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MODERATE DEVIATIONS FOR SHORTEST-PATH LENGTHS ON RANDOM
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Abstract. We consider first-passage percolation on segment processes and provide concentration
results concerning moderate deviations of shortest-path lengths from a linear function in the distance
of their endpoints. The proofs are based on a martingale technique developed by [H. Kesten, Ann. Appl.
Probab. 3 (1993) 296–338.] for an analogous problem on the lattice. Our results are applicable to graph
models from stochastic geometry. For example, they imply that the time constant in Poisson−Voronoi
and Poisson−Delaunay tessellations is strictly greater than 1. Furthermore, applying the framework of
Howard and Newman, our results can be used to study the geometry of geodesics in planar shortest-path
trees.
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1. Introduction

In recent years, several results from classical first-passage percolation on lattices have been generalized to
models involving random segment processes embedded in the d-dimensional Euclidean space R

d for some d ≥ 2.
For instance, consider the following scenario. Starting from a stationary point process X in Rd, construct
a random segment process G with endpoints of segments given by X and assign i.i.d. passage times to the
segments. This framework is considered e.g. in [25,27]. In contrast to its lattice analogon, first-passage percolation
on random segment processes allows to investigate a further natural model, where the segment-passage times
are given by the Euclidean lengths of the corresponding segments, see e.g. [1, 15, 16].

Apart from their inherent mathematical appeal, Euclidean first-passage models play an important role in
fixed-access telecommunication networks. For instance, for the so-called stochastic subscriber line model in R2,
we showed in [14] how a Euclidean analogon of Kesten’s shape theorem may be used to derive an asymptotic
formula for the distribution of the longest shortest-path length of the segment system in the typical serving
zone of the network. For further background information on this model, the reader may consult the introductory
article [11].

In the present paper, building on the foundational work of [16,18], we consider concentration results concern-
ing moderate deviations of a) shortest-path lengths from a linear function in the Euclidean distance of their
endpoints (Thm. 2.1) and b) geodesics from the line segment connecting their endpoints (Thm. 2.2) for a class
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of random segment processes including Voronoi and Delaunay tessellations, as well as the relative neighbor-
hood graph generated from suitable stationary Poisson-type point processes. In order to apply the martingale
approach of [18] to first-passage percolation models on graphs with random topology and independent edge
weights, a geometric regularization technique has been developed in [25]. In the present paper, we extend this
technique to the scenario of weights given by the actual Euclidean distance. Using different methods, these
concentration results are also verified for the isotropic Poisson line tessellation in R2.

In order to illustrate the strength of our main results, we present two corollaries. First, in Theorem 6.1, we
explain how the concentration property of shortest-path lengths can be used to show that the so-called time
constants in Poisson−Voronoi and Poisson−Delaunay tessellations are strictly greater than 1. In other words, the
ratio of the shortest-path length and the Euclidean distance of the endpoints tends to a value strictly greater
than 1 as the Euclidean distance of the endpoints tends to infinity. So far, there has mainly been empirical
evidence for this property, see e.g. [28] for the planar case. Second, by the general framework developed in [16],
our main result has important implications for the geometry of planar shortest-path trees, such as the existence
of competition interfaces. In [13], we illustrate how our results can be applied to fixed-access telecommunication
networks. To be more precise, the concentration results of the present paper are used to describe the asymptotic
bivariate distribution of the lengths of the two main branches inside the typical serving zone of the network, a
quantity that has already been analyzed empirically in [22].

The rest of this paper is organized as follows. First, in Section 2, we state our main results for shortest-path
lengths in Delaunay, Voronoi and relative neighborhood graphs on suitable stationary point processes. Specific
examples of point processes that are covered by our framework are given in 3. Then, in Section 4, we explain
how a martingale approach is used to obtain the aforementioned concentration results for a general class of
connected random segment processes. In Section 5, we verify that this class includes Voronoi and Delaunay
tessellations, as well as the relative neighborhood graph on suitable stationary Poisson-type point processes; we
also show directly that the isotropic Poisson line tessellation in R2 exhibits the same concentration property. In
Section 6, we show how concentration properties for geodesics can be deduced from concentration properties of
shortest-path lengths, and we derive lower bounds on the time constant in Voronoi and Delaunay tessellations.
Finally, in Section 7, we restrict to planar case and investigate competition interfaces defined by Euclidean
first-passage models.

