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ON NONPARAMETRIC CLASSIFICATION FOR WEAKLY DEPENDENT
FUNCTIONAL PROCESSES
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1

Abstract. The purpose of this paper is to investigate the moving window rule of classification to
classify functions under mixing conditions. We consider a random variable X taking values in a metric
space (F , ρ) with label Y ∈ {0, 1}. We extend some results on consistency and strong consistency of
the moving window rule from the i.i.d. case to the weakly dependent case under mild assumptions. The
practical use of the moving window rule will be illustrated through a simulation study. The performance
of the moving window rule is investigated.
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1. Introduction

In many experiments, the observations can be collected as elements in infinite dimensional spaces. This
type of data, which we call functional data, arise naturally in many disciplines including medicine, economics,
meteorology and many others. Statistics for functional random variables are becoming more and more important.
The recent literature in this area shows the great potential of these new statistical methods for functional data.
The most popular case of functional random variable corresponds to the situation when we observe random
curves on different statistical units. Many multivariate statistical techniques have been extended to functional
data and good overviews on this topic can be found in [1,7,8,15–18,20,25,30–33]. Nonparametric methods taking
into account functional variables have been developed with very interesting practical motivations dealing with
environmetrics (see [9]), chemometrics (see [15]), meteorological science (see [4]), speech recognition problems
(see [16]), radar range profile (see [21]), medical data (see [19]), etc. Much of the early work on functional data
analysis (FDA) focussed on i.i.d. functional random variables, but recently there has been heightened interest
in dependent functional data. The need to take account of dependence is particularly evident in cases where
functional data arise from segmenting a long time series into natural consecutive intervals (e.g. days, weeks, etc.)
of equal length, as discussed by [22]. Electricity load curves, pollutant concentration curves and traffic volumes
across the day are just a few examples of time series functional data studied in the literature (see [4, 9]).
In this paper, we focus on the nonparametric classification for dependent functional random variables under
weak dependence assumptions. Classification and regression estimation for functional data are of fundamental
importance in the theory and practice of statistics. Various basic classification methods have been adapted to
classify functional data. For example, under the assumption of independence, [20] adapt parametric multivariate
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regression models and [16] adapt the k-nearest neighbor method. We consider the problem of nonparametric
classification by a kernel-based rule under α-and β-mixing conditions. The mixing conditions together with the
functional approach allow us to classify segmented curves (e.g. electricity load curves) generated from continuous
time processes. Let X be a random element with values in a metric space (F , ρ) where F is a function space
and ρ denotes the metric on F , and let Y be a random variable with values 0 or 1. The distribution of the pair
(X, Y ) is well defined by (μ, η) where μ(B) = P(X ∈ B), for all Borel sets B on F , and η(x) = P(Y = 1|X = x),
for all x ∈ F . In order to predict the unknown nature Y , called a class or label, of an observation X = x with
values in F , the statistician creates a classifier g : F −→ {0, 1} which maps a new observation x ∈ F into
its predicted label g(x). It is certainly possible to wrongly specify its associated label y and an error occurs if
g(x) �= y. Let L = L(g) = P{g(X) �= Y } denote the probability of error for the classifier g. An optimal classifier,
called Bayes rule, is given by

g∗(x) = 1I{η(x)≥1/2},

where 1IA denotes the indicator function of the set A. It is easy to see that the Bayes rule has the smallest
probability of error, that is

L∗ = L(g∗) = inf
g:F→{0,1}

P{g(X) �= Y }.

We refer to Theorem 2.1 in [10] for the finite dimensional case. The Bayes rule depends on the distribution of
(X, Y ) which is generally unknown. But it is often possible to construct a classifier from a set of observations
Dn = {(X1, Y1), . . . , (Xn, Yn)} of (X, Y ). The set Dn is called the training data. Among the various ways to
define a classifier from a training data, one of the most popular is the moving window rule defined by

gn(x) =

⎧⎨⎩0 if
∑n

i=1 1I{Yi=0,Xi∈Bx,h} ≥∑n
i=1 1I{Yi=1,Xi∈Bx,h}

1 otherwise,

where h = h(n) the smoothing factor, is a strictly positive number decreasing to 0 when n → ∞ and Bx,h

denotes the closed ball of radius h centered at x. In order to establish the theoretical results, we write the
moving window rule as follows

gn(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if ηn(x) ≤

∑n
i=1(1 − Yi)1I{Xi∈Bx,h}

nμ(Bx,h)

1 otherwise,

(1.1)

where

ηn(x) =

∑n
i=1 Yi1I{Xi∈Bx,h}

nμ(Bx,h)
·

Clearly, the moving window rule is one of the kernel-based rules being derived from the kernel estimate in
density and regression estimation. See for example, [27, 28, 39]. Let Ln = L(gn) = P{gn(X) �= Y } be the error
probability of gn(x). The classifier gn(x) is called consistent if

ELn −→ L∗ as n → ∞
and called strongly consistent if

Ln −→ L∗ with probability one as n → ∞.

