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ADAPTIVE CONFIDENCE BANDS FOR MARKOV CHAINS
AND DIFFUSIONS: ESTIMATING THE INVARIANT MEASURE
AND THE DRIFT*

JAKOB SOHL' AND MATHIAS TRABS?

Abstract. As a starting point we prove a functional central limit theorem for estimators of the in-
variant measure of a geometrically ergodic Harris-recurrent Markov chain in a multi-scale space. This
allows to construct confidence bands for the invariant density with optimal (up to undersmoothing)
L°°-diameter by using wavelet projection estimators. In addition our setting applies to the drift esti-
mation of diffusions observed discretely with fixed observation distance. We prove a functional central
limit theorem for estimators of the drift function and finally construct adaptive confidence bands for
the drift by using a completely data-driven estimator.

Mathematics Subject Classification. 62G15, 60F05, 60J05, 60J60, 62MO05.

Received August 25, 2015. Revised May 24, 2016. Accepted July 1st, 2016.

1. INTRODUCTION

Diffusion processes are prototypical examples of the theory of stochastic differential equations as well as of
continuous time Markov processes. At the same time diffusions are widely used in applications, for instance, to
model molecular movements, climate data or in econometrics. Focusing on Langevin diffusions, we will consider
the solution of the stochastic differential equation

dX; = b(Xy)dt + odW;, ¢ >0,

with unknown drift function b: R — R, a volatility parameter o > 0 and with a Brownian motion W = {W; :
t > 0}. The problem of statistical estimation based on discrete observations from this model is embedded
into the framework of geometrically ergodic Harris-recurrent Markov chains. We study the estimation of the
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invariant density of such Markov chains. The drift function b depends nonlinearly on the invariant density p so
that the two estimation problems of b and p are closely related. We prove functional central limit theorems for
estimators of both b and p in multi-scale spaces. This allows the construction of confidence bands for p. Owing
to the nonlinear dependence the construction of confidence bands for b is more involved. In this more difficult
situation and by using a self-similarity assumption we make the additional step of constructing confidence bands
for b that shrink at a rate adapting to the unknown smoothness.

Estimating the invariant density of a Markov process has been of interest for a long time. An early treatment
is given by Roussas [39], who considered kernel estimators and showed consistency and asymptotic normality of
the estimators under the strong Doeblin condition. Rosenblatt [38] analysed kernel estimators under the weaker
condition G5 on the Markov chain. More general J-sequences were used for the estimation by Castellana and
Leadbetter [6], who prove pointwise consistency and under strong mixing assumptions asymptotic normality.
Yakowitz [47] shows asymptotic normality of kernel density estimators for the invariant density of Markov chains
without using assumptions on the rates of mixing parameter sequences. Adaptive estimation was considered
by Lacour [29], who estimates the invariant density and the transition density of Markov chains by model
selection and proves that the estimators attain the minimax convergence rate under L2-loss. For stationary
processes, Schmisser [40] estimates the derivatives of the invariant density by model selection, derives the
convergence rates of the estimators and pays special attention to the case of discretely observed diffusion
processes. We see that asymptotic normality has been widely considered in the nonparametric estimation of
invariant densities and thus implicitly also confidence intervals. However, we are not aware of any extensions of
the pointwise results to uniform confidence bands for invariant densities, which are, for instance, necessary to
construct goodness-of-fit tests of the Kolmogorov—Smirnov type.

The statistical properties of the diffusion model depend crucially on the observation scheme. If the whole
path (Xi)oge<r is observed for some time horizon T' > 0, we speak of continuous observations. The case of
discrete observations (Xyza)r=o0,. n—1 with observation distance A > 0 is distinguished into high-frequency
observations, i.e. A | 0, and low— frequency observations, where A > 0 is fixed. While in the first two settings
path properties of the process can be used, statistical inference for low—frequency observations has to rely on
the Markovian structure of the observations. A review on parametric estimation in diffusion models is given
by Kutoyants [28] and Ait—Sahalia [2]. Nonparametric results are summarized in [20], where also estimators
based on low—frequency observations are introduced and analysed. These low—frequency estimators rely on
a spectral identification of diffusion coefficients which have been introduced by Hansen and Scheinkman [22]
and Hansen et al. [23]. On the same observation scheme, Kristensen [27] studies a pseudo-maximum likelihood
approach in a semiparametric model. Nonparametric estimation based on random sampling times of the diffusion
has been studied in [12]. While we pursue a frequentist approach, the Bayesian approach is also very attractive.
Based on low—frequency observations van der Meulen and van Zanten [44] have proved consistency of the
Bayesian method and Nickl and Sohl [36] showed posterior contraction rates.

As usual, nonparametric estimators depend on some tuning parameters, such as the bandwidth for clas-
sical kernel estimators. Choosing these parameters in a data-driven way, Spokoiny [41] initiated adap-
tive drift estimation in the diffusion model based on continuous observations. This was further developed
by Dalalyan [14] and Locherbach et al. [31]. Based on high-frequency observations, adaptive estimation was
studied by Hoffmann [25] as well as Comte et al. [13]. In the low—frequency case the question of adaptive esti-
mation has been studied by Chorowski and Trabs [12]. In this work we go one step further not only constructing
a (rate optimal) adaptive estimator for the drift, but constructing adaptive confidence bands.

Statistical applications require tests and confidence statements. Negri and Nishiyama [35] as well
as Masuda et al. [33] have constructed goodness-of-fit tests for diffusions based on high-frequency observa-
tions. Low [32] has shown that even in a simple density estimation problem no confidence bands exist
which are honest and adaptive at the same time. Circumventing this negative result by a “self-similarity”
condition, Giné and Nickl [18] have constructed honest and adaptive confidence bands for density estima-
tion. Hoffmann and Nickl [26] have further studied necessary and sufficient conditions for the existence of adap-
tive confidence bands and the “self-similarity” condition has led to several recent papers on adaptive confidence
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bands, notably Chernozhukov et al. [11] and Szabé et al. [42]. The present paper extends the theory of adaptive
confidence bands beyond the classical nonparametric models of density estimation, white noise regression and
the Gaussian sequence model which have been treated in the above papers.

In order to derive confidence bands, we first have to establish a uniform central limit theorem. The empirical
measure of the observations Xo, ..., X(,_1)a is the canonical estimator for the invariant measure of a Markov
chain or diffusion. Considering a wavelet projection estimator, we obtain a smoothed version of the empirical
measure, which is subsequently used to estimate the drift function in the case of diffusions. Thus a natural
starting point is a functional central limit theorem for the invariant measure. Since our observations are not
independent, the standard empirical process theory does not apply. Instead we have to use the Markov structure
of the chain (Xxa)g. In the continuous time analogue the Donsker theorem for diffusion processes has been
studied by van der Vaart and van Zanten [45]. In the case of low—frequency observations, the estimation
problem is ill-posed and we have nonparametric convergence rates under the uniform loss. For the asymptotic
behaviour of the estimation error in the uniform norm we would expect a Gumbel distribution as shown by
Giné and Nickl [18] in the density estimation case using extreme value theory. Recent papers by Castillo and
Nickl [7,8] show that we can hope for parametric rates and an asymptotic normal distribution if we consider
instead a weaker norm for the loss. More precisely, the estimation error can be measured in a multi-scale space
where the wavelet coefficients are down-weighted appropriately. The resulting norm corresponds to a negative
Holder norm.

Following this approach and relying on a concentration inequality by Adameczak and Bednorz [1], our first
result is a functional central limit theorem for rather general geometrically ergodic, Harris-recurrent Markov
chains. This could also be of interest for the theory on Markov chain Monte Carlo (MCMC) methods considering
that the central limit theorem measures the distance between a target integral and its approximation,

n—1
[ fems) w3 5z,
R k=0

respectively, where (Zy) is a Markov chain with invariant measure u (cf. [16]). Nevertheless, our focus is on the
statistical point of view. The functional central limit theorem immediately yields non-adaptive confidence bands
and as in [8] these have an L*°-diameter shrinking with (almost) the optimal nonparametric rate. This small
deviation from the optimal rate corresponds to the usual undersmoothing in the construction of nonparametric
confidence sets.

Applying the results for general Markov chains to diffusion processes observed at low frequency, we obtain
a functional central limit theorem for estimators of the drift function. Inspired by Giné and Nickl [18], in a
last demanding step the smoothness of b and the corresponding size of the confidence band is estimated to find
adaptive confidence bands. The adaptive procedure relies on Lepski’s method. In order to make the construction
of adaptive confidence bands feasible, we impose a self-similarity assumption on the drift function.

This work is organized as follows: in Section 2 we study general Markov chains and prove the functional
central limit theorem and confidence bands under appropriate conditions on the chain. These results are applied
to diffusion processes in Section 3. The adaptive confidence bands for the drift estimator are constructed in
Section 4. Some proofs are postponed to the last two sections.

2. CONFIDENCE BANDS FOR THE INVARIANT PROBABILITY DENSITY OF MARKOV
PROCESSES

2.1. Preliminaries on Markov chains

We start with recalling some facts from the theory of Markov chains. For all basic definition and results we
refer to [34]. Let Z = (Zy), k = 0,1,..., be a time-homogeneous Markov chain with state space (R, B(R)). To
fix the notation, let P, and P, denote the probability measure of the chain with initial conditions Zy =z € R
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and Zy ~ v, respectively. The corresponding expectations will be denoted by E, and E,, the Markov chain
transition kernel by P(z, A), x € R, A € B(R). The transition operator is defined by (Pf)(z) = E,[f(Z1)].

From the general theory of Markov chains we know that for a Harris-recurrent Markov chain Z the existence
of a unique invariant probability measure u is equivalent to the drift condition

PV(zx) -=V(z) < =1+ clc(x)

for some petite set C, some ¢ < oo and some non-negative function V', which is finite at some zy € R. If Z is
additionally aperiodic, then this drift condition is already equivalent to Z being ergodic

|P"(x,") = w|lry — 0, as n — oo, forallzeR,

denoting the total variation norm of a measure by || - ||7y. If we impose a stronger drift condition, namely the
geometric drift towards C, we obtain even geometric ergodicity: for a i-irreducible and aperiodic Markov chain
Z satisfying

(PV)(z) =V (z) < =AV(z) + cle(z), forall x € R, (2.1)
for a petite set C, some XA > 0, ¢ < oo and a function V: R — [1,00), it holds for some r > 1, R < oo,
Zr”HP” — pllrv < RV(x), forallz € R.
n=0

Note that ¢-irreducibility together with the geometric drift condition (2.1) implies already that Z is positive
Harris with invariant probability measure pu.

