,+∞[).
Let m be such that ρ∗m is not singular with respect to Lebesgue’s measure. We denote by ψ it’s Radon-

Nikodym’s derivative.
Let ε ∈ R

∗
+ such that ρ([ε,+∞[) > 0 (such ε exists since ρ(R∗

+) > 0). We denote by ρε the measure defined
by ρε(A) = ρ(A∩ [ε,+∞[), Xε

n the random walk assoicated to ρε and Pε the submarkov operator associated to
ρε that is to say: Pε(f)(x) =

∫
R
f(|x+ y|)dρε(y) =

∫ +∞
ε f(x+ y)dρ(y).

The main idea of this proof is that, using ρε, we can “escape” any compact set, and in particular, if we walk
for a long enough time N with ρε (N such that Nε � mM), we can be sure that the time of first reflection for
the walk starting at Xε

N is greater than m. And thus, we can use the hypothesis that ρ is spread out.
More precisely, if f is a non negative borelian function on R+ and N ∈ N is such that Nε � mM , then,

Pm+Nf(x) �
∫

Rm+N

f(||x+ y1| + . . .+ ym+N |)dρ⊗N
ε ⊗ dρ⊗m((yi))

�
∫

Rm+N

f(x+ y1 + . . .+ ym+N )dρ⊗N
ε ⊗ dρ⊗m((yi))

�
∫

R2
f(x+ v + u)dρ∗N

ε (v)dρ∗m(u) �
∫

R2
f(x+ v + u)dρ∗N

ε (v)ψ(u)du

�
∫

R

f(x+ u)
∫

R

ψ(u − v)dρ∗N
ε (v)du =

∫
R

f(x+ u)ψ1(u)du.
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Where, for u ∈ R, ψ1(u) =
∫

R
ψ(u− v)dρ∗N

ε (v).
For n ∈ N, let ψn

2 (u) = min(n, ψ1(u)) ∈ L1 ∩ L∞. By definition, ψn
2 is a non decreasing sequence of positive

functions and using the monotone convergence theorem, we have that
∫
ψn

2 (u)du −−−−−→
n→+∞

∫
ψ1du = ρε(R)N =

ρ([ε,+∞[)N ∈ ]0, 1]. So there exist n0 ∈ N such that
∫
ψn0

2 (u)du �= 0.
We denote ψn0

2 = ψ2 and we resume our computations.
By construction,

P 2m+2Nf(x) �
∫

R

Pm+Nf(x+ u)ψ2(u)du �
∫

R2
f(x+ u+ v)ψ2(v)ψ2(u)dudv

�
∫

R

f(x+ u)
(∫

R

ψ2(u− v)ψ2(v)dv
)

du =
∫

R

f(x+ u)ψ3(u)du

Where ψ3(u) =
∫

R
ψ2(u − v)ψ2(v)dv.

But, ψ3 is the convolution product of an integrable function and of a bounded one so it is continuous and∫
R
ψ3(u)du =

(∫
R
ψ2(u)du

)2
> 0.

Let ψ4 be a non zero non negative continuous function on R such that ψ4 � ψ3 and suppψ4 is compact.
We denote T the operator defined for any borelian bounded function f on R and any x ∈ R by

Tf(x) =
∫

R

f(x+ u)ψ4(u)du

Using the dominated convergence theorem we have that for any borelian and bounded function f , Tf is con-
tinuous. Moreover, for all x ∈ R+, 1 � T 1(x) =

∫
R
ψ4dλ > 0.

And, we get that for every borelian non negative function f and every x in R+,

P 2N+2mf(x) � Tf(x)

and this finishes the proof of the proposition. �

Proposition 4.6. Let ρ be a spread out probability measure on R having a moment of order 1 and such that
0 <

∫
R+
ydρ(y) <

∫
R−

(−y)dρ(y).
Then, there is a constant C such that for any borelian and bounded fonction f on R+, there is a function g

on R+ such that

f = g − Pg +
∫
fdν

And,

sup
x∈R

|g(x)|
1 + |x| � C

∥∥∥∥f −
∫
fdν

∥∥∥∥
∞

Moreover, if ρ is the sum of an absolutely continuous measure and of a discrete one and if f is a.e. continuous,
then so is g.