A classifier can be consistent for certain class of distribution of (X, Y ), but not be consistent for others. The clas-
sifier gn(x) is called (strongly) universally consistent, if it is (strongly) consistent for all distributions of (X, Y ).
Much of the existing theory on the consistency problems is based on the assumption that the available func-
tional data are independent and identically distributed. In finite-dimensional spaces, the moving window rule
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and the k-nearest neighbor rule are universally strongly consistent under classical conditions. (see [11, 36]). [1]
give some examples showing that the results of [11] on the consistency are no more valid in a general functional
metric space (F , ρ) and they establish the consistency and the strong consistency under mild conditions on the
distribution of (X, Y ) and the metric space. Our aim in this paper is to establish the consistency and the strong
consistency of the moving window rule for functional data under α- and β-mixing conditions.

2. Mixing conditions and preliminaries

Let (Ω,A, P) be a probability space and let B and C be two sub σ-fields of A. The α-mixing coefficient
between B and C is defined by

α = α(B, C) = sup
B∈B,C∈C

|P(B ∩ C) − P(B)P(C)|

and the β-mixing coefficient is defined by

β = β(B, C) = E sup
C∈C

|P(C|B) − P(C)|.

Let (Zn)n∈Z be a stochastic process on (Ω,A, P) and taking values in some space (Ω′,A′). We denote the σ-fields
generated by (Zi, i ≤ s) and (Zi, i ≥ s + t), respectively, by Bs and Cs+t for s ∈ Z and t ∈ N

∗.

Definition 2.1. The process (Zn)n∈Z is said to be strong mixing (or α-mixing) if

α(t) = sup
s∈Z

α(Bs, Cs+t) ↓ 0 as t → ∞.

The strong mixing coefficient is one of the most popular mixing coefficients. For more information on strong
mixing processes, see for example, [34, 35]. If Bs = σ(Zs) and Cs+t = σ(Zs+t), the process (Zn)n∈Z is called
2-α-mixing. The 2-α-mixing condition is weaker than strongly mixing (see [5]).

Definition 2.2. The process (Zn)n∈Z is said to be absolutely regular (or β-mixing) if

β(t) = sup
s∈Z

β(Bs, Cs+t) ↓ 0 as t → ∞.

Linear processes or more generally Markov chains may be absolutely regular (see [12]). The two mixing coeffi-
cients α and β are related by the inequality 2α ≤ β (see [34]). Consequently, any β-mixing process is α-mixing
one. The following lemma (see [34]) is crucial to derive the consistency of the moving window rule. Let ‖.‖∞ be
the supremum norm.

Lemma 2.3. If Z1 and Z2 are two R-valued bounded random variables, then

|cov(Z1, Z2)| ≤ 4‖Z1‖∞‖Z2||∞α(σ(Z1), σ(Z2)).

Now, let (Ω,A, P) be a probability space and let B and C be two sub σ-fields of A, we denote by B ∨ C
the σ-field generated by B ∪ C. The following coupling lemma (see [2]) will be needed to establish the strong
consistency.

Lemma 2.4. Let Z be a random variable on (Ω,A, P) with values in some Polish space Ω′ and M a sub σ-field
of A. Assume that there exists a random variable U uniformly distributed over [0, 1], independent of σ(Z)∨M.
Then, there exists a random variable Z∗ measurable with respect to σ(U) ∨ σ(Z) ∨ M, distributed as Z and
independent of M, such that

P(Z �= Z∗) = β(M, σ(Z)).

Remark 2.5. A Polish space Ω′ is a topological space which is separable and completely metrizable (see [23]).
Most of the familiar objects of study in analysis involve Polish spaces. For example, R and R

d with the usual
topology are Polish. For all n ∈ N

∗, {0, 1, . . . , n − 1} is Polish with discrete topology. A countable product of
Polish spaces is Polish, too.
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3. Consistency in function space under mixing conditions

For convenience, we firstly introduce the notion of covering numbers (see [24]). For a given subset G of the
metric space (F , ρ) , the covering number is defined by

N (ε.G, ρ) = inf

{
k ≥ 1 : ∃x1, . . . , xk ∈ F with G ⊂

k⋃
i=1

Sxi,ε

}
,

where Sx,ε is the open ball of radius ε > 0 and center at x ∈ F . The set G is said to be totally bounded
if N (ε,G, ρ) < ∞ for all ε > 0. In particular, every relatively compact set is totally bounded and all totally
bounded sets are bounded.

Assumption 3.1. There exists a sequence (Fk)k≥1 of totally bounded subsets of F such that Fk ⊂
Fk+1 for all k ≥ 1 and μ

(⋃
k≥1 Fk

)
= 1.

