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LP-SOLUTIONS OF BACKWARD DOUBLY STOCHASTIC DIFFERENTIAL
EQUATIONS WITH STOCHASTIC LIPSCHITZ CONDITION AND p € (1,2)

JEAN-MARC Owo!

Abstract. We study backward doubly stochastic differential equations where the coefficients sat-
isfy stochastic Lipschitz condition. We prove the existence and uniqueness of the solution in LP with
p € (1,2).
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1. INTRODUCTION

Backward doubly stochastic differential equations (BDSDEs in short) are equations driven by two independent
Brownian motions, i.e., equations which involve both a standard forward stochastic integral dW; and a backward
—
stochastic Kunita-It6 integral dB;:

T T T
Yt:§+/ f(s,}/;,Zs)ds+/ g(s,n,zs)a_Bs—/ Z,dw,, te 0,1, (1.1)
t t t

where ¢ is a random variable called the terminal condition, f and g are the coefficients (also called generators)
and (Y, Z) are the unknown processes that we study the existence under certain conditions on the data (&, f, g).
This kind of equations, in the nonlinear case, has been introduced by Pardoux and Peng [1]. They obtained
the first result on the existence and uniqueness of solution in LP,p > 2 with Lipschitz coefficients. Recently,
Aman [2] replaced the Lipschitz condition on f in the variable y from [1] with a monotone one and provided
the existence and uniqueness of the solution for BDSDEs (1.1) in L?,p € (1, 2).

More recently, Owo [3] proved the existence and uniqueness of the solution for BDSDEs (1.1), when the
coefficients f and ¢ are stochastic Lipschitz continuous, i.e., the constants of Lipschitz in [1, 2] are replaced

with stochastic ones. However the solution in Owo [3] is taken in L? space. This limits the scope for several
wE
2p

applications. For example, let T' = 1 and suppose that the terminal condition is given by £ = e( 1) 1w, >p)

for some p € (1,2). A simple calculation of the expectation of |£|? and |¢|P for p € (1,2), yields that

e(_P2) < 4o00.

B(f?) = +oo and ()= -
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So that the existence result in Owo [3] can not be applied to solve the above BDSDE with such a terminal
condition &. To correct this shortcoming, we study in this paper, the LP-solution with p € (1,2) for BDSDEs
with stochastic Lipschitz coefficients. Our work provides an extension of result obtained in L, p € (1,2) by J.
Wang et al. [4] for BSDEs with a stochastic Lipschitz coefficient, that is when g = 0.

The paper is organized as follows. In Section 2, we introduce some preliminaries including some notations
and some spaces. In Section 3, some useful a priori estimates are given. Section 4 is devoted to the main result,
i.e., the existence and uniqueness solution in L? with p € (1,2).

2. PRELIMINARIES

The standard inner product of R* is denoted by (.,.) and the Euclidean norm by | . |.

A norm on R?*¥ is defined by /Tr(22*), where 2* is the the transpose of z. We will also denote this norm
by | ..

Let (£2, F,P) be a probability space and T be a fixed final time.

Throughout this paper {W; : 0 < ¢t < T} and {B; : 0 < ¢t < T} will denote two independent Brownian
motions, with values in R? and R!, respectively.

Let N denote the class of P-null sets of F. For each t € [0,T], we define

F 2 FV v FE,

where for any process {n; : t > 0}; FJ, = o{n, —ns;s <r <t} VN and F = F{,.

Note that {F3%;,¢ € [0,T]} is an increasing filtration and {]—'ET, t € [0,T)} is a decreasing filtration, and the
collection {F,t € [0,T]} is neither increasing nor decreasing, so it does not constitute a filtration.

For every random process (a(t)):>o with positive values, such that a(t) is F}V-measurable for a.e t > 0, we

¢
define an increasing process (A(t)):>0 by setting A(t) = / a’(s)ds.
0
For p > 1 and 8 > 0, we denote by:
° Hg(a,T, R™) the set of jointly measurable processes ¢: {2 x [0,T] — R"™, such that ¢(t) is Fi-measurable,
p
. T 2
for a.c. t € [0,T], with |||}, = E {(fo eﬂA<t)\<p(t)|2dt) ] < .
o ’Hg’a(a, T,R™) the set of jointly measurable processes ¢: 2 x [0,T] — R", such that ¢(t) is Fi-measurable,
. T 2
for a.c. t € [0, ], with [|¢|[5;.. = E [ I a2(t)ezﬁA<t>|¢(t)\Pdt] < o0.
o Sj(a,T,R™) the set of jointly measurable continuous processes ¢: 2 x [0,7] — R", such that o(t) is F-
measurable, for any ¢ € [0, T], with [|¢[/%, = E [ sup 2740 | p(t) |p} < 0.
s 0<t<T
Note that the space H};“(a, T, R*) (resp. Hp(a, T, R**4)) with the norm HHHZG (resp. ||HH$) is a Banach space.

