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UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL
EQUATIONS EXPECTATIONS
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Abstract. We propose an unbiased Monte Carlo method to compute E(g(XT )) where g is a Lipschitz
function and X an Ito process. This approach extends the method proposed in [16] to the case where
X is solution of a multidimensional stochastic differential equation with varying drift and diffusion
coefficients. A variance reduction method relying on interacting particle systems is also developed.
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1. Introduction

Let d ≥ 1 and W be a d−dimensional Brownian motion. We introduce the process X defined as the unique
strong solution of the multi-dimensional Stochastic differential Equation (SDE) with coefficients satisfying the
usual Lipschitz conditions: {

dX0,x0
t = b(t,X0,x0

t )dt+ σ(t,X0,x0
t )dWt,

X0,x0
0 = x0,

(1.1)

where b : [0, T ]× R
d −→ R

d is the drift and σ : [0, T ]× R
d −→ Sd is the diffusion of the process, Sd being the

set of d× d dimensional matrices.
In this paper, we are interested in a Monte Carlo approach to compute an expectation of the form

u(t, x) := E
[
g(Xt,x

T )
]
. (1.2)

When no explicit solution is available, the classical method to solve equation (1.2) consists in using a discretiza-
tion scheme of (1.1) (for example the Euler scheme [18], the Milstein scheme [19], or the Burrage scheme [5])
and the error can be decomposed as a sum of an error due to the discretization time step δt and a statistical
error of order N−1/2 due to the Monte Carlo method for a number N of simulations.

In principle, this bias/variance tradeoff should carefully be adjusted in order to optimize the rate of conver-
gence. This type of analysis has been conducted in [9] showing that, for instance with the the simple Euler Monte
Carlo method, (using the Euler scheme to discretize the time), the best choice of time step δt as a function of
the sample size N would lead to a rate of order c−

1
3

N , where cN = N/δt measures the computing time. Hence
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the combination of the bias and variance error deteriorates the standard rate c−1/2
N , due to the statistical error,

when X is easily simulatable and cN = N . Moreover, in practice it is difficult to evaluate properly the bias error
so that the optimal tradeoff is rarely practicable.

The Multilevel Monte Carlo (MLMC) method introduced in [12] is a way to improve the bias/variance tradeoff
and to reduce the variance by combining several Euler-Monte Carlo estimates, associated with different time
discretization steps. The idea is then to adjust judiciously the size of the sample simulated for each discretization
level, in order to achieve a better rate of convergence.

This approach has been extended in [20] allowing for an infinite number of levels so that the bias vanishes. The
estimate is then expressed as an infinite sum (over the levels), which is randomized by introducing a probability
distribution driving the levels. However, when the order of the time discretization scheme is not sufficiently high,
this method results in an infinite variance estimate. More precisely, as soon as the time discretization scheme
implies a strong error greater than or equal to the order

√
δt, either the variance or the computing time blows

up. Unfortunately this situation includes the case of the Euler scheme, which is so far the most widely usable
discretization scheme in multidimensional cases.

This approach has been improved in [1], where the authors rely on the parametrix expansion presented in [2]
to propose a finite variance estimate. More specifically, the parametrix method provides a precise expansion
of the expected difference considered at two successive levels in terms of a difference between the infinitesimal
generator, L, associated with (1.1) and the one associated with the same SDE with frozen coefficients at a
given point, as defined hereafter by (2.3). Finally, importance sampling is used to change the levels distribution
in order to control the variance. These developments lead to the backward simulation method or the forward
simulation method, depending on whether L or its adjoint is used to represent the expectation. The backward
method consists in generating some independent and identically distributed (i.i.d.) Euler type discretizations of
a process, at random discrete times, from time T to time t. The payoff function, g is used as initial distribution
at time T and the estimator results from a weighted average over the trials that hit the initial point, x, at
time t. Therefore, this approach requires the payoff g to be integrable and is limited to small dimensions (for
which the probability of reaching a given point can efficiently be computed). The forward method consists in
generating some i.i.d. Euler type discretizations of (1.1) at random discrete times from time t to T and then
computing a weighted average of the payoff function evaluated at the final points. In both methods the weights
depend on the drift and diffusion coefficients b and σ evaluated along the simulated path. However, the forward
approach relies on a stronger regularity assumption on the SDE coefficients. In particular, the related weights
involve the first derivatives of the drift and the first and second derivatives of the volatility function.

Another approach called Exact simulation was initialized in [3]. The idea relies on Lamperti transform to
come down to a unit diffusion process. It has been extended to more general SDEs in for instance [6, 17].
However, the Lamperti transform is limited to the one dimensional case and extensions to the multidimensional
are still limited to some specific cases.

In this paper, we propose to extend a method originally developed in [16]. The main idea developed in this
seminal paper is to start by simulating exactly a SDE:{

dY 0,x0
t = b̂(t, Y 0,x0

t )dt+ σ̂(t, Y 0,x0
t )dWt

Y 0,x0
0 = x0,

where the coefficients b̂ and σ̂ are updated at independent exponential switching times. Then the change in
coefficients in SDE (1.1) is taken into account in an expectation representation via weights derived from the
automatic differentiation technique developed in [11]. By carefully choosing the coefficients b̂, σ̂, the authors
were able to provide a finite variance method in the case where the diffusion coefficient is constant or with a
general diffusion term but without drift and in dimension one. However, the variance of the resulting estimator
is proved to be infinite in the most general case. One interest of this approach which is very similar to the
forward parametrix representation [1, 2] is that the weights do not involve any derivatives of the coefficients b
or σ so that no differentiability assumptions on those coefficients is required. Besides, one major motivation
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of this type of approach goes beyond the scope of the present paper. The idea is to generalize the branching
diffusion representation of nonlinear Partial Differential Equations (PDEs) considered in [13, 15] to a more
general class of nonlineariries. One step in that direction has already been done in [14] with an extension of the
branching diffusion representation to a class of semilinear PDEs.

To bypass the infinite variance obstacle faced in [16], the idea developed in the present paper consists in
extending the original framework to more general switching times and exploit the switching time distribution to
control the estimator variance. Notice that the same idea has been independently investigated in [1] to control
the variance of the parametrix representation proposed in [2]. We prove that under suitable assumptions on
the switching times distribution, we can provide a finite variance estimate of the solution of (1.2) in the most
general case with drift and diffusion coefficients both varying. For instance, the gamma distribution is proved
to verify those assumptions as soon as the shape parameter κ satisfies κ ≤ α ∧ 1

2 , when the coefficients b and
a := σσ� are supposed to be uniformly α-Hölder continuous w.r.t the time variable. Another contribution
consists in proposing an original interacting particle scheme that helps to stabilize even more the estimator.
This approach results in a new estimator combining both branching and interacting particle techniques. The
new estimator is proved to be unbiased with finite variance. Finally, numerical tests confirm the interest of our
new algorithm showing significant variance reduction in various examples.

2. Notations

Let C1,2
b ([0, T ]×R

d,R) denote the set of continuously differentiable bounded functions with bounded deriva-
tives of order 1 for the time variable and bounded derivatives up to order 2 for the space variable. Let L denote
the infinitesimal generator associated with (1.1) such that for any sufficiently regular function ϕ : [0, T ]×R

d �→ R

in the domain of L, Lϕ is given as the real valued function such that

(Lϕ)(t, x) = b(t, x).Dϕ(t, x) +
1
2
a(t, x) : D2ϕ(t, x), for all (t, x) ∈ [0, T ]× R

d, (2.1)

where a(t, x) := σ(t, x)σ(t, x)�, A : B := tr(AB�) and D (resp. D2) denotes the differential operator of order 1
(resp. of order 2) w.r.t. the space variable x. Let us consider a real valued Lipschitz continuous function g defined
on R

d. By the Feynman−Kac formula it is well-known that if there exists v∗ ∈ C1,2
b ([0, T ] × R

d,R) solution of
the linear Partial Differential Equation (PDE){

∂tv + Lv = 0

v(T, x) = g(x),
(2.2)

then this PDE has a unique classical solution v∗(t, x) = u(t, x) = E[g(Xt,x
T )]. In the sequel ‖x‖ stands for the

L∞ norm of a vector or a matrix x.
First we introduce an intermediary assumption that will be relaxed for our main results:

Assumption 2.1. The linear PDE (2.2) admits a unique classical solution v∗ ∈ C1,2
b .

All along this paper, the following assumption will be in force.

Assumption 2.2.

(1) The diffusion σ(t, x) is non-degenerated such that for some constant ε0 > 0:

a(t, x) ≥ ε0I, ∀(t, x) ∈ [0, T ]× R
d.

(2) b and a are uniformly Lipschitz w.r.t. the space variable i.e. there exists a finite constant L such that for
any (t, x, x′) ∈ [0, T ]× R

d × R
d

‖b(t, x) − b(t, x′)‖ + ‖a(t, x) − a(t, x′)‖ ≤ L‖x− x′‖.
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(3) There exists α ∈ (0, 1] such that b and a are uniformly α-Hölder continuous w.r.t. variable t i.e. there exists
a finite constant H such that for any (t, t′, x) ∈ [0, T ]× [0, T ]× R

d

‖b(t, x) − b(t′, x)‖ + ‖a(t, x) − a(t′, x)‖ ≤ H |t− t′|α.
For a fixed point (t̃, x̃) ∈ [0, T ]×R

d, we introduce some operators and processes that will be useful in the sequel

• Lt̃,x̃ the differential operator similar to L with the drift and diffusion frozen at (t̃, x̃) such that for any regular
function ϕ in the domain of Lt̃,x̃

Lt̃,x̃ϕ(t, x) = b(t̃, x̃).Dϕ(t, x) +
1
2
a(t̃, x̃) : D2ϕ(t, x), for all (t, x) ∈ [0, T ]× R

d, (2.3)

• (X̃ t̃,x̃,t0,x0
t )t≥t0 the Gaussian process with infinitesimal operator Lt̃,x̃ defined by

X̃ t̃,x̃,t0,x0
t = x0 + b(t̃, x̃)(t− t0) + σ(t̃, x̃)(Wt −Wt0). (2.4)

for a given initial condition (t0, x0) ∈ [0, T ]× R
d.

• h∗,t̃,x̃ : [0, T ]× R
d �→ R involving the unique solution v∗ of (2.2) is defined by

h∗,t̃,x̃(t, x) := (b(t, x) − b(t̃, x̃)).Dv∗(t, x) +
1
2
(a(t, x) − a(t̃, x̃)) : D2v∗(t, x). (2.5)

Notice that h∗,t̃,x̃ is a well defined continuous function since v∗ ∈ C1,2
b and in particular

h∗,t̃,x̃(t, x) = Lv∗(t, x) − Lt̃,x̃v∗(t, x) for all (t, x) ∈ [0, T ]× R
d. (2.6)

3. Probabilistic representation using a regime switching process

Recalling [16], the following representation holds

Lemma 3.1. Suppose that Assumptions 2.1 and 2.2 hold and X̃ t̃,x̃ is the Gaussian process defined in (2.4),
then u defined by (1.2) and its (bounded and continuous) derivatives Du and D2u are solutions of the system

u(t, x) = E

[
g(X̃ t̃,x̃,t,x

T ) +
∫ T

t

H t̃,x̃(s, X̃ t̃,x̃,t,x
s , Du(s, X̃ t̃,x̃,t,x

s ), D2u(s, X̃ t̃,x̃,t,x
s )) ds

]

Du(t, x) = E

[
g(X̃ t̃,x̃,t,x

T )Mt̃,x̃
t,T +

∫ T

t

H t̃,x̃(s, X̃ t̃,x̃,t,x
s , Du(s, X̃ t̃,x̃,t,x

s ), D2u(s, X̃ t̃,x̃,t,x
s ))Mt̃,x̃

t,s ds

]

D2u(t, x) = E

[
g(X̃t,x,t,x

T )Vt,x
t,T +

∫ T

t

Ht,x(s, X̃t,x,t,x
s , Du(s, X̃t,x,t,x

s ), D2u(s, X̃t,x,t,x
s ))Vt,x

t,s ds

]
, (3.1)

where for any (t̃, x̃) ∈ [0, T ]× R
d the function H t̃,x̃ : [0, T ]× R

d × R
d × Sd �→ R is such that

H t̃,x̃(t, x, y, z) = (b(t, x) − b(t̃, x̃)).y +
1
2
(a(t, x) − a(t̃, x̃)) : z, (3.2)

Mt̃,x̃
t,s and V t̃,x̃

t,s are respectively the first and second order Malliavin weights associated with the process X̃ t̃,x̃ that
is using δt,sW = Ws −Wt

Mt̃,x̃
t,s := (σ(t̃, x̃)−1)�

δt,sW

s− t
, and V t̃,x̃

t,s := (σ(t̃, x̃)−1)�
δt,sWδt,sW

� − (s− t)I
(s− t)2

σ(t̃, x̃)−1. (3.3)
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Proof. The proof relies on the uniqueness property of classical solutions of PDEs satisfying the Feynman−Kac
representation. Notice that under Assumptions 2.1 2.2, u is the unique classical solution of (2.2). Of course,
thanks to equation (2.6), for any (t̃, x̃) ∈ [0, T ]× R

d u is also a C1,2
b solution of the following linear PDE

∂tu+ Lt̃,x̃u+ h∗,t̃,x̃ = 0.