The geometric ergodicity yields the following central limit theorem (see [10], Thm. IT.4.1). The weakest form
of ergodicity so that the central limit theorem holds is ergodicity of degree 2 which is slightly weaker than the
geometric ergodicity that we have assumed here.

Proposition 2.1. Let (Z)r >0 be a geometrically ergodic Markov chain with arbitrary initial condition and
invariant probability measure p, then there exists for every bounded function f = (f1,...,fs) : R — R% q
symmetric, positive semidefinite matriz Xy = (Xy, 1, )i j=1,....a such that

.....

nl/? (i 1(2) - nE,Lmzo)]) “S N0, %)), asn - oo
k=0

Fori,j € {1,...,d} the asymptotic covariances are given by
Yo = hrn n~! Cov, (Z fi(Zy), Z fi(Zk) ) (2.2)
k=0 k=
= E, [(fi(Zo) — Eu[fi])(fi(Zo) — ]+ Z E,.[(fi(Zo) = Eufil)(f;(Zk) — Eulf5])]

+ ZEN [(fz(Zk) - Eu[fi])(fj(ZO) - ]Eu[fj})]
k=1

In order to lift this “pointwise” result to a functional central limit theorem, we will in addition need a
concentration inequality for a preciser control on how the sum n~! 22710 f(Zy) deviates from the integral
J f(z)p(dz) for finite sample sizes. To this end, we strengthen the aperiodicity assumption to strong aperiodicity
(see [34] Prop. 5.4.5), that is there exists a set C' € B(R), a probability measure v with v(C) > 0 and a constant
0 > 0 such that

P(z,B) > év(B), forallzeC,BeB(R). (2.3)

Any set C' satisfying this condition is called small set. Recall that any small set is a petite set.
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Proposition 2.2 (Thm. 9 by Adamczak and Bednorz [1]). Let Z = (Zy)r >0 be a Harris recurrent, strongly
aperiodic Markov chain on (R, B(R)) with unique invariant measure p. For some set C' € B(R) with u(C) > 0
let Z satisfy the drift condition (2.1) and the small set condition (2.3).

Let f € L?(u) be bounded. For any 0 < 7 < 1 there are constants K,co depending only on §, V, X\, ¢ and T
and a constant ¢1 depending additionally on the initial value x € R such that for any t >0

S t T Cgt2
Py Zy) —nE Z < Kex — —_— Kex — ,
(kz—:()f( k) — nEu[f(Zo)] >t> <Ke p( Cl<||f||oo> >+ e p( nEf+tmaX(||f||oo(logn)1/T72}/2)>

where Xy is given by (2.2) with d = 1.

_As a last ingredient we need to bound the asymptotic variance X'y in Propositions 2.1 and 2.2 in terms of
HfH%Q(“) for the centred function f := f — [ fdu. The geometric ergodicity only yields a bound O(||f||%)-
Therefore, we require that the transition operator is a contraction in the sense that there exists some p € (0,1)
satisfying

P9l 2wy < pllgllpzqe  for all g € L?(u) with /gdu =0. (2.4)

This property is also known as p-mixing. It corresponds to a Poincaré inequality (c¢f. [3], Thm. 1.3) and its
relation to drift conditions is analysed by Bakry et al. [3]. If (2.4) is fulfilled, the Cauchy—Schwarz inequality
yields

oo (o)
Xy = Z? < Hf||2L2(u) + QZ Hf”L?(u)”PkaL?(H) < (1 + QZPk> ||f\|%2(u) = LLZHJCHQL?(W (2.5)
k=1 k=1

2.2. A functional central limit theorem

The basic idea is to prove a functional central limit theorem for the invariant probability measure p by
choosing an orthonormal basis, applying the pointwise central limit theorem to the basis functions (Prop. 2.1)
and extending this result to finite linear combinations with the help of the concentration inequality (Prop. 2.2).
Provided p has some regularity, the approximation error due to considering only a finite basis expansion of y
will be negligible. Noting that it is straightforward to extend the results to any compact subset of R, we focus
on a central limit theorem on a bounded interval [a,b] with —oco < a < b < 0.

Let (@jo.1,%jk = J = jo,l,k € Z), for some jo > 0, a scaling function ¢ and a wavelet function 1, be a
regular compactly supported L?-orthonormal wavelet basis of L?(R). For the sake of clarity we throughout use
Daubechies’ wavelets of order N € N, but any other compactly supported regular wavelet basis can be applied
as well. As a standing assumption we suppose that IV is chosen large enough such that the Hoélder regularity of ¢
and 1 is larger than the regularity required for the invariant measure. The approximation spaces for resolution
levels J > jo are defined as

Vy = Spm{@jo,lij,k 27 =1Jo,-- 'aJa lak € Z}a
The projection onto Vy is denoted by 7. Since jo is fixed and to simplify the notation, we write ¥_1; := ¢j, ..
Using the first n € N steps Zy, Z1, ..., Z,—1 of a realisation of the chain, we define the empirical measure

1 n—1
Hn = E Z 5Zka
k=0

where 9§, denotes the Dirac measure at the point « € R. The canonical projection wavelet estimator of p is
given by

J
= m(n) = ) Boviovi+ DY Hiktbiks  fik = Yk ) = /%‘,k dpn. (2.6)

leZ Jj=Jo kEZ
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For any ;1 Proposition 2.1 yields that /n(u, — p)(¥;1) converges in distribution for n — oo to a Gaussian
random variable

Gu(j, k) ~N(0,2y,,) with covariances  E,[G,.(j, k)Gu(l,m)] = Xy, w0 (2.7)

Using the techniques from Castillo and Nickl [8], this pointwise convergence of p,, can be extended to a uniform
central limit theorem on [a,b] for the projection estimator ji; in the multi-scale sequence spaces which are
defined as follows: noting that the Daubechies wavelets fulfil supp ¢ C [0,2N — 1] and suppy C [-N + 1, N]
(cf. [24], Chap. 7), the sets L:=K_1 :={k € Z :279a —2N +1 < k < 2%b} and K; :={k € Z:2/a— N < k <
27b+ N — 1} contain all indices of p;, . and v; ., respectively, whose support intersects with the interval [a, b].
For a monotonously increasing weighting sequence w = (w;);=—1,jo,jo-+1,jo+2,... With w; > 1 and w_; := 1 we
define the multi-scale sequence spaces as

M= M(w) = {x = (xj1) : 2| mw) = sup max [zixl < oo},

je{~1Ljo,jo+1,...} KEK; Wj

Since the Banach space M(w) is non-separable, we define the separable, closed subspace

Moy = Mp(w) = {x = (xjx) : lim max ] = 0}~

Joooke K Wj

Let us assume that p is absolutely continuous with respect to the Lebesgue measure and denote the density
likewise by p. If the density is bounded on D = [a — 2770(2N — 1),b + 277 (2N — 1)], the orthonormality
and the support of (1) and (2.5) yield Xy, , = O(||p]|c). Standard estimates of the supremum of normal
random variables yield that the maximum over the 27 variables G, (j,-) of a resolution level j are of the order
maxy, |G, (4, k)| = Op(V/7), see (2.14) below. Since the cardinality of K is of the order 27, a weighting w; = v/j
seems to be appropriate and indeed we conclude as ([8], Prop. 3):

Lemma 2.3. Let p admit o Lebesque density which is bounded on D. Then G, from (2.7) satisfies
E[|G .l pm(uw)] < 00 for the weights w; = \/j. Moreover, L(G,) is a tight Gaussian Borel probability measure in

Mo (w) if \/G/w; — 0.

Let us now summarise the assumptions on the Markov chain, which are needed to prove the functional central
limit theorem and for the construction of confidence bands. For any regularity s > 0, denoting the integer part
of s by [s], the Holder space on a domain D is defined by

5] [s) () — fls]
(D)= § £: D~ B[ fller = 3 179 oo+ sup L)
k=0 rH#yY |'T_y|

Assumption 2.4. Let (Zi)r >0 be a Harris recurrent, strongly aperiodic Markov chain on (R, B(R)) with
initial condition Zy = z. Let the invariant probability measure have a density p in C*(D) for some s > 0 and
some sufficiently large set D C R containing [a, b]. Let the drift condition (2.1) and small set condition (2.3) be
satisfied for some C' € B(R) with 1(C) > 0. Further suppose that the transition operator is an L?(u1)-contraction
fulfilling (2.4) with p € (0,1).

Remark 2.5. As we have discussed above it suffices to verify that the chain (Z3)g>o is t-irreducible and
satisfies (2.1) and (2.3) in order to conclude that the (Zx)r >0 is Harris recurrent, strongly aperiodic and has a
unique invariant probability measure.
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Now we can show the functional central limit theorem for fi; in the space Mo(w). Note that the natural
nonparametric choice J,, given by 27» ~ n!/(25t1) gatisfies the conditions of the following theorem. Recall
that weak convergence of laws £(X) of random variables X on a metric space (S, d) can be metrised by the
bounded-Lipschitz metric

Bs(p,v) == sup
F:||F||pr<1

LF(x)(u(dx) —v(dx))| with

IF|BL :=sup |F(x)|+ sup ——F—F——-
€S vyeSaty  A2,Y)

Theorem 2.6. Grant Assumption 2.4 and let w = (w;) be increasing and satisfy \/j/w; — 0 as j — oo. Let
Jn € N fulfil, for some 7 € (0,1),

\/EQ*J"(QSH)/ijl = o(1), (log n)2/7n712‘]"<]n =0(1).

n

Then fiy, from (2.6) satisfies, for n — oo,

Vilfis, —p) =5 Gy in Mo(w),

Proof. We follow the strategy of ([8], Thm. 1). First we deal with the bias term. By the s-Holder regularity of
1 we have ([19], Def. (5.90) and Prop. 5.3.13)

sup 2/ HD2 (g 1 )| < o0
ik

and thus by the assumption on J,

I =77, () llas = sup max w;™ (e, )| S sup wy 127 RN — o(n1/2),

~Y
J>Jn J>Jn

Defining v, := /n(fis, — 77, (1)), we decompose the stochastic error, for J < .J,, to be specified later,

Bmo (L(vn), L(Gy)) < Bato (L(Wn), L{vn) 0 15 ) + Bty (L) 0 751, L(Gy) 0 75 7)
+Bmo (L(Gp) oy L(Gy)). (2.8)

In the sequel we will separately show that all three terms converge to zero. Let € > 0. By definition of the
Bm,-norm we estimate the first term by

Brmo (L(vn), L(vn) oy ) = pup [E[F(vn) — F(ms(va))l|

<E [[[Va(ms, = m5)(n — 1)l a]

—1,1/2 1/2 _ .
< max (w;j PR | max  max j [(Vnpn — 1) 56| - (2.9)

By the assumptions on w and due to the factor in front of the expectation, the above display can be bounded by
e/3 if J is chosen large enough and provided that the expectation can be bounded by a constant independent
of J and n. To apply the concentration inequality in Proposition 2.2, note that X, , = O(||lull) by (2.5)
and 7||¥j.klloc = V7272 = O(v/n(logn)~Y/7) for j < J,. Hence, for any M > 0 large enough we obtain for
constants ¢; > 0, =1,2,...