So is the space
M (a,T) = Hy(a, T, RF) x Hp(a, T, RExd),

. _ p p .
with the norm [|(Y, 2)|" » = ||Y\|Hg‘a + HZHHg. Also is the space

s
M2 (a,T) = (sg(a,T, R*) N HE (a, T, R’f)) x HY(a, T, RFX?),

with the norm [|(Y: 2)I[3, = IV llgy + IV e + 1215
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Throughout the paper, the coefficients f : 2 x [0, 7] x RF x RF*? — RF and g: 2 x [0, T] x RF x RF*d — RFX
and the terminal value &: 2 — R” satisfy the following assumptions, for 3 > 0:

(H1) f and g are jointly measurable, and there exist three nonnegative processes {r(t) : t € [0, T}, {6(¢) : t €
[0,T]}, {v(t) : t € [0,T]} and a constant 0 < a < 1, such that:
(i) for a.e. t € [0,T], 7(t), 0(t) and v(t) are F}¥ -measurable;
(ii) for all t € [0,7] and all (y, 2), (', 2') € R* x R¥*4,

[f(ty,2) = (69, 20 < () ly — /[ +0(8)]z — 2]
l9(t.y,2) — gty 2P < v(B)ly —¢'|* +alz — 2%
(H2) For all t € [0,T], a*(t) =r(t)+6%(t) +ov(t) >0, with A(T) < L, P—a.s., where L is a positive constant.

)
(H3) (i) ¢ is a Fr-measurable random variable, such that E [egﬁA(T) €[] < +oo;
(ii) for a.e. t € [0,7] and any (y,z) € RF x RF*? f(t,y,2) and g(t,y,z) are F;-measurable, such

a*(s)

T |f0|2 z T )
that E / ALl _qs ) 4+ / eHAG) |gS’ ds < 400, where f0 = f(s,0,0) and ¢° =
0 0

9(s,0,0).

Definition 2.1. A solution of BDSDE (1.1) is a pair of progressively measurable processes (Y, Z) : £2x[0,T] —
R* x R¥*4 such that P—a.s., t — f(t, Y, Z;) belongs to L*(0,T), t + g(t,Y:, Z;) and t — Z; belong to L?(0,T)
and satisfy equation (1.1).

Moreover, let 3 > 0 and let a be an F"-adapted process, a solution (Y, Z) is said to be an (a, 3)-solution of the
BDSDE (1.1) if P—a.s., t — e2P4®) £ (£, Y, Z,) and t — a2(t)e2PADY, belong to L1(0,T), t — e28A0 (¢, Y, Z,)
and ¢ — e274(®) Z, belong to L2(0,T).

For p > 1, a solution is said to be an LP-solution if we have, moreover (Y, Z) € M} (a,T).

Remark 2.2. Because of assumption (H2), the space M} . (a,T) does not depend anymore on f.

Under assumptions (H1)—(H3), as we can see in the following Lemma, for p > 1, any LP-solution in the sense
of definition 2.1, is an (a, 3)-solution.

Lemma 2.3. For p > 1, if (Y,Z) € M} (a,T) and (H1)—(H3) hold, then t e2PAD F(4,Y,, Zy) and
t— a2(t)e2PAMY, belong to L'(0,T), t — e2PAg(t,Y;, Z,) and t — 2841 Z, belong to L2(0,T), P—a.s.

Proof. Tt is obvious that ¢ — e284(®) Z, belongs to L2(0,T).
First, for p € (1,2), we have

T T
/ a2(s)e5‘4(s)\}@|2ds=/ (e(l—g)ﬁA(S)‘YSF—p) (a2(3)e§ﬁA(3)Dfs|p) ds

0 0 L i

< ( sup egﬁA(t)|Ytp> (/ az(s)egﬁA(S”Ysl’ds) . (2.1)
0<t<T 0
Next, for p > 2, we have
T T -
/ a2 (s)e A0y, 2ds = / (7)) (a% ()P4, ) as

0 0
(p—2)

T g T S
a?(s)ds a2(s)e2PAG) |y, Pds | .
g(/ <>d> (/ (5 |Ys|d>
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Then, for p > 1 and since (Y, Z) € /\/lpvc (a,T), we get that

T
/ a?(s)eP A Y, 2 ds < 4-o0. (2.2)
0

Therefore,
1

2

T T 2 T
/ az(s)e%ﬁA(s)\Ys\ds < (/ a2(s)ds> (/ az(s)eﬁA(s)YSFds) < +o00. (2.3)
0 0 0

On the other hand, from the assumptions on (f, g) and noting that a?(t) = r(t)+62(t) +v(t) together with (2.2)
and (2.3), we get that

T T
/ eAAG) £ (s YS,Z)|ds</ eABAE) (0] + a2(5)| Vsl + a(s)| Zu]) ds
0
T B T |f0|2 2 T .
< / a’(s)ds / eﬁA(s)%ds —I—/ a?(s)ez? 4|y, |ds
0 0 a?(s) 0
T 3 T 3
+ (/ az(s)ds> (/ A4 Zs|2ds> < 400,
0 0
and