Then one can use again Feynman−Kac formula to represent the unique solution u of the above PDE as

u(t, x) = E

[
g(X̃ t̃,x̃,t,x

T ) +
∫ T

t

h∗,t̃,x̃(s, X̃ t̃,x̃,t,x
s ) ds

]
. (3.4)

Finally observe that

h∗,t̃,x̃(s, X̃ t̃,x̃,t,x
s ) = H t̃,x̃

(
s, X̃ t̃,x̃,t,x

s , Du(s, X̃ t̃,x̃
s ), D2u(s, X̃ t̃,x̃,t,x

s )
)
. (3.5)

The equations relative to Dv and D2v are obtained by applying Elworthy’s formula [10] (which simply results
here in the Likelihood ratio of Broadie and Glasserman [4]) in (3.4) and by using some technical estimates placed
in the Appendix B to be able to differentiate under the time integral. �

Let τ be a random time independent of the Brownian W following the density f supposed to be strictly
positive on [0,∞] and P [τ > T ] > 0. One can rewrite representation (3.1) by using a change of measure to
replace the time integral by an expectation according to the random time τ .

u(t, x) =
E

[
g(X̃ t̃,x̃,t,x

T )1τ≥T−t

]
1 − F (T − t)

+ E

[
H t̃,x̃(t+ τ, X̃ t̃,x̃,t,x

t+τ , Du(t+ τ, X̃ t̃,x̃,t,x
t+τ ), D2u(t+ τ, X̃ t̃,x̃,t,x

t+τ ))
f(τ)

1τ<T−t

]

Du(t, x) =
E

[
g(X̃ t̃,x̃,t,x

T )Mt̃,x̃
t,T1τ≥T−t

]
1 − F (T − t)

+ E

[
H t̃,x̃(t+ τ, X̃ t̃,x̃,t,x

t+τ , Du(t+ τ, X̃ t̃,x̃,t,x
t+τ ), D2u(t+ τ, X̃ t̃,x̃,t,x

t+τ ))
f(τ)

Mt̃,x̃
t,t+τ 1τ<T−t

]

D2u(t, x) =
E

[
g(X̃t,x,t,x

T )Vt,x
t,T1τ≥T−t

]
1 − F (T − t)

+ E

[
Ht,x(t+ τ, X̃t,x,t,x

t+τ , Du(t+ τ, X̃t,x,t,x
t+τ ), D2u(t+ τ, X̃t,x,t,x

t+τ ))
f(τ)

Vt,x
t,t+τ 1τ<T−t

]

(3.6)

where F is the cumulative distribution of f . We will now apply recursively this representation (3.6) by considering
a sequence of i.i.d. random times (τk).

Let us introduce a non regular (stochastic) mesh of the interval [t0, T ],

π := (T0 := t0 < T1 < . . . < Tk . . . < TNT < TNT +1 = T ), (3.7)

characterized by the Markov chain (Tk) defined by⎧⎪⎨
⎪⎩
T0 = t0

Tk+1 = Tk + δTk+1, for k ∈ N where

δTk+1 = τk+1 ∧ (T − (Tk + τk+1))+,

(3.8)
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where (τk) is an i.i.d. sequence of random times distributed according the common probability density f . Notice
that (Tk) defines a Markov chain with an absorbing state, T . (Tk) will define the so-called switching time.
The random integer NT is defined as the following stopping time

NT = inf{n | Tn+1 ≥ T }. (3.9)

Now notice by the law of large numbers that 1
n

∑n
k=1 τk −→ E[τ ] > 0 so

∑n
k=1 τk −→ ∞ almost surely so NT is

almost surely finite. In the sequel, we will consider an i.i.d. sequence (τk) of gamma variables with parameters
(κ > 0, θ > 0) recalling that the gamma density with parameter (κ > 0, θ > 0) is given by

fκ,θ
Γ (s) =

sκ−1e−s/θ

Γ (κ)θκ
, for all s > 0, (3.10)

where Γ is the gamma Euler function.
For a given mesh π (defined as in (3.7) (3.8)), we consider the following sequence (defining a Markov chain

conditionally to the mesh π) {
X̄0 = Xt0,x0

T0
= x0

X̄k+1 = X̄k + b(Tk, X̄k)δTk+1 + σ(Tk, X̄k)δWk+1,
(3.11)

where δWk+1 := WTk+1 −WTk
. For the sake of simplicity, we will often note bk or σk instead of b(Tk, X̄k) or

σ(Tk, X̄k).
Using representation (3.6) with (t̃, x̃) = (Tk, X̄k) and τ = τk+1, conditioning with respect to (t̃, x̃) one gets

for any integer k ≥ 0

u(Tk, X̄k) =
E

[
g(X̃Tk,X̄k

T )1Tk+1=T

]
1 − F (T − Tk)

+ E[Hk+1 1Tk+1<T ] (3.12)

with X̃Tk,Xk
s := X̃Tk,Xk,Tk,Xk

s for s ≥ Tk and

Hk+1 :=
HTk,X̄k(Tk+1, X̄k+1, Du(Tk+1, X̄k+1), D2u(Tk+1, X̄k+1))

f(δTk+1)
·

The derivatives Du and D2u in Hk+1 are given by applying the representation (3.6) with (t̃, x̃) = (Tk+1, X̄k+1)
and τ = τk+2, conditioning with respect to (t̃, x̃) one gets for any integer k ≥ 0

Du(Tk+1, X̄k+1) =
E[g(X̃Tk+1,X̄k+1

T )MTk+1,X̄k+1
Tk+1,T 1Tk+2=T ]

1 − F (T − Tk+1)
+ E

[
Hk+2MTk+1,X̄k+1

Tk+1,Tk+2
1Tk+2<T

]

Du(Tk+1, X̄k+1) =
E

[
g(X̃Tk+1,X̄k+1

T )VTk+1,X̄k+1
Tk+1,T 1Tk+2=T

]
1 − F (T − Tk+1)

+ E

[
Hk+2VTk+1,X̄k+1

Tk+1,Tk+2
1Tk+2<T

]
.

Let us introduce the sequence of weights (Pk)k≥1 such that for k = 1, . . . , NT⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pk+1 =
Mk+1 +

1
2
Vk+1

f(δTk)
,

Mk+1 = δbk.(σ−1
k )�

δWk+1

δTk+1
, with δbk := bk − bk−1

Vk+1 = δak : (σ−1
k )�

δWk+1δW
�
k+1 − δTk+1I

(δTk+1)2
σ−1

k , with δak := ak − ak−1.

(3.13)
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Following the same lines as the proof of Theorem 2.2 in [16], one can derive by recurrence a representation
formula for u as the expectation of an exactly simulatable variable. Before one has to introduce some new
assumptions.

Assumption 3.2. The coefficients b and a are uniformly bounded i.e. there exists a finite constant M such
that for any (t, x) ∈ [0, T ]× R

d

‖bt(x)‖ ≤M, ‖at(x)‖ ≤M.

Assumption 3.3. The function g is Lipschitz.

Proposition 3.4. Under Assumptions 2.2, 3.2 and 3.3, the following representation holds

u(t0, x0) := E[g(Xt0,x0
T )] = E

[
g(X̄NT +1)

1 − F (δTNT +1)
∏NT +1

k=2 Pk

]
, (3.14)

with the convention
∏

k∈∅
= 1.

Remark 3.5.

(1) Proposition 3.4 proves that any v satisfying the equation (3.1) is given by the above explicit equation (3.14):
this a posteriori proves the uniqueness of the solution of (3.1).

(2) Using an exponential distribution for f , one recovers the representation given in [16].
(3) Representation (3.14) is very similar to the forward representation developed in [2] and used in [1] for the

same purpose of unbiased simulation of SDEs expectations. The main interest of (3.14) being that the
coefficients b and a have no need to be differentiable.

Proof. We will only give the sketch of the proof since it mimics step by step the proof of Theorem 2.2 in [16],
which proceeds into two steps.

(1) First suppose that Assumption 2.1 is satisfied, then the representation (3.14) holds. Indeed, Lemma 3.1
applies and following the recurrence arguments developed in [16] implies the representation (3.14).

(2) For the clarity of the paper we recall here the arguments developed in [16] to extend, by smooth approxima-
tions, the representation proved at item 1. outside of Assumption 2.1. Since according to Assumptions 2.2
and 3.3, (b, σ, g) are Lipschtiz we can find a sequence of bounded smooth functions (bε, σε, gε) converging
locally uniformly to (b, σ, g) as ε −→ 0 such that Assumption 2.1 is verified when replacing L by Lε (the
infinitesimal generator associated to (bε, σε)) in the PDE (2.2). Let Xε denote the solution of

dXε
t = bε(t,Xε

t )dt+ σε(t,Xε
t )dWt

and set uε(t0, x0) := E[gε(Xε
T )]. By item 1. The following representation holds

uε(t0, x0) = ψε := E

[
gε(X̄ε

NT +1)
1 − F (δTNT +1)

NT +1∏
k=2

P ε
k

]
,

where (X̄ε
k) (and respectively the weights (P ε

k)) are given by (3.11) (resp. the recursion (3.13)), where X
is replaced by Xε. By stability of SDEs, and dominated convergence theorem, uε(t0, x0) −−−→

ε→ 0
u(t0, x0).

Similarly one can prove that ψε −−−→
ε→ 0

E[ g(X̄NT +1)

1−F (δTNT +1)

∏NT +1
k=2 Pk], which ends the proof. �

We next define a second representation that will be interesting in order to get some finite variance estimator
for some given switching distribution, f . Following [16], one can introduce antithetic variables to control the
variance induced by the last time step. Let GT := σ(NT , Tk, ΔWk1k≤NT , k ≥ 1). Observe that

E[MNT +1 |GT ] = E[VNT +1 |GT ] = E[PNT +1 |GT ] = 0.
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Hence replacing g(X̄NT +1) by g(X̄NT +1) − g(X̄NT ) in (3.14) does not change the expectation since due to the
tower property:

E

[
g(X̄NT )

1 − F (δTNT +1)

NT +1∏
k=2

Pk

]
= E

[
g(X̄NT )

1 − F (δTNT +1)
PNT +1

NT∏
k=2

Pk

]
= 0.

