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QUASI-ERGODICITY FOR ABSORBING MARKOV PROCESSES
VIA DEVIATION INEQUALITY
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1
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Abstract. In this note, taking the killed Brownian motion as an illustrative model, we derive a
conditional deviation inequality for

∫ t

0
V (Xs)ds for certain (unbounded) functions V . Then we apply

it to prove a quasi L1-ergodic theorem for the killed process.
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1. Introduction

Killed Markov processes constitute an important class of non-ergodic Markov processes. For such a process,
one of the most important topics is its asymptotic behavior before killing. Quasi-stationarity and quasi-ergodicity
are two fundamental problems. It has been shown in [1–3] that for many typical processes, a quasi-stationary
distribution is different from a quasi-ergodic distribution. Using different approaches, quasi-L1-ergodicity for
bounded functions was proved in [1–3] respectively. To handle the case of unbounded functions, in this paper
we take the killed Brownian motion as an illustrative model. We derive a conditional deviation inequality for
(unbounded) functions in the Kato class. Then such inequality is applied to quasi-ergodicity. The arguments
applied to more general processes.

We first introduce the some necessary notations and preliminary results. Let {Xt, t ≥ 0} be a standard d -
dimensional (d ≥ 1) Brownian motion (BM) on {Ω, {Ft}, P}, where Ω = C([0, +∞), Rd) and Ft = σ{Xs, 0 ≤
s ≤ t}. Let {Px, x ∈ R

d} be the corresponding Markov family, and Ex denote the expectation under Px. Given
D an open, bounded and connected subset of R

d with boundary ∂D, its closure is D = D ∪ ∂D. We define

τ(ω) = inf{t > 0 : Xt(ω) �∈ D} (1.1)

to be the first exit time of D. The killed Brownian motion we are considering is defined by

XD
t =

{
Xt, if τ > t,

∂, if τ ≤ t.
(1.2)

where ∂ is an extra point. We call XD
t the Brownian motion killed outside D. It is well known that the transition

function of XD
t , denoted by PD(t; ·, ·), has a density pD(t; ·, ·) with respect to the Lebesgue measure on R

d which
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admits an explicit expansion in terms of the Dirichlet eigenvalues 0 < λ1 < λ2 ≤ · · · and the corresponding
eigenfunctions {ϕn, n ≥ 1} of −Δ

2 on D. To be more precise, we summarize below some well known results
crucial for our discussion.

Proposition 1.1.

(i) ([4], p. 33).

pD(t, x, B) = Px(Xt ∈ B; τ > t) =
∫

B

pD(t; x, y)dy, x ∈ D, B ∈ B(D), t > 0. (1.3)

The density function pD(t; ·, ·) is symmetric, continuous, strictly positive on D × D, with the following
expansion:

pD(t; x, y) =
∞∑

n=1

exp(−λnt)ϕn(x)ϕn(y). (1.4)

(ii) ([7], p. 123). {ϕn, n ≥ 1} forms a complete orthonormal system of the Hilbert space L2(D, dx) and satisfies

ϕ2
n(x) ≤ exp(λnε)

(
1

2πε

) d
2

, x ∈ D. (1.5)

Furthermore for 0 < ε < t,

∞∑
n=1

exp(−λnt)|ϕn(x)ϕn(y)| ≤
(

1
2πε

) d
2 ∞∑

n=1

exp(−λn(t − ε)) < +∞; (1.6)

(iii) ([6], p. 336). λ1 is simple, so λ1 < λn, for n > 1. Furthermore, ϕ1 is strictly positive and infinitely
differentiable.

We introduce the following notations.
P1(D) := the class of probability measures on D.
Cb(D) := the class of real valued bounded continuous functions on D.
C∞

0 (D) := the class of functions on D which are infinitely differentiable with compact support.
Lp(D, dx) = Lp(D)(1 ≤ p < ∞) be the usual class of real and measurable functions on D, which are pth

integrable with respective to the Lebesgue measure.
Let ∇ and 	 be the divergence and Laplacian on C∞

0 (D). Let H1
0 (D) be the completion of C∞

0 (D) with
respect to the norm

‖f‖H1
0(D) =

(∫
D

f2(x)dx +
1
2

∫
D

∇f · ∇fdx

)1/2

.

The deviation inequality we will derive concerns functions in a Kato class J to be defined as follows (refer
to [4], p. 62 for more details). Define

g(u) = g(|u|) =

⎧⎪⎨
⎪⎩

|u|2−d, if d ≥ 3,

− log |u|, if d = 2,

|u|, if d = 1.