T T T T
/ PAB) (s, Y, Zo) P ds < 2/ a?(s)ePA |y, 2 ds + Qa/ P4 7, 2ds + 2/ A |g02ds < o0, O
0 0 0 0

In order to establish a priori estimates of LP-solution of our BDSDE (1.1), we recall the Corollary 2.1 in
Aman [2].
Lemma 2.4. Let (Y, Z) be a solution of BDSDE (1.1). Then, for any p > 1 and any t € [0,T],

T T
Y +e(p) / V2P~ 11y, 4oy Zo2ds < €] +p / YaP (o, £ (5, Y, Z0))ds
t t
T
+e(p) / YaP2 24y, 40yl9(s, Yo, Z0)Pds

+p/ V[P (Vs (s, Vs, Z4)dB) /|Y|P WYy, Z, W),

where, c¢(p) = pi[(p_;)/\l]

and § = sign(y) = y| =y 1{y0}-
As a consequence of lemma 2.4, we have the following result

Corollary 2.5. Let (Y, Z) be an (a, 3)-solution of BDSDE (1.1). Then, for anyp > 1, 3> 0 and anyt € [0,T],
T
egﬁA(t”YtlerC(p)/t SR P2 1y, 20y | ZoPds + ﬁ/ e3Py, Pds

T
<egﬁA(T)|§\p+p/ QQﬁA ‘Y‘p 1<}/Svf(s Y'SvZ )>d

T T
—|—C(p)/ e%ﬁA(S)|YS|p_21{Ys750}‘9(57Y@aZS)|2dS —p/ e%ﬁA(S)‘n|p_l<Y%Z8dWs>
t t

—

T
+p / eSBAG Y, IP-L(T,, (s, Ya, Z,)dB,),

pl(p— 1)A1]

where, c(p) = and § = sign(y) = |y|~'yL{y0}-
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Proof. Firstly, we show that
1BA(t) 1BA(t) " sae) Lo 200 1BA®s)
e? Y; =e2 E+ e? f(s,Ys,Zs)—iﬂa (s)ez Y, | ds
t

T T
+/ e%ﬂA<3)g(s,n,Zs)cE—/ 2P Zaw,, te[0,T). (2.4)
t t

Indeed, let X, = €240 for ¢ € [0, 7] with A(t) = fot a®(s)ds. Thus, by assumption (H2), X is a continuous

1 t
and finite variation process. And by Ité’s formula, X; =1+ 55/ az(s)e%ﬁA(s)ds.
0
Let t={t=ty <t <...<t, =T}, for te[0,T]. Then,

Xti+1Y;5i+1 - XtL}/tL = Xti (}/tH»l - Y;L) + thz (Xti+1 - th) + (XtH»l - Xti)(}/tiﬁ»l - Y;L)
tit1 tit1 - tit1
= - Xtif(s, }/Sv Zs)ds - Xti+1g(sv }/:97 ZS)dBS + XtiZSdWS
ti t; ti
tit1 tit1
+ }/tl (Xt71+1 - Xti) + (Xti+1 - th)/ f(57Y9’ ZG)dS - (Xti+1 - th)/ ZSdWS'
t; t;
Therefore, taking the sum from i =0 to i =n — 1, we get
e3Py, = e3fAMe L T4 12 4 13 4 14 4 15 4 16,
where,
n—1 n—1
Irll - Z Xt'i (thiJrl - thb)’ 1721 = ZXtH»l (Mtgi+1 - Mtgb)
i=0 1=0
n—1 n—1
I?L = - Z th‘, (MtZH_l - Mtzl)’ Ifz = - Z 5/157 (Xti+1 - th‘,)
i=0 =0
n—1 n—1
I’i = - Z(XtiJrl - Xta)(ctfHA - th,)’ IS = Z(Xti+1 - th)(MtZLJrl - MtZ,)
i=0 1=0

where, (Cf, M9, M?) are defined by:
t T . t
cf :/ f(s,Ys, Zs)ds, M} :/ 9(s,Ys, Zs)dBs, M :/ ZsdWy, for t € [0,T].
0 t 0

Since (Y, Z) is an (a, 3)-solution, C/ is a continuous and finite variation process and the process M9 (resp. M?)
is a backward (resp. a forward) continuous martingale.