Notice that the following decomposition holds whenever NT ≥ 1

g(X̄NT +1)
NT +1∏
k=2

Pk = g(X̄NT +1)
MNT +1

f(δTNT )

NT∏
k=2

Pk +
1
2
g(X̄NT +1)

VNT +1

f(δTNT )

NT∏
k=2

Pk.

Then using antithetic variables for the second term in the r.h.s. of the above equality yields the following
estimator.

Proposition 3.6. Under Assumptions 2.2, 3.2 and 3.3, the following representation holds

u(t0, x0) = E

[
β

NT∏
k=2

Pk1NT≥1

]
+ E

[
g(X̄1)

1 − F (δT1)
1NT =0

]
, (3.15)

where β := 1
2 (β1 + β2) with ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β1 :=
g(X̄NT +1) − g(X̄NT )

1 − F (δTNT +1)

MNT +1 +
1
2
VNT +1

f(δTNT )
,

β2 :=
g(X̂NT +1) − g(X̄NT )

1 − F (δTNT +1)

−MNT +1 +
1
2
VNT +1

f(δTNT )

(3.16)

and for any n ∈ N, X̂n+1 = X̄n + bnδTn+1 − σnδWn+1.

4. Variance analysis in the case of gamma distribution

The previous representation given by Proposition 3.6 is general but the variance associated to the estimator
is generally infinite as it is the case when f is an exponential density. From now on, we will suppose that the
density f = fκ,θ

Γ is the Gamma density (3.10) with parameters (κ, θ) with cumulative distribution F = Fκ,θ
Γ .

First, we will introduce the following assumptions.

Assumption 4.1. The following assertions hold:

(1) g is Lipschitz and g ∈ C2.

(2) κ ≤ α ∧ 1
2
.

Now, we can state the following proposition.

Proposition 4.2. Under Assumption 2.2, 3.2 and 4.1, the estimator defined by (3.15) in Proposition 3.6 has
finite variance.

Proof. Let F̄k denote the sigma-field generated by the Brownian up to the random time Tk and the random
times up to the random time Tk+1 i.e. F̄k := σ(T1, . . . , Tk+1, (Ws)s≤T∧Tk

). Let us consider the second term on
the r.h.s of (3.15). Notice that E[(g(X̄1))2] can easily be bounded by the boundness assumptions on b and σ
and the Lipschitz property of g.
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Let us consider the first term on the r.h.s. of (3.15).

E

⎡
⎣
(
β1NT ≥1

NT∏
k=2

Pk

)2
⎤
⎦ =

∞∑
n=1

E

⎡
⎣
(
β

n∏
k=2

Pk

)2

|NT = n

⎤
⎦P(NT = n) (4.1)

The proof will be decomposed into several steps. We will first try to bound the general term of the above series
E[(β

∏n
k=2 Pk)2 |NT = n], then we will consider the sum.

(1) Bounding E[β2|F̄n, NT = n]
First considering Mk+1 and Vk+1 one easily obtains

E[M4
k+1 |F̄k, NT = n] ≤ C

(δbk)4

(δTk+1)2
,

E[V 4
k+1 |F̄k, NT = n] ≤ C

(δak)4

(δTk+1)4
· (4.2)

Notice that in the sequel, C will denote finite constants that may change from line to line that do not
depend on k or n but only on the characteristics of the problem (T , the bounds or Lipschitz constants
related to g, b, σ, a). Then consider the general term of the sum (4.1).

E

[
β2

n∏
k=2

P 2
k |NT = n

]
= E

⎡
⎣E
[
β2|F̄n, NT = n

]( n∏
k=2

Pk

)2

|NT = n

⎤
⎦ .

We get

E[β2|F̄n, NT = n] ≤ C

(1 − Fκ,θ
Γ (T ))2

E

[
(g(X̄n+1) − g(X̂n+1))2

M2
n+1

fκ,θ
Γ (δTn)2

|F̄n, NT = n

]

+
C

(1 − Fκ,θ
Γ (T ))2

E

[
(g(X̄n+1) + g(X̂n+1) − 2g(X̄n))2

V 2
n+1

fκ,θ
Γ (δTn)2

|F̄n, NT = n

]
(4.3)

Consider the first term on the r.h.s. of inequality (4.3), by the Lipschitz property of g, the boundness of b,σ
and using the fact that σ is uniformly bounded away from zero, we obtain

E

[∣∣∣g(X̄n+1) − g(X̂n+1)
∣∣∣2 M2

n+1

(fκ,θ
Γ (δTn))2

|F̄n, NT = n

]
≤ C

‖δbn‖2

(fκ,θ
Γ (δTn))2

≤ C‖δbn‖2(δTn)2(1−κ) (4.4)

Consider the second term of (4.3). By Assumption 4.1.2 (g ∈ C2) one can apply Ito and obtain

|g(X̄n+1) + g(X̄n + bnδTn+1 − σnδWn+1) − 2g(X̄n)| ≤ CδTn+1.

This implies still using the boundness of b, σ and using the fact that σ is uniformly bounded away from
zero:

E

[
(g(X̄n+1) + g(X̂n+1) −2g(X̄n))2

V 2
n+1

fκ,θ
Γ (δTn)2

|F̄n, NT = n

]

≤ C(δTn+1)2
‖δan‖2

δT 2
n+1f

κ,θ
Γ (δTn)2

≤ C(δTn)2(1−κ)‖δan‖2. (4.5)

Injecting (4.4) and (4.5) into (4.3) finally yields

E[β2 |F̄n, NT = n] ≤ C(δTn)2(1−κ)
(
‖δbn‖2 + ‖δan‖2

)
. (4.6)
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(2) Bounding E[C2
k |F̄k−1, NT = n], where the r. v. Ck is defined by

Ck := ‖δbk‖2 + ‖δak‖2. (4.7)

Consider the term ‖δbk‖,
E[‖δbk‖4 |F̄k−1, NT = n] = E[‖b(Tk, X̄k) − b(Tk−1, X̄k−1)‖4 |F̄k−1, NT = n]

≤ 8E
[‖b(Tk, X̄k) − b(Tk, X̄k−1)‖4

+ ‖b(Tk, X̄k−1) − b(Tk−1, X̄k−1)‖4 |F̄k−1, NT = n
]

≤C(1 + (δTk)2)(δTk)2 + C(δTk)4α ≤ C(δTk)4(α∧ 1
2 )

using the fact that b is Lipschitz w.r.t. the space variable and α-Hölder continuous w.r.t. the time variable.
With the same development on δak one finally gets

E[C2
k |F̄k−1, NT = n] ≤ C(δTk)4(α∧ 1

2 ), (4.8)

(3) Bounding E[P 4
k+1 |F̄k, NT = n]

Using (4.2), we obtain

E[P 4
k+1 |F̄k, NT = n] = E

[(
Mk+1 +

1
2
Vk+1

)4

(δTk)4(1−κ)θ4κΓ 4(κ)e4δTk/θ
∣∣∣F̄k, NT = n

]

≤ C

(
‖δbk‖4 +

‖δak‖4

(δTk+1)2

)
(δTk)4(1−κ)

(δTk+1)2

≤ CC2
k

(δTk)4(1−κ)
(δTk+1)4

, (4.9)

observing that δTk+1 ≤ T ≤ C and recalling that Ck is defined by (4.7). Using the tower property of
expectation and bound (4.6) yields

E

[
β2

n−1∏
k=1

P 2
k+1 |NT = n

]
= E

[
E[β2 |F̄n, NT = n]

n−1∏
k=1

P 2
k+1 |NT = n

]

≤ CE

[
(δTn)2(1−κ)

(
‖δan‖2 + ‖δbn‖2

) n−1∏
k=1

P 2
k+1 |NT = n

]

≤ CE

[
E[(δTn)2(1−κ)CnP

2
n |F̄n−1, NT = n]

n−2∏
k=1

P 2
k+1 |NT = n

]
.

By Cauchy−Schwarz, for any k and using (4.8), we have

E
[
CkP

2
k |F̄k−1, NT = n

] ≤ (E[C2
k |F̄k−1, NT = n]

)1/2(
E[P 4

k |F̄k−1, NT = n]
)1/2

≤ C(δTk)2(α∧ 1
2 )Ck−1

(δTk−1)2(1−κ)

(δTk)2

≤ CCk−1
(δTk−1)2(1−κ)

(δTk)2((1−α)∨ 1
2 )
· (4.10)

Hence, we obtain by recursion

E

[
β2

n−1∏
k=1

P 2
k+1 |NT = n

]
≤ Cn+1

E

[
(δTn)2(1−κ)

n−1∏
k=1

(δTk)2(1−κ)

(δTk+1)2((1−α)∨ 1
2 )

|NT = n

]
, (4.11)



66 M. DOUMBIA ET AL.

observing that E[C1|F̄0, NT = n] ≤ C(δT1)2(α∧ 1
2 ) ≤ CT .

Then recalling that κ ≤ α ∧ 1
2 implies (δTk)2((

1
2−κ)∧(α−κ)) ≤ T 2(( 1

2−κ)∧(α−κ)) finally yields

E

[
β2

n−1∏
k=1

P 2
k+1 |NT = n

]
≤ CCn. (4.12)

(4) Convergence of the sum
∑∞

n=1 C
n
P(NT = n). Let us introduce Sn =

∑n
k=1 τk, notice that Sn ∼ Γ (nκ, θ)

with cumulative distribution

FSn(s) =
∫ s

0

rnκ−1e−r/θ

Γ (nκ)θnκ
dr.

Hence one can bound P(NT = n) as follows

P(NT = n) ≤ P(NT = n)

≤ P(Sn ≤ T )

≤
∫ T

0

rnκ−1

Γ (nκ)θnκ
dr =

T nκ

nκΓ (nκ)θnκ

This implies that
∞∑

n=1

Cn
P(NT = n) ≤

∞∑
n=1

Ĉn

nκΓ (nκ)
,

with Ĉ = C T
θ . Using the generalization of the Stirling formula Γ (z) ∼ zz−1/2e−z

√
2π one proves that

Ĉn

nκΓ (nκ) ∼ Ĉ
1
2κ e−

1
2√

2π
( Ĉ

1
κ e

nκ )nκ+ 1
2 which is the general term of a convergent sum. �

Remark 4.3. The convergence of the series (4.1) relies on two facts:

• The general term of the series (4.1) has to be finite: E[(β
∏n

k=2 Pk)2 |NT = n] < ∞, for any fixed number
of switching times NT = n. However, one can observe that our bound on the r.h.s. of (4.11) can possibly
blow up to infinity when κ > α ∧ 1/2. In particular, in the case of an exponential density, corresponding
to κ = 1, it is well-known that the conditional distribution, L(δTk|NT = n), is the uniform distribution
on [0, T ], hence the expectation on the r.h.s. of (4.11) is infinite. When κ ≤ α ∧ 1/2, we observe that our
bound is finite whatever the conditional distribution, L(δTk|NT = n). Notice that using gamma switching
times increases the occurrence of small jumps w.r.t. the exponential case and hence the occurence of high
numbers of time steps is also increased. To better adjust the complexity and variance tradeoff, one could
consider other switching times densities with a smaller intensity of small jumps and rely on the conditional
law L(δTk|NT = n) to ensure that the expectation on the r.h.s. of (4.11) is bounded.

• The sum
∑∞

k=1 C
n
P(NT = n) has to converge. By increasing the intensity of small jumps as explained at

point 1., we expect that P(NT = n) will decrease more slowly with n. This results in a tradeoff one has to
achieve: increasing small jumps intensity to be able to bound each term of the series but not too strongly
to ensure the convergence of

∑∞
k=1 C

n
P(NT = n).

