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Abstract. We study a class of logarithmic Sobolev inequalities with a general form of the energy
functional. The class generalizes various examples of modified logarithmic Sobolev inequalities consid-
ered previously in the literature. Refining a method of Aida and Stroock for the classical logarithmic
Sobolev inequality, we prove that if a measure on R

n satisfies a modified logarithmic Sobolev inequality
then it satisfies a family of Lp-Sobolev-type inequalities with non-Euclidean norms of gradients (and
dimension-independent constants). The latter are shown to yield various concentration-type estimates
for deviations of smooth (not necessarily Lipschitz) functions and measures of enlargements of sets
corresponding to non-Euclidean norms. We also prove a two-level concentration result for functions of
bounded Hessian and measures satisfying the classical logarithmic Sobolev inequality.
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1. Introduction

Concentration of measure inequalities constitute one of the strongest and most widely used tools in modern
high dimensional probability, geometry and analysis, crucial in establishing e.g. limit theorems or existence
proofs by probabilistic method. Their importance was first noted in the 1970s and since then many powerful ap-
proaches have been established, which allow to prove concentration results, such as isoperimetric, transportation
or functional inequalities (we refer to the monograph [30] by Ledoux for an overview). Among the functional
inequalities approaches, the two which have proven particularly useful are those based on the Poincaré and log-
arithmic Sobolev inequalities. Recall that a Borel probability measure μ on R

n satisfies the Poincaré inequality
with constant D if

Varμf ≤ DEμ|∇f |2

for all sufficiently smooth functions f : R
n → R, whereas the logarithmic Sobolev inequality holds if for all

such f ,
Entμf2 ≤ DEμ|∇f |2,

Keywords and phrases. Concentration of measure, modified logarithmic Sobolev inequalities.

∗ Research partially supported by Polish Ministry of Science and Higher Education Iuventus Plus Grant no. IP 2011 000171.

1 Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland.
R.Adamczak@mimuw.edu.pl; W.Bednorz@mimuw.edu.pl
2 Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland; and Institute of Mathematics,
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where Entμf2 = Eμf2 log f2 − Eμf2 log Eμf2 is the usual entropy of f2 (throughout the article we use the
probabilistic notation, treating f as a random variable on the probability space (Rn,B(Rn), μ), in particular
Eμ denotes integration with respect to μ). Above and in the rest of the paper | · | = | · |2 always denotes the
standard Euclidean norm in R

n.
As is well known, the Poincaré inequality yields subexponential concentration of Lipschitz functions, whereas

the logarithmic Sobolev inequality implies sub-Gaussian estimates. There are also other functional inequalities,
based either on a modification of the variance functional in the Poincaré inequality [10, 29] or a modification
of the right-hand side in the logarithmic Sobolev inequalities [15, 20, 21], which yield concentration estimates
with super-Gaussian rates or with rates between subexponential and sub-Gaussian. The general form of such
log-Sobolev inequalities is

Entμf2 ≤ DEμΨ

(∇f

f

)
f2 (1.1)

for an appropriate function Ψ : R+ → R+ (we postpone the introduction of technical conditions on the function
Ψ to subsequent sections).

Together with the discovery of two-level concentration inequalities by Talagrand (initially for the exponential
distribution [38]), which improve the estimates based on Poincaré inequality and provide sub-Gaussian estimates
for relatively small deviations and subexponential bounds for larger ones, a natural question arose whether
results of this type could also be obtained via functional inequalities. It was soon answered in the affirmative by
Bobkov and Ledoux [13] who derived new modified logarithmic Sobolev inequalities, which were subsequently
extended by Gentil, Guillin and Miclo [20, 21] to inequalities yielding other (two-level and also more general)
types of concentration.

Concentration estimates are usually derived from modified logarithmic Sobolev inequalities via differential
inequalities on the log-Laplace transform of the function, a method commonly known as the Herbst argument.
This method, being very elegant and powerful is however restricted to functions with finite Laplace transform,
such as Lipschitz functions. For functions which do not satisfy the Lipschitz condition one can still use a
modification of the Herbst approach, proposed by Aida and Stroock [4]. It relies on the analysis of moments and
provides Lp-type Sobolev inequalities, which can yield concentration, provided that one controls the gradient of
a function. More precisely, Aida and Stroock proved that the logarithmic Sobolev inequality implies inequalities
of the form

‖f − Eμf‖p ≤ CD
√

p
∥∥∥|∇f |

∥∥∥
p

for p ≥ 2, where ‖g‖p = (Eμ|g|p)1/p is the pth moment of the function g. Clearly, controlling all moments of ∇f
allows then to derive concentration results.

The aim of this work is to provide a uniform framework which would allow to treat the aforementioned
modified logarithmic inequalities and provide concentration estimates with general profiles of the deviation
bound for functions which are not necessarily Lipschitz. Our approach is based on a further refinement of
the method by Aida and Stroock, which gives Lp-type Sobolev inequalities with non-Euclidean, p-dependent
norms of the gradient on the right-hand side. The form of these norms corresponds to the type of concentration
satisfied by the measure. As a particular case we obtain moment inequalities for smooth functions, which
generalize moment estimates for linear combinations of independent random variables, derived by Gluskin and
Kwapień [22] (see Thm. 3.14 below).

We remark that even in the classical Euclidean framework under defective log-Sobolev inequalities, our results
improve certain aspects of the work by Aida and Stroock.

The precise form of the inequalities we obtain depends on the function Ψ in the modified logarithmic Sobolev
inequality (1.1) and to describe it we need to introduce some technical notation. For this reason we postpone
the precise formulation to subsequent sections and now we just announce that we will obtain inequalities of the
form

‖f − Eμf‖p ≤ CD

∥∥∥|∇f |Ψp

∥∥∥
p
,
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for some norm | · |Ψp on R
n associated with p and the function Ψ . The geometry of the norms | · |Ψp will be

responsible for the character of concentration of measure valid for the measure μ. In the classical case, considered
by Aida and Stroock, we have simply |x|Ψp =

√
p|x|.

As corollaries we obtain concentration results for not necessarily Lipschitz functions as well as bounds on the
size of enlargement of sets in a setting more general than considered before. We also prove some concentration
results for Banach space valued polynomial chaos in the case of not necessarily product measures, extending
previous work by Borell [17], Arcones−Giné [6], �Lochowski [31] and Adamczak [1]. Additionally we derive
comparison principles for real-valued polynomials (or more generally functions with bounded derivatives of
higher order) generalizing previous estimates by Adamczak and Wolff [1] and a two-level concentration result
for functions with bounded Hessian and measures satisfying the classical logarithmic Sobolev inequality.

Organization of the paper. In Section 2 we introduce the general framework for the inequalities we consider.
Section 3 is devoted to the presentation of our results. The proofs are deferred to Section 4.

2. Preliminaries

2.1. Basic notation

We will be working mostly with a fixed probability measure μ, therefore we will denote ‖f‖p = (Eμ|f |p)1/p,
suppressing the dependence on μ in the notation.

Unless otherwise stated, xi, i = 1, . . . , n, will denote coordinates of a point x ∈ R
n, i.e. x = (x1, . . . , xn).

To distinguish norms on R
n from the notation for moments, we will denote the former with single bars, e.g.

for r ≥ 1, | · |r will stand for the �n
r norm, defined by |x|r = (

∑n
i=1 |xi|r)1/r. Other important norms will be

introduced in the sequel. In the case of r = 2 we will often suppress the subscript r and write simply | · | for | · |2.
By C, c we will denote universal constants, whereas the notation C(a) or Ca will be used for constants

depending only on a parameter a. The values of constants may differ between occurrences.

2.2. Generalized Orlicz functions and modified logarithmic Sobolev inequalities

To formulate our results let us first introduce the general abstract form of the inequalities we will consider.
Next we will illustrate it with examples of inequalities known in the literature, which fit our framework.

In what follows we will consider generalized Orlicz functions on R
n, satisfying some standard technical

conditions given in the following

Definition 2.1. We will say that a function Ψ : R
n → R+ ∪ {∞} satisfies the condition (C) if the following

holds

(C1) Ψ(0) = 0 and Ψ is continuous at 0,
(C2) Ψ(x) > 0 for x �= 0,
(C3) lim|x|→∞ Ψ(x) = ∞,
(C4) for every x ∈ R

n, the function t �→ Ψ(tx) is left-continuous on (0,∞),
(C5) for every x ∈ R

n, the function t �→ Ψ(tx)/t is non-decreasing on (0,∞),
(C6) Ψ is symmetric, i.e. Ψ(x) = Ψ(−x) for all x ∈ R

n.

Consider a probability measure μ on R
n, absolutely continuous with respect to the Lebesgue measure. The

general class of functional inequalities we will consider is described in the following definition.

Definition 2.2. Given a function Ψ , satisfying the condition (C) and a positive constant D we will say that μ
satisfies the modified logarithmic Sobolev inequality mLSI(Ψ, D) if for every bounded locally Lipschitz function
f : R

n → (0,∞),

Entμf2 ≤ DEμΨ

(∇f

f

)
f2. (2.1)
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Note that by the Rademacher theorem, ∇f exists μ-a.s. Under additional continuity assumptions on Ψ , by
standard arguments one can show that μ satisfies mLSI(Ψ, D) if and only if the above inequality is satisfied by
all smooth functions of bounded support.

We will also consider defective versions of the logarithmic Sobolev inequalities.

Definition 2.3. Given a function Ψ , satisfying the condition (C) and constants D, d ≥ 0 we will say that
μ satisfies the defective modified logarithmic Sobolev inequality dmLSI(Ψ, D, d), if for every bounded locally
Lipschitz function f : R

n → (0,∞),

Entμf2 ≤ DEμΨ

(∇f

f

)
f2 + dEμf2. (2.2)

As already mentioned, inequalities of this form have been considered by many authors starting from the
classical work by Stam [37], Federbush [18], Gross [24] on the logarithmic Sobolev inequality, which in our
language corresponds to the choice Ψ(x) = |x|2, where |·| is the standard Euclidean norm. Modified versions were
first considered by Bobkov−Ledoux [15], then e.g. by Bobkov−Zegarliński [16], Gentil−Guillin−Miclo [20, 21],
Barthe−Roberto [9] and Barthe−Kolesnikov [8]. The defective versions were investigated e.g. by Rothaus [34],
Bobkov−Zegarlinski [16], Barthe−Kolesnikov [8], who obtained general criteria under which one can infer the
non-defective version from the defective one. For instance it is known that under some additional conditions on
the function Ψ , the defective inequality implies the non-defective version if one assumes certain Poincaré type
inequalities.

Below we present the best known examples of modified log-Sobolev inequalities.