(1.7)

Let V be a measurable function from R
d to [−∞, +∞], then V ∈ J iff

lim
s↓0

[
sup
x∈Rd

∫
|y−x|<s

|g(y − x)V (y)|dy

]
= 0.

In this paper, V is only defined on the domain D, but we can extend it to R
d by fixing it to be 0 on R

d − D.
For a function in Kato class, we can define the Feynman–Kac semigroup on L2(D).
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Proposition 1.2 ([4], p. 82 and 94. Thms. 3.17 and 3.27). Given V ∈ J , we have the strongly continuous and
symmetric Feynman–Kac semigroup {PV

t , t ≥ 0} on L2(D):

PV
t f(x) = Ex

{
exp

[∫ t

0

V (Xs)ds

]
f(Xt); τ > t

}
, f ∈ L2(D).

The domain of the generator AV of the semigroup is

D(AV ) =
{

f ∈ H1
0 (D) : Δf exits weakly and

(
Δ

2
+ V

)
f ∈ L2(D)

}
,

and if f ∈ D(AV ), then

AV f =
(

Δ

2
+ V

)
f.

2. The governing functional

In this section, we will introduce the functional which will govern the deviation inequality we are going to
derive. We use the Poincare inequality to get an upper bound of the exponential growth rate of the Feynman–
Kac semigroup. The Legendre transform of this bound will be shown to be just the functional governing the
deviation inequality. By the Fenchel Legendre theorem, this functional can be expressed in a more explicit form.
Following a standard variational approach we provide some sufficient conditions for the functional to achieve a
unique minimum.

For λ ∈ R, we define

HV (λ) = sup
{∫

D

(f · AλV f)dx : f ∈ D(AλV ),
∫

D

f2dx = 1
}

= sup
{∫

D

(
λV f2 − 1

2
|∇f |2

)
dx : f ∈ D(AλV ),

∫
D

f2dx = 1
}

. (2.1)

The Poincare inequality shows that HV (λ) is an upper bound for the exponential growth rate of the semigroup.
More precisely,

||PλV
t ||2 ≤ etHV (λ). (2.2)

By the next Lemma due to Kato, we see that

HV (λ) < +∞. (2.3)

Lemma 2.1 ([4], p. 91. Thm. 3.25). Given V ∈ J , for any β ∈ (0, 1), there exists an α > 0, s.t. for any
f ∈ H1

0 (D): ∫
Rd

|V (x)|f2(x)dx ≤ α

∫
Rd

f2(x)dx + β

∫
Rd

|∇f |2dx (2.4)

In order to apply the Fenchel Legendre theorem, we give other expressions of HV (λ) by changing the space
of functions. We first recall the following

Lemma 2.2 ([4], p. 100, Prop. 3.29).

HV (λ) = sup
{∫

D

(
λV f2 − 1

2
|∇f |2

)
: f ∈ C∞

0 (D),
∫

D

f2dx = 1
}

(2.5)
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By the definition of H1
0 (D), it is not hard to verify the following

Lemma 2.3.

HV (λ) = sup
{∫

D

(
λV f2 − 1

2
|∇f |2

)
: f ∈ H1

0 (D),
∫

D

f2dx = 1
}

(2.6)

We further express HV in the form of a Legendre transform of certain function JV on R.

HV (λ) = sup
{∫

D

(
λV f2 − 1

2
|∇f |2

)
dx : f ∈ H1

0 (D),
∫

D

f2dx = 1
}

= sup
z∈R

sup∫
D

V f2dx=z

{
λz −

∫
D

1
2
|∇f |2dx : f ∈ H1

0 (D),
∫

D

f2dx = 1
}

= sup
z∈R

{λz − JV (z)}, (2.7)

where

JV (z) = inf
{∫

D

1
2
|∇f |2dx : f ∈ H1

0 (D),
∫

D

f2dx = 1,

∫
D

V f2dx = z

}
. (2.8)

Lemma 2.4. JV : R → [λ1,∞] is a convex function and attains its minimum λ1 at

a =
∫

D

V dμ0, (2.9)

where
dμ0 = 1Dϕ2

1(x)dx. (2.10)

Proof. The convexity of JV can be verified directly from its definition, or regard it as a standard result in large
deviation theory, since H1

0 (D) is the domain of the Dirichlet form corresponding to the killed BM on D, see,
for example, ([5], p. 135, Exercise 4.2.63).