Consequently, the representation (3.15) provides a Monte Carlo approach to compute E[g(XT )], by simulating
the regime switching process (3.11) instead of the SDE (1.1) which would potentially require to implement a
stochastic Euler discretization scheme. However, even though our estimator is proved to have finite variance,
one can observe in practice huge variances due to the product of a random number of terms Pk that could
potentially take values greater that one. This expectation of products is by nature not a good candidate for
Monte Carlo estimation. Hence, we propose to use a resampling procedure to change this expectation of products
in a product of expectations which is known to be much more stable for estimation.
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5. Resampling method for regime switching processes

In this section, we propose to introduce an interacting particle system (in the same vein as those thoroughly
discussed in the reference books [7, 8]) to approximate u(t0, x0). We will prove that the resulting estimator
has finite variance under the same assumptions required to bound the variance of estimator (3.15). However,
in practice, the new estimator relying on interacting particle systems will show better performances providing
smaller variances in many examples, as illustrated in Section 6.

5.1. A Feynman−Kac measure representation

First we have to express u(t0, x0) as an integral according to a Feynman−Kac measure. Let us consider the
Markov chain consisting of the sequence of random variables X̌k := (Tk, X̄k), where (Tk) and (X̄k) are given
respectively by the dynamics (3.8) and (3.11). In the sequel, we note X̌0:k := (X̌0, . . . , X̌k) the path valued
Markov chain. Let us introduce, for any integer k ≥ 0, the real valued function Ǧk depending on the path
x̌0:k ∈ Ek := (R+ × R

d)k+1 with the notations x̌0:k := (x̌0, . . . , x̌k) and x̌p := (tp, xp) ∈ R+ × R
d such that

Ǧk(x̌0:k) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if k = 0 or k = 1

M̌k(x̌0:k) +
1
2
V̌k(x̌0:k)

fκ,θ
Γ (δtk−1)

if k ≥ 2 and δtk−1δtk > 0

1 elsewhere.

(5.1)

with δtk+1 := tk+1 − tk and where the real valued functions M̌k+1 , V̌k+1 and ˇδW k+1 are such that for any
x̌0:k+1 ∈ Ek+1

M̌k+1(x̌0:k+1) :=

⎧⎨
⎩ (b(tk, xk) − b(tk−1, xk−1)).(σ(tk, xk)−1)�

ˇδW k+1(x̌0:k+1)
δtk+1

if δtk+1 > 0

1 elsewhere

V̌k+1(x̌0:k+1) :=

⎧⎨
⎩ (a(tk, xk) − a(tk−1, xk−1)) :

Bk+1(x̌0:k+1)
(δtk+1)2

if δtk+1 > 0

1 elsewhere,
(5.2)

with

Bk+1(x̌0:k+1) := (σ(tk, xk)−1)�
(

ˇδW k+1(x̌0:k+1) ˇδW k+1(x̌0:k+1)� − δtk+1I

)
σ(tk, xk)−1

ˇδW k+1(x̌0:k+1) := σ(tk, xk)−1(xk+1 − xk − b(tk, xk)δtk+1).

Observe that Ǧk+1 does not really depend on the whole path x̌0:k+1, but only on (x̌k−1, x̌k, x̌k+1), for k > 0.
Recalling (3.13), notice that the following identity holds

Ǧk(X̌0:k) = Pk, P a.s. for all k = 2, . . . , NT .

In the sequel, it will appear to be crucial to consider positive potential functions with uniformly bounded
conditional variances, more specifically such that supx̌0:k∈Ek

E[G2
k+1(X̌0:k+1) |X̌0:k = x̌0:k] <∞, thus we define

the potential functions (Gk)k≥0 (depending implicitly on T ) such that for any k ≥ 0 and for any x̌0:k ∈ Ek,

Gk(x̌0:k) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if k = 0

|Ǧ1(x̌0:1)|(δt1)1−κ
√
c1(x̌0:1) if k = 1, δt1 > 0

|Ǧk(x̌0:k)|
√

ck(x̌0:k)
ck−1(x̌0:k−1)

(
δtk
δtk−1

)1−κ

if k ≥ 2, δtk−1δtk > 0,

1 elsewhere,

(5.3)



68 M. DOUMBIA ET AL.

where the real valued function ck is defined on Ek, for k ≥ 1, by

ck(x̌0:k) = |δtk| + ‖b(tk, xk) − b(tk−1, xk−1)‖2 + ‖a(tk, xk) − a(tk−1, xk−1)‖2 (5.4)

Notice that this definition of ck is such that ck(X̌0:k) = Ck + δTk where Ck was defined in (4.7), hence

G2
k(X̌0:k) =

Ck + δTk

Ck−1 + δTk−1

(
δTk

δTk−1

)2(1−κ)

P 2
k , P a.s. for all k = 2, . . . , NT .

Then observe that one can prove an inequality similar as (4.10) with Ck replaced by ck(X̌0:k)

E[ck(X̌0:k)P 2
k |F̄k−1, NT = n] ≤

(
E[c2k(X̌0:k)|F̄k−1, NT = n]

)1/2(
E[P 4

k |F̄k−1, NT = n]
)1/2

≤ Cck−1(X̌0:k−1)
(δTk−1)2(1−κ)

(δTk)2((1−α)∨ 1
2 )
, (5.5)

which yields as announced, that for any κ ≤ α ∧ 1
2 and x̌0:k−1 ∈ Ek−1

E[G2
k(X̌0:k) |X̌0:k−1 = x̌0:k−1] ≤ C <∞. (5.6)

Notice that
∏NT

k=2 Pk = HNT +1(X̌0:NT +1)
∏NT

k=0Gk(X̌0:k)Sk(X̌0:k), P a.s. where for any k ≥ 0 and for any
x̌0:k ∈ Ek,

Sk(x̌0:k) := Sign(Ǧk(x̌0:k)), (5.7)

and

Hk+1(x̌0:k+1) :=

⎧⎪⎨
⎪⎩

1
(δtk)1−κ

√
ck(x̌0:k)

if k ≥ 1 and δtk > 0

1 elsewhere.

(5.8)

Let us introduce βn+1 := 1
2β1,n+1 + 1

2β2,n+1 defined on En+1 such that β1,1(x̌0:1) = β2,1(x0:n+1) =
1

(1−F κ,θ
Γ (δt1))

g(x1) and for any n ≥ 1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
β1,n+1(x̌0:n+1) :=

g(xn+1) − g(xn)

1 − Fκ,θ
Γ (δtn+1)

Mn+1(x̌0:n+1) +
1
2
V̌n+1(x̌0:n+1)

fκ,θ
Γ (δtn)

β2,n+1(x̌0:n+1) :=
g(x̂n+1) − g(xn)

1 − Fκ,θ
Γ (δtn+1)

−Mn+1(x̌0:n+1) +
1
2
V̌n+1(x̌0:n+1)

fκ,θ
Γ (δtn)

,

(5.9)

with x̂n+1 = xn + b(tn, xn)δtn+1 − σ(tn, xn) ˇδWn+1(x̌0:n+1).
Recalling (3.15), observe that

u(t0, x0) = E

[
β

NT∏
k=2

Pk1NT≥1

]
+ E

[
g(X̄1)

1 − Fκ,θ
Γ (δT1)

1NT =0

]

= E
[
(βNT +1HNT +1)(X̌0:NT +1)(S0:NTG0:NT )(X̌0:NT )

]
, (5.10)

where to simplify the notation Gp:q (resp. Sp:q) denotes the product
∏q

k=pGk (resp.
∏q

k=p Sk), with in particular
Gp,q = 1 when p > q, where 1 denotes the function which takes the unique value 1. Now, we can define
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the sequence of non negative measures (γk)k≥0 such that for any real valued bounded test function ϕ defined
on En := (R+ × R

d)n+1, we have

γk(ϕ) := E

[
ϕ(X̌0:k)

k−1∏
p=0

Gp(X̌0:p)

]
= E[ϕ(X̌0:k)G0:k−1(X̌0:k−1)], for k ≥ 1. (5.11)

We set by convention γ0 := μ0 where μ0 denotes the probability distribution, L(X̌0), of the initial condition
X̌0 = (t0, x0) i.e. μ0 := L(X̌0) = δ(t0,x0). Gathering (5.10) together with the above definition one readily obtains
the following proposition expressing u(t0, x0) as an integral w.r.t. the non-negative measures γn.

Remark 5.1. The weights used in equation (5.3) can be generalized with ρ ∈ [12 , 1 − κ] as

Gk(x̌0:k) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = 0

|Ǧ1(x̌0:1)|(δt1)ρ
√
c1(x̌0:1) if k = 1, δt1 > 0

|Ǧk(x̌0:k)|
√

ck(x̌0:k)
ck−1(x̌0:k−1)

(
δtk
δtk−1

)ρ

if k ≥ 2, δtk−1δtk > 0,

1 elsewhere,

(5.12)

Proposition 5.2. Under Assumptions 2.2 and 3.2, the following identity holds for any n ≥ 1

u(t0, x0) = γn(ϕn), (5.13)

where (ϕn)n≥1 is a sequence of real valued functions such that for any n ≥ 1 and x̌0:n ∈ En := (R+ × R
d)n+1

ϕn(x̌0:n) := E[(βNT +1HNT +1)(X̌0:NT +1)(S1:NTGn:NT )(X̌0:NT ) |X̌0:n = x̌0:n]. (5.14)

Remark 5.3. Observe that for a given n ≥ 1, ϕn is defined by (5.14) as a conditional expectation of a terminal
payoff delivered at a future random time NT + 1, knowing the state of the Markov chain from time 0 to n.
Hence, evaluating ϕn(x̌0:n) is not trivial, for a given x̌0:n, since it requires to compute a conditional expectation.
However whenever x̌n = (tn, xn) is such that tn ≥ T , then the knowledge of X̌0:n = x̌0:n determines completely
both NT = q < n and X̌0:NT +1, which implies

ϕn(x̌0:n) := E[(βNT +1HNT +1)(X̌0:NT +1)(S1:NTGn:NT )(X̌0:NT ) |X̌0:n = x̌0:n]
= (βq+1Hq+1)(x̌0:q+1)S1:q(x̌0:q).

Now, let us introduce the sequence of probability measures (ηk) defined by normalization of (γk)k≥1

ηk(ϕ) :=
γk(ϕ)
γk(1)

=
E[ϕ(X̌0:k)G0:k−1(X̌0:k−1)]

E[G0:k−1(X̌0:k−1)]
, for any k ≥ 0, (5.15)

where 1 denotes the function which takes the unique value 1. Observing that for k ≥ 1, γk(1) = γk−1(Gk−1),
we obtain by recurrence

γk(ϕ) = ηk(ϕ)γk(1)
= ηk(ϕ)γk−1(Gk−1)
= ηk(ϕ)ηk−1(Gk−1) . . . η0(G0). (5.16)

As announced, we have replaced the expectation of a product of functions by the product of expectations of
functions, since for any n ≥ 1

u(t0, x0) = γn(ϕn) = E[ϕn(X̌0:n)] = ηn(ϕn)ηn−1(Gn−1) . . . η0(G0).

Our objective is now to approximate the sequence of probability measures (ηk)k≥0 by a sequence of empirical
measures (ηN

k )k≥0 based on a system of N particles to finally end up with an approximation of the type

u(t0, x0) ≈ ηN
n (ϕn)ηN

n−1(Gn−1) . . . ηN
0 (G0).
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5.2. The particle approximation scheme

The sequence of approximating measures (ηN
k )k≥0 will be defined by mimicking the dynamics of (ηk)k≥0.

Hence, we begin by describing this recursive dynamics.
First let Kk denote the transition kernel of the path valued Markov chain (X ′

k := X̌0:k) from k − 1 to k for
any integer k ≥ 1. Recall that Kk can be considered both as an integral operator on the space of measurable
functions defined on Ek and on the space of finite measures, M(Ek−1), such that

• for any measurable test function fk defined on Ek, Kk(fk) is a measurable function defined on Ek−1 such
that for any x′k−1 ∈ Ek−1

Kk(fk)(x′k−1) = E
[
fk(X ′

k) |X ′
k−1 = x′k−1

]
=
∫

y′
k∈Ek

Kk(x′k−1, dy
′
k)fk(y′k),

• for any finite measure mk−1 on Ek−1, mk−1Kk is a finite measure on Ek such that for any x′k ∈ Ek

(mk−1Kk)(dx′k) =
∫

y′
k−1∈Ek−1

mk−1(dy′k−1)Kk(y′k−1, dx
′
k).