Proof. For any x ∈ R+, let u(x) = 1 + x
−λ where we denoted λ =

∫
R
ydρ(y) < 0.

Then,

Pu(x) = 1 +
∫ −x

−∞

x+ y

λ
dρ(y) +

∫ +∞

−x

−x− y

λ
dρ(y)

= 1 +
x

λ
(ρ(] −∞,−x]) − ρ(] − x,+∞])) − 1

λ

(∫ +∞

−x

ydρ(y) −
∫ −x

−∞
ydρ(y)

)

= u(x) − 1 + 2
x

λ
ρ(] −∞,−x]) +

2
λ

∫ −x

−∞
ydρ(y)
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Moreover,

xρ(] −∞,−x]) =
∫ −x

−∞
xdρ(y) �

∫ −x

−∞
|y|dρ(y).

So, as ρ has a moment of order 1,
lim

x→+∞Pu(x) − u(x) = −1.

Thus, there are x0 ∈ R+ and b ∈ R such that

Pu � u− 1
2

+ b1[0,x0].

Therefore, using Proposition 4.5 we can apply Theorem 2.3 in [3] and get a constant C such that for any
borelian bounded function f on R+ there is a borelian function g such that

sup
x

|g(x)|
u(x)

� C

∥∥∥∥f −
∫
fdν

∥∥∥∥
∞

and

f = g − Pg +
∫
fdν.

The fact that g is a.e. continuous when f is a.e. continuous is also proved since we have an explicit formula for
the function g given in [3] and using the same ideas as in the proof of Lemma 3.5. �

From now on, the assumption on ρ being only spread-out is not enough (since the stopped renewal theorem
we have in this case doesn’t hold for these probability measures) so we are going to ask that it is absolutely
continuous instead.

Corollary 4.7. Let ρ be an absolutely continuous probability measure on R having a moment of order 1, a
negative drift λ =

∫
R
ydρ(y) < 0 and such that ρ(R∗

+) �= 0.
Then, for any directly Riemman-integrable function f on R+ such that

∫
fdν = 0, there is a bounded and

a.e. continuous function g on R+ such that

f = g − Pg and lim
x→+∞ g(x) = 0.

Proof. According to the previous lemma, there is an a.e. continuous function g on R+ such that

f = g − Pg and sup
x∈R+

|g(x)|
1 + |x| � C‖f‖∞.

We denote τ the time of first reflection. This is the stopping time defined by

τ((Xn)) = inf{n ∈ N | Xn+1 = −Xn − Yn}.

Moreover, we denote by R and S the Markov operators associated to τ and defined as in Section 2.
Note that for x � 0 and before the reflection, the walk is the same as the unreflected random walk. Therefore,

as in Section 3 we have that for any x ∈ R+,
Exτ < +∞.

The stopping time τ is ϑ−compatible so, we can use the relations of Proposition 2.3 to get that for any x ∈ R+,

Rf(x) = R(g − Pg)(x) = g(x) −Qg(x).
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Moreover, we also have that Qg(x) = RSg(x) so, we get that g(x) = R(f + Sg)(x). Then,

|Qg(x)| = |Eg(Xτ )| � CEx1 +Xτ

But, using that 0 � Xτ � −Yτ , we have that

ExXτ � −ExYτ �
∫

R

|y|dρ(y)

So the function Qg is bounded on R+ and as Rf is bounded on R+ (according to Lem. 3.3 that we can use for
x � 0 since the operator R for the reflected random walk and for the unreflected one are the same), this proves
that g is bounded on R+.

Thus, using Lemmas 3.4 and 3.5, we get that Sg is directly Riemann-integrable.
Therefore, we can apply Corollary 3.6 to the function f + Sg to get that g = R(f + Sg) has a limit l at

infinity. Noting g1 = g − l we have that g1 is a.e. continuous, bounded,

g1 − Pg1 = f and lim
x→+∞ g1(x) = 0

And this is finally what we intended to prove. �

Theorem 4.8 (Non-concentration inequality). Under the assumptions of Corollary 4.7.
For any directly Riemann-integrable function f on R+ such that

∫
fdν = 0, any ε ∈]0, 1], any x ∈ R+ and

any n ∈ N
∗,

Px

({∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)

∣∣∣∣∣ � ε‖g‖∞
})

� 3e−nε2/8

where g is the function given by Corollary 4.7 and such that f = g − Pg.
In particular, for any x ∈ R+,

1
n

n−1∑
k=0

f(Xk) −→ 0 Px-a.e.