By continuity of X and Y, and the definition of Stieltjes integrals, together with the fact that (Y, Z) is an
(a, B)-solution, it follows that

T T

t t
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Moreover, by the definition of backward-forward stochastic integrals with respect to martingales

T T
2 9 _ 1BA(s) TN s
I; — — X dM? = e? 9(s,Ys, Zs)dBs  in probability,
¢ t

T T
]2 SN _/ X dM?: = _/ e%ﬁA(S)stWS in probability.
t

t
On the other hand, we have,

;| <  sup (cg;l -cf )eéﬁA(T) — 0 in probability,
P 1

0<i<n—

due to the fact that the first term converges to zero almost surely by the continuity of C/, and the second is
finite P — a.s. by assumption (H2).
Also, by the continuity of M?#, we have

T (17

tin Mtz\) ezPAT) 0 in probability,
0<i<n—1 ’ '

so that we obtain (2.4). B B
Now letting Yy = 240y, Z, = e2P40) 7, and € = e2PATD¢, we get

T T T
Y, =¢+ / F(s, Y., Z)ds + / 3(5,Y s, Zs)dB, — / Z.dW,, telo,T], (2.5)
t t t
where, f and g are defined by:
T (9, 2) = 3P40 £ 1,010y o= 304002) 2 a2 1)y,
g (ta Y, Z) = e%ﬁA(t)g(ta ei%ﬁA(t)yv ei%ﬁA(t)Z) .
Thus, by Definition 2.1 and Lemma 2.4, we deduce the result. O

3. A PRIORI ESTIMATES

Lemma 3.1. Let 8 > 0, p €]1,2] and assume that (H1)—(H3) hold. Let (Y, Z) be an (a, 5)-solution of BDSDE
(L.1). If Y € Sj(a, T, R¥) NHE(a, T, RF¥4) then Z € Hp(a, T, R**4) and there exists a constant C, depending
on p,« such that for some 3 > 0,

p PBA(t) T BA(s) | £2I? : T BA(s)|,0]2 :
Z|IF, <C,E | sup e2 Y|P + / e’ 5 ds | + / e? gl %ds . 3.1
H HH[, p OStET ‘ t| 0 GQ(S) 0 |g ‘ ( )

Proof. Let p €]1,2[. For each integer n > 0, let us introduce the stopping time

t

T = inf{t € 0,7, / A 7, 2ds > n} AT.
0

‘2

Applying Itd’s formula to e®4®)|Y;

eﬁA(t”Y;f‘z"‘ﬁ/ az(s)eﬁA(S)‘Ysts—l—/ e'@A(S)|ZS‘2dS
t t

, we have

zeﬁA(T”)\YTTL|2—|—2/ eﬁA(S)<Ys,f(S,Y3,Zs)>dS+/ eﬁA(s)‘g(S,Yq,Zs)Pds
t t
-

+2 / PANY, (s, Yy, Z,)dB,) 2 / A Y, Z,dW,).
t t
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From (H1) and Young’s inequality for every ¢ > 0 such that o + a < 1, we have
2(Ys, f(5,Ys, Zs)) < 2n(s) [Val” +20(s) [Yo| | Zo| + 2 Yo | £7)]

72’
2(s)

<(3+§>&@)nf+|z+
and for every v > 0,
906,V Z0F" < () @OV + @ alzift+ (142 ) 52"
Finally, it follows that

t) IYt\2+D1/ " 02 (5)ePA) IYS\stJng/ " eBAG) | 7,2 ds
t t

conci o [ oolBs (12) [
t a ( ) Y t

2 [ v zaw) vz [0 (g, Y 2B )
t t

where, D —ﬁ—4—'y—§ and Do=1—0—(1+7)a.
Choosing v > 0, 8 > 0 such that v < l(ﬂ
Therefore, since 7,, < T, putting t = 0, we have

Dl/ a2(8)eﬁA(S) Dfs‘z ds +D2/ /eﬁA(S) ‘Zs|2 ds
0 0

’f0| 1 r 2
< sup #4W|y;? +/ Al 12 Lgs 4 (1 + —)/ A lg9| ds
0 a?(s) Y/ Jo

2 [Ty zaw w2 [ (Yaag(s Y 2B )
0 0

and thus, raising both sides to the power § < 1, and taking expectation, we derive

P

Tn 2 Tn %
(/ a2 (s)e™4) YstS) - (/ e Zs|2d3)
0 0
v T ‘fO‘Q g T
< ME | sup 240y |p 4 / A S sds |+ / g9 |ds
0<t<T 0 a’(s) 0

But by the BDG and Young’s inequalities, we get for a given constant d, > 0 and any y; > 0,

(/ ) |Y,[2 PG | 2,2 ds)
0

i Tn %
sup 2940 |y;[3 ( / eﬁA<s>|zs|2ds) ]
0<t<T 0

E

b
2

+/ FACNY,, (s, Y, Z:)ABs)| +
0

/ /eﬁA(s) <Y€7 stWs>
0

AE

/ " PAG) Y, Z,dW)
0

%
] < AydyE

< AdyE

A2d?

<E

Y1 oo<t<T

andﬁ>4+7+— we get Dy > 0 and Dy > 0.