2. Main results

2.1. Random segment processes based on point processes

In the present paper, we consider random segment processes that are constructed from point processes by a
deterministic rule. Note that this includes many classical examples from stochastic geometry. In particular, the
edge set of the Delaunay tessellation and the relative neighborhood graph form segment processes in Rd that
are constructed by applying a deterministic connection rule to a given set of vertices. Similarly, a deterministic
rule is used to construct the edge set of the Voronoi tessellation from a given point process of cell centers.
In our main result, we show that when constructing these random segment processes from a class of suitable
stationary Poisson-type point processes, then the shortest-path lengths exhibit concentration with respect to
moderate deviations from a linear function in the Euclidean distance of their endpoints.

Assuming that d ≥ 2, let N denote the family of all locally finite sets in Rd endowed with the σ-algebra N
such that the function which maps ϕ to #(ϕ∩B), the cardinality of the set ϕ∩B, is measurable for each Borel
set B ⊂ Rd. Let Qr(x) = x + [−r/2, r/2]d be the cube of side length r > 0 centered at x ∈ Rd. Moreover, let
M be a Polish space. We consider the family NM of M-marked locally finite sets in Rd and write NM for the
σ-algebra of subsets of NM that is generated by the evaluation maps ϕ→ #(ϕ∩ (B×M)), where B and M are
Borel subsets of Rd and M, respectively. The products Rd ×M and Qr(x) ×M of Rd and Qr(x) with the mark
space M are denoted by R

d,M and QM
r (x), respectively. Additionally, we assume that every rotation ζ ∈ SOd of

Rd corresponds to a measurable map ζ : M → M of the mark space onto itself.
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In this paper, we always assume that X forms an independently M-marked homogeneous Poisson point
process in Rd with intensity λ > 0, which is defined on some probability space (Ω,F ,P). We also assume that X
is isotropically marked, i.e., the distribution of the marks is invariant with respect to rotations. Furthermore, for
x ∈ Rd, ζ ∈ SOd and ϕ ∈ NM we put ϕ+ x = {(y + x,m) : (y,m) ∈ ϕ} and ζ(ϕ) = {(ζ(y), ζ(m)) : (y,m) ∈ ϕ}.

In the following, we consider point processes of the form fgeom(X), where fgeom : NM → N is motion-covariant,
i.e., for every x ∈ Rd, ζ ∈ SOd and ϕ ∈ NM we have fgeom(ϕ+ x) = fgeom(ϕ) +x and fgeom(ζ(ϕ)) = ζ(fgeom(ϕ)).
We also say that fgeom(ϕ) defines the geometric realization of ϕ. For instance, Poisson-cluster processes [7] can
be represented as geometric realizations of independently marked homogeneous Poisson point processes. Indeed,
we begin with a (primary) point process Xpr, which in our case forms a homogeneous Poisson point process
in Rd, and as marks we attach i.i.d. (secondary) point processes to the points of Xpr. In this setting, fgeom

constructs the Poisson-cluster process from X by forming the union of all secondary point processes shifted by
their corresponding primary points. Besides Poisson-cluster processes, many Matérn-type hard-core models and
modulated Poisson point processes [7] can also be generated from independently marked homogeneous Poisson
point processes by applying a deterministic, motion-covariant construction rule. In Section 3, we provide a more
detailed discussion of these examples.