Proof. To prove the result, we are going to use Azuma−Hoeffding’s inequality.
First, we write f = g − Pg where g is the function given by Corollary 4.7. Write, for any n ∈ N,

1
n

n−1∑
k=0

f(Xk) =
1
n

n−1∑
k=0

g(Xk+1) − Pg(Xk) +
1
n

(g(X0) − g(Xn))

Thus,
1
n

∣∣∣∣∣
n−1∑
k=0

g(Xk+1) − Pg(Xk)

∣∣∣∣∣ � 1
n

∣∣∣∣∣
n−1∑
k=0

f(Xk)

∣∣∣∣∣− 2
n
‖g‖∞

and so, using Azuma−Hoeffding’s inequality, if nε > 2, we have that

In(x) : = Px

(
1
n

∣∣∣∣∣
n−1∑
k=0

f(Xk)

∣∣∣∣∣ > ε‖g‖∞
)

� Px

(∣∣∣∣∣
n−1∑
k=0

g(Xk+1) − Pg(Xk)

∣∣∣∣∣ � (nε− 2)‖g‖∞
)

� 2 exp
(−(nε− 2)2‖g‖2∞

2n(2‖g‖∞)2

)
= 2 exp

(
−nε

2

8
+
ε

4
− 1

2n

)

and this last inequality is what we intended to prove since we took ε ∈]0, 1], 2e1/4 � 3 and for nε � 2, we have
that 3e−nε2/8 � 1. The law of large numbers now comes from Borel−Cantelli’s lemma. �
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To prove the central limit theorem and the law of the iterated logarithm, we will need a weaker version of
the law of large numbers (to show that the variance converges). This will be the following

Lemma 4.9. Let ρ be an absolutely continuous probability measure on R having an moment of order 2 + ε for
some ε ∈ R

∗
+ and such that 0 <

∫
R+
ydρ(y) <

∫
R−

(−y)dρ(y).
For any borelian and bounded function f on R+ and any x ∈ R+,

1
n

n−1∑
k=0

f(Xk) −→
∫
fdν Px − a.e.

Remark 4.10. In this lemma, we don’t ask the function f to be directly Riemann-integrable but the price we
have to pay is a stronger moment hypothesis on ρ.

Proof. Write f = g − Pg +
∫
fdν with g the function given by Proposition 4.6 and such that

C(g) = sup
x

|g(x)|
1 + |x| < +∞

Then,
1
n

n−1∑
k=0

f(Xk) =
∫
fdν +

1
n

(g(X0) − g(Xn)) +
1
n

n−1∑
k=0

g(Xk+1) − Pg(Xk).

Moreover, for any s ∈ [1,+∞[,

Ex|g(Xk+1) − Pg(Xk)|s � 2sP k+1|g|s(x) � 2sC(g)sP k+1us(x)

with us(x) = (1 + x)s.
But, doing the same computations as in the proof of Lemma 4.6, we see that if ρ has a moment of order s+1,

then there are C,B ∈ R
∗
+ such that

us � C (us+1 − Pus+1 +B)

so,

+∞∑
n=1

1
ns

Ex |g(Xk+1) − Pg(Xk)|s � CC(g)s2s
+∞∑
n=1

1
ns
Pn+1(us+1 − Pus+1 +B)

� C2sC(g)s

(
+∞∑
n=1

Pn+1(Id − P )us+1

ns
+B

+∞∑
n=1

1
ns

)
� C2sC(g)s

(
us+1 +B

+∞∑
n=1

1
ns

)
< +∞

and this proves, using the law of large numbers for martingales (see Thm. 2.18 in [4]) that if ρ has a moment
of order 2 + ε for some ε ∈ R

∗
+, then for any x ∈ R,

1
n

n−1∑
k=0

g(Xk+1) − Pg(Xk) −→ 0 Px-a.e. and in L1(Px).