)
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]E[ max  max j/2|(vn(un —M),%,k)]

J<j<JIn k€ K;

gM+/OOP< max max j /2 (v (pn — 1), ¥j)| >“> du

J<j<In k€ K;

<at S [P (1~ i) > Vi) du

J<j<Jn kEK;

<M+ Z 2J/M (exp(—cl(logn)jTuT)—|—exp(—czju2/(1+u)))du

J<G<n
. —c3(jM)" logn —cajM
<M+ Z:W<e. + I )
iSiei. j7 logn j
SM+4e M <My, (2.10)

where we have used in the next to last estimate that J,, < logn and thus j7logn = j for all j < J,.
To bound the second term in (2.8), we use Proposition 2.1 and the Cramér-Wold device to see that it is
smaller than €/3 for fixed J and n sufficiently large. It remains to consider the third term in (2.8) which can

be estimated similarly to (2.9), using that E[sup; maxy j~V/2|G,.(j, k)|] < oo by Lemma 2.3. O

2.3. The construction of confidence bands

Using the multi-scale central limit theorem, we now construct confidence bands for the density of the invariant
probability measure. For some confidence level « € (0, 1) the natural idea is to take

R ‘s
we St pn <

where (, is chosen such that P(||G,||am < (o) = 1 —a. For this set the asymptotic coverage follows immediately
from Theorem 2.6. However, C,, () is too large in terms of the L*°([a, b])-diameter

Cn(Coc) = {f ||f_ﬁJ'n

[Cn(Ca)loo := sup { sup |f(z) —g(x)]: f,g € Cn(Ca)} :

z€[a,b)

To obtain the (nearly) optimal L°°-diameter, we need to control the large resolution levels. As suggested
by Castillo and Nickl [8], we use a priori knowledge of the regularity s to define

Cn = zn(CQa Saun) = Cn((a) N {f :

os < up (2.11)

for a sequence uy, — OQ.

Proposition 2.7. Grant Assumption 2.4 with s > 0 and let w = (w;) be increasing and satisfy \/j/w; — 0.
For o € (0,1) let (o > 0 be such that P(||G.l|m = (o) < a and choose Jp, := Jy,(s) such that

§ n 1/(25+1)
2vn — .
<10gn>

Then the confidence set Cp, = Cp(Ca, s, un) from (2.11) with u, = wy, /\/J, satisfies

_ _ n —s/(2s4+1)
liminf P(ueCp) >21—a and |Chleo =Op ( ) Uy | -

n—oo logn
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Proof. Let us first verify liminf,, .., P(u € C,,) > 1 — . Since pu € C*(uy,,) for large enough n, Theorem 2.6
yields

liminf P(u € Cy,) = liminf P(v/nl|fiy, — pllm < Ca) = P|Gullm < Co) =1 —

n—o0

To bound the diameter let f, g € C,. Using ||f — fis, [|;m = Op(n~'/2) and f — g € C*(2u,,), we obtain

_ j/2 _ ) j/2 _ .
1= gllgaey S DY 2 [oax (f =g in) + D> 2 [oax [(f = g,%5%)]

J<JIn I
< 2 27 max [(f = i, windl + max (g = i, v
j; kef?j [(f = s ¥ik)| ke%j (0 B o)
n 2—js2j(s+1/2) max f_gv,(/)'k
j;L keK; ‘< " >|

< = A+ g = Ballaa) D 272w +11f — gl

ooy 270

J<JIn J>Jn
=0Op (n’1/22‘]"i/2w]n> +Op (27J”Sun)
_ 0p (n_l/QQJ"/ZJ,lL/Qun) +Op (Q_J"sun). (2.12)
Plugging in the choice of .J,,, we finally have n='/24/27=.J,, < (n/logn)=%/(2s+1) = 2= Jns, O

A multi-scale confidence band as in (2.11) allows for the construction of a classical L*-band on [a, b] around
L) —s/(2s+1)

i Un. As we can deduce
ogn

iy, as follows: let us denote the almost optimal diameter by p, := (

from (2.12), there is a constant D > 0 such that we have || f — i, || Lo ([a,o)) < Dpn for any f € C,. Hence, the
band

Co = {1 [a.b] = R|[If = fis, |z ((a)) < Dpn}

contains C,, which only improves the coverage. Consequently, C, is an L>-confidence band with level o which
shrinks with almost optimal rate p,. In addition, a multi-scale confidence band as in (2.11) allows for simulta-
neous confidence intervals in all wavelet coefficients. This is especially useful for goodness-of-fit tests where the
optimal L>-diameter of C,, is a measure of the power of the test.

In order to apply the confidence band (2.11) we need the regularity s of the invariant density and a critical
value ¢, such that P(||G,llm < ¢o) = 1 —a for a € (0,1). Adaptive confidence bands will be presented later
in the context of diffusions. So let us suppose for a moment that the regularity s is known. Then the problem
reduces to the construction of the critical value to which the remainder of this section is devoted.

A first observation is that if several independent copies of the diffusion are observed then one could calculate
for each copy an estimator fi;, and obtain estimators for the values ¢, from the distribution of the estimators
fis, around their joint mean. Since the assumption of many independent copies is not realistic we will not pursue
this further. Instead of the consistent estimation of the lowest possible (, we restrict ourselves to estimating
an upper bound, which yields possibly more conservative confidence sets. By the concentration of Gaussian
measures we know for any x > 0 that

2
P(IGullm = E[|Gplla] + 1) < e/,

where X := sup; , E[|G,(j, k)|*] = sup; ;, £y, , (see for example [30], Thm. 7.1). Hence, an upper bound for ¢,

is given by
V2Zloga=! + E[|G,l|m]-
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The expected value E[||G,||a] can be bounded as in Proposition 2 by Castillo and Nickl [8], depending on X
again. We obtain the following upper bound for (,:

Lemma 2.8. Let jo > 1 and w = (w;) satisfy w—1 = /jo and inf; w;/\/j > > jo, and define X :
sup; . Xy, - Then P([|Gu|lm > (,) < a holds for

Z)i= (V2loga T +2C + 227%) VT (2.13)
with C = (sup; ;, (4log | K;| + 2log2)/4)*/2.
Proof. The cardinality of K; is denoted by |K|. Recall that a standard normal random variable Z satisfies

—k?%/2

E[eZQ/ﬂ:\/i and P(Z > k) < 5 e k> 0.
7r
For each 7 > jo and k = 2sup,, Z‘% 2k Jensen’s inequality thus yields
- 2 2 1/2
E {m}gx|Gu(j, k)] <k (logIE [em“k‘@u<ﬁv’f>l /n D
25up2 / ~ (log | K| + 5 1 10g2)1/2 <CV 2y, (2.14)

for the constant C' := (sup, (4 log | K;[+2log 2)/4)/?. Theorem 7.1 in [30] yields for all ¢, T such that t > X/2CT
and 7" > 1

P(IGullm >t) < ZP (| m]?xGu(j, k) — ]E[m’?x((}#(j, k)] > tw; — ]E[m]?x|GH(j, k)])

J

< 2P (1m0 ) ~ Bl 6,6, K| > (- ©)V/ET )
J
<92 Z o dt*(T=1)%/(22T?)
J

Recall that j = jo, jo,jo + 1,jo + 2, ... in the above sum. Using Fubini’s theorem and the Gaussian tail bound,
we conclude

o0

E[||G | m] <21/20T+/ P(||G,||pm > t)dt 21/20T+221/2Z/ e I (1=1/T)* /244

xi/2CcT

21/2T > 4xY/272-2(T=1)%o
< 1/2 (2log2)j(T—-1) 1/2 .
SYVCT + 2 Z S 20T + C(T _ 1)2(1 _ 272(T71)2)

Choosing the T’ = 2, we obtain E[[|G,[|x] < (2C 4 2227200)$1/2, O

From the above lemma we see that X is the key quantity for the construction of the critical values (5. A
natural estimator for X is £, := (max;<s, k Ew ), Where Ewm are estimators of X, based on n observations.
Since J,, tends to infinity, the maximum over all J < Ji, converges to the supremum over all j so that we are
asymptotically estimating the right quantity. For the estimators 2y, , we propose the initial monotone sequence
estimators based on autocovariations by Geyer [16], which are consistent over-estimates, and this yields almost
surely

liminf £, > %,

n— 00

which suffices for our purposes.
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The estimation of Xy, amounts to the estimation of the asymptotic variance ¥y in (2.2) for a known func-
tion f and this problem is studied in the MCMC-literature. In addition to the sequence estimators, Geyer [16]
discusses two other constructions together with their advantages and disadvantages. Robert [37] constructs an-
other estimator applying renewal theory, which is however difficult to calculate. A more recent estimator using
i.i.d. copies of the process X is given by Chauveau and Diebolt [9].

As an alternative to the above estimation of X' in (2.13) an upper bound could be estimated as follows:
Using (2.5) we can bound X' from above,

1 ) 1+ 1+
£ <oup FEIT iz < sup HEL sl el = $220
where we can plug in estimators for ||u« and p. Considering a wavelet v, » localised around the maximum of
1 we see that the second inequality should provide a good bound. To estimate |||« a calculation along the
lines of the bound (2.12) shows that for u € C*(D) with J,, as in Proposition 2.7

N logn s/(2s+1)
5, = pllzos((a,p)) = Op (( . > up | (2.15)

where u,, = wy, /\/J,. Provided the supremum of 4 is attained in [a, b] or u admits some positive global Holder
regularity, we conclude that ||u||s can be estimated by ||iij, || With the above rate and is in particular a
consistent estimator, which is all that is needed. For the estimation of p we observe that it is the second largest
eigenvalue of the transition operator Pa. Gobet et al. [20] estimate this eigenvalue in a reflected diffusion model
by constructing first an empirical transition matrix for the transition operator restricted to a finite dimensional
space and then taking the second largest eigenvalue of the empirical transition matrix as an estimator for p,
there denoted by k1. They give a rate for their estimator, in particular the estimator is consistent.