Additionally, we require that fgeom exhibits further useful properties, which intuitively speaking, can be
described as follows. First, fgeom should be capable of creating lattice configurations. Second, it should satisfy a
sub-additivity property in the sense that the geometric realization of the union of two locally finite sets should be
contained in the union of their geometric realizations. Third, the geometric realization inside a bounded sampling
window with non-empty interior should not depend on the configuration ofX far away from the window. We also
need appropriate growth conditions allowing us to control the total number of points of fgeom(X) in rectangular
sampling windows. The total number of points in a bounded sampling window with non-empty interior should
be positive with positive probability and should also admit a finite exponential moment. Finally, the second
factorial moment density should be bounded.

To be more precise, we make the following assumptions, where o ∈ R
d denotes the origin and for B1, B2 ⊂ R

d

we put B1 � B2 = {x ∈ Rd : x + b2 ∈ B1 for all b2 ∈ B2}. We suppose that there exists h0 > 0, r0, τ > 0 and
ϕ(0) ∈ NM such that

(F1) fgeom(∅) = ∅ and fgeom(ϕ(0)) = r0Zd (lattice condition);
(F2) fgeom(ϕ ∪ ψ) ⊂ fgeom(ϕ) ∪ fgeom(ψ) for all ϕ, ψ ∈ NM (sub-additivity condition);
(F3) fgeom(ϕ ∪ ψ) ∩ (

B �Qτ (o)
)

= fgeom(ϕ) ∩ (
B �Qτ (o)

)
for all ϕ, ψ ∈ NM and bounded Borel sets B ⊂ Rd

such that ϕ ⊂ B × M and ψ ⊂ Rd,M \ (B × M) (stability condition);
(F4) P(fgeom(X) = ∅) = 0 (non-emptiness condition);
(F5) E exp

(
h0#fgeom(X ∩QM

τ (o))
)
<∞ (exponential moment condition);

(F6) the second factorial moment measure of fgeom(X) has a bounded density with respect to the 2d-dimensional
Lebesgue measure (second moment condition).

In order to have a specific example satisfying these abstract conditions, the reader may think of the special
case where X is an unmarked homogeneous Poisson point process, and f : N → N is the identity. Then,
conditions (F1)–(F4), (F6) are obviously satisfied and condition (F5) is a consequence of the existence of
exponential moments for Poisson random variables. Further examples of stationary point processes covered by
our framework are presented in Section 3.

We now consider marked locally finite sets in Rd, where the marks are line segments. Conceptually, this
marking is different from the one of the marked Poisson point process X . Let L denote the family of all line
segments in Rd. This family forms a Polish space in the Fell topology [26]. We write G for the family of all
locally finite sets on Rd×L such that #(ϕ∩(B×L)) is finite for every bounded Borel set B ⊂ Rd. Furthermore,
let G denote the σ-algebra on G that is generated by the evaluation maps ϕ �→ #(ϕ ∩ (B × L)), where B
and L are Borel sets in Rd and L, respectively. Random variables with values in G are called random segment
processes. It will be convenient to think of an element {(xn, un)}n≥1 of G as the subset of R

d formed by the union
∪n≥1(un + xn). In the following, we consider random segment processes in Rd of the form G = g(fgeom(X)),
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where g : N → G is a suitable measurable mapping. For instance, in the Poisson cluster setting, fgeom(X) would
first construct the Poisson cluster process fgeom(X) from the marked Poisson point process X . The random
segment process G is then obtained by applying g to the unmarked point process fgeom(X). This framework
includes many of the classical random segment processes considered in stochastic geometry.

For instance, for any locally finite ϕ ⊂ R
d, we let Rng(ϕ) and Del(ϕ) denote the relative neighborhood

graph and the Delaunay graph on the vertex set ϕ, respectively. Here, two vertices x, y ∈ ϕ are connected by a
segment in Rng(ϕ) if there does not exist a vertex z ∈ ϕ such that max{|x− z|, |z − y|} < |x− y|. The vertices
x, y ∈ ϕ are connected by a segment in Del(ϕ) if and only if there exists a ball B ⊂ Rd such that x, y ∈ B and
#(ϕ ∩B) ≤ d+ 1. For further properties of relative neighborhood and Delaunay graphs, the reader is referred
to [1, 26], respectively. We stress that in general, ϕ need not coincide with the set of segment endpoints. For
instance, for x ∈ ϕ consider the Voronoi cell Z(x, ϕ) = {y ∈ Rd : |y − x| ≤ infx′∈ϕ |y − x′|} with cell center x.
It is shown in [26] that if the convex hull of ϕ equals Rd, then the family {Z(x, ϕ)}x∈ϕ consists of bounded,
convex polytopes. We let Vor(ϕ) denote the union of edge sets of these polytopes.