• The inequality (2.1) with Ψ(x) = ‖x‖q, where q ∈ (1, 2] and ‖ · ‖ is some norm on R
n was introduced by

Bobkov and Ledoux in [15].
• In [13] Bobkov and Ledoux considered Ψ(x) =

∑n
i=1 H(xi), where

H(x) =

{
x2 for |x| ≤ 1/2

∞ for |x| > 1/2.

This inequality was used to recover Talagrand’s concentration inequality for the exponential distribution [38].
In [20, 21] Gentil, Gullin and Miclo generalized the Bobkov−Ledoux inequality, by considering H(x) =
x21{|x|≤1} + Φ(|x|)1{|x|>1} for a convex function Φ. When Φ(x)/x2 is non-decreasing on the positive half-
line, the characterization of measures on R which satisfy mLSI(H, D) for some finite D was obtained in [9]
(the characterization of the classical case Ψ(x) = x2 was obtained earlier in the seminal paper [14] by
Bobkov−Götze).

• The inequalities (2.1) and (2.2) for general Ψ corresponding to a measure μ(dx) = e−V (x)dx on R
n, un-

der certain Bakry−Emery type conditions relating Ψ and V were studied e.g. by Barthe−Kolesnikov [8],
Gentil [19], Shao [36].

Since the aforementioned articles introduce many different approaches for proving modified logarithmic Sobolev
inequalities and the presentation of all of them is beyond the scope of this paper let us only mention that there
is a multitude of examples of measures satisfying the inequalities in question. Currently available tools allow
to both find mild sufficient conditions for a measure to satisfy the inequality (2.1) (resp. (2.2)) with a given
function Ψ or starting from a measure find an appropriate Ψ so that the inequality (2.1) (resp. (2.2)) holds.
Moreover, the usual tensorization and perturbation arguments developed for the classical logarithmic Sobolev
inequality [5] work also in the modified setting and allow to construct further examples. In particular, the one-
dimensional characterizations of modified logarithmic Sobolev inequalities allow to consider inequalities on R

n

with Ψ(x) =
∑n

i=1 H(xi), first for product measures and then for their bounded perturbations.
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2.3. Families of Orlicz norms

Let us introduce another notion we need to formulate our results, namely a family of (quasi-)norms related
to the function Ψ . In the Sobolev type inequalities we are about to derive these norms will be applied to the
gradient of a function.

For p > 0 define

Ψp(x) =
1
p
Ψ(px).

Assume Ψ satisfies the condition (C). Then so does Ψp for all p > 0 and we consider a family of (quasi-)norms
| · |Ψp on R

n, defined as

|x|Ψp = inf{a > 0: Ψp(x/a) ≤ 1} = inf{a > 0: Ψ(px/a) ≤ p}.
It is easy to see that |x|Ψp is indeed a quasi-norm on R

n, i.e. |x|Ψp = 0 iff x = 0, |tx|Ψp = |t||x|Ψp for t ∈ R and
|x + y|Ψp ≤ KΨp(|x|Ψp + |y|Ψp) for some constant KΨp . If Ψ is in addition convex, then | · |Ψp is a norm on R

n.
In what follows we will refer to the functional | · |Ψp as the Ψp-norm or simply the norm, even if the function Ψp

is not necessarily convex. Note also that from (C5) it follows that the norms | · |Ψp are non-decreasing in p, i.e.
for 0 < p < q and any x ∈ R

n,

|x|Ψp ≤ |x|Ψq . (2.3)

Example 2.4. To demonstrate the reasons for introducing the above abstract definition of the norms | · |Ψp

and to show their role in the derivation of concentration of measure results, we will now list some families of
norms corresponding to special choices of the function Ψ and present some special cases of known Sobolev type
inequalities.

(1) Clearly, if Ψ is homogeneous, in particular if it is a norm on R
n, then for any p > 0, | · |Ψp = Ψ . This shows

that to obtain interesting families of norms, | · |Ψp , which can be used to control the behaviour of moments
of random variables, one needs to consider functions Ψ which grow faster than linearly.

(2) If Ψ(x) = ‖x‖α for some norm ‖·‖ on R
n and α > 1, then |x|Ψp = p1/α∗‖x‖, where α∗ is the Hölder conjugate

of α. This simple example can already illustrate the role played by the norms | · |Ψp in our estimates. For
instance, it is well known [33] that for a standard Gaussian measure γ on R

n, for every smooth function
f : R

n → R and every p ≥ 2,

‖f − Eγf‖p ≤ C
√

p
∥∥∥|∇f |

∥∥∥
p

(2.4)

for some absolute constant C (where the moments ‖ · ‖p are calculated with respect to γ). Note that if
|∇f | ≤ L on R

n, then by applying the Chebyshev inequality in Lp and optimizing in p, one recovers (up to
constants) the classical Gaussian concentration inequality, i.e.

γ(|f − Eγf | ≥ t) ≤ 2 exp(−ct2/L2)

for some universal constant c. It is easy to see that for Ψ(x) = |x|2, the right hand side of (2.4) can be
written as C

∥∥∥|∇f |Ψp

∥∥∥
p
, so the Sobolev inequality (2.4) is equivalent to

‖f − Eγf‖p ≤ C
∥∥∥|∇f |Ψp

∥∥∥
p
. (2.5)

(3) Let us now consider an example corresponding to a two-level concentration of measure. Let Ψ(x) =∑n
i=1(|xi|21{|xi|≤1} + |xi|r1{|xi|>1}) for some r ∈ [2,∞). Recall that by | · |r we denote the �n

r norm,
i.e. for x = (x1, . . . , xn), |x|r = (

∑n
i=1 |xi|r)1/r. One can show that

|x|Ψp  √
p|x| + p1/r∗ |x|r,

where  denotes two-sided estimates matching up to a universal multiplicative constant.
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It turns out that the expression given above appears in Sobolev inequalities leading to two-level tail esti-
mates. Namely, in [3] it is proved that if r ∈ [2,∞) and a measure μ on R

n satisfies the mLSI(Ψ, D), then
for all smooth functions f and p ≥ 2,

‖f − Eμf‖p ≤ Cr,D

(√
p ‖|∇f |2‖p + p1/r∗ ‖|∇f |r‖p

)
 Cr,D

∥∥∥|∇f |Ψp

∥∥∥
p
,

(where the moments ‖ · ‖p are calculated with respect to μ), which implies that for any Lipschitz function f
and t > 0, we have

μ(|f − Eμf | ≥ t) ≤ 2 exp
(
−cr,D min

(
t2

a2
,
tr

∗

br∗

))
, (2.6)

where a = supx∈Rn |∇f(x)|2, b = supx∈Rn |∇f(x)|r . This corresponds to Talagrand’s two-level concentration
inequality. As we will see, a similar moment bound holds also for r ∈ (1, 2) and even for more general
functions Ψ . We remark that for r ∈ [1, 2], we have

|x|Ψp  p1/r∗ |(x∗
i )�p�i=1|r +

√
p|(x∗

i )n
i=�p�+1|2

where x∗
1 ≥ . . . ≥ x∗

n is the non-increasing rearrangement of the sequence |x1|, . . . , |xn|.
(4) Let us remark that in the special case, when μ is a product of measures on R with log-concave tails and f

is a linear functional, the inequalities of the form

‖f − Eμf‖p ≤
∥∥∥|∇f |Ψp

∥∥∥
p

have been proved by Gluskin and Kwapień in [22]. In Section 3.4.2 we will use their result (which we recall
in Thm. 3.14) to give an interpretation of our results in terms of auxiliary i.i.d. sequences.

3. Main results

In this section we will present all our results, deferring their proofs to Section 4.

3.1. Standing assumptions

Let us first state the main assumptions we are going to use throughout the article.
All the measures we will consider are assumed to be absolutely continuous with respect to the Lebesgue

measure and this assumption will not be explicitly stated in all the theorems.
Our usual assumption on the function Ψ , beside the condition (C), will be the following growth condition:

for some 1 < α ≤ 2 ≤ β < ∞ and K ≥ 1,

∀x∈Rn\{0} ∀t≥1 K−1tα ≤ Ψ(tx)
Ψ(x)

≤ Ktβ. (GK,α,β)

Note that the condition (GK,α,β) is stable under taking max or sum of functions Ψ , and if Ψ satisfies (GK,α,β)
then so does Ψp for any p > 0.

3.2. Sobolev type inequalities

Let us now present our main results, i.e. Sobolev type inequalities, which constitute a basis for all the
subsequent corollaries.



MOMENT ESTIMATES IMPLIED BY MODIFIED LOG-SOBOLEV INEQUALITIES 473

3.2.1. The defective case

We will start with moment estimates implied by defective inequalities. Recall the definition of the inequality
dmLSI(Ψ, D, d) given in formula (2.2). The proofs of results of this section are provided in Section 4.1.

Theorem 3.1. Assume that Ψ : R
n → R satisfies the condition (C) and (GK,α,β) for some 1 < α ≤ 2 ≤ β < ∞

and K ≥ 1. Let μ be a probability measure on R
n satisfying dmLSI(Ψ, D, d). Then for all locally Lipschitz

functions f : R
n → R and all p ≥ β,

‖f‖p ≤ e2d/β‖f‖β +
2e

α − 1
(
(KD)1/α ∨ (KD)1/β

)∥∥∥|∇f |Ψp

∥∥∥
p
. (3.1)

Let us remark that for any p ≥ β and any q ∈ (0, β) one can actually obtain

‖f‖p ≤ 2
(p−q)β
(p−β)q e2d p−q

(p−β)q ‖f‖q +
2e

α − 1
(
(KD)1/α ∨ (KD)1/β

)∥∥∥|∇f |Ψp

∥∥∥
p
. (3.2)

This inequality is a simple consequence of the well-known Lemma 4.1 stated in Section 4. Note that the constant
2

(p−q)β
(p−β)q e2d p−q

(p−β)q obtained with the Lemma 4.1 explodes when q → 0 or p → β. We do not know if under the
assumption of the above theorem, one can prove that for all p ≥ 2,

‖f‖p ≤ C(D, d, α, β)
(
‖f‖2 +

∥∥|∇f |Ψp

∥∥
p

)
.

Fortunately to obtain concentration of measure inequalities, for fixed α, β, it is enough to control the growth of
‖f −Eμf‖p for p > β. Such a bound will be obtained in the non-defective case. It would be interesting to know if
one can obtain meaningful Sobolev inequalities for the case β = ∞, which corresponds to the Bobkov−Ledoux
inequality (satisfied e.g. for the product exponential distribution). In [3] it has been conjectured that in this
case (for d = 0),

‖f − Eμf‖p ≤ CD

(√
p
∥∥∥|∇f |2

∥∥∥ + p
∥∥∥|∇f |∞

∥∥∥
p

)

and a weaker inequality was proved, with the second term on the right hand side replaced by p
∥∥∥|∇f |∞

∥∥∥
∞

.
On the other hand, the reason for excluding the case α = 1 is made clear by the following proposition and

the example below.