In particular, let μk denote the probability law underlying the random variable X ′
k := X̌0:k (we will often

write μk = L(X ′
k)), for any k ≥ 0. Then observe that μkKk+1 = μk+1 the probability law of X ′

k+1 := X̌0:k+1.
Besides, notice that if Ǩk denotes the transition kernel of the Markov chain (X̌k) from k − 1 to k, then the
transition kernel Kk is obtained as the following cartesian product, for any (y′k−1, x

′
k) := (y0:k−1, dx0:k) ∈

Ek−1 × Ek

Kk(y′k−1, dx
′
k) = Kk(y0:k−1, dx0:k) = δy0:k−1(dx0:k−1) × Ǩk(yk−1, dxk).

Now we can describe the dynamics of (ηk)k≥0 with k. For any real valued test function fk defined on Ek, the
following identities holds

ηk(fk) :=
γk(fk)
γk(1)

=
μk(fkG1:k−1)
μk(G1:k−1)

, where μk := L(X ′
k) = L(X̌0:k), and G1:k :=

k∏
p=1

Gp

=
μk−1(Kk(fk)G1:k−1)

μk−1(G1:k−1)
by the tower property of conditional expectation

=
γk−1(Kk(fk)Gk−1)

γk−1(Gk−1)
by definition (5.11) of γk−1

=
ηk−1(Kk(fk)Gk−1)

ηk−1(Gk−1)
by dividing the numerator and denominator by γk−1(1)

= ((Gk−1 · ηk−1)Kk)(fk),

where the · sign denotes the projective product between a non-negative function G defined on E and a non-
negative measure μ ∈ M+(E) returning the probability measure G · μ such that

(G · μ)(dx) := G(x)μ(dx)/μ(G). (5.17)

Hence, one can describe the evolution from ηk−1 to ηk into two steps

ηk−1
Correction−−−−−−→ η̂k−1 := Gk−1 · ηk−1

Evolution−−−−−−→ ηk := η̂k−1Kk, (5.18)
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In other words, the sequence of probability measures (ηk) satisfies the following recursion

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η0 = μ0, where μ0 := L(X ′
0) = L(X̌0)

η̂k := Gk · ηk, for all 1 ≤ k ≤ n,

ηk+1 = η̂kKk, for all 1 ≤ k ≤ n.

(5.19)

An Interacting Particle System will be used to approximate the sequence of probability measures (ηk)0≤k≤n

by a sequence of empirical probability measures (ηN
k )0≤k≤n, such that for all 1 ≤ k ≤ n, ηN

k is associated with an
N -samples (ξ1,N

k , . . . , ξN,N
k ) approximately distributed according to ηk. To simplify the notation, we will often

drop the exponent N and write (ξi
k)i=1,...N instead of (ξi,N

k )i=1,...N . The recursive evolution described by (5.19)
is approximated by the following dynamics:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ηN
0 = μ0

η̂N
k = Gk · ηN

k , for all 1 ≤ k ≤ n

ηN
k+1 = SN (η̂N

k Kk), for all 1 ≤ k ≤ n,

(5.20)

where SN(μ) denotes the empirical measure associated to an N -sample (ξ1, . . . , ξN ) i.i.d. according to μ, that is

SN (μ) =
1
N

N∑
i=1

δξi , where (ξ1, . . . , ξN ) i.i.d. ∼ μ.

Hence, the algorithm proceeds as follows. Recalling that G0 = 1, we initiate the algorithm by generating N
i.i.d. random variables (ξ11 , . . . , ξN

1 ) according to μ0, then we set

ηN
1 = SN(G0 · μ0) = SN (μ0) =

1
N

N∑
i=1

δξi
1
. (5.21)

The evolution of the discrete measures, (ηN
k )0≤k≤n, (where N denotes the size of the particle system) between

two iterations k and k + 1, consists into three steps:

(1) Weighting: each particle is weighted according to the value of the current potential function Gk. For all

i ∈ {1, . . . , N}, we compute ωi
k =

Gk(ξi
k)∑N

j=1Gk(ξj
k)

and we set η̂N
k =

N∑
i=1

ωi
k+1 δξi

k+1
.

(2) Selection: N i.i.d. random variables (ξ̂1k, . . . , ξ̂
N
k ) are generated according to the weighted discrete prob-

ability distribution η̂N
k =

N∑
i=1

ωi
k δξi

k
. More specifically, for all i ∈ {1, . . . , N}, an index I ∈ {1, . . . , N} is

generated independently with probability P(I = j) = ωj
k and we set ξ̂i

k = ξI
k .

(3) Mutation: Each selected particle evolves independently according to the dynamics Kk+1. This produces
a new particle system (ξ1k+1, . . . , ξ

N
k+1). More specifically, for all i ∈ {1, . . . , N}, we generate independently

ξi
k+1 according to the conditional distribution L(X ′

k+1|X ′
k = ξ̂i

k), then we set

ηN
k+1 =

1
N

N∑
i=1

δξi
k+1

. (5.22)
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For all k ≥ 1, let us introduce γN
k , the particle approximation of γk based on ηN

k defined by recursion (5.20)
and such that for any real valued measurable test function fk defined on Ek,

γN
k (fk) = ηN

k (fk)
∏

0≤p≤k−1

ηN
p (Gp). (5.23)

We begin by stating a Lemma that will be crucial to prove the convergence of our new estimator.

Lemma 5.4. Let (X ′
n)n≥0 be a Markov chain (with initial distribution μ0 and transition kernel Kk) defined on

a sequence of measurable spaces (En, En)n≥0 and (Gn)n≥0 be a sequence of positive measurable functions defined
on (En, En)n≥0 such that there exists a finite constant A ≥ 2 such that

sup
x′
0∈E0

G0(x′0) ≤ A, and sup
x′

p−1∈Ep−1

E[G2
p(X

′
p)|X ′

p−1 = x′p−1] ≤ A, for any p ≥ 1. (5.24)

We consider the sequence of Feynman−Kac measures (γn) such that for any measurable real valued function fn

defined on En,

γn(fn) := E

[
fn(X ′

n)
n−1∏
k=0

Gk(X ′
k)

]
. (5.25)

Let (γN
n ) be a sequence of particle approximation measures of (γn) defined similarly as in (5.23), with (ηN

p )0≤p

defined by (5.20). For a given n ≥ 1, let us consider a real valued measurable function fn defined on En such
that there exists a finite positive constant B such that

sup
x′

p−1∈Ep−1

|E [f2
n(X ′

n)G2
p:n−1(X

′
p:n)|X ′

p−1 = x′p−1

] ≤ B for any p = 1, . . . n. (5.26)

Then the particle approximation γN
n (fn) is unbiased with finite variance, more precisely

E[γN
n (fn)] = γn(fn), and E

[(
γN

n (fn) − γn(fn)
)2] ≤ 2B

An+2

N
for N ≥ An+1. (5.27)

The proof of this Lemma relies on the formalism developed in the reference books [7, 8]. However, we had
to carry out an original proof to take into account our specific framework where the potential functions Gk

are unbounded which is not considered to our knowledge in the existing literature. The proof is placed in the
Appendix A.

We are now in a position to state the main result of this section.

Theorem 5.5. Suppose that Assumptions 2.2, 3.2 and 4.1 are satisfied. For any n ≥ 1, the resampling estimator
γN

n (ϕn) defined by (5.23) is unbiased with finite variance. More precisely,

E[γN
n (ϕn)] = u(t0, x0), and E[

(
γN

n (ϕn) − u(t0, x0)
)2] ≤ Cn+2

N
for N ≥ Cn+1, (5.28)

where (ϕn)n≥1 is a sequence of real valued functions defined on En by (5.14) and C is a constant depending
only on the characteristics of the problem (T , the bounds or Lipschitz constants related to g, b, σ, a).

Remark 5.6.

(1) Computing γN
n (ϕn) reduces to compute the following product of empirical means

γN
n (ϕn) = ηN

n (ϕn)ηN
n−1(Gn−1) . . . ηN

0 (G0)

=

(
1
N

N∑
i=1

ϕn(ξi
n)

)(
1
N

N∑
i=1

Gn−1(ξi
n−1)

)
. . .

(
1
N

N∑
i=1

G0(ξi
0)

)
,
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where (ξi
k)1≤i≤N is the particle system at the kth iteration of the algorithm as stated by (5.22). This in

particular requires to compute ϕn(ξi
n) for each particle of the final particle system (ξi

n)i=1,...N . Recalling
Remark 5.3, this may require to compute a conditional expectation. In practice, one chooses n large enough
such that most of particles have already reached time T after n iterations implying that for most particles
ϕn(ξi

n) can be computed explicitly. In the rare cases of particles ξi
n that have not reached yet time T , the

computation of ϕn(ξi
n) that should normally require to compute a conditional expectation is approximated

by one simulation according to

L((βNT +1HNT +1S0:NT +1)(X̌0:NT +1)Gn:NT (X̌0:NT ) |X̌0:n = ξi
n).

Notice that it would be interesting to consider the estimator

γN
nN

(ϕnN ), with nN = inf{n | ξi
n has reached T for all i = 1, . . .N}.

This will be left for future work.
(2) Another approach to avoid this problem would consists in doing the resampling procedure only on the space

variables. First simulate a sequence of random switching times (T1, . . . , TNT ) and conditionally to this time
mesh run an interacting particle system on the Markov chain X̄ (3.11). The estimator would then be given
as an empirical mean of the resampling estimates over i.i.d. time meshes.

Proof. Theorem 5.5 is a direct consequence of Proposition 5.2 stating that γn(ϕn) = u(t0, x0) and of Lemma 5.4
after having verified that there exists a finite positive constant C for which the bounds (5.24) and (5.26) are
verified. Observe that (5.24) is automatically implied by (5.6). Let us consider (5.26), similarly to the proof of
Proposition 4.2 one obtains

E[ϕ2
n(X̌0:n)G2

p:n−1(X̌p:n)|X̌0:p−1 = x̌0:p−1] =
∞∑

q=0

E[ϕ2
n(X̌0:n)G2

p:n−1(X̌p:n)|X̌0:p−1 = x̌0:p−1, NT = q]P(NT = q).

(5.29)
Now considering the general term of this sum for q ≥ p ≥ 2

E

⎡
⎣(β2

NT +1H
2
NT +1)(X̌0:NT +1)

NT∏
k=p

G2
k(X̌0:k) |X̌0:p−1 = x̌0:p−1, NT = q

⎤
⎦

= E

⎡
⎣β2 1

cp−1(X̌0:p−1)
1

(δTp−1)2(1−κ)

q−1∏
k=p−1

P 2
k+1 |X̌0:p−1 = x̌0:p−1, NT = q

⎤
⎦

≤ CE

⎡
⎣(δTq)2(1−κ) 1

cp−1(X̌0:p−1)
1

(δTp−1)2(1−κ)
cq(X̌0:q)P 2

q

q−2∏
k=p−1

P 2
k+1 |X̌0:p−1 = x̌0:p−1, NT = q

⎤
⎦ ,

where C is a constant that may change from line to line. Recalling (5.5) finally gives

E

⎡
⎣(β2

NT +1H
2
NT +1)(X̌0:NT +1)

NT∏
k=p

G2
k(X̌0:k) |X̌0:p−1 = x̌0:p−1, NT = q

⎤
⎦

≤ Cq−p+1
E

⎡
⎣(δTq)2(1−κ) cp−1(X̌0:p−1)

cp−1(X̌0:p−1)
1

(δTp−1)2(1−κ)

q−1∏
k=p−1

(δTk)2(1−κ)

(δTk+1)2((1−α)∨ 1
2 )

|NT = q

⎤
⎦

≤ Cq−p+1.