) Tn £
PP sup ePAD Y|P 4~ (/ eP4(s) |Z32ds> ]
0
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and

2

I /\

/ eﬁA(S)<YS7g(SaY97ZS)(d_S>
0

\E [

%
ﬁA(S) |Y€‘2 ePA(s) lg(s, Y, Zs)|2 ds) ]

Tn 2
l sup e 1BA( ”\Y\ (/ ePAs) g(S,Ys,ZS)|2ds) ]
0

2 Tn g
<E l P sup e 5 PA( t)\Yt\P +m (/ oPA(s) g(s,Ys,Zs)zds) ] .
0

| /\

Y1 0<t<T

Now, from (3.2), we have for any v2 > 0

_ 1 T Tn
/ e“<5>g(s,m,zs>|2ds<<”_>/ ()12 12ds + (1 +72) / ) [a2(s)[Y, |2 + 0] Z,[?] ds
0 Y2/ Jo 0

Thus, rising to power & < 1, we get

b

Tn % 1 T 2 Tn %
(/ eﬂA<S>|g<s,n,zs)|2ds) <<1+—> / ©g¢[*ds +(1+72)(/ a2<s>eﬁf‘<s>|Ys|2ds)
0 V2 0 0
Tn g
et [Tz pa) (35)
0

Therefore, coming back to (3.4), we have

Tn % Tn %
(/ O YstS) *(/ eﬁA(s)ZstS)]

0 0

; T awlfPas\ T (7
< Ap)E | sup efﬁA(t”Yt\p-l- / eBA(s) > + / |g %ds
0<t<T 0 a?(s) 0

Tn Tn %
() eenzpas) ([ e mpas)|.

0 0

Consequently, choosing 1,72 > 0 such that ~; + (1 —&-72)7104% < land (14+72)y1 < 1, we derive, for any n > 1

Tn 5 . T o2 g T 5
(/ e““>zs|2d8) < GE | sup e5PAOY;p + / Tl / Og0Pds | |,
0 0<t<T 0 a?(s) 0

witch by Fatou’s lemma yields the desired result. O

Proposition 3.2. Let 3 >0, p €]1,2[. Let (Y, Z) be an (a, 5)-solution of BDSDE (1.1) with terms (¢, f,g) sat-
isfying (H1)-(H3), where Y € Si(a, T, Rk)ﬂHg’ (a,T, RkXd). Then, there exists a constant C), = Cp (8, o, T, L)
satisfying the a priori estimate

E

NS

+ {71 +(1+ Wz)maﬂ E + (1 +y2)mE

E

. T £0 2 2
Y15 + 1Y e + 12115 < CoE |e224@)glp + ( / eﬁ“s)'g—'ds)

T % T
2
+</ P4 |0 ds> +/ e2PAL Y, P21y Loy|gPds | - (3.6)
0 0
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Proof. Let p €]1,2[. From corollary 2.5, we have for any 5 > 0 and any ¢ € [0,7],
T T
eFHAWIY P+ c(p) / e e RV EE / o (s)e 4|y, [Pds
t t
P T P ~
< EAD gy [ AMOY PN, (5., Z0)ds
t

T T
+e(p) / BTGV, P21y, oy lg(s, Ve, Zo)[*ds —p / CEIAO|Y, [P (Y,, Z,dW,)
t t

T . (_
+p / eBIAD|Y, 1Y, (s, Vs, Z,)dB).
t
From (H1), we have
(Vs f(5, Y2, 20)) < r(s) [Yal + 00s) | 2] + | 12]

which, together with (3.2), yields for every v > 0,

T T
EIAWYP +e(p) / BNy, sy ZoPds + 55 / a*(s)e Y|P ds
t t

T T
< 5PAM) e 4y / r()e 59|V, Pds +p / 6(s)e 5G|y, P~ Z,|ds
t t

T T
+p [ AP s+ clp) (149) [ @O, s
. t

T T
+e(p) (1 +7)a / EIAO Y P21 1y gy | Zs[2ds + p / e3FAG)|Y, 1Y, g(s, Y, Z,)dB.)

t t

T
/ egﬁA(s)IK\p_zl{n;éoﬂgg\Qd&

T
, . 1
—p/ ePAG Y, [P 1Yy, ZdW,) + ¢(p) (1 + —)
t t

gl

By virtue of Young’s inequality, we have for any € > 0
p0(5)e PG|, [P Z,| = (pg(s)e%ﬁA(sqm%) (e%ﬁA(s)‘YS‘%—HZS‘)

2p 2 PBA(s 23 A(s L, )
< m@ (s)ezﬁ ()|Ys‘1’—|—sc(p)ezﬁ ()|ys‘p 1y, 20| Zs 2

Therefore, we get

T T
e%ﬁA(t)D/Hp + 6, / a2(s)egﬁA(s)‘YS|pds + 52/ egﬁA(s)|Y:9‘p_21{ys7é0}|zs‘2d8
t t