Proposition 3.2. Assume that Ψ : R
n → R satisfies the condition (C) and for some β ≥ 2 and K ≥ 1,

∀x∈Rn\{0} ∀t≥1
Ψ(tx)
Ψ(x)

≤ Ktβ.

Let μ be a probability measure on R
n satisfying dmLSI(Ψ, D, d). Then for all locally Lipschitz functions f : R

n →
R and all p ≥ β,

‖f‖p ≤ e2d/β‖f‖β + 6 log(p)
(
D ∨ (KD)1/β

)∥∥∥|∇f |Ψp

∥∥∥
p
. (3.3)

Example 3.3. Let ν be a probability measure on R with the distribution function

Fν(x) =

⎧⎪⎨
⎪⎩

1
2

e−e−x+1, for x < 0,

1 − 1
2

e−ex+1, for x ≥ 0.
(3.4)
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Proposition 3.4. The measure ν defined by (3.4) satisfies mLSI(Ψ, 2) with Ψ(x) = |x|. Also, for every locally
Lipschitz function f : R → R and p > 1,

‖f‖Lp(ν) ≤ ‖f‖L1(ν) + log(p)‖f ′‖Lp(ν). (3.5)

Moreover, if f(x) = x, then for p ≥ 1, ‖f‖Lp(ν) ≥ (2e)−1 log(p).

The “moreover” part of the above proposition shows in particular that for p → ∞, the log(p) factor in (3.3)
or (3.5) cannot be improved.

Further examples:

(1) If Ψ(x) = |x|2 we are in the setting of the classical defective logarithmic Sobolev inequality. A result by
Aida–Stroock [4] says that in this case for p ≥ 2,

‖f‖2
p ≤ e2d/p∗

(
‖f‖2

2 + D(p − 2)
∥∥∥|∇f |

∥∥∥2

p

)
. (3.6)

On the other hand, Theorem 3.1, specialized to this case, asserts that for p ≥ 2,

‖f‖p ≤ ed‖f‖2 + 2e
√

D
√

p
∥∥∥|∇f |

∥∥∥
p
. (3.7)

Let us note that the constant in front of the term involving ∇f in our inequality does not depend on d,
which is not the case in (3.6). Therefore, even though the Aida–Stroock bound may behave in a better way
for p close to 2, our estimate (via Chebyshev’s inequality optimized over p) shows that the large deviation
behaviour of functions with polynomial growth of moments of ∇f can be controlled independently of d,
which does not seem to follow from (3.6). For instance, if ‖f‖2 < ∞ and

∥∥∥|∇f |
∥∥∥

p
≤ Apγ for some γ ≥ 0,

then we obtain
lim sup

t→∞
1

t2/(1+2γ)
log μ(|f | ≥ t) ≤ −cA,D

for some (explicit) constant cA,D > 0.
We remark that an improvement of the Aida–Stroock result for Lipschitz functions was obtained by Rothaus
in [35].

(2) Consider now Ψ(x) =
∑n

i=1(|xi|21{|xi|≤1} + |xi|r1{|xi|>1}) for some r ∈ (1,∞), which corresponds to the
modified logarithmic Sobolev inequality introduced in [20] and [8] for r ≥ 2 and in [19] for r < 2. In the
former case, the inequalities of Theorem 3.1 read as

‖f‖p ≤ e2d/r‖f‖r + 2e(D1/2 ∨ D1/r)
(√

p
∥∥∥|∇f |2

∥∥∥
p

+ p1/r∗∥∥∥|∇f |r
∥∥∥

p

)

for p ≥ r (the assumption (GK,α,β) is satisfied with α = 2, β = r and K = 1). We remark that if in
addition the underlying measure μ satisfies the Poincaré inequality, we can replace ‖f‖r by ‖f‖2 and obtain
an inequality for any p ≥ 2 (with altered constants).
If r ∈ (1, 2), one obtains

‖f‖p ≤ ed‖f‖2 +
2e

r − 1
(D1/r ∨ D1/2)

(
p1/r∗∥∥∥|(∂∗

i f)�p�i=1|r
∥∥∥

p
+ p1/2

∥∥∥|(∂∗
i f)n

i=�p�+1|2
∥∥∥

p

)
(3.8)

for p ≥ 2, where ∂∗
1f(x), . . . , ∂∗

nf(x) is the non-increasing rearrangement of the sequence |∂f(x)
∂x1

|, . . . , |∂f(x)
∂xn

|.
Note that

p1/r∗∥∥∥|(∂∗
i f)�p�i=1|r

∥∥∥
p

+ p1/2
∥∥∥|(∂∗

i f)n
i=�p�+1|2

∥∥∥
p
≤ Cp1/2

∥∥∥|∇f |2
∥∥∥

p
,

so (3.8) is stronger then the bound (3.7) which has been derived from the classical logarithmic Sobolev
inequality. Clearly to take advantage of the improvement one needs some additional information about the
function f .
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3.2.2. The non-defective case

Let us now pass to our second result, describing the moment estimates implied by modified LSI without defect,
which will be later applied to obtain concentration bounds. Recall the definition of the inequality mLSI(Ψ, D)
given in formula (2.1). The proofs of results presented in this section are deferred to Section 4.2.

Denote

L(K, D, α, β) :=
1

α − 1
(KD)1/β +

(
1

α − 1
+ β1/α

)
(KD)1/α.

Theorem 3.5. Assume that Ψ : R
n → R satisfies the condition (C) and (GK,α,β) for some 1 < α ≤ 2 ≤ β < ∞.

Let μ be a probability measure on R
n satisfying mLSI(Ψ, D). Then for all integrable (w.r.t. μ) and locally

Lipschitz functions f : R
n → R and all p ≥ β,

‖f − Eμf‖p ≤ CL(K, D, α, β)
∥∥∥|∇f |Ψp

∥∥∥
p
. (3.9)

We note that, as is easy to see by truncation arguments, if the right-hand side of (3.9) is finite, then the
function f is μ-integrable (in fact the pth moment of f is finite), so the integrability assumption is introduced
in the above theorem just for formal reasons.

The advantage of (3.9) with respect to (3.1) is that it provides estimates of central moments of f in terms
of norms of the gradient, without further dependence on any norms of f . This allows to derive concentration
property for f based on the regularity of the gradient and as a consequence provides also concentration bounds
at the level of enlargements of sets.

Theorem 3.5 is derived from Theorem 3.1 by means of Proposition 3.6 below, which allows to handle the
central moment of order β.

Proposition 3.6. Under the assumptions of Theorem 3.5, for every integrable (w.r.t. μ) and locally Lipschitz
function f : R

n → R,

‖f − Eμf‖β ≤ C
(

(KD)1/β + (KDβ)1/α
)∥∥∥|∇f |Ψβ

∥∥∥
β
. (3.10)

3.3. Corollaries. Concentration: Deviation inequalities and enlargements of sets.

We will now explain how moment estimates of Theorem 3.5 imply concentration results expressed in terms of
non-Euclidean norms of the gradient and non-Euclidean enlargements of measurable sets. The proofs of results
from this section are presented in Section 4.3.

By Chebyshev’s inequality we obtain the following

Corollary 3.7. Under the assumptions of Theorem 3.5, for all integrable (w.r.t. μ) and locally Lipschitz func-
tions f : R

n → R and any p ≥ β,

μ

(
|f − Eμf | ≥ CL(K, D, α, β)

∥∥∥|∇f |Ψp

∥∥∥
p

)
≤ e−p.

The above corollary allows to get concentration bounds if one controls the growth of g(p) :=
∥∥∥|∇f |Ψp

∥∥∥
p
, no

Lipschitz-type conditions need to be assumed. However, since in the simplest situation one may control the
growth of g(p) via a uniform bound on |∇f |Ψa for some a > 0 we will now specialize to functions which satisfy
such a bound. To formulate the next corollary we will need to introduce the function ωΨ : R+ → R+ ∪ {∞},
defined as

ωΨ (t) = sup
x∈Rn\{0}, Ψ(x) �=∞

Ψ(tx)
Ψ(x)

·
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If Ψ satisfies the condition (C) then ωΨ is left-continuous, limt→0 ωΨ (t) = 0, limt→∞ ωΨ (t) = ∞ and t �→ ωΨ (t)/t
is non-decreasing, so ωΨ is strictly increasing on {ωΨ < ∞}. Consider the inverse ω−1

Ψ : R+ → R+ of ωΨ , formally
defined as

ω−1
Ψ (s) = sup{t > 0: ωΨ (t) ≤ s}.

This function is continuous and since t �→ ωΨ (t)/t is non-decreasing, the function s �→ s/ω−1
Ψ (s) is also continuous

and non-decreasing. If additionally Ψ satisfies (GK,α,β) with some K ≥ 1 and 1 < α ≤ 2 ≤ β then for all t > 0,

K−1(tα ∧ tβ) ≤ ωΨ (t) ≤ K(tα ∨ tβ) (3.11)

which implies that

lim
t→0

ωΨ (t)
t

= 0, lim
t→∞

ωΨ (t)
t

= ∞ (3.12)

and in turn s/ω−1
Ψ (s) → 0 as s → 0 and s/ω−1

Ψ (s) → ∞ as s → ∞. Therefore one can define a function
ω∗

Ψ : R+ → R+ to be a right-continuous inverse of s �→ s
ω−1

Ψ (s)
, i.e.

ω∗
Ψ (t) = sup

{
s > 0:

s

ω−1
Ψ (s)

≤ t

}
.

Note that ω∗
Ψ (t) is strictly increasing. We shall use the following observation (quite standard in the theory of

Orlicz functions) which shows that the behaviour of the pair of functions ωΨ and ω∗
Ψ is similar to behaviour of

conjugate functions:

Lemma 3.8. Assume that Ψ satisfies the condition (C) and is such that (3.12) holds. Then for any t > 0,

ω∗
Ψ (t) = t sup

{
u > 0:

ωΨ (u)
u

≤ t

}
. (3.13)

Moreover, if λ(t) = supy>0(ty − ωΨ (y)) is the Legendre transform of ωΨ then for all t > 0,

λ(t) ≤ ω∗
Ψ (t) ≤ λ(2t). (3.14)

The role played the function ω∗
Ψ in concentration inequalities is revealed by the following

Corollary 3.9. Under the assumptions of Theorem 3.5, if a locally Lipschitz function f : R
n → R satisfies

|∇f(x)|Ψa ≤ b, μ-a.e. for some a, b > 0, then for all t > 0,

μ (|f − Eμf | ≥ t) ≤ exp
(

β − aω∗
Ψ

(
t

CL(K, D, α, β)b

))
·

A version of the above corollary was obtained in ([9], Prop. 26) in the special case when Ψ(x) =
∑n

i=1 H(xi)
and H is an even convex function on R such that t �→ H(t)/t2 is non-decreasing on (0,∞). Our result and the
result of [9] are not directly comparable, on the one hand in [9] there is no assumption concerning the parameter
β and the constants are explicit, on the other hand the argument there is restricted to functions Ψ of a special
form and to α = 2, i.e. to the case of super-Gaussian tails. We remark that the proof in [9] is based on the
classical Herbst argument with the Laplace transform.