We proceed similarly when p = 1. We conclude by observing that the sum (5.29) is finite by the same argument
as in the proof of Proposition 4.2. �
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6. Numerical simulations

In this section, we begin by an empirical analysis of complexity then we analyse and compare the performances
of the three approaches described previously

(1) Switching Monte Carlo method with exponential switching times;
(2) Switching Monte Carlo method with gamma switching times (with parameter κ ≤ 1/2);
(3) Resampling and Switching Monte Carlo method with gamma switching times (with parameter κ ≤ 1/2).

On one test case, we compare numerically the Switching Monte Carlo method with gamma switching times with
the Euler Monte Carlo method.

First, we consider a simple example for which all assumptions of Proposition 4.2 are satisfied. Then we
consider simulations involving a more standard payoff function g occuring in finance (corresponding to the call
option) that does not fulfill Assumption 4.2. However, this offers the opportunity to check the robustness of our
approach out of theoritical assumptions.

In all cases, we consider:

• a drift coefficient b(t, x) = −10 ∨ (1 − x) ∧ 10,
• an initial condition x0 = 1,
• a terminal time T = 1.

The parameters of the switching time distributions is λ = 0.4 for the exponential distribution. Even if the
exponential distribution gives a theoretical infinite variance (in cases we consider here), the numerical variance
observed is finite so it is interesting to compare the results obtained by the gamma distribution and the expo-
nential distributions.
To implement efficiently the different methods on a computer using many cores (96 on our computer), we al-
locate N particles to each core such that the total number of particles used is npart = 96N . When resampling
is used, a resampling estimator γN,j

p (ϕp) is simulated independently on each core j = 1, . . . , 96 and we return
the average estimator : 1

96

∑96
j=1 γ

N,j
p (ϕp). Then the procedure is repeated independently for 1000 estimations,

so as to approximate empirically the expectation and the variance of each estimator by the empirical average
and variance computed on the 1000 estimates.
The whole procedure is then repeated for different values of npart = 4qn0 from q = 0 to q = 5, with n0 = 104.
We reported on the graphs the evolution of the estimator expectation as a function of log(npart) and the related
standard deviation is represented on log-log graphs. On each figure devoted to the standard deviation, the
theoretical decrease at a rate 1/(npart)1/2 is represented by the plot of a line with slope −0.5.

6.1. Complexity analysis

The Switching Monte Carlo method requires to simulate, for each trial, a random number of time steps, NT ,
before reaching T . In order to analyze the impact of the parameters κ and θ on the complexity of the algorithm,
we consider N̂T := E[NT ] as a function of (κ, θ). As we couldn’t derive any analytical approximation, we have
computed a numerical estimate which is reported on Figure 1 for different values of κ and θ. One can observe
that the expected number of time steps increases as θ or κ decreases. More precisely, N̂T (κ, θ) can be accurately
estimated by the following polynomial approximation:

N̂T (κ, θ) = 15.84 − 1.63θ− 46.16κ+ 46.36κ2 + 1.47θκ,

for κ ∈ [0.2, 0.5] and θ ∈ [1, 10], recalling that we are only interested by values of κ ≤ 1/2. Besides, at each
switching time of each trial the computational complexity is given by

Cswitch(κ, θ) + d(CGauss + c2) + c1d
2.3727
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Figure 1. N̂T for different values of κ and θ and T = 1.

where c1, c2 are given constants, Cswitch(κ, θ) is the complexity of generating the switching time (according to
an exponential or a gamma law depending on the approach), CGauss is the complexity for generating a Gaussian
r.v., and the term in d2.3727 is the theoretical optimal cost for σ inversion by a LU method.

The global complexity of the algorithm without resampling for npart simulations is in high dimension:

cd2.3727npart

Remark 6.1. Notice that, based on our numerical tests, the cost, Cswitch (in the gamma case), of generating
a gamma r.v. with a rejection method is on average between 300 and 500 floating operations, whereas the
cost, CGauss, of generating a Gaussian random variable requires around 10 floating operations. Hence, for low
dimension, the leading term corresponds to Cswitch.

With resampling, we have to add some operations independent of the dimension of the problem: using the
order statistics of the exponential law, we are able to generate some sorted uniformly distributed random
variables that are used to select the particles during the selection step with a cost linear with npart.

Remark 6.2. The resampling method, by imposing to store the states of all simulations simultaneously, gives
a computational cost (including the memory access time) increasing slightly more than linearly with n (see
Fig. 4 below). The advantage of the method without resampling comes from the fact that the memory access
time is weaker so that the computational cost is strictly linear with the number of particles.

6.2. An example with g(x) = cos(x), σ(t, x) = 0.5 + 0.2(x2 ∧ 1)

In dimension 1, we give on Figure 2 the convergence observed with the exponential law and the gamma law
with and without resampling.

The method converges easily with the gamma laws. Using the exponential distribution, the empirical standard
deviation seems to decrease to zero but the rate 1/

√
n cannot be diagnoseds: this is the consequence of an infinite

theoretical variance.
On this case, the resampling doesn’t improve much the results because of the small variation of the σ function.

With the gamma laws, the linear decay of the log of the standard deviation follows the theory with a slope
equal to − 1

2 with respect to log(npart).
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Figure 2. Estimation and standard deviation observed for case 1 (dimension 1).

6.3. One dimensional tests with g(x) = (x − 1)+

With this kind of g function assumptions of Proposition 4.2 are not satisfied. We will show nevertheless that
the method gives good results. Because the variance of the results is closely related to the diffusion coefficient
variation, we will consider various examples with σ getting more and more space dependent.

6.3.1. σ(t, x) = 0.5 + 0.2(x2 ∧ 1)

This second case shows some quite small variations of σ. The reference value is 0.17466. Evolution of the
global estimate and the standard deviation are given on Figure 3 for gamma and exponential laws. In this simple
case easily converging as in the first case, resampling doesn’t improve the standard deviation.

We are interested in comparing numerically the Switching Monte Carlo method (SMC) with the Euler Monte
Carlo method (EMC). It is well known [21] that the error due the EMC method with a time discretization step,
h, and a number of particles, nE , can be decomposed into a bias term, CEh, and a standard deviation term,
S/

√
nE . To achieve a fixed level of accuracy, ε by balancing the two types of errors we quasi-optimally chose

h(ε) := ε/(2ĈE) and nE(ε) := (2Ŝ/ε)2, where Ŝ and respectively ĈE have been estimated using a reference
calculation with 30×106 particles and 1000 time steps and respectively using 100 time steps. Using the empirical
variance computed on 1000 SMC estimators, we have estimated the error, ε, of the SMC method for different

Figure 3. Estimation and standard deviation observed for case 2.
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Table 1. Comparison of the Switching Monte Carlo method (SMC) θ = 2.5, κ = 0.5 without
resampling and the Euler Monte Carlo method (EMC). The Reference value is 0.17466.

ε 8e-4 0.000398 0.000219 1.02 e-4 5.42e-5 2.67e-5 1.34e-5
SMC Time 0.65 2.11 8.88 34.76 125.85 502.49 1991.43
SMC Mean 0.173861 0.174482 0.17415 0.174633 0.174583 0.174646 0.17466
SMC npart 10 000 40 000 160 000 640 000 2 560 000 1024e4 4096e4
EMC Time 0.11 0.93 5.62 55.5 369.67 3096.63 24429
EMC Mean 0.175225 0.174888 0.174615 0.174613 0.174674 0.174667 0.17465
EMC nE 432025 1779528 5879543 27e6 96e6 396e6 1.579e9
EMC T/h 145 295 536 1151 2167 4402 8763

Figure 4. Computational time as a function of the particle number, for different Switching
Monte Carlo approaches (exponential, gamma, gamma with resampling) and parameters.

numbers of particles npart. For each, error ε, we have used an Euler Monte Carlo (EMC) with a time step h(ε)
and nE(ε) simulations to achieve the same error ε. On Table 1, we have reported for each error, ε, and for each
approach, SMC or EMC, the associated computing time (Time), mean estimate (Mean), number of particles
(npart, nE), and for the EMC approach, we have further reported the number of time steps. One can observe on
Table 1 that for errors ε up to 10−5 the SMC method appears to be slower than the Euler scheme by a factor
between 1.5 and 4 whereas for very high precisions it begins to be more effective in the considered case.
On Figure 4, we give the computional time of each method depending on the switching laws and their parameters.
One can observe on Figure 4 that indeed the computational time of the Switching Monte Carlo method is
proportional to the number of particles. Of course, using a gamma distribution instead of an exponential
one increases the number of switching times and hence the computational time. One can observe that with
resampling, the computational time increases slightly more than linearly with the number of particles.

On Figure 5, for different levels of accuracy, we compute the computational time needed for the SMC method
with gamma switching times to reach a given accuracy, depending on the κ parameter (θ being fixed to 2.5).
Clearly the optimal parameter is κ = 0.5. In fact using a parameter κ = 0.5 doesn’t improve much the accuracy
of the result but the computional time required is smaller.

6.3.2. σ(t, x) = 0.5 + 0.4(x2 ∧ 1)

With this more difficult case, we report results obtained with θ = 2.5, κ = 0.3, κ = 0.5 with and without
resampling for the gamma distribution and for the exponential distribution. The reference value is 0.21408.
Evolution of the mean estimate and the standard deviation are given on Figure 6. With or without resampling,



78 M. DOUMBIA ET AL.

Figure 5. Computional cost as a function of κ for different levels of accuracy.

Figure 6. Estimation and standard deviation observed for case 3.

the standard deviation is decreasing steadily while using gamma distributions. As we quadruple the number of
simulations, the standard deviation is roughly divided by two which is coherent with the theory. The convergence
with the exponential law is erratic once more.

In the case of gamma distribution, the standard deviation with resampling is nearly half of the one without
resampling clearly showing the interest in this method. Results with κ = 0.5 and κ = 0.3 are very similar
especially with resampling, but the number of jumps increases as κ decreases and the computational time is
nearly doubled with κ = 0.3 indicating that the optimal choice is to take κ = 0.5.

6.3.3. σ(t, x) = 0.5 ∨ x2 ∧ 1

This case is more difficult than the two first ones. The reference value is 0.2100. We keep θ = 2.5 and we
use κ = 0.3 and κ = 0.5. Figure 7, reveals that without resampling the SMC method shows difficulties to
converge, while the resampling SMC method is always converging with a standard deviation decreasing at the
rate 1/√npart. Besides the exponential case doesn’t seem to converge at all.
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Figure 7. Estimation and standard deviation observed for case 4.

6.4. Some four dimensional cases with g(x) = (1
d

∑d
i=1 xi − 1)+

The diffusion coefficient is such that σ(t, x) = 0.5 + a
(
(
∑4

i=1 xi)2 ∧ 1
)
Id for any x ∈ R

4 and for a given
positive real, a.

6.4.1. a = 0.4

The reference solution is 0.11806. We keep θ = 2.5 for the gamma distribution. For this first case, we plot on
Figure 8 the results obtained with the exponential distribution and the gamma distribution with and without
resampling. On Figure 8, one can observe that for the resampling SMC method with gamma switching times, the
log of the standard deviation decreases linearly, whereas without resampling, the decrease of standard deviation
is not regular either with gamma or exponential switching times. On this test case, resampling is effective by
reducing the standard deviation by a factor rougly equal to 2 and by stabilizing the results.

6.4.2. a = 0.6

We give the results obtained without resampling on Figure 9. The method doesn’t seem to converge when a
gamma distribution is used without resampling or when an exponential distribution is used.