Let us finally note that the estimation of (,, can be circumvented by a Bayesian approach as studied by Castillo
and Nickl [8] as well as Szabé et al. [42] in simpler statistical problems. The papers analyse Bayesian credible
sets in the density estimation model and in the white noise regression model as well as in the Gaussian sequence
model and show that they are frequentist confidence sets. Estimating the drift of a diffusion from low—frequency
observations is a more complicated statistical model. Consistency of the Bayesian approach in this setting has
been established by van der Meulen and van Zanten [44] and has been extended to the multi-dimensional case
by Gugushvili and Spreij [21]. Recently Nickl and S6hl [36] have shown Bayesian posterior contraction rates for
scalar diffusions with unknown drift and unknown diffusion coefficient observed at low frequency.

3. APPLICATION TO DIFFUSION PROCESSES

3.1. Estimation of the invariant density and its consequences

We now apply the results from the previous section to diffusion processes. At the same time we extend the
results from inference on the invariant probability measure to confidence bands for the drift function. Let us
consider the diffusion

dXt = b(Xt)dt + O'th, t > O, XO =T, (31)
with a Brownian motion Wy, an unknown drift function b: R — R, a volatility parameter ¢ > 0 and starting
point z € R. We observe X at equidistant time points 0, A, 2A, ..., (n—1)A for some fixed observation distance
A > 0 and sample size n — oo. Our aim is inference on the drift b.

Underlying the sequence of observations (X ax)r > o is a Markov structure described by the transition operator

Paf(z) := E[f(Xa)|Xo = 2].

The semi-group (P, : t > 0) has the infinitesimal generator L on the space of twice continuously differentiable
functions given by

Lf(z) = Lyf(z) = b(x)f'(x) + % " (2). (3.2)
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If there is an invariant density g = pyp, the operator L is symmetric with respect to the scalar product of
L*(p) ={f : [ |f|*dp < oco}. We impose the following assumptions on the diffusion:

Assumption 3.1. In model (3.1) let b be continuously differentiable and satisfy b € C*(D) for s > 1 and a
sufficiently large set D C R containing the interval [a,b] for a < b. Let o be in a fixed bounded interval away
from the origin. Suppose that b’ is bounded and that there are M,r > 0 such that

sign(z)b(z) < —r, forall |z| > M

More precisely, we will need D = [a — 21770(2N —1),b+ 21770 (2N — 1)]. Due to the global Lipschitz continuity
and the assumptions on the drift, equation (3.1) has a unique strong solution. Moreover, X; is a Markov process
with invariant probability density given by

1(z) = Coo—2 exp (za—2 /0 ’ b(y)dy), reR, (3.3)

with normalization constant Cy > 0 (¢f. [4], Chaps. 1,4). The corresponding Markov chain Z with Z; = Xia
satisfies Assumption 2.4 from the previous section.

Proposition 3.2. If the diffusion process (3.1) satisfies Assumption 3.1, then the Markov chain (Xia)r>o0
satisfies Assumption 2.4 where p € C*1(D).

Proof. By a time-change argument we can set o = 1 without loss of generality. Gihman and Skorohod [17],
Thm. 13.2) have given an explicit formula for the transition density pa(z,y) with respect to the Lebesgue
measure (i.e., Pa(z,B) = [z pa(z,y)dy for all B € B(R). In particular, pa(x,y) is strictly positive and thus Z
is ¢p-irreducible, where 9 is given by the Lebesgue measure on R.

Moreover, (z,y) — pa(z,y) is continuous such that for any compact interval C' C R we have ¢ := §(C) :=
inf; yecpa(x,y) > 0 and the small set condition (2.3) is satisfied:

Pa(r, B) = /B pa(e,y)dy > § /B dy=s[Clu(B).
N

where |C| denotes the Lebesgue measure of C' and v is the uniform distribution on C. It also follows that the
Markov chain is strongly aperiodic.

To show the drift condition (2.1), we first construct a Lyapunov function for the infinitesimal generator (which
is the continuous time analogue of the drift operator P — Id), that is we find a function V' > 1 such that

LV(z) < =AV(z)+cle(z), zeR. (3.4)

Let V be a smooth function with V(z) = el for x| > R for some R > 0. Due to the assumptions on b, we
then obtain for these x and R large enough

1 2
LV (x) = 5V”(az) +b(x)V'(2) = (% + asign(m)b(a&)) V(z) < =A\V(z)
for sufficiently small a, A and thus the previous inequality is satisfied with C' = [—R, R]. To carry this result

over to the drift condition (2.1), we adopt the approach by Galtchouk and Pergamenshchikov ([15], Prop. 6.4):
ito’s formula yields for all 0 <t < A

V(Xy) :V(x)+/0 L(V)(Xs)ds+/0 V'(Xs)dW,

We note that Fubini’s theorem yields [E, fo V(X fo 4[V'(X0)?]ds < oo for constants a small enough
by (3.3) and by the assumptions on b. Consequently we have ]Ex fo V'(X5)%ds] < oo for almost all z € R.
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By the explicit formula of pa(z,y) we conclude that E, [fOA V'(X)%ds] < oo for all z € R. Hence, the stochastic
integral is a martingale (under P,) and Z(t) := P,V (x) satisfies

Z'(t) = Eo[L(V)(Xe)] = =AZ(t) + ¥(t), (t) = Eo[L(V)(Xy) + AV (X)),

where we have ¥(t) < ¢Py(X: € C) < ¢ by (3.4). Solving this differential equation, we obtain for all ¢ € [0, 4]

t 1— —AA
Z(t) = Z(0)e ™ + / e M=)y (s)ds < V(a)e ™ + c—

0 )\
Therefore, the drift condition follows:

c

PaV(z) = V(2) < (7 = DV(@) + T < =WV(@) + T 1<y (@),

where R > 0 and X > 0 are chosen such that (1 —e 4 — )V (z) > ¢/A for |z| > R. In combination with the
i-irreducibility the drift condition shows that the Markov chain is positive Harris recurrent.

Since our diffusion is symmetric, in the sense that the transition operator is symmetric with respect to L?(u),
we argue as Bakry et al. ([3] Sect. 4.3), using that the Poincaré inequality is implied by a Lyapunov—Poincaré
inequality and we thus have the contraction property (2.4) ([3], Thm. 1.3). Finally, the smoothness of b in
combination with the formula for the invariant probability density (3.3) imply that u is in C**1(D). O

Theorem 2.6 and Proposition 2.7 yield immediately

Corollary 3.3. Grant Assumption 3.1 and let w = (w;) be increasing and satisfy /j/w; — 0. Then the wavelet
projection estimator fiz, from (2.6) with 2’7 = (n/logn)Y/(?s3) satisfies

Vilfis, =) ~5 Gy in Mo(w).

Moreover, the confidence band Cy, = Cp(Ca, s + 1,up) from (2.11) with critical value (o such that P(||G||m =
Ca) € a and uy, = wy, /v J, satisfies

B B o\ ~(5HD/(2543)
liminf P(pneCp,) 21 —a and |Cpleo =Op ( ) Uy | -

n— 00 log n

3.2. Drift estimation via plug-in

Supposing from now on that ¢ = 1 and rewriting the formula of the invariant measure (3.3), we see that

b(a) = 5 (logu(x))’ (3.5)

Obviously, b depends on p in a nonlinear way and the estimation problem is ill-posed because b is a function
of the derivative p/. In general, the same calculation leads to a formula for the function b(z)/0?. Note that
all shape properties of the drift function, like monotonicity, extrema, etc. are already determined by b/c2. As
demonstrated by Gobet et al. [20], the information on o is encoded in the transition operator of the underlying
Markov chain. However, the estimation procedure in this latter article is quite involved and the construction
of adaptive confidence bands in the general setting is beyond the scope of the present article. In the following
we always set o = 1. Note that if we have an estimator for ¢ at hand, for instance from a short high-frequency
time series of the diffusion, the results easily carry over to an unknown volatility o > 0.
Denoting the set of continuous functions on the real line by C(R), we introduce the map

I

€ {f€C'®):F>0.|flin =1} = C®). fr 37
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which is one-to-one with inverse function £*(g) = exp(2 [, g(y)dy — ¢,) with normalization constant ¢, € R
and for any function g in the range of £. We can thus estimate the drift function of the diffusion by the plug-in
estimator &(fiy,, ).

Using the confidence set C,,(Ca, s + 1,u,) for the invariant density u from (2.11), a confidence band for the
drift can be constructed via

Dy, := Dn(Ca, 8, un) := {g(f) 1 fe En(coms + 1vun)}~ (3.6)

Since £ is one-to-one, an immediate consequence of Corollary 3.3 is that we have for the coverage probability
liminf, . P(b € D,,) = liminf,,_,oc P(1x € C;,) 2 1 — . To bound the diameter of D,,, we first note that £ is
locally Lipschitz continuous: for f,g € C*(R) both bounded away from zero on [a, b] we have in L>([a, b])

1 ! !/ 1 I 1 !
et -l =5 [£- L] <3 |E5E] +3|Lw- o)
1
< el = o+ BE@ el o~ gl
<o (3 + 10N 1 = gllcn oy (3.7

For f,g € C,, we conclude in L*°([a, b])
1€C) = &(@lloo < NEC) = E()lloe +1€(9) — £ ()l oo

1 _ _
< (3100 ) (1 el = bl + g™l = Al

Analogously to (2.12) the choice 277 = (n/logn)Y/(?s+3) yields

n —s/(25+3) -
”f - :uHCl([a,b]) =0p <10gn> Un for all f € Cn(Coms + ].,’Lbn)-

We conclude that f~! is uniformly bounded in L°°([a, b]) for all f € C,,. Hence, we have proved

Proposition 3.4. Grant Assumption 3.1 with 0 = 1,s > 0 and let w = (w;) satisfy /j/w; — 0. Then the
confidence set D, = Dy (Ca, s,un) from (3.6) with critical value o satisfying P(|Gullm = (o) < @, up =
wy, /T and J,, chosen such that 27m = (n/logn)'/s3) fulfils

n —s/(2s+3)
liminf PbeD,,) >21—a and ’Dn|m:(9p < > Up | -

n— 00 log n

Let us comment on the rate appearing in the previous proposition. Since the identification (3.5) incorporates
the derivative of the invariant measure, drift estimation is an inverse problem, which is ill-posed of degree one.
Therefore, the minimax rate for the pointwise or L2-loss is n~/(25%3)  Considering the uniform loss, we obtain
the rate (n/logn)~*/(25+3) Finally, u,, — oo is the payment for undersmoothing (by using a weighting sequence
slightly larger than /7). Note that we obtain a faster rate than Gobet et al. [20] who have proved that the
minimax rate for drift estimation for the mean integrated squared error is /(255 if there is additionally an
unknown volatility function in front of the Brownian motion in (3.1).