We will now express the concentration property of a measure μ satisfying mLSI(Ψ, D) in the language of
enlargements of sets. We will do it under an additional assumption that the function Ψ is convex.

Corollary 3.10. Assume that Ψ is convex and let Ψ∗ be its Legendre transform. Under the assumptions of
Theorem 3.5, for every Borel set A ⊆ R

n such that μ(A) ≥ 1/2 and every u > 0,

μ (A + {x ∈ R
n : Ψ∗(x) < u}) ≥ 1 − 2eβ−u/(C(K,D,α,β)).
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Example 3.11. Consider Ψ(x) =
∑n

i=1(|xi|21{|xi|≤1} + |xi|r1{|xi|>1}) for some r ∈ (1,∞). For r < 2, the
function Ψ is not convex, but one can easily see that it is equivalent to a convex function, so we can still apply
Corollary 3.10 at the cost of adjusting the constants. In this case (after replacing Ψ∗ by an equivalent function)
if one denotes by Bn

p the unit ball of �n
p , one obtains that for r ≥ 2,

μ(A +
√

uBn
2 + u1/r∗

Bn
r∗) ≥ 1 − Cr,De

− u
Cr,D

whereas for r ∈ (1, 2),

μ(A + (
√

uBn
2 ) ∩ (u1/r∗

Bn
r∗)) ≥ 1 − Cr,De

− u
Cr,D .

In the case of the product distribution with marginal densities proportional to e−|xi|r∗ the above inequalities
were first obtained by Talagrand [39] (for r ≥ 1). The first functional approach was proposed by Bobkov and
Ledoux [13] (r = ∞) and Barthe and Roberto [9] (r ∈ [2,∞) as well as more general concentration rates between
subexponential and sub-Gaussian), who used the modified log-Sobolev inequalities introduced by Gentil, Guillin
and Miclo. A uniform setting for various types of concentration inequalities, including the ones mentioned above
was proposed by Gozlan, who used Poincaré inequalities with modified norms of gradients [23]. There are some
subtle differences between the strength of various approaches, for instance Gozlan’s approach works also for
r = ∞ and his constants do not depend on r. On the other hand in the non-product case his method introduces
some dependence on the dimension n (see e.g. Prop. 1.2. in [23]).

3.4. Further corollaries. Concentration inequalities for polynomials

In this section we will present corollaries concerning polynomial like functions. First we will consider homoge-
neous polynomials with coefficients in a Banach space, then arbitrary real valued polynomials or more generally
functions with bounded derivatives of order k. The proofs of presented results are deferred to Section 4.4.

To formulate our results in a concise way we will need to introduce some additional notation. Namely for
two k-indexed matrices A = (ai1,...,ik

)n
i1,...,ik=1 and B = (bi1,...,ik

)n
i1,...,ik=1, where ai1,...,ik

∈ E for some Banach
space E and bi1,...,ik

∈ R we set

〈A, B〉 =
n∑

i1,...,ik=1

ai1,...,ik
bi1,...,ik

.

Moreover, for vectors x1, . . . , xk ∈ R
n we define x1 ⊗ · · · ⊗ xk = (x1

i1 · · ·xk
ik

)n
i1,...,ik=1. With this convention, the

E-valued homogeneous form of degree k, given by matrix A as above, i.e.

n∑
i1,...,ik=1

ai1,...,ik
xi1 · · ·xik

can be written simply as 〈A, x⊗k〉.
By Dkf we will denote the kth derivative of a function f : R

n → R, which we will identify with the corre-
sponding k-indexed matrix of partial derivatives.

3.4.1. Concentration for Banach space valued chaos

Let (E, | · |E) be a separable Banach space and A = (ai1,...,ik
)n
i1,...,ik=1 a k-indexed E-valued matrix and

X = (X1, . . . , Xn) a random vector in R
n. We will consider the random variable Z = |〈A, X⊗k〉|E . Without loss

of generality we will assume that A is symmetric, i.e. for any permutation σ of the set {1, . . . , k}, ai1,...,ik
=

aiσ(1) ,...,iσ(k) .
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Our main result is the following

Theorem 3.12. Assume that Ψ is a convex function satisfying the conditions (C) and (GK,α,β) and let X be
a random vector in R

n, whose law is absolutely continuous and satisfies the mLSI(Ψ, D). For any p ≥ β,

‖Z − EZ‖p ≤ CD,K,α,β,k

k∑
j=1

E sup
y1,...,yj∈AΨ,p

|〈A, y1 ⊗ · · · ⊗ yj ⊗ X⊗(k−j)〉|E , (3.15)

where AΨ,p = {x ∈ R
n : Ψ∗(x) ≤ p}. As a consequence, for any p ≥ β,

P

⎛
⎝|Z − EZ| ≥ CD,K,α,β,k

k∑
j=1

E sup
y1,...,yj∈AΨ,p

|〈A, y1 ⊗ · · · ⊗ yj ⊗ X⊗(k−j)〉|E
⎞
⎠ ≤ e−p.

Versions of the above theorem were first obtained for Gaussian vectors by Borell [17] and Arcones−Giné [6].
Subsequently they were proved for X with independent coordinates possessing log-concave tails by
�Lochowski [31] and Adamczak [1]. However, they provided rather estimates of ‖Z‖p and the deviation of Z
above CEZ, than concentration around EZ.

Let us analyze the quantities appearing on the right-hand side of (3.15). Except for the one corresponding
to j = k, they are all expectations of suprema of random variables and as such they are difficult to estimate.
The exceptional term however is “deterministic” and it is easy to see that for p → ∞ it dominates the whole
sum. Estimates of this form may be therefore used to obtain some large deviation type estimates for |Z −EZ|.
Also, in certain situations estimates of the troublesome expectations are available. This is the case e.g. if X is a
Gaussian vector and E is the real line [28] or more generally E is a Hilbert space (this result is unpublished but
it may be recovered from estimates in [28]), and also if E = R, X has independent coordinates with log-concave
tails and k ≤ 3 [2, 26, 27].

Example 3.13. Let us illustrate Theorem 3.12 on a simple example of a real-valued quadratic form Z =∑n
i,j=1 aijXiXj in a centered random vector X = (X1, . . . , Xn) whose law μ satisfies mLSI(Ψ, D) with Ψ(x) =

|x|qq for some q ∈ (1, 2] (the case studied in [15, 16]). We have Ψ∗(x) = Cq|x|q
∗

q∗ , therefore we obtain

‖Z − EZ‖p ≤ CD,q

⎛
⎝p1/q∗

E sup
y∈Bn

q∗

∣∣∣∣∣∣
n∑

i,j=1

aijyiXj

∣∣∣∣∣∣ + p2/q∗
sup

x,y∈Bn
q∗

∣∣∣∣∣∣
n∑

i,j=1

aijxiyj

∣∣∣∣∣∣
⎞
⎠

= CD,q

⎛
⎜⎝p1/q∗

E

⎛
⎝ n∑

i=1

∣∣∣∣∣∣
n∑

j=1

aijXj

∣∣∣∣∣∣
q⎞
⎠

1/q

+ p2/q∗
sup

x,y∈Bn
q∗

∣∣∣∣∣∣
n∑

i,j=1

aijxiyj

∣∣∣∣∣∣
⎞
⎟⎠

≤ CD,q

⎛
⎜⎝p1/q∗

⎛
⎝ n∑

i=1

E

∣∣∣∣∣∣
n∑

j=1

aijXj

∣∣∣∣∣∣
q⎞
⎠

1/q

+ p2/q∗
sup

x,y∈Bn
q∗

∣∣∣∣∣∣
n∑

i,j=1

aijxiyj

∣∣∣∣∣∣
⎞
⎟⎠ .

Now, by Proposition 3.6, applied with β = 2, for each i (note that Ψ satisfies (GK,α,β) with K = 1, α = q and
β = 2),

E

∣∣∣∣∣∣
n∑

j=1

aijXj

∣∣∣∣∣∣
q

≤
∣∣∣∣∣∣
∣∣∣∣∣∣

n∑
j=1

aijXj

∣∣∣∣∣∣
∣∣∣∣∣∣
q

2

≤ CD,q|(aij)n
j=1|qΨ2

= 2q/q∗
CD,q|(aij)n

j=1|qq.

Thus we obtain
‖Z − EZ‖p ≤ CD,q(p1/q∗

A + p2/q∗
B),
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where

A =

⎛
⎝ n∑

i,j=1

|aij |q
⎞
⎠

1/q

, B = sup
x,y∈Bn

q∗

∣∣∣∣∣∣
n∑

i,j=1

aijxiyj

∣∣∣∣∣∣ .
As a consequence, for all t ≥ 0,

P(|Z − EZ| ≥ t) ≤ 2 exp
(
−cD,q min

(
tq

∗

Aq∗ ,
tq

∗/2

Bq∗/2

))
· (3.16)

Clearly Theorem 3.12 may be applied also to quadratic forms or forms of higher order, with values in Banach
spaces, but the resulting estimates will be then given in terms of expectations of suprema, which may not
be so easy to estimate. Let us remark that inequalities of the form (3.16) with q = 2 are known as Hanson–
Wright inequalities. In a slightly weaker form they were first proven in [25] for quadratic forms in independent
sub-Gaussian variables.

3.4.2. Comparison principles for real-valued polynomials

We will now restrict to a special choice of the function Ψ related to the study of moments of linear combinations
of i.i.d. random variables with logarithmically concave tails. We will start with a brief description of the results
by Gluskin−Kwapień [22].

Theorem 3.14. Let Φ : R+ → R+∪{∞} be a convex non-decreasing function, such that Φ(0) = 0 and Φ(1) = 1.
Consider a sequence Z1, . . . , Zn of independent symmetric random variables satisfying P(|Zi| ≥ t) = e−Φ(ti).
Define the functions Φ̃ : R+ → R+ ∪ {∞},

Φ̃(x) =

{ |x|2 if |x| ≤ 1

Φ(x) if |x| ≥ 1

and Ψ : R
n → R+ ∪ {∞},

Ψ(x) =
n∑

i=1

Φ̃∗(xi),

where Φ̃∗ is the Legendre transform of Φ̃.
Then for every sequence x1, . . . , xn of real numbers and every p ≥ 2,

1
C
|x|Ψp ≤

∥∥∥∥∥
n∑

i=1

xiZi

∥∥∥∥∥
p

≤ C|x|Ψp .