The last statement is just the variational principle for the first Dirichlet eigenvalue of the Laplacian operator
([6], p. 336). �

By the convexity of JV , {JV < +∞}◦ is an open interval (l, m), where −∞ ≤ l ≤ m ≤ +∞. We now define
the function IV as the lower semi-continuous regularization of JV .

IV (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

JV (x), if m < x < l,

JV (m+), if x = m,

JV (l−), if x = l,

∞, if x = ∞.

(2.11)

In the next section, we will see that IV is actually the governing functional for the deviation inequality. Now
we study some further properties of IV .

Proposition 2.5.

(i) For any x ∈ R, we have that
IV (x) = sup

λ∈R

{λx − HV (λ)}. (2.12)
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(ii) H is a convex function, and for any b > 0

IV (a + b) = sup
λ≥0

{λ(a + b) − HV (λ)} (2.13)

and
IV (a − b) = sup

λ≤0
{λ(a − b) − HV (λ)}. (2.14)

Proof.

(i) The result is due to the celebrated Fenchel Legendre theorem.
(ii) We only need to prove (2.13). By the convexity of JV (Lem. 2.4) and (1.5), we see that H is a convex.

Taking z = a in (1.5), we see that
HV (λ) ≥ λ · a − λ1.

Thus for λ < 0,
λ(a + b) − HV (λ) ≤ λ · b + λ1 < λ1.

But from (2.11) and Lemma 2.4,
inf
x∈R

IV (x) = λ1,

it follows that
IV (a + b) = sup

λ∈R

{λ(a + b) − HV (λ)} = sup
λ≥0

{λ(a + b) − HV (λ)}. �

The next results are important for the quasi-ergodicity to be discussed in Section 4.

Theorem 2.6. If V ∈ J is bounded and measurable, or V ∈ J ∩ L
d
2 (D) with d ≥ 3, then IV achieves its

minimum λ1 uniquely at a, that is
λ1 = IV (a) = inf{IV (x) : x ∈ R}

Proof. From (2.11) we see that the desired assertion for IV follows from that of JV .
For JV , we first note that

λ1 = inf
{∫

D

1
2
|∇f |2dx : f ∈ H1

0 (D),
∫

D

f2dx = 1
}

,

and that the infimum is uniquely achieved at ϕ1 ([6], p. 336), which gives JV (a) = λ1 = inf{JV (x) : x ∈ R}.
Secondly, given z �= a, we need to prove that

JV (z) > λ1. (2.15)

We can choose a minimizing sequence {fn ∈ H1
0 (D) : n ≥ 1} such that

JV (z) = lim
n→∞

∫
D

1
2
|∇fn|2dx,

∫
D

f2
ndx = 1,

∫
D

V f2
ndx = z.

Since {fn : n ≥ 1} are bounded in H1
0 (D), by Banach–Alaoglu theorem we can extract a subsequence (still

denoted by {fn : n ≥ 1}) such that limn→∞ fn = f weakly in H1
0 (D). Thus

JV (z) = lim inf
n→∞

∫
D

|∇fn|2dx

= lim inf
n→∞

∫
D

|∇fn −∇f + ∇f |2dx

= lim inf
n→∞

{∫
D

|∇fn −∇f |2dx + 2
∫

D

(∇fn −∇f) · ∇fdx

}
+

∫
D

|∇f |2dx

≥
∫

D

|∇f |2dx. (2.16)
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Passing to a subsequence if necessary, the Rellich–Kondrashov compact embedding theorem gives that
limn→∞ fn = f strongly in L2(D), which implies

∫
D f2dx = 1.

It remains to check that ∫
D

V f2dx = z. (2.17)

If V is bounded and measurable, then

z = lim
n→∞

∫
D

V f2
ndx =

∫
D

V f2dx.

Thus by the definition of JV and (2.16),

JV (z) =
∫

D

1
2
|∇f |2dx > λ1.

If d ≥ 3, the Sobolev inequalities ([6], p. 265, Thm. 3) give that {fn : n ≥ 1} are bounded in L2∗
(D), where

2∗ = 2d
d−2 . If V ∈ L

d
2 (D), passing to a subsequence if necessary, we see that

z = lim
n→∞

∫
D

V f2
ndx =

∫
D

V f2dx,

which proves the theorem. �

Theorem 2.7. If V ∈ J is such that IV attends its infimum λ1 at a unique z, then for any ε > 0, there exists
a γ > 0, such that ∀b ≥ 0,

IV (a + ε + b) ≥ λ1 + γb,

and
IV (a − ε − b) ≥ λ1 + γb,

Proof. It is easy to see that HV is lower semicontinuous and HV (0) = −λ1. Thus

lim sup
λ→0+

[λ(a + ε) − HV (λ)] ≤ λ1.