Assumption 3.2. For any positive integer k ≥ 1, any i �= j and ε1 ∈]0, 1], P((Xi, Xj) ∈ Bx,h × Bx,h) ≤
C[μ(Bx,h)]1+ε1 , for all x ∈ Fk, and some C > 0.

Assumption 3.3. The following Besicovich condition holds, for every ε > 0,

lim
h→0+

μ

{
x ∈ F :

∣∣∣∣∣ 1
μ(Bx,h)

∫
Bx,h

ηdμ − η(x)

∣∣∣∣∣ > ε

}
= 0.

Remark 3.4. Note that Assumption 3.1 is always true whenever the space (F , ρ) is separable, see for exam-
ple, [1, 26]. Regarding Assumption 3.2, we refer to [37] for the spatial version of this condition. This assumption
can be linked with the classical local dependence condition met in the literature of the finite-dimensional case
when X and (Xi, Xj) admit, respectively, the densities f and fi,j (see [5]). Assumption 3.3 holds for example
if η(x) is μ-continuous (see [7]).

We suppose that the training data Dn are observations of stationary 2-α-mixing functional process and there
exist C > 0 and θ > 0 such that

α(t) ≤ Ct−θ for all t ∈ N
∗. (3.1)

The hypothesis (3.1) means that the training data Dn are drawn from an arithmetically 2-α-mixing functional
process. From now on, the notion Gc stands for the complement of any subset G of F and for simplicity of
notation, we write Nk(ε) instead of N (ε,Fk, ρ). The following two lemmas (see [1]) will be needed in the sequel.

Lemma 3.5. Suppose that Assumption 3.3 holds. If h → 0 as n → ∞, then,∫
F
|η(x) − Eηn(x)|μ(dx) =

∫
F

∣∣∣∣∣η(x) −
∫

Bx,h
η(t)μ(dt)

μ(Bx,h)

∣∣∣∣∣μ(dx) −→ 0.

Proof of Lemma 3.5 is a straightforward consequence of Assumption 3.3 and the Lebesgue dominated con-
vergence theorem.

Lemma 3.6. Suppose that (Fk)k≥1 is a sequence of totally bounded subsets of F . Let k be a fixed positive
integer. Then, for every h > 0, ∫

Fk

1
μ(Bx,h)

μ(dx) ≤ Nk(h/2).

See [1] for the proof of Lemma 3.6.
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Theorem 3.7. Suppose that (Fk)k≥1 is a sequence of totally bounded subsets of F and Assumption 3.2 and (3.1)
hold with θ > 2. If h → 0 as n → ∞, then for n sufficiently large and for every positive integer k,

E

∫
Fk

|ηn(x) − Eηn(x)|μ(dx) ≤ C

(
1
n
Nk

(
h

2

))1/2

, for some C > 0.

Corollary 3.8. Let (Fk)k≥1 be a sequence of totally bounded subsets of F . Suppose that Assumptions 3.2–3.3
and (3.1) hold with θ > 2. If h → 0 and for every k ≥ 1, Nk(h/2)/n −→ 0 as n → ∞, then

ELn −→ L∗ as n → ∞.

Observe that Corollary 3.8 generalizes the consistency result of [1] to the weakly dependent case under the
same assumptions on the smoothing factor h.

4. Strong consistency in function space under mixing conditions

In this section, we investigate the strong consistency of the moving window classifier under β-mixing condition.
This mixing condition together with the coupling Lemma 2.4 allow to generate independent and identically
distributed random functional variables that we need to prove the strong consistency, while the more general
mixing condition, the α-mixing condition, allows only to generate independent and identically distributed real-
valued random variables (see [6]). In order to establish the strong consistency, we suppose that the training
data Dn are observations of stationary and arithmetically β-mixing functional process, and that there exist
C > 0 and θ > 0 such that

β(t) ≤ Ct−θ for all t ∈ N
∗. (4.1)

The following theorem generalizes the strong consistency result of [1] to the β-mixing case.

Theorem 4.1. Let (Fk)k≥1 be a sequence of totally bounded subsets of F . Assume that the training data Dn

are observations of β- mixing functional process and the metric space (F , ρ) is Polish. Assume that Assump-
tions 3.1−3.2 and (4.1) hold with θ > 2. Let (kn)n≥1 be an increasing sequence of positive integers such that∑

n≥1

μ(Fc
kn

) < ∞ and
∑
n≥1

Nkn

(
h

2

)
p−θ

n < ∞,

for some integer pn ∈ [1, n/2] with pn → ∞ as n → ∞. If h → 0 and

n

pnlog(n)N 2
kn

(h/2)
−→ ∞ as n → ∞,

then
Ln −→ L∗ as n → ∞ with probability one.