We remark that the assumption Φ(1) = 1 is just a normalization condition which allows to obtain two-sided
moment estimates with a universal constant C (otherwise one would have to replace C by some (explicit)
constant CΨ ).

As already mentioned in the introduction, modified log-Sobolev inequalities with the function Ψ as in Theo-
rem 3.14 were introduced by Gentil−Guillin−Miclo [20, 21] and further studied by Barthe−Roberto [9] (when
Φ(x)/x2 is non-increasing, which corresponds to super-Gaussian tail behaviour) and Gentil [19] (when Φ(x)/x2

is non-decreasing, which corresponds to sub-Gaussian tail behaviour).
In view of Theorem 3.14, our Theorem 3.5 can be given an interpretation in terms of independent random

variables.

Corollary 3.15. Under the notation of Theorem 3.14, further assume that for some K ≥ 1 and 1 < α ≤ 2 ≤
β < ∞,

K−1tβ
∗ ≤ Φ̃(tu)

Φ̃(u)
≤ Ktα

∗
, (3.17)
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for all t ≥ 1 and u > 0. Assume that a measure μ on R
n satisfies the mLSI(Ψ, D). Let X be a random vector

with law μ and a vector Z = (Z1, . . . , Zn) be a sequence of i.i.d. symmetric random variables, independent of X,
such that P(|Zi| ≥ t) = e−Φ(t) for t ≥ 0. Then for every locally Lipschitz function f : R

n → R and every p ≥ 2,

‖f(X) − Ef(X)‖p ≤ C(K, D, α, β)‖〈∇f(X), Z〉‖p.

The interest in the above reformulation of moment inequalities stems from the fact that it can be used as
a linearization tool, which allows to get estimates for functions with bounded-derivatives of higher order, in
particular polynomials.

Theorem 3.16. In the setting of Corollary 3.15, let Z1, . . . , Zk be independent copies of Z, independent of X.
Then for every function f : R

n → R of class Ck and every p ≥ 2 we have

‖f(X) − Ef(X)‖p ≤ CD,k

(
‖〈Dkf(X), Z1 ⊗ · · · ⊗ Zk〉‖p +

k−1∑
i=1

‖〈EXDif(X), Z1 ⊗ · · · ⊗ Zi〉‖p

)
.

Note that all the terms on the right-hand side, except for the first one are moments of polynomials in
independent random variables. This is also the case for the first term, provided that f itself is a polynomial
of degree k. One can thus think of Theorem 3.16 as a tool which allows to transfer estimates for polynomials
in independent random variables to functions with bounded derivatives of higher order of random vectors X ,
whose law satisfies mLSI(Ψ, D). We remark that there are many results concerning polynomials in independent
random variables with log-concave tails, among available results there are hypercontractive estimates, two-sided
estimates in terms of expected suprema of certain empirical processes (as in Thm. 3.12) and in some cases
(polynomials in Gaussian or exponential variables, polynomials in general variables with log-concave tails of
degree at most 3) also precise two-sided inequalities in terms of “deterministic” quantities. We do not present
the detailed discussion here, since it would require introducing rather technical notation and would anyway boil
down to an application of known estimates. Instead in the example below we work out a simple application,
again to a quadratic form.

Example 3.17. Let Ψ(x) =
∑n

i=1(|xi|21{|xi|≤1} + |xi|r1{|xi|>1}) for some r ≥ 2 and assume that X =
(X1, . . . , Xn) is a random vector whose law satisfies mLSI(Ψ, D). For simplicity assume further that X is
centered. Consider finally a quadratic form Y = f(X) for f(x) =

∑n
i,j=1 aijxixj , where we assume without

loss of generality that aij = aji. Thanks to centering, we have E∇f(X) = 0. Moreover D2f = (2aij)n
i,j=1.

Therefore, by Theorem 3.16, if Z1, Z
′
1, . . . , Zn, Z ′

n is a sequence of i.i.d. symmetric random variables, such that
P(|Zi| ≥ t) = exp(−tr

∗
), we get

‖Y − EY ‖p ≤ CD,r

∥∥∥∥∥∥
n∑

i,j=1

aijZiZ
′
j

∥∥∥∥∥∥
p

for p ≥ 2.

Using results from [27], one can find a deterministic expression equivalent to the pth moment on the right-
hand side above. It is expressed in terms of certain norms of the matrix A = (aij)n

i,j=1, treated as a multi-linear
functional on products of certain �2 and �r∗ spaces. More precisely,∥∥∥∥∥∥

n∑
i,j=1

aijZiZ
′
j

∥∥∥∥∥∥
p

 p1/2‖A‖{1,2}|∅ + p‖A‖{1}{2}|∅ + p1/r∗‖A‖∅|{1,2}

+ p1/2+1/r∗‖A‖{1}|{2} + p2/r∗‖A‖∅|{1}{2},
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where

‖A‖{1,2}|∅ = sup

⎧⎨
⎩

n∑
i,j=1

aijxij :
n∑
i,j

x2
ij ≤ 1

⎫⎬
⎭ =

⎛
⎝ n∑

i,j=1

a2
ij

⎞
⎠

1/2

,

‖A‖{1}{2}|∅ = sup

⎧⎨
⎩

n∑
i,j=1

aijxiyj :
n∑

i=1

x2
i ≤ 1,

n∑
j=1

y2
j ≤ 1

⎫⎬
⎭ ,

‖A‖{1}|{2} = sup

⎧⎨
⎩

n∑
i,j=1

aijxiyj :
n∑

i=1

x2
i ≤ 1,

n∑
j=1

|yj |r∗ ≤ 1

⎫⎬
⎭ ,

‖A‖∅|{1,2} = sup

⎧⎪⎨
⎪⎩

n∑
i,j=1

aijxij :
n∑

i=1

⎛
⎝ n∑

j=1

|xij |2
⎞
⎠

r∗/2

≤ 1

⎫⎪⎬
⎪⎭ =

⎛
⎜⎝ n∑

i=1

⎛
⎝ n∑

j=1

|aij |2
⎞
⎠

r/2
⎞
⎟⎠

1/r

,

‖A‖∅|{1}{2} = sup

⎧⎨
⎩

n∑
i,j=1

aijxiyj :
n∑

i=1

|xi|r∗ ≤ 1,

n∑
j=1

|yj |r∗ ≤ 1

⎫⎬
⎭ .

As a consequence we obtain that for p ≥ 2,

‖Y − EY ‖p ≤ CD,r

(
p1/2‖A‖{1,2}|∅ + p‖A‖{1}{2}|∅ + p1/r∗‖A‖∅|{1,2} + p1/2+1/r∗‖A‖{1}|{2} + p2/r∗‖A‖∅|{1}{2}

)
and so for t ≥ 0,

P(|Y − EY | ≥ t) ≤ 2 exp

⎛
⎝−cD,r min

⎛
⎝ t2

‖A‖2
{1,2}|∅

,
t

‖A‖{1}{2}|∅ ,
tr

∗

‖A‖r∗
∅|{1,2}

,
t

2r∗
r∗+2

‖A‖
2r∗

r∗+2

{1}|{2}

,
tr

∗/2

‖A‖r∗/2
∅|{1}{2}

⎞
⎠
⎞
⎠ ·

In the class of random vectors satisfying mLSI(Ψ, D) this estimate is optimal up to constants (as it can be
reversed for the vector Y = (Z1, . . . , Zn)). A similar derivation may be also carried out for cubic forms as two-
sided estimates of their moments are known [2], however it would involve 10 different norms of the corresponding
3-indexed matrix (under the assumption that X is isotropic). As for forms of higher order, they can also be
reduced to forms in variables Z1, . . . , Zn, by means of Theorem 3.16. However finding two-sided estimates for
moments of the latter forms remains open.

3.5. Concentration results for functions with bounded Hessian under the logarithmic
Sobolev inequality

In this section we will consider the setting of the classical logarithmic Sobolev inequality and we will prove a
two-level concentration estimate for functions with bounded derivatives of second order, which slightly improves
on the special C2 case of Theorem 1.2. in [3] and Theorem 3.16. Our approach is inspired by a very recent devel-
opment by Bobkov, Chistyakov and Götze [12] who considered second order concentration on the sphere Sn−1.
While the authors of [12] were interested mostly in subexponential concentration, it turns out that using their
approach one can also obtain two-level bounds. The goal of this section is to describe this derivation. Actually,
for consistency with previous sections, we will consider a slightly more general setting and obtain inequalities in
terms of moments, which allows to obtain concentration for functions with unbounded but controlled Hessian.
It will be at a cost of deteriorating constants with respect to what can be obtained by working with Laplace
transforms in the bounded Hessian case (as in [12]).
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Recall that for a matrix A = (Ai,j)n
i,j=1, by |A|HS we denote the Hilbert–Schmidt norm of A, whereas |A|op

stands for the operator norm of A, i.e. |A|HS =
√∑n

i,j=1 a2
ij , |A|op = sup|x|,|y|≤1

∑n
i,j=1 aijxiyj .

The main result of this section is the following

Theorem 3.18. Let μ be a probability measure on R
n, such that for every p ≥ 2 and every locally Lipschitz

function f : R
n → R,

‖f − Eμf‖p ≤ L
√

p
∥∥∥|∇f |2

∥∥∥
p
. (3.18)

Let f : R
n → R be a function of class C2, such that the operator norm of D2f is uniformly bounded on R

n.
Then for every t > 0,

μ(|f − Eμf | ≥ t) ≤ e2 exp
(
−min

(
t2

a2
,
t

b

))
,

where
a2 = 4e2

(√
2L2

∥∥∥|D2f |HS

∥∥∥
2

+ L|Eμ∇f |2
)2

, b = 2eL2
∥∥∥|D2f |op

∥∥∥
∞

.

In fact we shall prove a more general result, from which the above theorem easily follows.

Theorem 3.19. Let μ be as in Theorem 3.18. Then for every k ≥ 2, every f : R
n → R of class Ck and for

every p ≥ 2,

‖f − Eμf‖p ≤ L
√

pEμ|∇f |2 + L2p
∥∥∥|D2f |op

∥∥∥
p

(3.19)

≤ √
p

(
2(k−1)/2Lk

∥∥∥|Dkf |2
∥∥∥

2
+

k−1∑
m=1

2(m−1)/2Lm|EμDmf |2
)

+ L2p
∥∥∥|D2f |op

∥∥∥
p
,

where for an m-indexed matrix A = (ai1,...,im)n
i1,...,im=1 we denote |A|2 =

√∑n
i1,...,im=1 a2

i1,...,im
.