From this, Proposition 2.1 and the assumption we see that there is a γ > 0 such that

IV (a + ε) = sup
λ≥γ

[λ(a + ε) − HV (λ)] > λ1.

Now it follows that for each b ≥ 0,

IV (a + ε + b) = sup
λ≥0

[λ(a + ε + b) − HV (λ)] ≥ sup
λ≥γ

[λ(a + ε + b) − HV (λ)] ≥ λ1 + γb. �

3. The deviation inequality and quasi-ergodicity

In this section, we first derive a deviation inequality for 1
t

∫ t

0
V (Xs)ds governed by the functional IV , v ∈ J .

Then we apply such inequality to quasi-ergodicity.
Let |D|= the Lebesgue measure of D and dμ1 = 1Ddx

|D| , the main result of this section is the following
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Theorem 3.1. Given V ∈ J and ν ∈ P1(D) with ν << μ1 and ‖ dν
dμ1

‖2 < ∞, for any number t > 0 and b > 0,
we have that:

Pν

[
1
t

∫ t

0

V (Xs)ds − a > b, τ > t

]
≤

∥∥∥∥ dν

dμ1

∥∥∥∥
2

exp[−tIV (a + b)], (3.1)

Pν

[
1
t

∫ t

0

V (Xs)ds − a < −b, τ > t

]
≤

∥∥∥∥ dν

dμ1

∥∥∥∥
2

exp[−tIV (a − b)]. (3.2)

Proof. For any number t, b > 0, by Chebychev’s inequality and (2.2),

Pν

[
1
t

∫ t

0

V (Xs)ds − a > b, τ > t

]
≤ inf

λ>0
exp[−λt(a + b)]Eν

{
exp

[∫ t

0

λV (Xs)ds

]
, τ > t

}

≤ inf
λ>0

exp[−λt(a + b)]
∫

D

Ex

{
exp

[∫ t

0

λV (Xs)ds

]
, τ > t

}
dν

dx
dx

≤
∥∥∥∥dν

dx

∥∥∥∥
2

· inf
λ>0

exp[−λt(a + b)] · ||PλV
t 1||2

≤
√
|D| ·

∥∥∥∥dν

dx

∥∥∥∥
2

· inf
λ>0

{
exp[−λt(a + b)] · etHV (λ)

}

=
∥∥∥∥ dν

dμ1

∥∥∥∥
2

exp
{
−t sup

λ>0
[λ(a + b) − HV (λ)]

}
. (3.3)

It follows from Proposition 2.5 that

sup
λ>0

{λ(a + b) − HV (λ)} = IV (a + b),

The first assertion follows. The second one follows by replacing V with −V . �

Remark 3.2. The theorem is motivated by the paper [8], which deals with general conservative Markov pro-
cesses.

The next lemma is to study the absorbing probability. The first Dirichlet eigenvalue characterizes the ab-
sorbing rate for the killed BM.

Lemma 3.3. As t → ∞,
∑∞

n=2 exp(−(λn−λ1)t)ϕn(x)ϕn(y) converges to 0 absolutely and uniformly for (x, y) ∈
D × D.

Proof. From Proposition 1.1, for 0 < ε < t and x, y ∈ D,

∞∑
n=2

exp(−(λn − λ1)t)|ϕn(x)ϕn(y)| ≤
(

1
2πε

) d
2

exp(λ1ε)
∞∑

n=2

exp(−(λn − λ1)(t − ε)) < +∞.

Observing that lim
t→∞ exp(−(λn−λ1)(t−ε)) = 0 monotonically and applying the dominated convergence theorem,

we see that

lim
t→∞ sup

x,y∈D

{ ∞∑
n=2

exp(−(λn − λ1)t)|ϕn(x)ϕn(y)|
}

≤ lim
t→∞

(
1

2πε

) d
2

exp(λ1ε)
∞∑

n=2

exp(−(λn − λ1)(t − ε)) = 0. �
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Proposition 3.4. Given ν ∈ P1(D), for any number t > 0

Pν(τ > t) = Cν(t)e−λ1t. (3.4)

where Cν(t) : (0, +∞) → (0, +∞) is a continuous function such that

lim
t→∞Cν(t) =

∫
ϕ1(x)ν(dx)

∫
ϕ1(y)dy > 0 and lim

t→0
Cν(t) = 1.