For the remainder of this section, we assume that g = Rng, g = Del or g = Vor. One of the main results of
the present paper deals with concentration properties of shortest-path lengths along the edges of G. To be more
precise, for x ∈ Rd we write q(x) = q(x,G) = argminy∈G|x− y| for the point on the random segment process G
which has the smallest distance to x; if this choice is not unique we pick the lexicographically smallest point on
G with this property. For x, y ∈ Rd, let 	(x, y) denote the length of the shortest Euclidean path from q(x) to
q(y) on G and put 	r = 	(o, re1), where e1 = (1, 0, . . . , 0) and r > 1. Note that we put 	r = ∞ if q(o) and q(re1)
belong to different connected components of G, an event which occurs with probability 0. This is not entirely
obvious, but at the end of Section 4.1, we note that 	r has even stretched exponential tails.

We say that a family of events {Ar}r>1 in some probability space (Ω,F ,P) occurs with high probability (short:
whp) if

lim inf
r→∞

log(− log(1 − P(Ar)))
log r

> 0. (2.1)

Note that a family of events {Ar}r>1 occurs whp if and only if there exist constants c1, c2 > 0 such that
1 − P(Ar) ≤ c1 exp(−rc2) for all r > 1.

Theorem 2.1. Let β > 1/2 be an arbitrary fixed number, assume that g = Del, g = Rng or g = Vor, and that
conditions (F1)–(F6) are satisfied. Then, for r > 1 the events

|	r − μr| ≤ rβ (2.2)

occur whp, where μ = infn≥1 E	n/n is a finite number.

We expect that for Poisson−Delaunay and Poisson−Voronoi tessellations our first-passage model should be in
the same universality class as the lattice analogue, so that for d = 2 we conjecture that the precise fluctuation
exponent should be given by 1/3 rather than 1/2. An important consequence of Theorem 2.1 is that for both
Delaunay and Voronoi tessellations constructed on suitable stationary Poisson-type point processes, the time
constant μ is strictly greater than 1, see Theorem 6.1. So far, there has mainly been empirical evidence for this
property which, moreover, was restricted to the two-dimensional homogeneous Poisson point process, see [28].
Very recently a lower bound has been established by different methods for the specific example of the planar
Poisson−Delaunay tessellation [6].

2.2. A general class of random segment processes

In addition to the random segment processes discussed in Section 2.1, the concentration property (2.2) is also
satisfied with high probability for the Poisson line tessellation in R2, see Section 5.1. Therefore, in the present
section, we assume that G denotes an arbitrary stationary, ergodic and isotropic random segment process in R

d

for which (2.2) holds whp and for which the events stated below in (G1) and (G2) occur whp. In the following,
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x1 x2γ

x1 − x2
3/4+ε

Figure 1. Every element γ ∈ R(x1, x2) (red) is contained in the tube
{
y ∈ Rd :

dist(y, [x1, x2]) ≤ |x1 − x2|3/4+ε
}
.