The advantage of Theorem 3.18 over the C2 case of Theorem 1.2. in [3] stems from the fact that the tail
bound obtained in [3] uses ‖|D2f |HS‖∞ instead of ‖|D2f |HS‖2. On the other hand it is not clear to us whether
Theorem 3.19 could lead to similar improvements of the results in [3] in the case of functions with bounded
derivatives of order higher than 2, since instead of the term ‖|D2f |op‖p the bounds in [3] involve |EμD2f |op (at
the cost of introducing some additional norms of higher order derivatives). We refer the Reader to [3] for the
details.

4. Proofs

In the proofs we will drop the subscript μ and write simply E, Ent for Eμ, Entμ.

4.1. Proofs of results from Section 3.2.1

Let us first state without proof the following well-known lemma, which follows from the convexity of the
function p �→ log ‖X‖1/p.

Lemma 4.1. If X is a random variable, such that for some p > q > 0 and A ≥ 1, ‖X‖p ≤ A‖X‖q, then for
all 0 < r < q,

‖X‖p ≤ A
(p−r)q
(p−q)r ‖X‖r.

We are also going to use the following observation on the norms | · |Ψp .
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Lemma 4.2. If Ψ satisfies (C) and (GK,α,β) then for any x ∈ R
n,

Ψ(x) ≤ K
(
|x|αΨ + |x|βΨ

)
.

Proof. First note that (C) implies that Ψ(x/|x|Ψ ) ≤ 1. If |x|Ψ ≥ 1, then

Ψ(x) = Ψ

(
|x|Ψ x

|x|Ψ

)
≤ K|x|βΨ ,

and if |x|Ψ ≤ 1, then

1 ≥ Ψ

(
x

|x|Ψ

)
≥ K−1|x|−α

Ψ Ψ(x). �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider an arbitrary locally Lipschitz bounded positive function f : R
n → R. Arguing

as in the proof of Theorem 3.4. in [3], we get

d
dt

(Ef t)2/t =
2
t2

(Ef t)
2
t −1Entf t.

Thus by dmLSI(Ψ, D, d) applied to the function f t/2 and by Lemma 4.2 applied to Ψp we have

d
dt

(
Ef t

)2/t ≤ 2D

t2
(
Ef t

) 2
t −1

Ef tΨ

(
t∇f

2f

)
+

2d

t2
(Ef t)2/t

=
2Dp

t2
‖f‖2−t

t Ef tΨp

(
t∇f

2pf

)
+

2d

t2
(Ef t)2/t

≤ 21−αKD

t2−αpα−1
‖f‖2−t

t Ef t−α|∇f |αΨp
+

21−βKD

t2−βpβ−1
‖f‖2−t

t Ef t−β |∇f |βΨp
+

2d

t2
‖f‖2

t .

Further denote M = KD. Using Hölder’s inequality with the pairs of exponents t
t−α , t

α and t
t−β , t

β , for t ∈ (β, p)
we have

d
dt

‖f‖2
t ≤ 21−αM

t2−αpα−1
‖f‖2−t

t ‖f‖t−α
t ‖|∇f |Ψp‖α

t +
21−βM

t2−βpβ−1
‖f‖2−t

t ‖f‖t−β
t ‖|∇f |Ψp‖β

t +
2d

t2
‖f‖2

t

≤ 21−αM

t2−αpα−1
‖f‖2−α

t ‖|∇f |Ψp‖α
p +

21−βM

t2−βpβ−1
‖f‖2−β

t ‖|∇f |Ψp‖β
p +

2d

t2
‖f‖2

t .

For t ∈ [β, p] define

x(t) = ‖f‖2
t/
∥∥∥|∇f |Ψp

∥∥∥2

p
.

Note that by Condition (C), if the denominator above vanishes, then ∇f vanishes μ-a.s. and so we obtain

d
dt

‖f‖2
t ≤ 2d

t2
‖f‖2

t ,

which via Gronwall’s lemma gives

‖f‖2
p ≤ ‖f‖2

β exp
(∫ p

β

2d

t2
dt

)
≤ e2d/β‖f‖2

β,

which is stronger than the assertion of the theorem. In what follows we will thus assume that ‖|∇f |Ψp‖p �= 0
and so the function x is well defined.
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Clearly x is non-decreasing and in the view of the above it satisfies

dx

dt
≤ Ma(t)x1−α/2 + Mb(t)x1−β/2 + dc(t)x (4.1)

for t ∈ (β, p), where

a(t) = 21−αtα−2p1−α, b(t) = 21−βtβ−2p1−β , c(t) =
2
t2
·

Now, consider three cases:

Case 1. x(p) ≤ 1
(α−1)2

(
M2/α ∨ M2/β

)
. In this case we simply have

‖f‖p ≤ 1
α − 1

(
M1/α ∨ M1/β

)∥∥∥|∇f |Ψp

∥∥∥
p
.

Case 2. x(β) ≥ 1
(α−1)2

(
M2/α ∨ M2/β

)
. It is easy to check that for t = β we have

Mx(t)1−α/2 ≤ M1/αx(t)1/2, Mx(t)1−β/2 ≤ M1/βx(t)1/2, (4.2)

and since x(t) is non-decreasing, we clearly have the above for all t ∈ (β, p). Combining (4.1) with (4.2) yields

dx

dt
≤ (

M1/αa(t) + M1/βb(t)
)
x1/2 + dc(t)x.

Substituting y = x1/2 we get
dy

dt
≤ 1

2
(
M1/αa(t) + M1/βb(t)

)
+

1
2
dc(t)y,

from which we easily obtain

y(p) ≤ y(β)e
d
2

∫ p
β

c +
1
2

(∫ p

β

(
M1/αa(t) + M1/βb(t)

)
e−

d
2

∫ t
β

c dt

)
e

d
2

∫ p
β

c

≤ y(β)e
d
β +

1
2

(
M1/α

α − 1
+

M1/β

2β−1(β − 1)

)
e

d
β

≤ y(β)e
d
β +

1
α − 1

(
M1/α ∨ M1/β

)
e

d
β .

If d ≤ β then the above yields

y(p) ≤ y(β)ed/β +
e

α − 1
(M1/α ∨ M1/β),

which means
‖f‖p ≤ ed/β‖f‖β +

e
α − 1

(M1/α ∨ M1/β)
∥∥∥|∇f |Ψp

∥∥∥
p
,

and if d > β then using y(β) ≥ 1
α−1

(
M1/α ∨ M1/β

)
,

y(p) ≤ 2y(β)ed/β ≤ e2d/βy(β)

hence
‖f‖p ≤ e2d/β‖f‖β.
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Case 3. x(t0) = 1
(α−1)2

(
M2/α ∨ M2/β

)
for some t0 ∈ (β, p). Arguing as in Case 2, for y = x1/2 we have

y(p) ≤ y(t0)e
d
2

∫ p
t0

c +
1
2

(∫ p

t0

(
M1/αa(t) + M1/βb(t)

)
e−

d
2

∫ t
t0

c dt

)
e

d
2

∫ p
t0

c (4.3)

≤ y(t0)ed( 1
t0

− 1
p ) +

1
α − 1

(
M1/α ∨ M1/β

)
ed( 1

t0
− 1

p )
.

Case 3a. t0 ≥ dp
d+p . Then 1

t0
− 1

p ≤ 1
d and using the fact that y(t0) = 1

α−1

(
M1/α ∨ M1/β), the inequality (4.3)

gives

y(p) ≤ 2e
1

α − 1
(
M1/α ∨ M1/β

)
,

hence
‖f‖p ≤ 2e

1
α − 1

(
M1/α ∨ M1/β

)∥∥∥|∇f |Ψp

∥∥∥
p
.

Case 3b. t0 < dp
d+p . Again, using the fact that y(t0) = 1

α−1

(
M1/α ∨ M1/β

)
the inequality (4.3) implies

y(p) ≤ y(t0)ed( 1
t0

− 1
p ) +

1
α − 1

(M1/α ∨ M1/β)ed( 1
t0

− 1
p )

= 2y(t0)ed( 1
t0

− 1
p ) ≤ y(t0)e2d( 1

t0
− 1

p ),

which means
‖f‖p ≤ A‖f‖t0 ,

with A = e2d( 1
t0

− 1
p ). Using Lemma 4.1 with q = t0 and r = β we obtain

‖f‖p ≤ A
(p−β)t0
(p−t0)β ‖f‖β = e2d

p−t0
t0p

(p−β)t0
(p−t0)β ‖f‖β

≤ e2d/β‖f‖β.

This ends the proof for bounded positive functions. Let us now assume that f : R
n → R is a bounded locally

Lipschitz function. Set gm = |f | + 1/m for m = 1, 2, . . . and note that almost everywhere with respect to the
Lebesgue measure, f and all the functions gm are differentiable, moreover ∇gm(x) �= 0 implies that ∇f(x) =
∇gm(x). Thus the inequality for f follows by a limiting argument. Removing the boundedness assumption is
straightforward by a truncation argument. �

Let us now pass to the sketch of the proof of Proposition 3.2.

Proof of Proposition 3.2. It is enough to follow the steps of Theorem 3.1 and to replace the splitting value
1

(α−1)2

(
M2/α ∨ M2/β

)
for x(t) with

(
D2 ∨ (KD)2/β

)
(log p)2. �

We will now provide the proof of Proposition 3.4, which shows that the lower bound in our assump-
tion (GK,α,β) cannot be avoided.

Proof of Proposition 3.4. Let us note that for Ψ(x) = |x|, mLSI(Ψ, 2) is equivalent to that for all bounded,
locally Lipschitz functions f ≥ 0,

Entνf ≤ Eν |f ′|. (4.4)

For a Borel set A ⊆ R, denote ν+(A) = lim infε→0+
ν(A+(−ε,ε))−ν(A)

ε . It is a general fact, based on the co-area
formula, that the isoperimetric inequality

ν(A) log
1

ν(A)
∨ (1 − ν(A)) log

1
1 − ν(A)

≤ ν+(A) (4.5)
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valid for all Borel sets A ⊆ R implies (4.4). Indeed, on the one hand, using the variational formula for the
entropy,

Entνf = sup
{∫

fg dν : g : R → R is measurable, bounded and
∫

eg dν ≤ 1
}

, (4.6)

and the Fubini theorem, for any measurable and bounded g : R → R with
∫

eg dν ≤ 1 and ρ defined as a finite
(signed) measure on R such that dρ = gdν we obtain∫

fg dν =
∫

f dρ =
∫ ∞

0

ρ({f > t}) dt =
∫ ∞

0

∫
R

1{f(x)>t}g(x) ν(dx) dt

≤
∫ ∞

0

Entν(1{f>t}) dt =
∫ ∞

0

ν({f > t}) log
1

ν({f > t})
dt,

where the inequality follows from (4.6). Hence,

Entνf ≤
∫ ∞

0

ν({f > t}) log
1

ν({f > t})
dt.