Proof. It follows from Proposition 1.1 that

Pν(τ > t) =
∫ ∫

pD(t; x, y)dyν(dx)

=
∫ ∫ ∞∑

n=1

exp(−λnt)ϕn(x)ϕn(y)dyν(dx)

= e−λ1t

[∫
ϕ1(x)ν(dx)

∫
ϕ1(y)dy +

∞∑
n=2

e−(λn−λ1)t

∫
ϕn(x)ν(dx)

∫
ϕn(y)dy

]
. (3.5)

Thus if we define

Cν(t) =
∫

ϕ1(x)ν(dx)
∫

ϕ1(y)dy +
∞∑

n=2

e−(λn−λ1)t

∫
ϕn(x)ν(dx)

∫
ϕn(y)dy, (3.6)

Then Cν(t) > 0 since Px(τ > t) > 0. The continuity of Cν(t) on (0, +∞) is guaranteed by formula (1.6).
And Lemma 3.3 gives

lim
t→∞C(t) =

∫
ϕ1(x)ν(dx)

∫
ϕ1(y)dy > 0.

By the continuity of the paths of {Xt}t≥0, we have that

lim
t→0

Px(τ > t) = 1 − lim
t→0

Px(τ ≤ t) = 1,

which gives that
lim
t→0

Pν(τ > t) = 1 and lim
t→0

Cν(t) = 1. �

As a easy consequence, we have the following conditional exponential convergence for 1
t

∫ t

0 V (Xs)ds.

Corollary 3.5. Under the same hypotheses on V and μ in the Theorem 3.1, for any number t > 0 and b > 0,
we have that

Pν

[
1
t

∫ t

0

V (Xs)ds − a > b

∣∣∣∣ τ > t

]
≤

∥∥∥ dν
dμ1

∥∥∥
2
exp[−tIV (a + b)]

Cν(t)e−λ1t
, (3.7)

Pν

[
1
t

∫ t

0

V (Xs)ds − a < −b

∣∣∣∣ τ > t

]
≤

∥∥∥ dν
dμ1

∥∥∥
2
exp[−tIV (a − b)]

Cν(t)e−λ1t
· (3.8)

Furthermore, adding the hypotheses on V and μ in the Theorem 2.6,

lim
t→∞

1
t

log Pν

[
1
t

∫ t

0

V (Xs)ds − a > b

∣∣∣∣ τ > t

]
≤ λ1 − IV (a + b) < 0, (3.9)

lim
t→∞

1
t

log Pν

[
1
t

∫ t

0

V (Xs)ds − a < −b

∣∣∣∣ τ > t

]
≤ λ1 − IV (a − b) < 0. (3.10)
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Proof. A direct application of Theorem 3.1 and Proposition 3.1. �

The following is the quasi-ergodic theorem.

Theorem 3.6. Let V ∈ J be as in Theorem 2.2, and a =
∫

V dμ0. Then for ν ∈ P1(D) with ν << μ1 and
‖ dν

dμ1
‖2 < ∞,

lim
t→∞Eν

[∣∣∣∣1t
∫ t

0

V (Xs)ds − a

∣∣∣∣ |τ > t

]
= 0.

Proof. Given ε > 0, let γ > 0 be as in Theorem 2.2. Denote

Δt =
∣∣∣∣1t

∫ t

0

V (Xs)ds − a

∣∣∣∣ .

Then from Theorems 3.1,2.2 we see that

Eν

[∣∣∣∣1t
∫ t

0

V (Xs)ds − a

∣∣∣∣ |τ > t

]
= Eν [Δt, ; Δt ≤ 2ε|τ > t] + Eν [Δt, ; Δt > 2ε, τ > t]

≤ 2ε + Eν [Δt, ; Δt > 2ε, τ > t] P−1
ν (τ > t)

≤ 2ε +
∞∑

k=2

Eν [Δt, kε ≤ Δt < (k + 1)ε, τ > t] P−1
ν (τ > t)

≤ 2ε +
∞∑

k=2

(k + 1)εPν(Δt ≥ kε, τ > t)P−1
ν (τ > t)

≤ 2ε + 2ε

∥∥∥∥ dν

dμ1

∥∥∥∥
2

∞∑
k=2

(k + 1)e−λ1te−γ(k−1)εtP−1
ν (τ > t).

Letting t → ∞ and applying Proposition 3.1 we obtain that

lim sup
t→∞

Eν

[∣∣∣∣1t
∫ t

0

V (Xs)ds − a

∣∣∣∣ |τ > t

]
≤ 2ε,

completing the proof. �
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