Remark 4.2. For example, consider Nkn (h/2) � nγ1 with 0 < γ1 < 1, and choose pn � nγ2 with (1 + γ1)/θ <
γ2 < 1 and θ > 2. Clearly, we have ∑

n≥1

Nkn

(
h

2

)
p−θ

n < ∞.

Furthermore, the condition
n

pnlog(n)N 2
kn

(h/2)
−→ ∞ as n → ∞

may be satisfied if γ2 + 2γ1 < 1. The condition
∑
n≥1

μ(Fc
kn

) < ∞ is used by [1] in order to obtain the strong

consistency in the independent case.
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5. Smoothing factor selection and simulation study

In practice, the choice of a smoothing parameter h is a crucial problem to the kernel classifier. A wrong
value of h may lead to catastrophic error rates. In principle, there is no universal criterion that would enable
an optimal choice. Various techniques for the smoothing factor selection have been developed in the nonpara-
metric kernel smoothing method. Among the different selection techniques to select the parameter h, one can
propose the cross-validation criterion (CV). This technique, being widely used in statistics, is primarily a way
of measuring the predictive performance of a statistical model. In the nonparametric functional regression, the
(CV) criterion is implemented in R programming environment (see [14]), but the situation is slightly different
for the nonparametric classification problem. However, taking

gn(x) =

⎧⎨⎩ 0 if
∑n

i=1 Yi1I{‖Xi−x‖≤h} ≤∑n
i=1(1 − Yi)1I{‖Xi−x‖≤h}

1 otherwise,

the (CV) criterion is based on minimizing, with respect to h ∈ R+, the CV (h) given by

CV (h) =
1
n

n∑
i=1

(Yi − g−i
n (Xi))2ω(Xi),

where g−i
n (Xi) indicates the moving window rule based on leaving out the i pair (Xi, Yi) and ω(Xi) is the weight

of the element Xi. We assume that h belongs to some set Hn ⊂ R+ including hi
1, . . . , h

i
k for all i = 1, . . . , n

where hi
j is the distance to the jth neighbor of Xi with respect to the metric ρ and k is chosen depending on

the size of training data set. The weight function ω(x) may be chosen as a bounded function with support on
a bounded compact set S having non-empty interior (see [29]). For the sake of simplicity, we will take ω(x) as
a constant. Therefore, the cross-validated smoothing factor is given by

hopt = arg min
h∈Hn

CV (h).

Now, we use the R statistical programming environment to run a simulation study. We propose to investigate
the performance of our method in the following simulated scenario. For each i = 1, . . . , n and t ∈ [0, 1], we
generate pairs (Xi(t), Yi) via the scheme (see [3]):

Xi(t) = sin(F 1
i πt)fμi,σi(t) + sin(F 2

i πt)f1−μi,σi(t) + εt

where fμ,σ stands for the normal density with mean μ and variance σ2; F 1
i and F 2

i are independent uniform
random variables on [140, 150]; μi is randomly uniform on [0.1, 0.4]; σ2

i is randomly uniform on [0, 0.005] and the
εt ’s are dependent normal random variables with mean 0, variance 0.25 and covariance function c(k) = 0.5|k|−2.5

for all k �= 0. It is important to mention that a gaussian process is α-mixing if and only if its covariance function
c(k) converges to zero as k → ∞. We suppose that the function space on the interval [0, 1] is endowed with the
norm defined by ‖x‖ =

∫ 1

0 |x(t)|dt. This norm is used without discretizing the data. For example, if we have the
following realization of X(t) :

x(t) = sin(148.67πt)f0.18,0.06(t) + sin(146πt)f0.82,0.06(t) − 0.39,

by using the function integrate in R statistical programming environment, we get ‖x‖ = 1.43476 with absolute
error less than 0.0000021. For the norm ‖.‖, we take the metric ρ(Xi, Xj) = ‖Xi − Xj‖. Let the label Yi

associated to Xi be defined, for i = 1, . . . , n, by

Yi =

{
0 if μi ≤ 0.25
1 otherwise.
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Figure 1. Four typical realizations of simulated curves with label 0 (left) and label 1 (right).
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Figure 2. Sample of size n = 100 with labels 1 (blue) and labels 0 (black). (color online)

We firstly simulate a training sample of size n = 100 for (X(t), Y ) using the above scenario. Figure 1 displays
four typical realizations of the Xi ’s and Figure 2 displays plots for the training sample. We have for all
i, j = 1, . . . , 100,

min
i
=j

ρ(Xi, Xj) = 0.88, max
i
=j

ρ(Xi, Xj) = 6.30.