On the other hand, by the co-area formula (see e.g. Thm. 8.5.1. in [7]),

Eν |f ′| ≥
∫ ∞

0

ν+({f > t}) dt,

which combined with the previous formula shows the implication (4.5) =⇒ (4.4).
For the isoperimetric inequality (4.5) itself, since the density of ν w.r.t. the Lebesgue measure

fν(x) = F ′
ν(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

e−(e−x−(1−x)), for x < 0,

1
2

e−(ex−(1+x)), for x ≥ 0

is log-concave, the result of Bobkov [11] asserts that it is enough to check (4.5) for half-lines, and in fact, by
symmetry of ν, for A = [x,∞) with x ≥ 0.

Let t ∈ (0, 1/2]. Then F−1
ν (1 − t) = log(1 + log 1

2t ) and thus

fν(F−1
ν (1 − t)) = t

(
1 + log

1
2t

)
≥ t log

1
t

= t log
1
t
∨ (1 − t) log

1
1 − t

,

which proves the isoperimetric inequality (4.5).
For the moment estimate (3.5) one can repeat the argument from the proof of Theorem 3.1 to get that the

function x(t) as defined therein satisfies
dx

dt
≤ 2

t
x1/2(t),

for t ∈ (1, p), i.e. (x1/2)′ ≤ 1
t and thus

x1/2(p) − x1/2(1) ≤ log p,

which implies (3.5). In order to show the “moreover” part of the proposition note that

‖x‖Lp(ν) =
(

e
∫ ∞

0

pxp−1e−ex

dx

)1/p

≥
(

ep
∫ log p

1
2 log p

(
1
2

log p

)p−1

e−elog p

dx

)1/p

=
(

ep
(

1
2

log p

)p

e−p

)1/p

≥ log p

2e
· �
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4.2. Proofs of results from Section 3.2.2

Let us first prove the Poincaré type inequality given in Proposition 3.6.

Proof of Proposition 3.6. The proof follows the approach by Bobkov and Zegarliński [16] who considered the
function Ψ(x) = |x|q for q ∈ [1, 2]. Let Mf be a median of f under μ. We have ‖f − Ef‖β ≤ 2‖f − Mf‖β so it
is enough to prove (3.10) with the mean replaced by the median. In what follows without loss of generality we
will assume that Mf = 0.

Note that for any bounded, locally Lipschitz function g : R
n → (0,∞), the inequality mLSI(Ψ, D) applied to

gβ/2 and Lemma 4.2 yield

Entgβ ≤ DEgβΨ

(
β∇g

2g

)
= DβEgβΨβ

(∇g

2g

)

≤ KDβ
(

2−β
E|∇g|βΨβ

+ 2−α
Egβ−α|∇g|αΨβ

)
.

If α < β we apply the Young inequality to the last expectation to get

Egβ−α|∇g|αΨβ
≤ Aβ/α α

β
E|∇g|βΨβ

+ A−β/(β−α) β − α

β
Egβ ,

and the choice A =
(
21−αKD(β − α)

)(β−α)/β
yields

Entgβ ≤ KDβ

(
2−β + 2−α α

β

(
21−αKD(β − α)

)(β−α)/α
)

E|∇g|βΨβ
+

1
2

Egβ

≤ C
(

(KD)1/β + (βKD)1/α
)β

E|∇g|βΨβ
+

1
2

Egβ. (4.7)

Note that (4.7) is obviously valid also in the case α = β. Also, this inequality can be extended to arbitrary
non-negative locally Lipschitz function g : R

n → R. Moreover, by Lemma 2.2 in [16], for any non-negative
h : R

n → R,

Enth ≥
(

log
1

μ({h > 0})

)
Eh,

which used for h = gβ and combined with (4.7) gives that for any non-negative locally Lipschitz function
g : R

n → R, (
log

1
μ({g > 0})

− 1
2

)
Egβ ≤ C

(
(KD)1/β + (βKD)1/α

)β

E|∇g|βΨβ
. (4.8)

Now, applying (4.8) to the functions g = f+ and g = f− and using the assumption Mf = 0 and the
implication ∇f± �= 0 =⇒ ∇f± = ±∇f , we obtain

(log 2 − 1/2)Efβ
+ ≤ C

(
(KD)1/β + (βKD)1/α

)β

E|∇f+|βΨβ

≤ C
(

(KD)1/β + (βKD)1/α
)β

E|∇f |βΨβ

and

(log 2 − 1/2)Efβ
− ≤ C

(
(KD)1/β + (βKD)1/α

)β

E|∇f−|βΨβ

≤ C
(

(KD)1/β + (βKD)1/α
)β

E|∇f |βΨβ
.
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Summing the above inequalities we get

1
10

E|f |β ≤ 2C
(

(KD)1/β + (βKD)1/α
)β

E|∇f |βΨβ
,

which ends the proof. �

Having proven Proposition 3.6 we can reduce Theorem 3.5 to Theorem 3.1.

Proof of Theorem 3.5. We apply Theorem 3.1 to the function |f − Ef | to get for p ≥ β,

‖f − Ef‖p ≤ ‖f − Ef‖β +
2e

α − 1

(
(KD)1/α + (KD)1/β

)∥∥∥|∇f |Ψp

∥∥∥
p
.

Thus by Proposition 3.6, (2.3) and Hölder’s inequality we obtain

‖f − Ef‖p ≤ C
(

(KD)1/β + (KDβ)1/α
)∥∥∥|∇f |Ψβ

∥∥∥
β

+
C

α − 1

(
(KD)1/α + (KD)1/β

)∥∥∥|∇f |Ψp

∥∥∥
p

)

≤ C

(
1

α − 1
(KD)1/β +

(
1

α − 1
+ β1/α

)
(KD)1/α

)∥∥∥|∇f |Ψp

∥∥∥
p
. �

4.3. Proofs of results from Section 3.3

Let us start with the proof of Lemma 3.8.

Proof of Lemma 3.8. The definition of ω∗
Ψ can be written equivalently as

ω∗
Ψ (t) = t sup

{
u > 0: ω−1

Ψ (tu) ≥ u
}
.

Now recall that if f : R+ → R+ is left-continuous, non-decreasing and satisfies limx→0 f(x) = 0, limx→∞ f(x) =
∞ and g : R+ → R+ is a right-continuous inverse of f , i.e.

g(y) = sup{x > 0: f(x) ≤ y},

then for all x, y > 0,

g(y) ≥ x ⇐⇒ f(x) ≤ y. (4.9)

Applying (4.9) with ωΨ as f we obtain that ω−1
Ψ (tu) ≥ u if and only if ωΨ (u) ≤ tu, which proves (3.13).

For the first inequality in (3.14), fix t > 0 and take u > 0 for which the supremum in (3.13) is attained (such
u exists due to (3.12) and left-continuity of ωΨ ). Then for all y > u,

t <
ωΨ (y)

y
≤ ωΨ (y)

y − u
,

hence for all y > u,
ty − ωΨ (y) ≤ tu.

Moreover the above inequality holds trivially for y ∈ (0, u]. Therefore λ(t) ≤ tu = ω∗
Ψ (t).

To prove the second inequality of (3.14) fix any u > 0 satisfying ωΨ (u)/u ≤ t and note that

tu ≤ 2tu − ωΨ (u) ≤ sup
y>0

(2ty − ωΨ (y)) = λ(2t). �

Next, we will prove Corollary 3.9.
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Proof of Corollary 3.9. Denote L := CL(K, D, α, β). In view of Corollary 3.7 it is enough to show that for
all t, p > 0,

p ≤ aω∗
Ψ (t/(Lb)) =⇒ |∇f(x)|Ψp ≤ t/L, μ-a.e. (4.10)

Then for a given t > 0 take p = aω∗
Ψ (t/(Lb)) and use Corollary 3.7 and (4.10) to obtain

μ (|f − Ef | ≥ t) ≤ μ

(
|f − Ef | ≥ L

∥∥∥|∇f |Ψp

∥∥∥
p

)
≤ e−p1{p≥β} + 1{p<β} ≤ eβ−p = eβ−aω∗

Ψ (t/(Lb)).

Note that the hypothesis |∇f(x)|Ψa ≤ b, μ-a.e. implies that for any t, p > 0,

Ψp

(
L∇f(x)

t

)
=

1
p
Ψ

(
pL∇f(x)

t

)
≤ a

p

1
a
Ψ

(
a∇f(x)

b

)
ωΨ

(
Lpb

at

)

≤ a

p
ωΨ

(
Lpb

at

)
·

From (3.13) in Lemma 3.8 we have

ωΨ

(Lb

t

p

a

)
≤ p

a
⇐⇒ ω∗

Ψ

( t

Lb

)
≥ p

a
,

thus (4.10) follows. �

Before we prove Corollary 3.10, let us formulate a simple lemma.

Lemma 4.3. Under the assumptions of Corollary 3.9 we have

μ
(
|f − Mμf | ≥ t

)
≤ 2 exp

(
β − aω∗

Ψ

(
t

2Lb

))
,

where L = CL(K, D, α, β) and C is the constant from Corollary 3.9.

Proof. Since ω∗
Ψ is increasing and right-continuous, we can take t0 to be the smallest positive real satisfying

ω∗
( t0

Lb

)
≥ β + log 2

a
,

or equivalently, exp
(
β − aω∗

Ψ (t/(Lb)
) ≤ 1/2. Then by Corollary 3.9, for all ε > 0, μ

(|f − Ef | ≥ t0 + ε
)

< 1/2
and thus |Mf − Ef | ≤ t0. Therefore, using Corollary 3.9 for t ≥ 2t0,

μ
(
|f − Mf | ≥ t

)
≤ μ

(
|f − Ef | ≥ t

2

)
≤ exp

(
β − aω∗

Ψ

(
t

2Lb

))
.

On the other hand if t < 2t0 then by the definition of t0,

2 exp
(
β − aω∗

Ψ

( t

2Lb

))
> 1,

so the inequality of the lemma holds trivially. �
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Proof of Corollary 3.10. We recall that if Φ is a Young function on R
n, Φ∗ is the Legendre transform of Φ and

| · |∗Φ denotes the norm on R
n, dual to | · |Φ, then for all x ∈ R

n,

|x|Φ∗ ≤ |x|∗Φ ≤ 2|x|Φ∗ . (4.11)

Using the lower bound from (GK,α,β) together with condition (C), one can show that Ψ∗(x) = 0 iff x = 0
and Ψ∗(x) < ∞ at all x. Further, notice that {x : Ψ∗(x) < u} = B(| · |u−1Ψ∗ , 1) := {x : |x|u−1Ψ∗ < 1}. Define the
function

f(x) = inf
y∈A

|x − y|u−1Ψ∗ .