Doing the same kind of computations, we also prove that 1
ng(Xn) converges to 0 and this proves the expected

result. �

Theorem 4.11. Let ρ be an absolutely continuous probability measure on R having an moment of order 2 + ε
for some ε ∈ R

∗
+ and such that 0 <

∫
R+
ydρ(y) <

∫
R−

(−y)dρ(y).
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For any directly Riemann-integrable function f on R+ with
∫
fdν = 0 we denote g the bounded function

given by Corollary 4.7 and such that f = g − Pg and we set

σ2 =
∫

R+

g2 − (Pg)2dν

and for any x ∈ R+ and any n ∈ N
∗, we set

Snf(x) =
n−1∑
k=0

f(Xk)

where (Xn) is the reflected random walk defined by ρ and starting at x.
Then, if σ2 = 0, we have that for a.e. any x ∈ R+, (Snf(x)) is bounded in L∞(Px).
Moreover, if σ2 �= 0, we set, for t ∈ [0, 1] and any x ∈ R+,

ξn(t) =
1√
n

(
Sif(x) + n

(
t− i

n

)
f(Xi)

)
for

i

n
� t � i+ 1

n
and 0 � i � n− 1

and we have that, for any bounded continuous function F : C0([0, 1]) → R,

EF (ξn) −→ EF (Wσ2 ) and
1

lnn

n∑
k=1

1
k
F (ξk) −→ EF (Wσ2 ) a.e.

Where we denoted Wσ2 the Wiener measure with variance σ2.
Moreover, for any a.e. continuous function ϕ on R such that x2ϕ(x) is bounded,

1
lnn

n∑
k=1

1
k
ϕ

(
Skf(x)√

k

)
−→ Eϕ(Wσ2 (1)) a.e.

Proof. First, we use that

n−1∑
k=0

f(Xk) = g(X0) − g(Xn) +
n−1∑
k=0

g(Xk+1) − Pg(Xk)

Let Mn =
∑n−1

k=0 g(Xk+1) − Pg(Xk). Then, Mn is a martingale with bounded difference sequence.
Moreover, noting (Fn) the filtration associated to this martingale, we have that

Ex

[
(Mn+1 −Mn)2|Fn

]
= Ex

[
g(Xn+1)2 − g(Xn+1)Pg(Xn) + (Pg(Xn))2|Fn

]
= P (g2)(Xn) − (Pg)2(Xn)

And so,

1
n

n−1∑
k=0

Ex

[
(Mk+1 −Mk)2|Fk

]
=

1
n

n−1∑
k=0

Pg2(Xk) +
1
n

n−1∑
k=0

(Pg)2(Xk)

But, the function g is bounded on R, so, according to Lemma 4.9,

lim
n→+∞

1
n

n−1∑
k=0

Ex

[
(Mk+1 −Mk)2|Fk

]
=
∫
g2dν −

∫
(Pg)2dν Px − a.e. and in L1(Px)
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Moreover, we can compute∫
R

∫
R

(Pg(x) − g(|x+ y|))2dν(x)dρ(y)

=
∫

R

(Pg(x))2dν(x) − 2
∫

R

∫
R

Pg(x)g(|x+ y|)dν(x)dρ(y) +
∫

R

∫
R

g2(|x+ y|)dν(x)dρ(y)

=
∫

R

g2dν −
∫

R

(Pg)2dν = σ2

So, if σ2 = 0, then for ν−a.e. x ∈ R+ and ρ−a.e. y ∈ R, Pg(x) = g(|x + y|). In particular, for a.e. x ∈ R,
g(Xk+1) = Pg(Xk) a.e. and this proves that Mn = 0 a.e. Thus, in this case, for a.e. x ∈ R+, Snf(x) =
g(x) − g(Xn) a.e. and this proves that (Snf(x)) is bounded in L∞(Px) since g is bounded on R+.

Finally, is σ2 �= 0, using the functional central limit theorem (see Thm. 4.1 in part 4.2 of [4]) and the almost
sure functional central limit theorem (see [1], Thm. 2.1 and 2.4) we get the expected result since g is bounded
and so, g(Xn)/

√
n converges to 0 a.e. and in L1(Px). �
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