In fact the map & is not only Lipschitz continuous, but even Hadamard differentiable (on appropriate function
spaces) with derivative at p

¢ (h) = % (%) b Mo(w). (3.9)

Using the delta method ([46], Thm. 20.8), we obtain a functional central limit theorem for the plug-in estima-
tor &(f,)-
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Theorem 3.5. Grant Assumption 3.1 with o = 1 and let w = (w;) be increasing and satisfy \/j/w; — 0,
w; < 299 for some & € (0,1/2). Let J, € N fulfil, for some T € (0,1),

2(9/4+5/2)J,,LanTf1/2 = o(1), \/EQfJ,,L(szra)/zw;nl =o(1), (logn)Q/Tn’12J"LJn = 0(1).

For w; > 270%9) we have as n — oo

Va(E(fig,) — ) -5 €(G) in Mo(@).

The proof of this theorem is postponed to Section A.1. Similarly as in (2.11) confidence bands for the drift
function can alternatively be constructed by

Do(Cor sy ) = {f: I = &) o < <217l < u}

for a € (0,1/2), a quantile ¢, such that P&.(G)llm@) < (,) = 1 — a and a sequence u, — oo. With
27 = (n/logn)"/+3) and u, = ws, 2~/ /\/J, this leads to asymptotic coverage of at least 1 — a and a
diameter decaying at rate (n/logn)~*/(2s*3)y, . Note that in contrast to D, the diameter of D, is slightly
suboptimal due to the § > 0 that appeared in Theorem 3.5 and which presumably could be removed by a more
technical proof. Based on a direct estimator of the drift we will construct a similar confidence band with the
optimal diameter (up to undersmoothing) in the next section.

Comparing both constructions of confidence sets, we see that D,, can be understood as the variance stabilised
version of D,,: the critical value of D,, depends on the unknown x only through the covariance structure of the
limit processes G,, which seems to be unavoidable due to the underlying Markov chain structure. In contrast (&
depends additionally on p through the derivative {/,. As a consequence the confidence band D,, has the same
diameter everywhere while the diameter of D,, changes.

3.3. A direct approach to estimate the drift

Instead of relying only on the estimator fis, of the invariant density and the plug-in approach, we can
use a direct approach to estimate the drift and to obtain its confidence bands. Although there is a one-to-
one correspondence between the drift function b and the invariant measure p, the drift is both the canonical
parameter of our model and the main parameter of interest in the context of diffusions. Since we aim for adapting
to the regularity of b, the direct estimation approach is natural and, additionally, the resulting confidence bands
will have a constant diameter.

Motivated by formula (3.5), we define our drift estimator for integers J,U > 0 as

~ 1 . 1 ~
bru = §7TJ(10g MJ+U)/ =3 Z Z <(10gMJ+U)/,%‘,k> Vi ks (3.9)

iSJkeK;

using the wavelet projection estimator iy from (2.6). In contrast to the plug-in estimator in the previous
section the underlying bias-variance trade-off is now driven by the estimation problem of b and the outer
projection 7y onto level J. However, in order to linearise the estimation error, we need a stable prior estimator
of p such that we cannot simply use the empirical measure p,, but instead use its projection onto some resolution
level J + U which is strictly larger than J. As a rule of thumb, U = U,, can be chosen such that 2U» = logn
implying that an additional bias term from estimating p is negligible. Linearising the estimation error, we obtain

/

~ . (o .
<bJ,U - b7 ¢j,k> = - <,U/J+U — My QJ—;> + <RJ+anj,k>7 J g Ja k S K]7 (310)
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where the remainder is of order op(n~'/?) for appropriate choices of J = .J,,, ¢f. Lemma 5.1 below. In view of
the linear error term and our findings in Section 2, the limit process G in the multi-scale space Mg will be
given by

G (j, k) ~ N(0, %) where Xjx := Xg ¢ is given by (2.2) with f = ¢}, /(2u) (3.11)
with covariances E[Gy(j, k)Gy(l,m)] = Xy, ¢, from (2.2) with fi = ¢}, /(2p) and fo = ¢;,,/(2p). The ill-
posedness of the problem is reflected by 7%, . being a factor 27 larger than 1; ;. We thus need larger weights for
high resolution levels to ensure that G, takes values in Mo(w).

Definition 3.6. A weighting sequence w = (w;) is called admissible, if it is monotonously increasing, satisfies
V72 Jw; — 0 as j — oo and if there is some § € (1,2] such that j + 29°/w; is monotonously increasing for
large j.

The last condition in the definition is a mild technical assumption that we will need in the multi-scale central
limit theorem below. For instance, any weighting sequence w; = u; V727 with u; = jP for some polynomial
rate p > 0 is admissible of degree one for any § € (1,2]. Note that admissibility of w implies in particular
that w; < 2/° which allows to compare the || - [|oo-norm with the || - | s-norm. We find an analogous result to
Lemma 2.3 (cf. [8], Prop. 3).

Lemma 3.7. Gy, from (3.11) satisfies E[||Go|| pun] < 00 for the weights w given by w; = /j27. Moreover,
L(Gyp) is a tight Gaussian Borel probability measure in Mo(w) for any admissible sequence w.

For the following result suppose that the wavelet basis (¢j,.1, %k : 7 = Jjo,l € L,k € K;) of L?(R) is sufficiently
regular (i.e., satisfies (5.2) with v > 3/2 + 0), for instance, Daubechies’ wavelets of order N > 20.

Theorem 3.8. Grant Assumption 3.1 with o =1 and let w = (w;) be admissible. Let J,, — 0o, U, — oo fulfil
V27T SRyt = o(1), 2 UntUESTD = o(1), 72220 (4 U,) = o(1).

Then /b\J,U from (3.9) satisfies, as n — oo,
Valbs, v, —b) ~5 Gy in Mo(w)
for the tight Gaussian random variable Gy, in Mo(w) given by (3.11).

The proof of this theorem is postponed to Section 5. The first condition on J, is the bias condition for b
in M. The latter two conditions on J,, + U,, are determined by a bias and a variance condition for g which we
will need to bound the remainder R, 1y, from (3.10) in L. If § < 1/2 + s in Definition 3.6, then the second
condition is strictly weaker than the first one.

Similarly to the confidence band for p in Proposition 2.7 we can now construct a confidence band for the
drift function b. For some « € (0, 1) we consider

6= Enlosssin) o= {11 =Bl < Sl < un . (312)

where (4 is chosen such that P(||Gp||m < (o) = 1 — o and (uy,), is a diverging sequence.

Proposition 3.9. Grant Assumption 3.1 with o = 1,5 > 1 and let w = (w;) be admissible. For a € (0,1) let
Ca > 0 satisfy P(||Gollm = (o) < a and choose Jp, := Jp(s) and U, — oo such that

o\ 1/(2543)
ogn

Then the confidence set £, = En(Cas S, un) from (3.12) with uy, == wy, 277" /\/J,, satisfies

n—oo logn

n —s/(2s+3)
liminf Pbe &) >21—a and |Eple =Op ( ) Up | -
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Proof. The proof is essentially the same as for the confidence band of the invariant probability density. We show
that the asymptotic coverage probability is at least 1 — o and obtain for f, g € &, as in (2.12) the bound

[f = gllec = Op (n71/22J"/2an> +Op (27J”Sun)
Using u,, = wy, 2777 /\/J, we thus have
1f = glloe = Op (0122321120, ) + Op (2770 )
The choice of J,, yields n_l/z\/m < (n/logn) =8/ (2s+3) = 9= Jns, 0

4. ADAPTIVE CONFIDENCE BANDS FOR DRIFT ESTIMATION

Inspired by Giné and Nickl [18], we will now construct an adaptive version of the confidence set &, from (3.12).
To this end we estimate the regularity s of the drift with a Lepski-type method. For some maximal regularity
r > 1, let the integers 0 < Jnin < Jmax be given by

n

2Jmiu ~ .
logn (logm)?

Note that Jinin, Jmax depend on the sample size n, which is suppressed in the notation. If we knew in advance
that b has regularity r, then we would choose the resolution level Jyi,. The upper bound Jyax is chosen such
that Jmax + U, satisfies the third condition in Theorem 3.8. The set in which we will adaptively choose the
optimal resolution level for regularities s € [1,r] is defined by

1/4
2 Jmax ~

)

) 1/(2r+3)

jn = [Jmin, Jmax} ﬂN

Similar to Giné and Nickl ([18], Lem. 2), we show under the following assumption on b that the optimal
truncation level can be consistently estimated up to a fixed integer.

Assumption 4.1. Let b € C*(D), s > 1, satisfy for constants 0 < d; < d2 < oo and an integer Jy > 0 that
di1277% < |y (b) = bl oo qap)) < d2277%, VT = . (4.1)

The second inequality in (4.1) is the well known Jackson inequality which is satisfied for all usual choices of
wavelet basis. The first inequality is the main condition here, called self-similarity assumption. It excludes the
cases where the bias would be smaller than the usual order 2775, Although the estimator b s,u would profit
from a smaller bias, we cannot hope for a consistent estimation of the optimal projection level and the resulting
regularity index s if (4.1) (or a slight generalisation by Bull [5]) is violated. Indeed, Hoffmann and Nickl [26]
have shown that this kind of condition is necessary to construct adaptive and honest confidence bands. On
the other hand, it has been proved by Giné and Nickl [18] that the set of functions that do not satisfy the
self-similarity assumption is nowhere dense in the Hd&lder norm topologies. In that sense, the self-similarity
assumption is satisfied by “typical” functions. We will give an illustrative example next. Probabilistic examples
for self-similar functions are those Gaussian processes which can be represented as stochastic series expansions
like the Karhunen—Loeéve expansion for Brownian motion or typical examples of Bayesian priors. Naturally,
more regular functions b € C"(D) for some r > s cannot satisfy Assumption 4.1. For a further discussion and
examples we refer to (Giné and Nickl [18], Sect. 3.5) as well as Bull [5].