T T
<X+p / FIAG) Y|PV, g(s, Ve, Zs)dB,) —p / EAAW) |y [P 1Y, Z,d W), (3.7)
t

t

where 0y = 83 —p—c(p) (14+7) — ﬁ, da=clp)l—1+7)a—¢] and

T T
D P 1 P
X = efﬁA(T)\él’”rp/ 2 A Y P71 £01ds + c(p) (1 - —) / 2PNV P21y Loy |9l ds.
0 Y 0

From BDG inequality, one can show that

t R T R
= { [ sy )t 3 =[O g3 20
0 0<t<T t 0<t<T



LP-SOLUTIONS OF BDSDES WITH STOCHASTIC LIPSCHITZ CONDITION 177

are respectively uniformly integrable martingale. Indeed, we have, by Young’s inequality

1
2

T
E(M.M){* <E| sup "= 0Oy, p~ </ QA Zszd8>
0<t<T 0

p
2

—1 » 1 T
< P g { sup ezﬁA(t)ytp} +ZE (/ oBA(s) |Z52ds>
p 0<t<T p 0

Also, in view of (3.2) and since & < 1, we get

4
2

-1 » 1 r
E(N,N)* <P—"E [ sup ezﬂ/“t)w] +-E / PAG) |g(s, Yy, Z)* ds
p 0<t<T p 0

-1 Y T
< p_IE { sup ezﬁA(t)|yt|p] +(14+7)E (/ a2(s)eﬁA(s) YS|2ds>
p 0<t<T 0

T % T
, 1
+(1+7)a’E (/ eﬁA(S)|Z52ds> +<1+—>IE (/ eBA) |g§2ds>
0 Y 0

Now, from (2.1) for p € (1,2), we derive by Young’s inequality

T
</ a?(s)e ) Ys|2d3>
0

4
2

2—p %

yd 7 T
0<t<T 0

2— . T v
c2-p ( sup eQBA(t)ytp> P / a2 (5)e5PAC) |y, pds |
2 0<t<T 2\ Jo

D
2

IN

Since Y € Si(a, T,R*) N'Hy*(a, T, R**4) it follows from Lemma 3.1, that Z € Hp(a, T, R*>*4) which together
with assumption (H3)(ii), yields that
E(M, M)}? < 400 and E(N,N)¥? < 400,

which implies that M and N are uniformly integrable martingale.
Thus, taking expectation in (3.7) with ¢ = 0, we have

T T
1[«:[51 / a2(5)ePA®) |y, Pds + 6, / EBAC)Y, P21y 0|2, 2ds | < B(X). (3.9)
0 0

Now, by choosing v, > 0 such that (1+~v)a+e < 1and § > 2+ QCT@ I+ + m, it follows that

01, 02 > 0 and so taking the sup(.) and then the expectation in (3.7), we derive by Burkhélder—-Davis—Gundy’s

inequality that

E [ sup e’z’ﬁA@>|yt|p] < E(X) + k,E(M, M)Y? + h,E(N, N)/?. (3.9)
0<t<T
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But from Young’s inequality and (3.8), we get

1

2

T
k,E(M, M>1T/2 < ky,E oiltlgTe%ﬁA(t)M|% (/0 egﬁA(s)|Ys‘p_21{Y#0} |Z52ds>

1 T A ~

< Z]E szltlgTezﬁA(t”YW] +4k2 l/o EAAE) |y P 21{Y5750} Z,” ds
1

< -E| sup e? |y, P| + K E(X). (3.10)
4 |o<t<T

Likewise
1
2

T
hpE(N, N)A/? < h,E OE?ETG%BA(t)\mg (/O eBPALY, P21y 4gy g(Sst,Zs)|2d3>

1 »
S —E|: sup e?ﬁA(t)D/;P] _’_4h12)]E

T
/ 2 AP 1y L) |9(8,Ys,Zs)|2dS] -
0<t<T 0

Now, in view of (3.2), it follows that

T
e%ﬁA(S) |Y€ ‘p_21{Y5750} |g(3a }/37 ZS)‘z ds
0

T T
<(49) [ @FHON s + (14 )a [ BAON Py, 2. ds
0 0

1 T
+ (1 + —> / e%ﬁA(s)\3@|p_21{Ys¢0}|gg|2d5-

v/ Jo

Then, from (3.8) together with the definition of X, we have
1 v
h,E(N, N)}? < —E [ sup ezﬁA@Ytl’} +hE(X). (3.11)
0<t<T
Therefore, putting the estimates (3.10) and (3.11) into (3.9), we obtain
E [ sup e%ﬁf“ﬂmz’] <2(1+k,+h,)E(X),
0<t<T

which together with (3.8), implies that

T
E| sup e%ﬁf*“)\muél/ a2(s)eb Ay, [Pds| < CE(X).
0

0<t<T

Applying Holder and Young’s inequalities, we have, by (H2)