Figure 8. Estimation and standard deviation observed for the first 4 dimensional test case.
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Figure 9. Estimation and standard deviation observed for the second 4 dimensional test case
for gamma distributions without resampling.

Figure 10. Estimation and standard deviation observed for the second 4 dimensional test case
for gamma distributions with resampling.

On Figure 10, we only give the results obtained with resampling and the gamma distribution taking different
parameters for θ and κ. We notice that the standard deviation calculated are far higher than in the previous
case. We have difficulties to get the theoretical linear reduction in the standard deviation. The influence of θ
parameter is not clear on the curves, but because higher θ gives higher jumps, it gives smaller computational
times.

Appendix A. Usefull notations and proof of Lemma 5.4

A.1. Classical notations and results

Let us recall somme classical notations and results stated in [7, 8]. We consider a Markov chain (X ′
n) (with

initial probability μ0 and transition kernel Kk) taking values on a sequence of measurable spaces (En, En) and
a sequence of positive potential functions (Gn) defined on (En, En).
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• For all 0 ≤ p ≤ n, we define the sigma-finite measure γp ∈ M(Ep) such that for any real valued bounded
test function fp defined on Ep,

γp(fp) = E

⎡
⎣ fp(X ′

p)
∏

0≤k≤p−1

Gk(X ′
k)

⎤
⎦ .

• For all 0 ≤ p ≤ n, let us define the probability measure ηp obtained by normalization of γp and such that
for any real valued bounded test function fp defined on Ep,

ηp(fp) =
γp(fp)
γp(1)

·

Notice that γp can be written as the following product involving the probability measures η1, . . . ηp,

γp(fp) = ηp(fp)
∏

0≤k≤p−1

ηk(Gk).

• For all 1 ≤ p ≤ n, let us introduce the nonlinear operator, Φp defined on the space of sigma-finite and
non-negative measures M+(Ep−1) and taking values in M+(Ep) such that

Φp(mp−1) := (Gp−1 ·mp−1)Kp, for any mp−1 ∈ M+(Ep−1). (A.1)

Then the nonlinear evolution of (ηp) can be summarized by

ηp+1 = Φp+1(ηp), (A.2)

• For all 0 ≤ p ≤ n, let us define the Feynman−Kac semi-group Qp,n associated to the distribution flow
(γp)1≤p≤n such that for all x′p ∈ Ep and any real valued bounded test function fn defined on En,

Qp,n(fn)(x′p) = E

⎡
⎣ fn(X ′

n)
∏

p≤k≤n−1

Gk(X ′
k) |X ′

p = x′p

⎤
⎦, with Qn,n = Id, (A.3)

Notice that for all 0 ≤ p ≤ n, γn can be written as the transformation of γp via Qp,n,

γn = γpQp,n. (A.4)

Moreover, for any sigma-finite non-negative measure μ ∈ M+(Ep),

Φp(μ) =
μQp−1,p

(μQp−1,p)(1)
· (A.5)

• We introduce (γN
n ) the particle approximation sequence of measures as defined on Lemma 5.4. Notice that

by definition (5.23) of γN
p the following relation holds

ηN
p (fp) =

γN
p (fp)
γN

p (1)
· (A.6)

• Let fn be a real valued test function defined on En, then the error between γN
n (fn) and γn(fn) can be

decomposed as the sum of n ”local errors” as follows, using relation (A.4)

(γN
n − γn)(fn) =

n∑
p=1

[γN
p Qp,n − γN

p−1Qp−1,n](fn) (recalling that γN
0 := γ0)

=
n∑

p=1

[γN
p − γN

p−1Qp−1,p]
(
Qp,n(fn)

)
,
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Then using relations (A.5) and (A.6) and recalling that γN
p (1) = γN

p−1(Gp−1) yields

(γN
n − γn)(fn) =

n∑
p=1

γN
p−1(Gp−1)[ηN

p − Φp(ηN
p−1)]

(
Qp,n(fn)

)
. (A.7)

• Let us introduce the following notations

ΓN
p (fp) :=(γN

p − γp)(fp),

ΔN
p (fp) :=[ηN

p − Φp(ηN
p−1)]

(
fp

)
=

1
N

N∑
i=1

fp(ξi
p) − Φp(ηN

p−1)(fp). (A.8)

• For any p ≥ 0, let us introduce the σ-algebra Gp generated by the particle system until the p-th generation,
observe that since

ηN
p = SN

(
Φp(ηN

p−1)
)

=
1
N

N∑
i=1

δξi
p
,

where (ξ1p , . . . , ξ
N
p ) are i.i.d. according to Φp(ηN

p−1) conditionally to Gp−1. Thus

E[ΔN
p (fp) | Gp−1] =

1
N

N∑
i=1

E[fp(ξi
p)|Gp−1] − Φp(ηN

p−1)(fp) = 0, and E[ΓN
p (fp)] = 0. (A.9)

• Moreover one can bound the conditional variance of ΔN
p (fp) as follows

E[(ΔN
p (fp))2 | Gp−1] = E[

(
(ηN

p − Φp(ηN
p−1))(fp)

)2 | Gp−1]

= E[
( 1
N

N∑
i=1

fp(ξi
p) − Φp(ηN

p−1)
)2 | Gp−1]

=
1
N

[Φp(ηN
p−1))(f

2
p ) − (Φp(ηN

p−1))(fp)
)2]

≤ 1
N
Φp(ηN

p−1))(f
2
p )

=
1
N

(Gp−1 · ηN
p−1)(Kp(f2

p )). (A.10)

We are now in a position to prove Lemma 5.4.

A.2. Proof of Lemma 5.4

Let us introduce the notation Gk,p := Qk,p(Gp) for any p ≥ k ≥ 0. Recalling (A.7) and notations (A.8) gives

ΓN
k (Gk,p) =

k∑
q=1

γN
q−1(Gq−1)[ηN

q − Φq(ηN
q−1)]

(
Qq,k(Gk,p)

)

= γN
k−1(Gk−1)ΔN

k

(
Qk,k(Gk,p)

)
+

k−1∑
q=1

γN
q−1(Gq−1)ΔN

q

(
Qq,k−1(Qk−1,k(Gk,p))

)
= γN

k−1(Gk−1)ΔN
k (Gk,p) + ΓN

k−1(Gk−1,p).

Using (A.9) stating that E[ΔN
k (Gk,p) | Gk−1] = 0 gives

E[
(
ΓN

k (Gk,p)
)2 | Gk−1] =

(
γN

k−1(Gk−1)
)2

E[
(
ΔN

k (Gk,p)
)2 | Gk−1] +

(
ΓN

k−1(Gk−1,p)
)2
.



UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS 83

Recalling assumption (5.24), observe that for any x′k−1 ∈ Ek−1

Kk(G2
k,p)(x′k−1) = E

[
(E[Gk:p(X ′

p)|X ′
k])2
∣∣X ′

k−1 = x′k−1]

≤ E
[
G2

k:p(X
′
p)|X ′

k−1 = x′k−1]

≤ Ap−k+1 <∞.

Then using the bound (A.10), with p = k and Gk,p as a test function implies

E[
(
ΔN

k (Gk,p)
)2 | Gk−1] ≤ Ap−k+1

N
·

Using the above inequality and recalling that γN
k−1(Gk−1) = γk−1(Gk−1) + ΓN

k−1(Gk−1) yields

E[
(
ΓN

k (Gk,p)
)2 | Gk−1] ≤ Ap−k+1

N
[
(
γk−1(Gk−1)

)2 +
(
ΓN

k−1(Gk−1)
)2] +

(
ΓN

k−1(Gk−1,p)
)2
.

Again recall that by assumption (5.24)

γk−1(Gk−1) := E[G1:k−1(X ′
k−1)] ≤

(
E
[
G2

1:k−1(X
′
k−1)
])1/2 ≤ Ak <∞,

which finally yields

E

[(
ΓN

k (Gk,p)
)2] ≤ Ap+1

N

(
1 + E

[(
ΓN

k−1(Gk−1)
)2])+ E

[(
ΓN

k−1(Gk−1,p)
)2]

.

Adding the above inequality from k = 1 to k = p gives for any p ≤ n

E

[(
ΓN

p (Gp)
)2] ≤ Ap+1

N

p∑
k=1

(
1 + E

[(
ΓN

k−1(Gk−1)
)2])

. ≤ An+1

N

p∑
k=1

(
1 + E[

(
ΓN

k−1(Gk−1)
)2])

.

We obtain by recursion

E[
(
ΓN

p (Gp)
)2

] ≤
(

1 +
An+1

N

)p

− 1. (A.11)

Now let us consider a test function fn verifying assumption (5.26). Using again (A.9) stating that
E[ΔN

k (Gk,) | Gk−1] = 0 gives

E[
(
ΓN

n (fn)
)2] =

n∑
p=1

E

[(
γN

p−1(Gp−1)
)2(

ΔN
p (Qp,n(fn))

)2]
.

By (A.10) and assumption (5.26), we obtain E[
(
ΔN

p (Qp,n(fn))
)2 |Gp−1] ≤ B/N which yields

E[
(
ΓN

n (fn)
)2] ≤ B

N

n∑
p=1

E

[(
γN

p−1(Gp−1)
)2]

≤ 2
B

N

n∑
p=1

(
(γp−1(Gp−1))

2 + E

[(
ΓN

p−1(Gp−1)
)2])

≤ 2
B

N

n∑
p=1

(
Ap + E

[(
ΓN

p−1(Gp−1)
)2])

since (γp−1(Gp−1))2 ≤ Ap.
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By (A.11) we finally get

E[
(
ΓN

n (fn)
)2] ≤ 2

B

N

n∑
p=1

(
Ap + (1 +

An+1

N
)p−1 − 1

)
≤ 2

B

N

n∑
p=1

Ap+1 ≤ 2
B

N
Ap+2.

as soon as N ≥ An+1 and A ≥ 2.

Appendix B. Technicalities related to the proof of Lemma 3.1

This section provides technical arguments allowing for differentiating under the integral sign that are necessary
to prove the second and third identity of (3.1).

B.1. Concerning the second identity of (3.1)

Assume the first identity of (3.1) is verified. Let us introduce the real valued function such that for any
(s, t̃, x̃, t′, x′) ∈ [t′, T ]× [0, T ]× R

d × [0, T ]× R
d

φt̃,x̃(s, t′, x′) := E

[
h∗,t̃,x̃

(
s, X̃ t̃,x̃,t′,x′

s

)]
, (B.1)

where (X̃ t̃,x̃,t′,x′
s ) is the Gaussian process defined by (2.4) and h∗,t̃,x̃ is the real valued function defined on

[0, T ]× R
d by (2.5). Recalling identity (3.4) and using Fubini’s lemma gives

u(t′, x′) = E

[
g
(
X̃ t̃,x̃,t′,x′

T

)]
+
∫ T

t′
φt̃,x̃(s, t′, x′) ds. (B.2)

Notice that by a simple application of Elworthy’s formula [10] (which simply results here in the Likelihood ratio
of Broadie and Glasserman [4]), we get

Dφt̃,x̃(s, t′, x′) =E

[
h∗,t̃,x̃

(
s, X̃ t̃,x̃,t′,x′

s

)
Mt̃,x̃

t′,s

]
=
∫

Rd

[
h∗,t̃,x̃(s, x′ + b(t̃, x̃)(s− t′) +

√
s− t′σ(t̃, x̃)u) × (σ(t̃, x̃)−1)�√

s− t′
up(u)

]
du, (B.3)

where p denotes the centered and standard Gaussian density on R
d and Mt̃,x̃

t′,s is the Malliavin weight defined
at (3.3). Recall that b and a are Lipschitz w.r.t. the space variable and 1/2-Hölder continuous w.r.t. the time
variable as stated at item (2) and (3) of Assumption 2.2 and that Dv∗ and D2v∗ are bounded as stated in
Assumption 2.1. Thus there exists a finite constant C depending on T and that may change from line to line
such that

‖h∗,t̃,x̃(s, x′ + b(t̃, x̃)(s− t′) +
√
s− t′σ(t̃, x̃)u)‖ ≤ C(1 + ‖x̃− x′‖ + ‖b(t̃, x̃)‖ + ‖σ(t̃, x̃)‖‖u‖).