For the sake of simplicity, the distances between the simulated curves are rounded off to two decimal digits. We
estimate CV (h) at different values of h ∈ [0.88, 6.30] as in the following table:
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Table 1. Some estimated values of CV (h) at different values of h.

h 0.88 1.80 2.20 2.40 2.50 3.00 3.50 4.50 5.50 6.30
CV (h) 49% 40% 4% 1% 2% 27% 63% 49% 49% 49%

0 1 2 3 4 5 6

0
10

20
30

40
50

60

Values of the smoothing factor  h

CV
(h

)

Figure 3. Variation of CV (h) as a function of the smoothing factor h.

Table 2. Some estimated values of ER at different values of h.

h 0.88 1.80 2.20 2.40 2.50 3.00 3.50 4.50 5.50 6.30
ER 60% 48% 10% 4% 14% 40% 42% 42% 42% 50%

Figure 3 displays the variation of CV (h) as a function of the smoothing factor h. It is evident that the
function CV (h) has a relative minimum value at h ≈ 2.4. This allows to take ĥopt = 2.4 as an optimal value
of h.
Then, we simulate a testing sample of size m = 50 which is used to look at the behaviour of our method and
we estimate the error rate of classification (ER) corresponding to the different values of h in Table 1. We have
the following table:

Table 2 shows that the moving window rule is very sensitive to the choice of the optimal smoothing factor.
The lowest possible error rate is at ĥopt = 2.40.

Now, since the theoretical results of this paper are related to the consistency, it is natural to consider training
samples with increasing sizes. For this aim, we generated, for each sample size, 100 training samples of size n
and 100 corresponding test samples of size 100. In each replication, the proposed classifier was determined on
the basis of the training sample at hand (based on the optimal bandwidth minimizing the CV (h)) and the
misclassification error rate (ER) was evaluated based on the associated test sample. Table 3 then reports the
average error rate (AER), obtained by averaging the error rates associated with the corresponding 100 test
samples.

Table 3 shows that the estimated optimal bandwidth and the error rate decrease when the training sample
size increases. This means that the practical results in the simulation study are in line with the theoretical
results.
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Table 3. Estimated optimal bandwidths and average error rates corresponding to training
samples of different sizes.

n 25 50 100 150 200 250

ĥopt 2.37 2.14 2.11 2.09 1.98 1.97

AER 11.79% 7.87% 5.23% 4.10% 3.85% 3.63%

6. Proofs

In order to establish the proofs in this section, we use gn(x) given by (1.1).

Proof of Theorem 3.7. Let x ∈ F be a fixed element. By Cauchy–Schwartz inequality, we have

E|ηn(x) − Eηn(x)| ≤ (var(ηn(x)))1/2 ≤
(

E(Y 1I{X∈Bx,h})
2

n(μ(Bx,h))2
+ Sn(x)

)1/2

,

where

Sn(x) =
1

(nμ(Bx,h))2
∑
i
=j

|cov(Δi, Δj)|

and Δi = Yi1I{Xi∈Bx,h} for i = 1, . . . , n. Now, since |Y | ≤ 1, we obtain

E|ηn(x) − Eηn(x)| ≤
(

1
nμ(Bx,h)

+ Sn(x)
)1/2

· (6.1)

Let us first deal with the cross term Sn(x). Choose un a sequence of increasing positives such that un → ∞ as
n → ∞. Then

Sn(x) =
1

(nμ(Bx,h))2
∑

0<|i−j|≤un

|cov(Δi, Δj)|

+
1

(nμ(Bx,h))2
∑

|i−j|>un

|cov(Δi, Δj)|. (6.2)

Now, for 0 < |i − j| ≤ un, Assumption 2.2 implies that

|cov(Δi, Δj)| ≤ E(ΔiΔj) + E(Δi)E(Δj)
≤ P((Xi, Xj) ∈ Bx,h × Bx,h) + {P(X ∈ Bx,h)}2

≤ C{μ(Bx,h)}1+ε1 + {μ(Bx,h)}2,

where 0 < ε1 ≤ 1 is the constant defined in Assumption 2.2 and C is a generic positive constant, independent of
both x and n, whose value may vary from line to line. Since μ(Bx,h) ≤ 1, we have {μ(Bx,h)}2 ≤ {μ(Bx,h)}1+ε1

and then
|cov(Δi, Δj)| ≤ C{μ(Bx,h)}1+ε1 . (6.3)

If |i − j| > un, by Lemma 2.2 and the fact that |Y | ≤ 1, we get

|cov(Δi, Δj)| ≤ 4α(|i − j|). (6.4)
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From (6.2), (6.3) and (6.4), we can write

Sn(x) ≤ Cun

n(μ(Bx,h))1−ε1
+

4
(nμ(Bx,h))2

∑
|i−j|≥un

α(|i − j|)

≤ Cun

n(μ(Bx,h))1−ε1
+

4
n(μ(Bx,h))2

∑
i≥un

α(i). (6.5)

Since un > 1 and un − 1 ≥ un/2 for n sufficiently large, it follows from (3.1) that∑
i≥un