T T
P / EPA Y [P~ £0lds = p / (™5 ()™= 24t (“2;< Je zﬂ/“s)'f |
0 0
T _ p—1 T 0|P
6_1 GQ(S)e%ﬁA(s”Yg‘pdS—l— 2(p 1)017 / a2—p (S) s)|f|
QCp 0 51 0

o1 2 LBA(s) 2(p _ 1)Cp e 1-% A ’] ’ :
I 2 S s p A 2 ﬁ ( ) .
2Cp ; a (s)e |}. \ ds + 5 L /0 2( ) ds

ds

\_/
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Finally, coming back to the definition of X, we obtain

T
E[ sup_e5PA0|Y, [P + / a2 (5)eP 4|V, Pds
0<t<T t

P

. T |f0|2 3 T ) 2
< CE 5D gp 4 /eﬁA(s) Blas) 4 /eﬁA(S) 160] ds
0 a?(s) 0

T
+/ e5ﬁA(s)|Ysp_21{Y5¢o}|ggQdS] .
0
The result follows from Lemma 3.1. O

4. EXISTENCE AND UNIQUENESS OF A SOLUTION

In order to obtain the existence and uniqueness result for BDSDEs associated to data (&, f, g) in LP, we make
the following supplementary assumption:

(H4) ¢(t,0,0) =0,V t € [0, 7).
Moreover, we recall the following result due to Owo ([3], Thm. 3.3).

Theorem 4.1. For p = 2 and any B, assume that (H1)—(H3) hold. Then, the BDSDE (1.1) has a unique
solution (Y, Z) € M3 . (a,T).

From Lemma 2.3, the unique solution (Y, Z) € M3 . (a,T) in Theorem 4.1 is an (a, 3)-solution of BDSDE (1.1).
Now we give a basic estimate concerning the solution.

Lemma 4.2. Forp €]1,2] and any (3, assume that (H1)—(H4) hold. Let (Y,Z) € Mz’c (a,T) be a solution of
BDSDE (1.1) and assume that P—a.s.,

0
sup e%ﬁA(t)M <n, e%'@A(T)g <mn, (4.1)
0<t<T a(t)

then' Y € S(a, T,R*) N'HE*(a, T, R¥*4).

Proof. Applying It6’s formula to e#4()|Y;|2, we have for any t € [0, T,

T T
eﬁA(t)‘YtP_'_ﬁ/ e,@A(s)m‘de/ oBAG) | 7, 2ds
t t

T T
— AT 240 / FACY,, f(s,Ya, Z0))ds + / A (s, Vs, Z,)[2ds
t t

—

T T
42 / PANY, (s, Yy, Zs)dB,) —2 / AAN Y, Z,dW,).
t t

From (H1) and Young’s inequality, we have

2(Y, f(5,Ys, Zs)) < 20(s) |Ys|* + 20(5) | Ya| | Zs| + 2 |Y5| | £2]
1— ?
2

|2

« 2
Zs
‘ | + a/2(5)

2 2
< - 2
(3+ 25 )@ mP+
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and from (H1) and (H4)
19(s,Ys, Zo)|” < () |Ys]* + | Zs [

Finally, in view of (4.1), it follows that

l1—«

2 r 1- r
AW |y, ? + (ﬁ —4- —) / a*(s)e® ) v, ds + (Ta) / P4 | 7,7 ds
¢

t

T T
§n2+n2T—2/ ePA() <Y;,ZSdWS>+2/ ePA) <1@,g(s,1@,zs)<‘1_35>. (4.2)
t t

By the same argument as in the previous proof on the uniform integrability of M and N, we prove that

t T P
{/ eHAG) (Ys, ZSdWS>} and / eHAG) (Ys,9(s,Ys, Zs)dBs) are respectively uniformly integrable
0 0<t<T 0<t<T

t
martingale. Therefore, taking expectation in (4.2), we have

2 o\ BA) 1y |2 L—a\ [T saw, 2
B—4——— a®(s)eP MY " ds + | —— e?Z" ds
1—a) Jg 2 "

Now, choosing 5 > 4+ %, and taking supy<,<7(.) in (4.2) and applying Burkhélder-Davis-Gundy’s inequality

E <n?+n?T. (4.3)

and Young’s inequality 2ab < §a? + %bz, for every 6 > 0, we deduce that

=

T
E[ sup o4 |Yt|1 <n2+n?T+2E | sup P40y (/ ofAE) |Zszds>
0=t<T 0<t<T 0

1

2

T
+2cE | sup e%ﬁA(t)\YA (/ P 4() |g(s,Ys,Zs)2dS>
0<t<T 0

< n? 4+ n?T 4 20E ( sup eﬁA(t)YtQ) (4.4)
0<t<T

62 T 5 C2 T 9
+(1+a)<E / ePAG) |z, ds +<E / a?(s)eP A |y, |7 ds | .
0 0

Therefore, combining (4.3) and (4.4), and choosing § < §, we derive

T T
E | sup %40 |y;? —I—/ P42 (5) Y, ds +/ PAC) | 7,2 ds] < d(n? 4 n?T), (4.5)
0 0

0<t<T

which since p €]1,2[ and together with Holder’s inequality yields

b

3
]E{ sup egﬁA(t)D/Hp] < <]E{ sup eﬁA(t)Ytz]> < 50
0<t<T 0<t<T



LP-SOLUTIONS OF BDSDES WITH STOCHASTIC LIPSCHITZ CONDITION 181

and

T T
E [ a2(s)e2ﬁA |Ys["ds| =E / (a®>7P(s)) aP(s)e2 () |y, |P ds
0

IN
/_\
|—|/_\

We now state and prove our main result.