Example 4.2. Let b be a smooth function on R except for some point zg € (a,b) where the sth order derivative
b() has a jump for some integer s > 1. Locally around z( the function b can be approximated by a Taylor
polynomial b(x) = B (z —x0)* + Zz:ol Bi(z —z0) 4+ O(|z — 20|**!) With coefficients Bo, . .., 3s—1 € R and where
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the coefficient of order s is some 35 € R or 3; € R depending on z > x¢ and = < zg, respectively. Due to the
jump of b®) we have g+ # 87 .

Choose k; as the nearest integer of 27z, implying that g is in the middle of the support of ;. Using the
elementary estimate [(f, ;)| < ||f||L<>C(Supp¢j’k)2_]/2Hw”[/l, we obtain

75 (b) = bll oo qraseny = || D (b ik) s 2 sup 27/2((b, ;1) -
7>k ety 7

For sufficiently large j the regularity of the wavelet basis, being thus orthogonal to polynomials, and their

compact support yield

29/2|(b, ;)| > + 02790+ )

s—1
/ (b(w) =By (x —x0)® + Zﬁl(l' - xo)l)t/)@jw — kj)dz
=0

> 27|18 - B |

/ (z — 20)* (2 x — kj)dx’ + O(277+)
r>x0

>2fjs + _ - :
133 @Iee[_r{l/lgl/z]

/ Yy + S)dy‘ + 0279,
y>0

We conclude for J sufficiently large that |7 (b) — bl| Lo (a0 = 277

The oracle choice J;; which balances the bias ||7;(b) — b|| o ([4,5)) and the main stochastic error is given by

) K [237]
Jy = J;(s) = min {J € Jn: (da+1)2775 < i }
n
for some suitable constant K > 0 depending only on v, inf{u(x) : * € Ucr supp ¢j,;} and the maximal
asymptotic variance X' = sup, , 2;  where the latter two quantities can be replaced by the consistent estimators
which we have discussed in Section 2.3. We see easily that 27» ~ (1ox )1/(25+3). Following Lepski’s approach,

ogn
we define the estimator for J* by

. o [
Jp = mln{J € JIn: ||bJ _bj‘|Loo([a7b]) <K TJ Vi>J g€ jn} (4.2)

Lemma 4.3. Grant Assumptions 3.1 and 4.1 for s € [1,r] with some r > 1 and 0 = 1. Let w be admissible.
Then there are a constant K > 0 depending only on v, inf{u(x) : x € Uier supp .1} and the mazimal

asymptotic variance Y= sup; . Xj k, an integer M > 0 depending only on di,dz, K and for any T € (0,1) there
are constants C,c > 0 depending on 7, K, such that

P(Jn ¢ [J; = M, J2]) < C(n~ o 4 emin) 0,

The proof of this lemma relies on the concentration result in Proposition 2.2 and is postponed to Section A.2.
Applying that J,, is a reasonable estimator of J, we obtain a completely data-driven estimator

with J,, from (4.2) and 2 = logn. (4.3)

Corollary 4.4. In the situation of Lemma 4.3 the adaptive estimator b defined by (4.3) satisfies ||Z_ bllm =
Op(n=2) and |[b — bl oo ((ap) = Op((n/logn)=*/@+3u,) with u, = wy:27"72/\/J:. Further for every
m € {0,1,..., M} we have

o~

Jn (bJ;,m,Un — b) 4, Gy in Mo(w)

as n— oo for the tight Gaussian random variable Gy in Mo(w) given by (3.11).
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Proof. Combining Lemma 4.3 and Theorem 3.8, there is for any § > 0 a constant C' > 0 such that for n large
enough
I
P(Vallb—blpm>C) < Y P(vValbs = bllam > C) +o(1) < (M +1)6.

J=Jr—M

Since M is a finite constant, we haveHg—bHM = Op(n~1/2). Using that 272 ~ 275 a calculation similar to (2.12)
yields the bound for the uniform norm. For the second claim notice that the estimators b, ., v, satisfy the
conditions of Theorem 3.8. O

The bound for the uniform risk is slightly suboptimal because w,, diverges arbitrary slowly (depending on the
choice of w) to infinity. Using direct estimates of the || - ||oo-norm in the proofs in Section 5, this additional
factor could be circumvented. However, it can be interpreted as an additional factor that corresponds to a slight
undersmoothing which is often used to have a negligible bias in the construction of confidence bands.

Another consequence of Lemma 4.3 is that we can consistently estimate the regularity s of b. For a sequence
of random variables (v,,) with v, ! = op(1) we define the estimator

1 — logl
Sp i=max | 1, ogn — O80en 3 (1 + 11—") : (4.4)
2(log 2)(Jp +v,) 2 In

Using that 27» ~ (n/logn)'/(25+3) we derive from Lemma 4.3 the following corollary. The proof can be found
in Section A.3.

Corollary 4.5. In the situation of Lemma 4.3 the estimator S, given by (4.4) satisfies for any sequence of
random variables (vy,) with v, * = op(1)

~ v
P, <s)—1 and s—sn—(’)p(ﬂ)-
With the estimator b from (4.3) we can now construct our adaptive confidence bands as follows. By a Bonferroni
correction we take care of the possible dependence between the estimators by, v, and the adaptive choice

jn of the resolution level. In this way sample splitting can be avoided, which was also used by Bull [5]. For any
level a € (0,1) let 8 = /(M + 1) and define

gn = gn(Zﬁ,na/s\natn) = { Hf - bHM < Cﬁ’ﬂ ||f|

ok Cin < n}, (4.5)

where (t,) is a sequence of random variables with ¢, 1 = op(1) and Z,@’n is an (over-)estimator of the critical
value (g given by P(||Gs|lm < (3) = 1 — 3 similarly to the construction in Section 2.3. Now we can state our
final theorem:

Theorem 4.6. Grant Assumptions 3.1 and 4.1 for o =1, s € [1,r] with some r > 1. Let w = (w;) be admissible
and define u, 1= wy:2" Tn )N/ T as well as Uy, = wj; 27 Tn 7 M2, For a € (0,1) set p:= a/(M + 1) with M
as in Lemma 4.3. Let (g > 0 be given by P(||Gpllam = (3) < 0 and let Z,@ n be an (over-)estimator satisfying

P(Zg,n Cg—e) — 1 for alle > 0. Then the confidence set En = S (Cﬁ ns Sns bn) given by (4.5), where we choose
tn = VU and S, according to (4.4) with v, = op(logt,) and v, ' = op(1), satisfies

~ . . —s/(2s43)
liminf P(be &) >21—a and |Eple =Op ( ) Up | -

n—oo logn
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Proof. We will adapt the proof of Proposition 3.9 to the estimated quantities jn,§n and Zﬁ- By Corollary 4.5
the probability of the event {3,, < s} converges to one. Due to v, ! = op(1), we thus have b € C*"(v,,) with
probability tending to one. Using Lemma 4.3 and Corollary 4.4, we infer

M
timsup P(b ¢ £,) = limsup > P(vitls; -, — bl > Con) < (M + DP(Gyllmn > ) <

n—o00 n—o00
m=0

We conclude that liminf, .o P(b € &,) > 1 — a.
To estimate the diameter, we proceed as in (2.12). Applying additionally Corollary 4.5, we obtain for any

faeé&,

_ < Jj/2 _ ) j/2 _ 4
1f = gloe 5 D 2P max|(f = gl + 3 272 max |(f = g, ¥l
ISy j>Jx
< (I =Bl + g =bllae) - 2772w +[1f = glloan D 277
VA J>Jr
= @P(n71/22J;/2wJ:) + OP(%TJ;HOP(%))

— 0p (n71/223J;/2(J;)1/2un n 271;5@71)’
where we have plugged in the choices of ¢, u, and v, and u, < u, with probability converging to one. Since
270 ~ (n/logn)'/?5t3) the assertion follows. O

The confidence bands are constructed explicitly and this helps to verify that the confidence bands are honest,
i.e. the coverage is achieved uniformly over some set of the unknown parameter. The general philosophy being
that uniformity in the assumptions leads to uniformity in the statements, the detailed derivation of honesty is
tedious so that we only sketch it here. The main ingredients of the proof are the central limit theorem and the
concentration inequality for Markov chains. In the original version of the concentration inequality, Theorem 9
by Adamczak and Bednorz [1], the constants are given explicitly in terms of the assumptions and thus the
concentration inequality is uniform in the underlying Markov chain Z. It is also to be expected that the central
limit theorem holds uniformly in the bounded-Lipschitz metric with respect to Z although this is not explicitly
contained in the statement. With these uniform ingredients a uniform version of Theorem 2.6 can be proved,
where the convergence in distribution is again metrised in the bounded-Lipschitz metric. In combination with
a uniform bound on the Lebesgue densities of ||G,, || o this leads to honest confidence bands in Proposition 2.7.
Thanks to the explicit derivation of Assumption 2.4 from Assumption 3.1, uniformity in the diffusion model
carries over to uniformity in the Markov chain and we see that the confidence bands in Proposition 3.4 are
honest. Likewise a uniform version of Theorem 3.8 can be proved. Provided the random variables |G| o4 have
uniformly bounded Lebesgue densities this uniform version entails honest and adaptive confidence bands for the
drift in Theorem 4.6.

5. PROOF OF THEOREM 3.8

In the sequel we use the notation
Jr=J+U

for the projection level of fi;+ and we define

S = supp oo  la— 272N — 1),b+ 270 (2N — 1))
leL
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To analyse the estimation error of the wavelet coefficients (E J,UsYj.k), we apply the following linearisation
lemma:

Lemma 5.1. Grant Assumption 3.1 with o = 1. For j € {—1, jo,...,J} and k € K; we have

- "
(bru — by = —(Hs+ — i, ﬁ> + (R, ¥j5),

~ /
where the remainder is given by R+ = “2; +“ (i;;“) If JT = JF satisfies for some € (0,1)
J
2770t Z (1), (logn)¥™n 127" JF = 0(1),
then

HRJ,IHL‘X’(S) _ (’)p(n’lJf{22JI + 27J7T(25+1)).