The function f is 1-Lipschitz with respect to the norm | · |u−1Ψ∗ , which implies that ∇f exists almost everywhere
and |∇f |∗u−1Ψ∗ ≤ 1. Since u−1Ψ∗ = (Ψu)∗, (4.11) implies that |∇f |Ψu ≤ 1.

Therefore, by Lemma 4.3, applied with a = u, b = 1, t = 1,

μ
(
f ≥ Mf + 1

)
≤ 2 exp

(
β − uω∗

Ψ (1/L)
)
,

where L = CL(K, D, α, β). By the assumption μ(A) ≥ 1/2, we have Mf = 0 and so

A + {Ψ∗(x) < u} = {f < 1} = {f < Mf + 1},

therefore the above inequality yields

μ
(
A + {Ψ∗(x) < u}

)
≥ 1 − 2 exp

(
β − uω∗

Ψ (1/L)
)
.

It remains to bound ω∗
Ψ (1/L) from below. Note that by the convexity of Ψ and (3.11), the function ωΨ is convex

and everywhere finite, hence continuous. Thus by Lemma 3.8,

ω∗
Ψ (1/L) = w/L, (4.12)

where w is such that ωΨ (w)/w = 1/L. On the other hand, the upper bound in (3.11) yields

1
L

=
ωΨ (w)

w
≤ K(wα−1 ∨ wβ−1),

hence
w ≥ 1

(KL)1/(α−1)
∧ 1

(KL)1/(β−1)
≥ 1

(KL)1/(α−1)
∧ 1.

Combining the above lower bound on w with (4.12) we obtain

ω∗
Ψ (1/L) ≥ (K−1/(α−1)L−α/(α−1)) ∧ L−1. �

4.4. Proofs of results from Section 3.4

Let us start with the proofs of results concerning Banach space valued homogeneous polynomials.

Proof of Theorem 3.12. We will proceed by induction on k. Note that the norm | · |E can be expressed as a
supremum of countably many functionals, therefore it is enough to prove the theorem for (E, | · |) = (�N∞, | · |∞)
with arbitrarily large, finite N . We will denote the index related to the �N∞ structure in the superscript, i.e.
ai1,...,ik

= (a1
i1,...,ik

, . . . , aN
i1,...,ik

) and Ar = (ar
i1,...,ik

)n
i1,...,ik=1.

For k = 1, the inequality in question is then just a dual formulation of Theorem 3.5 for f(x) =
maxr≤N |∑n

i=1 ar
i xi|. Indeed, it is enough to note that AΨ,p is the unit ball for the Orlicz norm corresponding

to the function 1
pΨ∗, which up to universal multiplicative constants is equivalent to the dual norm for | · |Ψp .
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Let us thus assume that the theorem is true for all homogeneous forms of degree strictly smaller than k. We
can assume that the real-valued matrices ±(ar

i1,...,ik
) are pairwise distinct and nonzero for 1 ≤ r ≤ N . Since the

set of zeros of a non-trivial polynomial is Lebesgue null, there exist open sets Bε
r , r = 1, . . . , N , ε = ±1, such

that R
n \ (

⋃N
r=1

⋃
ε=±1 Bε

r) is Lebesgue null and on Bε
r ,

|〈A, x⊗k〉|E = ε〈Ar , x⊗k〉.
Denoting [k] = {1, . . . , k}, we get that almost everywhere on Bε

r , the function f(x) = |〈A, x⊗k〉|E satisfies

∇f(x) = ε

⎛
⎜⎜⎝

n∑
i1,...,ik=1

⎛
⎜⎜⎝ar

i1,...,ik

k∑
s=1

1{is=j}
∏

1≤u≤k

u�=s

xiu

⎞
⎟⎟⎠
⎞
⎟⎟⎠

n

j=1

= ε

k∑
s=1

⎛
⎜⎜⎝ ∑

(im)m∈[k]\{s}∈[n]k−1

⎛
⎜⎜⎝ar

i1,...,,is−1,j,is+1,...,ik

∏
1≤u≤k

u�=s

xiu

⎞
⎟⎟⎠
⎞
⎟⎟⎠

n

j=1

= kε

⎛
⎝ n∑

i2,...,ik=1

ar
j,i2,...,ik

xi2 · · ·xik

⎞
⎠

n

j=1

,

where in the last equality we used the symmetry of the coefficients ar
i1,...,ik

. Denoting Br = B1
r ∪ B−1

r we see
that on Br, we have

|∇f(x)|Ψp ≤ Ck sup
y∈AΨ,p

∣∣∣∣∣∣
n∑

i1,...,ik=1

ar
i1,...,ik

yi1xi2 · · ·xik

∣∣∣∣∣∣
= Ck sup

y∈AΨ,p

|〈Ar, y ⊗ x⊗(k−1)〉|.

Thus almost surely
|∇f(X)|Ψp ≤ Ck max

1≤r≤N
sup

y∈AΨ,p

|〈Ar, y ⊗ X⊗(k−1)〉|.

The right-hand side above is a supremum of homogeneous forms of degree k − 1 in X , moreover by separability
of AΨ,p it can be clearly approximated by suprema of a finite number of such forms. Therefore, by the induction
assumption,∥∥∥|∇f(X)|Ψp

∥∥∥
p
≤CkE max

1≤r≤N
sup

y∈AΨ,p

|〈Ar, y ⊗ X⊗(k−1)〉|

+ CD,K,α,β,k−1

k∑
j=2

E max
1≤r≤N

sup
y∈AΨp

sup
y2,...,yj∈AΨ,p

|〈Ar, y ⊗ y2 ⊗ · · · ⊗ yj ⊗ X⊗(k−j)〉|

= CD,K,α,β,k

k∑
j=1

E sup
y1,y2,...,yj∈AΨ,p

max
1≤r≤N

|〈Ar , y1 ⊗ y2 ⊗ · · · ⊗ yj ⊗ X⊗(k−j)〉|.

This ends the proof of (3.15), since by Theorem 3.5,∥∥∥Z − EZ
∥∥∥

p
≤ CD,K,α,β

∥∥∥|∇f(X)|Ψp

∥∥∥
p
.

The second estimate of Theorem 3.12 follows now by the Chebyshev inequality. �



492 R. ADAMCZAK ET AL.

We will now pass to the proof of Theorem 3.16. Let us start with the main tool, which is Corollary 3.15.

Proof of Corollary 3.15. Relating the Legendre transform of Φ̃ to the conjugation in a sense of Lemma 3.8, one
can deduce that the growth condition (3.17) on Φ̃ implies that Φ̃∗ satisfies

K ′−1tα ≤ Φ̃∗(tu)
Φ̃∗(u)

≤ K ′tβ

for all t ≥ 1 and u > 0, where K ′ = C(K, α, β). As a consequence, Ψ satisfies (GK′,α,β) and therefore, for p ≥ β
the corollary is a direct consequence of Theorem 3.5 and Theorem 3.14.

For 2 ≤ p < β we use the fact that if μ satisfies mLSI(Ψ, D), then it also satisfies the Poincaré inequality

Var(f) ≤ CDE|∇f |2

(see [21]), which as is well known (see e.g. [16] or [32]) implies that

‖f − Ef‖p ≤ C′
Dp

∥∥∥|∇f |
∥∥∥

p
.

Moreover, due to the normalization Φ(1) = 1 one can easily get |x| ≤ C|x|Ψp for p ≥ 1, which allows to deduce
the corollary for 2 ≤ p < β. �

Proof of Theorem 3.16. Given Corollary 3.15, the proof follows with just formal changes the proof of Proposi-
tion 3.2. in [3]. �

4.5. Proofs of results from Section 3.5

In this section we wil present the proof of Theorem 3.19. Theorem 3.18 will then follow by specializing to
k = 2 and using Chebyshev’s inequality optimized in p.

Let us start with the following simple lemma.

Lemma 4.4. In the setting of Theorem 3.18, for every m < k,∥∥∥|Dmf − EDmf |2
∥∥∥

2
≤

√
2L

∥∥∥|Dm+1f |2
∥∥∥

2

Proof. We will regard Dmf as a vector in (Rn)⊗m  R
nm

. Let X be a random vector distributed according to
μ and G a standard Gaussian vector in R

nm

, independent of X . Then∥∥∥|Dmf − EDmf |2
∥∥∥2

2
= EX |Dmf(X) − EXDmf(X)|22 = EGEX〈Dmf(X) − EXDmf(X), G〉2

≤ 2L2
EGEX |D〈Dmf(X), G〉|22,

where the second equality follows from the Fubini theorem and the inequality from the assumption (3.18),
applied conditionally on G to the function x �→ 〈Dmf(x), G〉. Now, it is easy to see that

EG|D〈Dmf(X), G〉|22 = |Dm+1f(X)|22,

which ends the proof. �

Corollary 4.5. In the setting of Theorem 3.18, for all k ≥ 2,

∥∥∥|∇f |2
∥∥∥

2
≤ (

√
2L)k−1

∥∥∥|Dkf |2
∥∥∥

2
+

k−1∑
m=1

(
√

2L)m−1|EμDmf |2.
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Proof. An induction on k, using Lemma 4.4. �

Proof of Theorem 3.19. By (3.18), we have

‖f − Eμf‖p ≤ L
√

p
∥∥∥|∇f |2

∥∥∥
p
. (4.13)

It is easy to prove that |∇f |2 is locally Lipschitz and
∣∣∇|∇f |2

∣∣
2
≤ |D2f |op μ-a.s. Indeed, we have for x ∈ R

n

and |h| → 0, by the triangle inequality and Taylor’s expansion,∣∣∣|∇f(x + h)|2 − |∇f(x)|2
∣∣∣

|h| ≤

∣∣∣(∑n
j=1

∂2f
∂xj∂xi

(x)hj + o(|h|)
)n

i=1

∣∣∣
2

|h|
≤ |D2f(x)h|2

|h| + o(1) ≤ |D2f(x)|op + o(1),

which via standard compactness arguments yields that |∇f |2 is locally Lipschitz and that if ∇|∇f(x)|2 exists
(which happens μ-a.s.), then its Euclidean norm does not exceed |D2f(x)|op.

Thus, another application of (3.18) gives∥∥∥|∇f |2
∥∥∥

p
≤ Eμ|∇f |2 +

∥∥∥|∇f |2 − Eμ|∇f |2
∥∥∥

p
≤ Eμ|∇f |2 + L

√
p
∥∥∥|D2f |op

∥∥∥
p
,

which together with (4.13) gives the first inequality of (3.19). The second inequality follows now by
Corollary 4.5. �
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