α(i) ≤ C

∫ ∞

un−1

t−θdt ≤ C

∫ ∞

un/2

t−θdt ≤ Cu1−θ
n

θ − 1
· (6.6)

Consequently, by (6.5) and (6.6), we obtain

Sn(x) ≤ Cun

n(μ(Bx,h))1−ε1
+

Cu1−θ
n

n(μ(Bx,h))2
·

Choosing un = 1/(μ(Bx,h))ε1 and 1/(θ − 1) < ε1 ≤ 1, where θ > 2, we get for n sufficiently large
{μ(Bx,h)}(θ−1)ε1 ≤ μ(Bx,h) and

Sn(x) ≤ C

nμ(Bx,h)
· (6.7)

Thus, from (6.1) and (6.7), it follows that

E|ηn(x) − Eηn(x)| ≤ C√
nμ(Bx,h)

· (6.8)

By Fubini’s theorem, Jensens’s inequality and Lemma 3.6, we get

E

∫
Fk

|ηn(x) − Eηn(x)|μ(dx) ≤ C

∫
Fk

1√
nμ(Bx,h)

μ(dx)

≤ C

(∫
Fk

1
nμ(Bx,h)

μ(dx)
)1/2

≤ C

(
1
n
Nk

(
h

2

))1/2

· �

Proof of Corollary 3.8. By Theorem 2.3 in [10], whose extention to the infinite dimensional setting is straight-
forward, the corollary will be proved if we show that

E

∫
F
|η(x) − ηn(x)|μ(dx) −→ 0 as n → ∞.

Since η(x) ≤ 1 and Eηn(x) ≤ 1, we have, for any integer k ≥ 1,

E

∫
F
|η(x) − ηn(x)|μ(dx) = E

∫
Fk

|η(x) − ηn(x)|μ(dx) + E

∫
Fc

k

|η(x) − ηn(x)|μ(dx)

≤
∫
Fk

|η(x) − Eηn(x)|μ(dx) + E

∫
Fk

|ηn(x) − Eηn(x)|μ(dx) + 2μ(Fc
k).

Consequently, according to Theorem 3.7, for n sufficiently large, we get the following inequality

E

∫
F
|η(x) − ηn(x)|μ(dx) ≤

∫
F
|η(x) − Eηn(x)|μ(dx) + C

(
1
n
Nk

(
h

2

))1/2

+ 2μ(Fc
k).
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Therefore, by Lemma 3.5 and the assumptions on h, we get for every k ≥ 1,

lim sup
n→∞

E

∫
F
|η(x) − ηn(x)|μ(dx) ≤ 2μ(Fc

k).

If we let k go to infinity, Assumption 2.1 yields

lim sup
n→∞

E

∫
F
|η(x) − ηn(x)|μ(dx) = 0, (6.9)

and the proof of the corollary is completed. �

Proof of Theorem 4.1. We set Z = (X, Y ) and Zi = (Xi, Yi) for i = 1, . . . , n. By assumptions, X and Xi take
value in the Polish metric space F , so, Z = (X, Y ) and Zi = (Xi, Yi) take values in the product Polish space
F × {0, 1}. We will now use the blocks decomposition introduced by [13] (see also [38]) which will be useful
afterwards. Without loss of generality, let n = 2pq for p = pn, q = qn ∈ [1, n/2] such that pn → ∞ as n → ∞
and let us define blocks as follow

W1 = (Z1, . . . , Zp), V1 = (Zp+1, . . . , Z2p)
W2 = (Z2p+1, . . . , Z3p), V =

2 (Z3p+1, . . . , Z4p)
. . . . . .

Wq = (Z2(q−1)p+1, . . . , Z(2q−1)p), Vq = (Z(2q−1)p+1, . . . , Z2pq).

Observe that Wi and Vi are σ(Zj , j ∈ Ii)-measurable and σ(Zj , j ∈ Ĩi)-measurable respectively, where Ii =
{j : 2(i − 1)p + 1 ≤ j ≤ (2i − 1)p} and Ĩi = {j : (2i − 1)p + 1 ≤ j ≤ 2ip} for all i = 1, . . . , q. Furthermore, we
have |j − j

′ | > p for any j ∈ Ii and j
′ ∈ Ii′ if i �= i

′
. In the same way, one can show that |j − j

′ | > p for any
j ∈ Ĩi and j

′ ∈ Ĩi′ if i �= i
′
. Now, according to Lemma 2.4, we can find mutually independent random vectors