Proof. Writing n := (fij+ — u)/u, the chain rule yields

Lo - 1 ' n Lofig+s —py’
—(1 "—b==(log(1 :7:—(7) ,
5 (log i) 5 (log(1+n)) siiy =2l n ) TR
where the remainder is given by
Ryuim M :_ﬁJ+_M<ﬁJ+_I~L>/.
2(1+n) 20+ jz

Using integration by parts with vanishing boundary terms, the wavelet coefficients corresponding to the linear
term can be written as

2
Let us bound the remainder, starting with Hﬁfﬁ — pt'[| oo (5)- Decomposing the uniform error into a bias and

1, . _ 1 . _
(@ = ™) sk = =5 (e = plfen™)-
a stochastic error term, we obtain

17 = 1 lleeis) < || D (tn = 1 i) D (i),

Ik Leo(s) 3> Jn ok Lo(8)
=V, + B,.
Using the localisation property of the wavelet function || > ¢ [W(e—Fk)|||oo < 1 (which holds for ¢ as well) and the
S

regularity of € C**1(D), implying sup; j.supp ,; ,ns20 272 [ {1, 151)| < 00, the bias can be estimated by

< Yot gail
L=(S)  §>Jif

B Y max i)

k:supp ¢, kﬂS’#(Z)
_7>J

For the stochastic error term we obtain similarly

v, < S 0¥/ )
B 4;; . tn — 1,05 1))
]\ n

The maximum of 27 subgaussian random variables is of order Op(1/7). More precisely, Proposition 2.2 and the
assumptions on J,I yield for any jo < j < J,I and 7 € (0, 1), similarly to (2.10),

pP ( max V| (pn — w0k = \/3t> <2 exp (—e1(logn)jTtT) + 27 exp (— coi(t A t?))

k:supp v, cNS#D
<exp (j(log2 —c157 *(logn)t™)) + exp (j(log2 — ca(t A t?))).
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Using J,I < logn, the right-hand side of the previous display is arbitrarily small for large enough ¢. An analogous
estimate holds for the scaling functions ¥ _; .. Therefore,

1)y —wllo=0p 3 292Vi/n]| + 027777 =0p (23” /%/Jx/n) +0(277).

Jo<i<I

Analogously, we have
15+ = pllc = Op <2JI/2\/M) +O(2 D),

Since u is bounded away from zero on S, the choice of J yields in particular that we have
lim,, 00 P(infzes ZlJ:Lr (x) > %infweg p(z)) = 1. We conclude

[ R+l Le(s) = Op (Hﬁf,;; =t oo syl s+ = pell oo sy + s — :U’H%OO(S)>

=0p ((2313/2\/(]:/n + 2708 (272 L+ 2—JI<S+1>>> :

which shows the asserted bound for ||R+ ||z~ (s)- O

The linearised stochastic error term can be decomposed into

1 R . /‘,k; ’l/}/"k
—§</~LJ+ — Wy == > (i —  Vim) <7/Jz,m, ;—M> + <(Id =T+ ) QJ—M

I<J+,m

B ik ik (L
_ </~Ln — ;7> " <un (=) (;7)> ; <<Id _— ;7> 6

Roughly for j < J < JT, Theorem 2.6 (or an analogous result for ill-posed problems) applies for the first term
in the above display, the second term should converge to zero by the localisation of the ), in the Fourier
domain and the third term is a bias that can be bounded by the smoothness of u. If U,, — oo this “u-bias”
term is of smaller order than the “b-bias” which is determined by Zj>J7k<b, V1) Vj k-

Let us make these considerations precise. We will need the following lemma, which relies on the localisation
of the wavelets in Fourier domain. More precisely, 1) can be chosen such that for some v > 1 we have

p,p € C7(R) and /ka(x)dw =0, fork =0,...,[v]

In the Fourier domain we conclude by the compact support of ¢

Jul”

|Fou)] S Wa

|Fp(u)] S u € R. (5.2)

b
(1 ful)”

Lemma 5.2. Grant Assumption 3.1 and let the compactly supported father and mother wavelet functions ¢ and
Y satisfy (5.2) for some v > 1. Then for anym € Z, j <l and k € K

(Wt 0 o™ )] S 207 DO/ gt
> 1o o S 27O 41 and

mEeEZ

Z |<'(/Jl ms w; k/.t_1>‘2 < 92l—(—j)(27—2) + 2—(l—j)7
meZ

where we have to replace j by jo on the right-hand side for V¥_1 1 = @, k-
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Proof. Let I' > 0 be large enough such that supp ¢ Usupp ¢ C [T, I']. Noting that the following scalar product
can only be nonzero if the support of v, is contained in D, a Taylor expansion of u~! yields for j > jo

[ mp ™ 05 )| < 27 )|~ (Wm0 )| + 27T max I(/fl)/(x)\/Wz,m(ff)l\w;-,k(x)\dx

z:|lz—m2- <270

< e K, 05,0+ 270 om0 @) e

We conclude

(Wt W5 ™ S ™ oo (o) Wt 4+ 27 1 (™) | oo (). (5.3)
Using Plancherel’s identity, Ft; ,, (u) = F[2//23(2le — m)](u) = 2-1/2¢imu2”" Fyy(2-1y) and (5.2), we obtain
, 9—(3+1)/2 L .
(W01 < T [ FoE Iwurue )l
< 9-GH)/2 2~ U 2t
<2 - du
(1+277u)?7(1 + 27 Hul)>
< 2—(j+l)/2—(j+l)'y/ _|u]du _ - (=)(-1/2) / __lvldv__
2729 (1 + 27 ul)> (1+ [v])*’

where we have substituted v = 27'u in the last line. Due to v > 1, the integral in the last display is finite so
that combining this bound with (5.3) yields the assertions, noting that by the compact support of ¢ only for
O(279) many m the scalar products (1, %Jm_l) are nonzero.

For j = —1 we substitute again v = 2~'4 and obtain analogously

2= (o +0)/2=17 |y |7 dyy lv|dv
(s V0] % [ g < gtemz [
(1427 Hu)27 (1 + 2770 |ul)7 (1+ [v])*7

and

(W, 1 ™ S I e (o) [ {@tms @ )|+ 2770 (™) | oo (). O
Now we can bound the bias in (5.1) in the multi-scale space M.

Lemma 5.3. Let the weighting sequence w be admissible and grant Assumption 3.1 and (5.2) for some v >
3/24 0,9 € (1,2]. Then we have

H (Id =7 yy0 )y Jk/( )>)3<JkHM 9- (s+1/2)27U(s+3/2)w;1

Proof. Recall that we have by definition

(€A =)o, 051/ (200)) s el o = 502 e w0 = Y, 05/ (240)) .
i< J

As in the proof of Theorem 2.6 we have

sup 2D (g, )| S 1)
l,m:supp ¥y, NS#D

Cs+1(D) .

Hence, for all j < J,

[ =7 ), 0 1/ (21)) | = Z (s Vr,m) (r,m, W 1/ (21))

I>J+t,m

< sup 2l|</¢a'¢’l,m>‘ Z 2_l\<¢z,m,¢§,k/(2ﬂ)>|

s
I>J%m I>J+,m

—Jt s -
52 JT(s+1/2) Z 2 l‘<wl,m7¢;‘,k/(2/’6)>"

I>Jt,m
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Now Lemma 5.2 yields

Z 27 (4 RTAVICIDNES Z o= (=) (v=3/2) 4 Z 971 < o= (=) (v=3/2) 4 o=
I>J+,m I>J+t I>J+t

Due to the monotonicity of j +— 2j5wj_1, we conclude for v > 3/2 + 4

sup max w;1|<(Id_7TJ+)M7'(/);‘,k/(2M)>| < 9—J*(s+1/2) sup w;1(2—(J+—j)(’Y—3/2) + 2—J+)
J<TREK; i<y

< 2—J+(s+1/2)2—(J+—J)w31. 0
The second term in (5.1) can be bounded by the following lemma.

Lemma 5.4. Let the weighting sequence w satisfy /527 /w; = O(1) and grant Assumption 3.1 and (5.2) for
some v = 5/2. If J,¥ = J,, + U, satisfies for some 7 € (0,1)

(log n)Q/Tn_12J:LrJ;f =0(1) and U, — oo,

o (e (£))), )] e

Proof. In order to apply Proposition 2.2, we need to calculate the L?-norm and the L*-norm of
(Id =7 ;+) (¢}, /1)- For j € {jo, ..., Jn} Parseval’s identity and Lemma 5.2 yield

oo (%)

then we have

2

= > 1Wrm /)

L2

I>J},m
< Z 92l=(=5)(2v=2) | Z 9—2(l=5)+(=5)+
1>J;% >0
< 2i(21=2) Z 9=U2y=4) 4 9= (J7=J)
I>J;F

< 9= (T =N@y=0+2j | 9=(J7 =) < 9=(J=0)92j

Another application of Lemma 5.2 yields

/
H(Id—?TJI) (ﬁ)” < Z 9l/2 méLXK'(/Jl,mv'(/);‘,k/MH

I>J;F
< Z 931/2=(=5)(v=1/2) Z 9—1/2+]
I>JF I>J;F

< 9= (T =N(=2)+33/2 4 9=(J7=1)/2+i/2 < 9=(J1=1)/2937/2
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The concentration inequality, Proposition 2.2, yields for positive constants ¢; > 0,7 =1,2,.. .,

/
_ ik
P < sup m]?x\/ﬁwj ! <,un — pt, (Id =7 ;4) (QJ—M>> > t>

1<5<Tn
/
ik
< 5 (G omtonn () > w)
1<G<In k
<S> Y <exp(—cl(2<Jn*—f>/22—3j/2\/ﬁwjt)f)
j=1

20U =0)/242
TP T @y + max(25 2 (log )7, 20) () ) )

Since jw;123j/2(logn)1/7n_1/2 < 20/2512(logn)/™n=1/2 < 1 and J} < logn by the assumptions on w; and
J,F, we conclude for any ¢ > 0 and n sufficiently large

/
P ( sup - max \/ﬁw;l <un — p, (Id —7rJ;r) (QL;)> > t)

1<i<In
J +_ /9
N , (T —)/2.542
<Y 27 | exp(—es(log n)QT(‘]’Tﬂ)/QjTtT) + exp Y L
2 T+t
Jn In 12
<) exp (j(logZ —c3(JH)TT logn)) + Zexp (j (logQ — 052U"/21—+t>>
=1 =1

1— e‘]" (log 27C3(J:Lr)771t7 log n)

< elog2—(:3(J;r)771tT logn
~ _ alog2—cs5(J)™=1t7 logn
1 elog g
— Un /2 (42
+ elog 2—ce2Un/2(t2 AL) 1- eJﬂ/(10g2 co? (A1)
1 — elog2—ce2Un/2(t2At)