Thus for any x′ such that ‖x̃− x′‖ ≤ C.

‖Dφt̃,x̃(s, t′, x′)‖ ≤ C
‖σ(t̃, x̃)−1‖√

s− t′

(
1 + ‖b(t̃, x̃)‖ + ‖σ(t̃, x̃)‖

)
, (B.4)

Since the term on the r.h.s of the above inequality is integrable w.r.t s on [t′, T ] one can differentiate under the
integral sign in (B.2) which ends the proof of the second identity of (3.1).
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B.2. Concerning the third identity of (3.1)

Let us introduce the R
d valued function Ψ such that for any (t̃, x̃, t′, x′) ∈ [0, T ]× R

d × [0, T ]× R
d

Ψ(t̃, x̃, t′, x′) :=
∫ T

t

ψ(s, t̃, x̃, t′, x′)ds (B.5)

where ψ(s, t̃, x̃, t′, x′) := ψ1(s, t̃, x̃, t′, x′) + ψ2(s, t̃, x̃, t′, x′) with

ψ1(s, t̃, x̃, t′, x′) :=
1

T − t
E

[
g
(
X̃ t̃,x̃,t′,x′

T

)
Mt̃,x̃

t′,T

]
ψ2(s, t̃, x̃, t′, x′) := E

[
ht̃,x̃
(
s, X̃ t̃,x̃,t′,x′

s

)
Mt̃,x̃

t′,s

]
. (B.6)

Observe that ψ = (ψ1, . . . , ψd) is differentiable w.r.t. the variable x′ and for any j = 1, . . . ,, d and i = 1, . . . , d

∂ψj

∂x′i
(s, t̃, x̃, t′, x′) =

∂ψj
1

∂x′i
(s, t̃, x̃, t′, x′) +

∂ψj
2

∂x′i
(s, t̃, x̃, t′, x′),

where

∂ψj
1

∂x′i
(s, t̃, x̃, t′, x′) =

(
1

T − t
E

[
g(X̃ t̃,x̃,t′,x′

T )V t̃,x̃
t′,T

])
i,j

∂ψj
2

∂x′i
(s, t̃, x̃, t′, x′) =

(
E

[
h∗,t̃,x̃(s,X t̃,x̃,t′,x′

s )V t̃,x̃
t′,s

])
i,j

(B.7)

Notice that Ψ does not depend on the pair (t̃, x̃), hence one can fix t̃ = t′ = t ∈ [0, T ]. Let us consider a fixed
point x ∈ R

d, two indexes i, j ∈ {1, . . . d}, and a point x̃ ∈ R
d such that each coordinate x̃� = x� for any � �= i

and x̃i is fixed at a given value. We want to prove that ∂Ψ j

∂x′
i
(t, x̃, t, x) exists and is continuous (which implies

the differentiability of Ψ) and to give an explicit expression for it. By the mean value theorem, there exists
a real θj(t, x̃i, x, h) ∈ [−1, 1] (to simplify the notations we will forget the dependence on t) such that for any
i = 1, . . . d

1
2h

[Ψ j(t, x̃, t, x+ hei) − Ψ j(t, x̃, t, x− hei)] =
∫ T

t

1
2h

[ψj(s, t, x̃, t, x+ hei) − ψj(s, t, x̃, t, x− hei)] ds

=
∫ T

t

∂ψj

∂x′
(t, x̃, t, x+ θj(x̃i, x, h)hei) ds, (B.8)

where ei denotes the vector of R
d with zeros coordinates except for the ith coordinate that equals 1. Observe

that in full generality the real θj(x̃i, x, h) resulting from the mean value theorem depends on (x̃, x, h) and not
only on (x̃i, x, h). However, since we consider the specific situation where x̃j = xj for all j �= i one can express
this real as a function of (x̃i, x, h). Consider the following equation w.r.t. the variable x̃i ∈ R

λi,j
x,h(x̃i) = 0, where λi,j

x,h(x̃i) := xi + θj(x̃i, x, h)h− x̃i.

One can check that there exists a solution x̂i(x, h) to this equation. Indeed, taking x̃i = xi + h and x̃i = xi − h
and recalling that θj(x̃i, x, h) ∈ [−1, 1], we obtain

λi,j
x,h(xi + h) = h(θj(xi + h, x, h) − 1) ≤ 0, and λi,j

x,h(xi − h) = h(θj(xi − h, x, h) + 1) ≥ 0

which, by continuity of λi,j
x,h, implies the existence of a solution. Now we choose to take in equation (B.8), x̃ as

the vector having the same coordinates as x except that x̃i = x̂i(x, h), this vector will be denoted by x̂(x, h).
Observe that by construction choosing x̃ = x̂(x, h) implies

x̃ = x+ θj(x̃i, x, h)hei.
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We are now interested in the limit of (B.8) as h → 0. The technical point will consist in applying Lebesgue
theorem to permute the limit with the integral sign. First, by Lebesgue theorem, and observing that x̂i(x, h) → xi

when h→ 0, we have

lim
h→0

∫ T

t

∂ψj
1

∂x′i
(s, t, x̂(x, h), t, x̂(x, h)) ds =

∫ T

t

lim
h→0

∂ψj
1

∂x′i
(s, t, x̂(x, h), t, x̂(x, h)) ds

=
∫ T

t

∂ψj
1

∂x′i
(s, t, x, t, x) ds.

Considering the integral term involving ψj
2, using the Lipschitz and α-Hölder properties of b and σ, we get∣∣∣h∗,t,x̂(x,h)

(
s, X̃t,x̂(x,h),t,x̂(x,h)

s

)∣∣∣ ≤ C(x̂(x, h), t) [(s− t)α + |Wt −Ws|]

so ∣∣∣∣∣∂ψ
j
2

∂x′
(s, t, x̂(x, h), t, x̂(x, h))

∣∣∣∣∣ ≤ C(x̂(x, h), t)
(s− t)1−α∧1/2

where C(x̂(x, h), t) is locally bounded due to the non degeneracy hypothesis and the Lipschitz properties in
Assumption 2.2. The rhs of the previous equation is integrable so that we can use the Lebesgues Theorem,

lim
h→0

∫ T

t

∂ψj
2

∂x′i
(s, t, x̂(x, h), t, x̂(x, h)) ds =

∫ T

t

lim
h→0

∂ψj
2

∂x′i
(s, t, x̂(x, h), t, x̂(x, h)) ds

=
∫ T

t

∂ψj
2

∂x′i
(s, t, x, t, x) ds.

We finally obtain

∂Ψ j

∂x′i
(t̃, x̃, t, x) =

(
E[g(X̃t,x,t,x

T )Vt,x
t,T ]
)

i,j
+
∫ T

t

(
E[h∗,t,x(s,Xt,x,t,x

s )Vt,x
t,s ]
)

i,j
ds

which ends the proof.

Acknowledgements. The authors are very grateful to the anonymous Referees for their careful reading of the paper and
the suggestions which have largely contributed to improve the first submitted version.

References

[1] P. Andersson and A. Kohatsu-Higa, Unbiased simulation of stochastic differential equations using parametrix ex-
pansions. To appear in Bernoulli [Online] Available on: http://www.bernoulli-society.org/index.php/publications/
bernoulli-journal-papers (2016).

[2] V. Bally and A. Kohatsu-Higa, A probabilistic interpretation of the parametrix mehod. Ann. Appl. Probab. 25 (2015) 3095–
3138.

[3] A. Beskos and G. Roberts, Exact simulation of diffusions. Ann. Appl. Probab. 15 (2005) 2422–2444.

[4] M. Broadie and P. Glasserman, Estimating security prices using simulation. Manage. Sci. 42 (1996) 269–285.

[5] K. Burrage, P. M. Burrage and P. Tian, Numerical methods for strong solutions of stochastic differential equations: an overview.
Proc. R. Soc. London, Series A 460 (2004) 373–402.

[6] N. Chen and Z. Huang, Localization and exact simulation of brownian motion-driven stochastic differential equations. Math.
Oper. Res. 38 (2013) 591–616.

[7] P. Del Moral, Feynman-Kac formulae. Genealogical and interacting particle systems with applications. Probability and its
Applications (New York). Springer Verlag, New York (2004).

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal-papers
http://www.bernoulli-society.org/index.php/publications/bernoulli-journal-papers


UNBIASED MONTE CARLO ESTIMATE OF STOCHASTIC DIFFERENTIAL EQUATIONS EXPECTATIONS 87

[8] P. Del Moral, Mean field simulation for Monte Carlo integration. Monographs on Statistics and applied Probability. Chapman
and Hall (2013).

[9] D. Duffie and P.W. Glynn, Efficient Monte Carlo simulation of security prices. Ann. Appl. Probab. 5 (1995) 897–905.
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[11] E. Fournié, J.M. Lasry, J. Lebuchoux and N. Touzi, Some applications of malliavin calculus to Monte Carlo methods in finance.
Fin. Stoch. 3 (1999) 391–412.

[12] M.B. Giles, Multilevel Monte Carlo path simulation. Oper. Res. 56 (2008) 607–617.

[13] P. Henry-Labordère, Countreparty risk valuation: A marked branching diffusion approach. Available at SSRN: http://ssrn.
com/abstract=1995503 or http://dx.doi.org/10.2139/ssrn.1995503 (2012).

[14] P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi and X. Warin, Branching diffusion representation of semilinear pdes and
Monte Carlo approximations. Preprint arXiv:1603.01727 (2016).

[15] P. Henry-Labordère, X. Tan and N. Touzi, A numerical algorithm for a class of bsde via branching process. Stoch. Process.
Appl. 124 (2014) 1112–1140.

[16] P. Henry-Labordère, X. Tan and N. Touzi, Unbiased simulation of stochastic differential equations. To appear in Ann. Appl.
Probab. (2016).

[17] B. Jourdain and M. Sbai, Exact retrospective Monte Carlo computation of arithmetic average asian options. Monte Carlo
Meth. Appl. 13 (2007) 135–171.

[18] P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations. Vol. 23 of Applications of Mathematics
(New York). Springer Verlag, Berlin (1992).

[19] G.N. Milstein, Approximate integration of stochastic differential equations. Theory Probab. Appl. 19 (1975) 557–600.

[20] C.H. Rhee and P.W. Glynn, Unbiased estimation with square root convergence for sde models. Oper. Res. 63 (2015) 1026–1043.

[21] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic
Anal. Appl. 8 (1990) 483–509.

http://ssrn.com/abstract=1995503
http://ssrn.com/abstract=1995503
http://dx.doi.org/10.2139/ssrn.1995503
http://arxiv.org/abs/1603.01727

	Introduction
	Notations
	Probabilistic representation using a regime switching process
	Variance analysis in the case of gamma distribution

	Resampling method for regime switching processes
	A Feynman-Kac measure representation
	The particle approximation scheme


	Numerical simulations
	Complexity analysis
	An example with g(x)=cos(x), (t,x)= 0.5 + 0.2 (x2 1) 
	 One dimensional tests with g(x)= (x-1)+
	 (t,x)= 0.5 + 0.2 (x2 1) 
	 (t,x)= 0.5 + 0.4 (x2 1) 
	 (t,x)= 0.5 x2 1

	Some four dimensional cases with g(x)= (1d i=1d xi-1)+
	a=0.4
	a=0.6


	Usefull notations and proof of Lemma 5.4
	Classical notations and results
	Proof of Lemma 5.4

	Technicalities related to the proof of Lemma 3.1
	Concerning the second identity of (3.1)
	Concerning the third identity of (3.1)

	References