W ∗
1 = (Z∗

1 , . . . , Z∗
p ), . . . , W ∗

q =
(
Z∗

2(q−1)p+1, . . . , Z
∗
(2q−1)p

)
such that for all i = 1, . . . , q, W ∗

i has the same probability distribution as Wi and P(Wi �= W ∗
i ) ≤ β(p). We can

find also mutually independent random vectors

V ∗
1 =

(
Z∗

p+1, . . . , Z
∗
2p

)
, . . . , V ∗

q =
(
Z∗

(2q−1)p+1, . . . , Z
∗
2qp

)
such that for all i = 1, . . . , q, V ∗

i has the same probability distribution as Vi and P(Vi �= V ∗
i ) ≤ β(p). As a

consequence, for all i = 1, . . . , n,

P(Zi �= Z∗
i ) = P((Xi, Yi) �= (X∗

i , Y ∗
i )) ≤ β(p). (6.10)

By definition of blocks, the variables
∑(2i−1)p

j=2(i−1)p+1 Y ∗
i 1I{X∗

i ∈Bx,h} are mutually independent and the variables∑2ip
j=(2i−1)p Y ∗

i 1I{X∗
i ∈Bx,h} are also mutually independent for all i = 1, . . . , q. If we denote

η∗
n(x) =

∑n
i=1 Y ∗

i 1I{X∗
i ∈Bx,h}

nμ(Bx,h)
, η∗

w,n(x) =

q∑
i=1

(2i−1)p∑
j=2(i−1)p+1

Y ∗
i 1I{X∗

i ∈Bx,h}

nμ(Bx,h)

and

η∗
v,n(x) =

q∑
i=1

2ip∑
j=(2i−1)p+1

Y ∗
i 1I{X∗

i ∈Bx,h}

nμ(Bx,h)
,
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then,
η∗

n(x) = η∗
w,n(x) + η∗

v,n(x). (6.11)

Let (kn)n≥1 be the increasing positive sequence defined in the statement of Theorem 4.1. By Theorem 2.3 in [10],
the theorem will be proved if we show that∫

F
|η(x) − ηn(x)|μ(dx) −→ 0 as n → ∞ with probability one. (6.12)

We first proceed to show that∫
Fkn

|η(x) − ηn(x)|μ(dx) → 0 with probability one as n → ∞. (6.13)

By Fubini’s theorem, we have∫
Fkn

|η(x) − ηn(x)|μ(dx) ≤
∫
Fkn

|η(x) − Eηn(x)|μ(dx) +
∫
Fkn

|ηn(x) − Eηn(x)|μ(dx).

≤ E

∫
Fkn

|η(x) − ηn(x)|μ(dx) +
∫
Fkn

|ηn(x) − Eηn(x)|μ(dx). (6.14)

According to (6.9), we have

E

∫
Fkn

|η(x) − ηn(x)|μ(dx) ≤ E

∫
F
|η(x) − ηn(x)|μ(dx) −→ 0 as n → ∞.

Thus, by (6.14), it suffices to show that∫
Fkn

|ηn(x) − Eηn(x)|μ(dx) → 0 with probability one as n → ∞. (6.15)

Using Markov’s inequality, we have for any ε > 0,

P

(∣∣∣∣∣
∫
Fkn

|ηn(x) − Eηn(x)|μ(dx) −
∫
Fkn

|η∗
n(x) − Eη∗

n(x)|μ(dx)

∣∣∣∣∣ > ε

)

≤ ε−1
E

∣∣∣∣∣
∫
Fkn

|ηn(x) − Eηn(x)|μ(dx) −
∫
Fkn

|η∗
n(x) − Eη∗

n(x)|μ(dx)

∣∣∣∣∣
≤ 2ε−1

E

∫
Fkn

|η∗
n(x) − ηn(x)|μ(dx)

= 2ε−1
E

∫
Fkn

∣∣∣∣∣
∑n

i=1 Y ∗
i 1I{X∗

i ∈Bx,h}
nμ(Bx,h)

−
∑n

i=1 Yi1I{Xi∈Bx,h}
nμ(Bx,h)

∣∣∣∣∣μ(dx)

≤ 4ε−1
n∑

i=1

E1I{(X∗
i ,Y ∗

i ) 
=(Xi,Yi)}

∫
Fkn

1
nμ(Bx,h)

μ(dx).

As a consequence, by Lemma 3.6, (6.10) and (4.1), we have

P

(∣∣∣∣∣
∫
Fkn

|ηn(x) − Eηn(x)|μ(dx) −
∫
Fkn

|η∗
n(x) − Eη∗

n(x)|μ(dx)

∣∣∣∣∣ > ε

)

≤ 4ε−1
n∑

i=1

P ((X∗
i , Y ∗

i ) �= (Xi, Yi))
∫
Fkn

1
nμ(Bx,h)

μ(dx)