< e—c;;(J:,T)T*ltT logn + e—cs2U”/2(t2/\t) = 0.
~Y

Finally note that all bounds hold true for the scaling function ¢, . if j is replace by jo. a
Now we have all pieces together to prove the multi-scale central limit theorem.
Proof of Theorem 3.8. Since b has Holder regularity s > 0 on S C D, the bias can be bounded by

16 =71, @®)llm = sup max w; (W5, b)| S sup w272 = o(n71/2),
J n J J n

Using that the Mo-norm is weaker than the L°°(S)-norm, Lemma 5.1 and decomposition (5.1) together with
Lemmas 5.3 and 5.4 yield

!/
(<an7Un - ba ¢j,k>)j<Jn,k = - (<Mn — M, 2j—,k>) + RJ”,U” with ||7rJn (RJT“UTL)HM = OP(n_l/z).
J<JIn,k

Therefore, it remains to show that

Bto (L(7a, (vl = 1,95 1/ (21))) k) ) L(Gy)) — 0.
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This follows exactly as in Theorem 2.6, where we use that the factor 27, by which the norms

W5/ @llce S 27, 195/ (20)lloo < 2%7° (5-4)
are larger than [|¢; x| L2 and [|9); x| o, respectively, is counterbalanced through the additional growth of the
admissible weighting sequence w. O

APPENDIX A. REMAINING PROOFS

A.1. Proof of Theorem 3.5
Step 1. For 6 € (0,1/2) and 0 < ¢ < C' < oo define

Ve :={ue CT**/2(D): 0 < e < pand ||ul|gr/ars2 < C},

V := Mo(w) and W := Mo (0) with w; < 2% and @ > 201497, We first establish the Hadamard differentiability
of

/

E:VeCV W L
2
with derivative given by (3.8).
To this end let h € My(w) and hy — h as t — 0. For all h; such that p + th, is contained in V¢ for small
t > 0 we have

E(p + thy) — H H (W +thy) —p'(p+the)  ph' = u’hH
t 2(p + thy)pt 202
bl —p'he ph = 'k || = B) (= hy) + thy(W'h — pl)
a HQ(M+tht)M 22 HM({I)) a H 202 (p + the) M)

using w; > 27019 for § € (0,1/2), this is bounded by

W (h = hy)

" thy(p'h — ph')
B=3/2-8 2u(p + thy)

(1, — )
B=3/2-3 202 (1 + the)

2(p + thy)

‘M(ﬁ))

Applying a pointwise multiplier theorem ([43], Thm. 2.8.2) and the continuous embedding C* — Bf_ _ ., we
obtain up to constants the upper bound

/

1 1%

S =1 .- _+H7 h—he| 5-
HQ(M"‘tht) C7/4+58/2 H K ”B"ﬂ’? ’ 20(p + thy) C7/4+58/2 H tHB <
he(p'h — ph!
+tH t(g [ )‘
202 (11 + the) || pyea

S e = bl gre=s + b = hall poijo—s + 8 S e = Al gy + 15

where we have used w; < 279 in the last step. The last expression tends to 0 as ¢ — 0 and this shows the
Hadamard differentiability of £: Ve — W.

Step 2. To apply the delta method it is now important that fis, maps into Ve. Theorem 2.6 gives conditions such
that |7, — ptll mew) = O(n~Y/2). Provided that 2(9/4+9/2) 7y ; n=1/2 = (1) we deduce from the fact that fi,
is developed until level J,, only and from the ratio of the weights at level J,, that ||y, — p|lc7/a1s/2 = 0o(1). We
conclude that with probability tending to one i € V. By modifying i on events with probability tending to zero
we can achieve that always [i € V¢. On the above assumptions we obtain the weak convergence \/n(fi s, —p) — G,
in Mo(w) by Theorem 2.6 and application of the delta method yields the assertion.
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A.2. Proof of Lemma 4.3
We will prove that:

(i) for any 7 € (0,1) there are constants 0 < ¢,C' < oo depending only on 7, K, such that for any J € J,
satisfying J > J¥ and for all n € N large enough

P(J,=J) <Cn~ +e ),

(ii) there is an integer M > 0 depending only on dj, ds, K and constants 0 < ¢/, C’ < oo depending on 7, K,
such that for any J € J, satisfying J < J¥ — M and for all n € N large enough

P(J,=J)<C' (n_cl‘]T + e_c/‘]).

Given (i) and (ii), we obtain, for a constant ¢’ > 0,

J:7M71 Jmax
P(Ing[Ji-MJ)< > Pla=0)+ > P(,=1J)
J=Jmin J=J5+1

= O(( max Jmin) (n_C”(Jmin)T + e_c//‘]min))
= O(logn(n*C"J;in + efc”Jmiu))’
Since n=¢"/min 4 =< Jmin decays polynomially in n, the assertion of the lemma follows.
To show (i) and (i), recall J+ = J + U, = J + log, log n. For notational convenience we define
V(n.j) = (2¥5/n)"?,

which is the order of magnitude of the stochastic error for projection level j. Recall that for any f € M NV;
we can bound

| £l oo (fase)) < ZQJ/Q max \(f,qu | < v Zgaﬂwj <2 2w,

Jsd Jsd

Since any J € J, satisfies 277/ (++1) = o(1) and (logn)z/Tn_l?ﬁJ“‘ = O(1), we conclude from decomposi-
tion (5.1) as well as from Lemmas 5.1 and 5.4 (applied to w; = j1/227) that

b b=_ Z <Mn M7¢Jk>¢3k_|_ Z <Id — T+ ), Vi >%k+ Z b, k) 0k + Ry

JSJkEL I<JkEZ j>J,kEZ

=:B#(J) =:B"(J)
for some remainder R; € V; with
IR L (fa)) = O (n—1J+22J+) n 0(2—J+(23+1)) top (n—1/2J1/22—3J/2).
Moreover, Lemma 5.3 and Assumption 4.1 yield
1B (J) + B® ()| o= (fay < (d2 +0(1))277°. (A.5)
Using n=1/2227" J+ = o(1) for all J € J,,, we conclude

By~ blomqoy < || 3 <Mn " >«m (a4 o1)2 " +op(V(nJ)).  (A6)

ng,kEKj oc([a b])
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With this preparation at hand we can proceed similarly as in ([18], Lem. 2).
Part (i). For any fixed J > J; we have

P(Jo=J)< > P(lbsi = brllz~(asy > K V(n,L)).
LeJn,L>J

As in the derivation of (A.6) we obtain for n sufficiently large

. N W
1b7—1 = 0Ll oo ([a,8]) < Z <Mn = [ 2j—:> Vi k

J<gslok £([a,b])

+ (do +1) (27705 poley 4 i(V(n, J — 1)+ V(n, L)).

By definition of J;; we have for any L > J > J; that

.. K K
(do + 1) (27715 4 2755) < 2(dp + 1)277n% < ?V(n, ) < EV(n,L).
Therefore,

/

Pl=n< ¥ Pl X (o-u'gE ) > K-

1
5 V(n,L)
Legumrzd  \||J<i<Lk a Lo ()

Analogously to (2.10) and using (5.4), Proposition 2.2 yields for any 7 € (0,1) and constants ¢y,...,cq > 0:

Y] K-1
p > <Mn — 1t 23—;> Yk > —5—Vn1L)

J<j<L,keK; L ([a,b])

B ﬁ >K—1 [23L],
/‘Ln lu7 2/1/ 2 TL )

using that > ", 2-k/2 < 7/2, we obtain the upper bound

/
Jsk K-1 1/2
n e )| > =L
<“ : 2u>’ 7 >

<P E 29/2 max
- ke K;
J<j<L

P max n'/227L
J<j<L,k

, ! K—-1
S Z P (”1/22_j <,un — K, #k>‘ > Tj1/2>
J<j<L.k H
Sea Yo (e o) <o 4o, (A7)
J<G<L

where we require that K is chosen sufficiently large, depending on ||¢-;-7k,//JHLoo(S) and X . It remains to sum
this upper bound over all L € 7, with L > J which yields the claim since 7, contains no more than logn
elements.

Part (ii). Let J < J; — M for some M € N to be specified below. We have

P(j\n = J) < P(HZJ —EJ:L

Le(ap) < KV(n, J3)).
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Using Assumption 4.1 and the triangle inequality, we obtain similarly to (A.6), for sufficiently large n,

L= (lat]) = Byis (da +1)27 7

s~ bs; 2

S DRI e — SV, T + V(7))

J<G<I) REK; Lo°([a,b])

Owing to J < J; — M, s > 1 and the definition of J;;, we can bound

dy g —Jr dy M—1_ LY\ -
—2775 — (dy+1)2770° = (dy + 1) | ————2M 1 — 2 ) 2= (u=Ds
2 (d2+1) (2+)<2(d2+1) 2
K{( d . 1 .
> (S _oM-1_ T -1
4 (2(d2+1) 2> VinJu—1)
K di oy 1 .
2 A 72 -5 ) b
16 (2(d2 1) 3 )V Ja)

where we have used in the last inequality that (J} —1)/J > 1/2 for n sufficiently large. We conclude

N N 17 * wl‘ k
167 = bzl oo ((ap)) = KV (n, Jy,) — Z <,un — L, QL> Uik
J<G<Ir kEK; H Lo (jat])
with K := %QM*I — 352 — 1. Since K > K for M large enough, we obtain similarly as in (A.7) for any
7€ (0,1) and some ¢/,C’ > 0
P(J,=J)<P > un—u% bjk > (K = K)V(n, Jy)
’ 2# Js rYn

TSIk ()

g Cl(nfc'JT _’_efc'J).
A.3. Proof of Corollary 4.5
Owing to (cn/logn)t/(>s+3) < 270 < (Cn/logn)'/(25+3) for constants 0 < ¢ < C, we find

logn — loglogn logc
2(log 2).J; 2(log 2).J;

3 <s< logn — loglogn n log C 3
2 2(log 2)J: 2(log2)J: 2

Since P(jn < J}) — 1 by Lemma 4.3 and due to v,,! = op(1), we obtain with probability converging to one

that
1 —logl
s > max | 1, 08T — 08 081 —op (UA—n> _3 > Sp.
2(10g2)(Jn +'Un) In 2

Moreover, since P(J: — M < Tn < J2

n

) — 1 and v} = op(1), we have with probability converging to one

R logn — loglogn 1 log C' 3vp, U,
e L) <
2(log2)J; 14w,/ J} 2(log2)J;: ~ 2(Jx — M) ™~ Jx
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