Theorem 4.3. For p €]1,2[, let assume (H1)—(H4). Then, for § sufficiently large, the BDSDE (1.1) has a
unique solution (Y,Z) € My, (a,T).

Proof. (Uniqueness). Let (Y, Z), (Y',Z') € M}, .(a,T) be two solutions of BDSDE (1.1).
Let denote by (Y, Z) the process (Y —Y’, Z — Z'). Then, it is obvious that (Y, Z) is a solution in M (a,T)
to the following BDSDE:

T
?t:/ F(s,Ys,Zs ds+/ G(s YS,ZS)dBS—/ Z AW, (4.6)
t t

where F, G stand for the random functions

F(t,y,z) = f(t,y + Y/, 2+ Z]) — f(t,Y], Z])
G(t,yvz) = g(t,y + Yt/az + Zt/) - g(t,YtI, Z;)

It is easy to verify that BDSDE (4.6) satisfies assumptions (H1)—(H3). Noting that F{ = 0 and G} = 0, by
Proposition 3.2, we get immediately that (Y, Z) = (0,0).

Existence. For each n > 1, let ¢,(z) = gclzlﬁ and define &, = e~ 3BAM) g, ( T)f) and

0
Fulto2) = F(t.2) = 9 e 4540g, (340 0.
By definition, g, (x) < n, for any n > 1. So we have

sup e3BAW) ) 1 fn(t,0,0)]
)

<n and e%BA(T)gn <n.
0<t<T a(t

Then, it follows that &,, f, satisfy the assumptions (H1)—-(H3) for p = 2. Thus, from Theorem 4.1, for each
n > 1, there exists a unique solution (Y™, Z™) € ./\/12,C (a,T) for the following BDSDE:

T T - T
v — e, +/ fn(s,Y;’,Z;‘)ds—k/ 9(s,Y", ZMaB, —/ Zraw,.
t t t

Moreover, according to Lemma 4.2, Y™ € Sg(a,T, R*) N Hg’a(a,T, R¥*4) 5o that from Lemma 3.1, Z" €
Hg(a,T,RkXd). Hence, (Y",Z") € M, . (a,T).
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Now, for (i,n) € N x N*, let Y& =ynti _yn zin = znti__ zn
Then, it is obvious that (Yi’", Zi’") € ./\/lp’c(a7 T) and verifies the following BDSDE:

T T T
VO =t [ fins VI 2 s [ (s Vi 2B - [ Zinaw, (47)
t t t
where &, = {nti — €n and, f;, and g; 5, stand for the random functions

fi,n(tayaz) = fn+i(tay + Ytnvz + Ztn) - fn(t,Y;n, Ztn)
9in(t,y,2) =gty + V", 2+ Z7") — g(t, V)", Z}").

From assumptions on (§, f, g) and the fact that |g, (z)| < |z|, for any n > 1, it is easy to check that (&, fin, gin)
satisfy (H1)—(H4) with

§in = eiéﬁA(t) |:q7L+i (e%ﬁA(T)g) —dn (e%ﬁA(T)g)}
1 1 0 . fO
n(£,0,0) = a(t)e" 2740 (g, 1pam _fr ) _ [ e3sam i d
ot 0 = e T ) T\ )]
gi,n(tyo, 0) =0.
Therefore, since Y™ € Sf(a, T,R*) NHE* (a, T,R**?) and g, (t,0,0) = 0, we obtain thanks to Proposition 3.2

that, for (i,n) € N x N*,
T 2\ 2
[yion Py (/ eﬁA(t)|fi,n(270a0)| dt>
0 a?(t)

gg + HYi’nH];{gva + HZi’nH%g < CpE [e2PAMg

Hence,

Y = Y5y + [V = Y| B + 11274 = 272,
qn+i (e%ﬁA(T)£> —Qn (e%ﬁA(T)£> ‘p
2 bl
dt>

T 0 0
. ( [ i (c1230 22 g (stono 22
0

a(t) a(t)
From (H3), it follows by the dominated convergence theorem that the right-hand side of the above inequality
tends to 0, as n — oo, uniformly in ¢, so (Y™, Z™) is a Cauchy sequence in Mg’c (a,T) and the limit is a solution
of BDSDE (&, f,g) (1.1). O

gc;E[
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