≤ Cε−1Nkn

(
h

2

)
β(p) ≤ Cε−1Nkn

(
h

2

)
p−θ
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for some generic constant C > 0. Thus, by the assumptions on h and the Borel−Cantelli lemma, we get∫
Fkn

|ηn(x) − Eηn(x)|μ(dx) −
∫
Fkn

|η∗
n(x) − Eη∗

n(x)|μ(dx) −→ 0

with probability one as n → ∞. So, (6.13) will be proved if we show that∫
Fkn

|η∗
n(x) − Eη∗

n(x)|μ(dx) −→ 0 with probability one as n → ∞. (6.16)

To do that, by (6.11) , we have∫
Fkn

|η∗
n(x) − Eη∗

n(x)|μ(dx) ≤
∫
Fkn

|η∗
w,n(x) − Eη∗

w,n(x)|μ(dx) +
∫
Fkn

|η∗
v,n(x) − Eη∗

v,n(x)|μ(dx). (6.17)

Therefore, we have to prove that the two terms on the right hand side of the inequality (6.17) tend to zero
as n → ∞. Let F : ((F × {0, 1})p)q → R a real function defined as follows

F (W ∗
1 , . . . , W ∗

q ) =
∫
Fkn

|η∗
w,n(x) − Eη∗

w,n(x)|μ(dx).

For wi �= w
′
i where wi, w

′
i ∈ (F × {0, 1})p, by Lemma 3.6, we have

|F (W ∗
1 , . . . wi, . . . , W

∗
q ) − F (W ∗

1 , . . . w
′
i, . . . , W

∗
q )| ≤ 2p

n

∫
Fkn

1
μ(Bx,h)

μ(dx)

≤ Cp

n
Nkn

(
h

2

)
·

By McDiarmid’s inequality, for every ε > 0,

P
(∣∣F (W ∗

1 , . . . , W ∗
q ) − E(F (W ∗

1 , . . . , W ∗
q ))
∣∣ > ε

) ≤ 2 exp

(
− ε2n

C2pN 2
kn

(
h
2

)) ·

With the help of the Borel−Cantelli lemma and the assumption on h, we get∫
Fkn

|η∗
w,n(x) − Eη∗

w,n(x)|μ(dx) − E

∫
Fkn

|η∗
w,n(x) − Eη∗

w,n(x)|μ(dx) −→ 0

with probability one as n → ∞. Similar arguments can be used to prove∫
Fkn

|η∗
v,n(x) − Eη∗

v,n(x)|μ(dx) − E

∫
Fkn

|η∗
v,n(x) − Eη∗

v,n(x)|μ(dx) −→ 0

with probability one as n → ∞. So, (6.16) will be proved if we show that

E

∫
Fkn

|η∗
w,n(x) − Eη∗

w,n(x)|μ(dx) −→ 0 as n → 0 (6.18)

and

E

∫
Fkn

|η∗
v,n(x) − Eη∗

v,n(x)|μ(dx) −→ 0 as n → 0. (6.19)
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Since 2α(t) ≤ β(t) ≤ Ct−θ for each t ∈ N
∗, with a straightforward adaptation of the proof of Theorem 3.7, one

can easily prove (6.18) and (6.19). As a consequence, the proof of (6.16) is completed and then, the proof of
(6.13) is also completed. To finish the proof of the theorem, let us denote for all n ≥ 1 and i = 1, . . . , n,

Zn
i =

∫
Fc

kn

1I{Xi∈Bx,h}
μ(Bx,h)

μ(dx).

It follows that

E

[
1
n

n∑
i=1

Zn
i

]
= μ(Fc

kn
).

By assumption and the Borel−Cantelli lemma, we have

1
n

n∑
i=1

Zn
i −→ 0 with probability one as n → ∞. (6.20)

Hence, we can write∫
F
|η(x) − ηn(x)|μ(dx) =

∫
Fkn

|η(x) − ηn(x)|μ(dx) +
∫
Fc

kn

|η(x) − ηn(x)|μ(dx)

≤
∫
Fkn

|η(x) − ηn(x)|μ(dx) + μ(Fc
kn

) +
1
n

n∑
i=1

Zn
i .

Finally, by Assumption 3.1, (6.13) and (6.20), all terms on the right hand side of the last inequality tend to 0
as n → ∞, and the proof is completed. �

7. Conclusion

In this paper, we have assessed the performance of the moving window rule based on weakly dependent
functional data by studying the (strong) consistency of this classifier under mild assumptions. For the practical
use of the moving window rule, we have used the cross-validation method to choose the smoothing parameter.
As a sequel of the simulation study, we have shown that the optimal smoothing factor obtained by the cross-
validation criterion implies the smallest estimated error rate. We have also shown that the average rate of
misclassification decreases as the training sample size increases which is in line with the theoretical results on
the consistency.
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Poincaré Probab. Statist. 30 (1994) 63–82.

[13] P. Doukhan, P. Massart and E. Rio, Invariance principles for absolutely regular empirical processes. Ann. Inst. Henri Poincaré
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