ν1(·) denotes the one-dimensional Hausdorff measure in Rd. Then, as in [14], for r > 1 we consider the events

(G1) {ν1(G ∩Qr(o)) > 0} ∩ {ν1(G ∩Q1(o)) ≤ r} (growth condition),
(G2) {G ∩Qr/2(o) is contained in a connected component of G ∩Qr(o)} (connectivity condition),

and assume that both the events in (G1) and in (G2) occur whp. In Section 6.2, we elaborate on how the concen-
tration property (2.2), which deals with shortest-path lengths, implies a concentration property for deviations
of shortest paths from the line segment connecting their endpoints. See Figure 1 for an illustration, where for
a ∈ Rd and B ⊂ Rd we put dist(a,B) = infb∈B |a − b|. In order to state this result precisely, for x, y ∈ G let
R(x, y) denote the family of all paths γ in G from x to y satisfying ν1(γ) = 	(x, y). The elements of R(x, y) are
also called geodesics between x and y.

Theorem 2.2. Let ε > 0 be arbitrary. Then, there exists a (1,∞)-valued random variable V0 such that almost
surely, supγ∈R(x1,x2)

y∈γ
dist(y, [x1, x2]) ≤ |x1 − x2|3/4+ε for all x1 ∈ G ∩Q1(o) and all x2 ∈ G with |x2| ≥ V0.

Apart from generalizing known results from classical lattice first-passage percolation (see, e.g. [23]) to models
involving random segment processes, Theorem 2.2 also has important consequences for the geometry of so-called
shortest-path trees, such as the existence of competition interfaces in dimension d = 2, see Section 7 for details.

3. Examples

In this section, we present examples of Poisson-based cluster, Poisson-based hard-core and modulated Poisson
point processes satisfying conditions (F1)–(F6).

3.1. Poisson cluster processes

To begin with, we consider the Poisson cluster model. For τ > 0 let Nτ denote the subfamily of N formed
by all locally finite sets ϕ ⊂ Rd satisfying ϕ ⊂ Bτ/2(o). Note that every rotation ζ ∈ SOd induces a canonical
map ζ : Nτ → Nτ . Furthermore, we define the motion-covariant geometric realization fgeom : NNτ → N by
ϕ �→ ⋃

(x,ψ)∈ϕ(ψ + x). Then fgeom obviously satisfies (F1)–(F3). To show (F4) assume that the primary point
process forms a homogeneous Poisson point process with intensity λ > 0. Let Y denote the typical secondary
process of the cluster process X , where we assume that Y is isotropic. Clearly, for X to satisfy (F4), it is
necessary and sufficient that the second-order process Y is non-empty with positive probability. Next, we verify
condition (F5), imposing the existence of some exponential moment of #Y as an additional assumption.

Lemma 3.1. Assume that there exists h > 0 such that log E exp(h#Y ) <∞. Then X satisfies (F5).

Proof. Indeed, putting c1 = log E exp(h#Y ),

E exp(h#fgeom(X∩QM

τ (o))) = E

∏
(x,ψ)∈X∩QM

τ (o)

exp(h#ψ) = E exp(c1#(X∩QM

τ (o))) = exp
(
λτd(exp(c1)−1)

)
. �

Finally, we note that if the second factorial moment measure of Y has a bounded density with respect to the
2d-dimensional Lebesgue measure, then the same is true for fgeom(X), see ([17], Sect. 6.2.2).
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3.2. Matérn-type hard-core point processes

Next, we consider Matérn-type hard-core point processes. In this example, the mark space M is chosen as
the product Mτ = [0, 1] × Cτ , where Cτ denotes the family of compact subsets of Bτ/2(o). Any ζ ∈ SOd
defines a measurable map Mτ → Mτ by leaving the first component invariant and acting on the second in the
canonical way. For ϕ ∈ NMτ the geometric realization fgeom(ϕ) consists of all x ∈ Rd for which there exists
(x, u,m) ∈ ϕ ⊂ Rd × [0, 1]×C such that u > v for all (y, v, n) ∈ ϕ with (x+m) ∩ (

y+ n
) 
= ∅. As before, fgeom

clearly satisfies (F1)–(F4). Moreover, since fgeom(X) is a thinning of the Poisson point process with intensity λ,
conditions (F5) and (F6) are also obvious.

3.3. Modulated Poisson point processes

Finally, we discuss modulated Poisson point processes. Here, the mark space M is chosen as Mmod
τ = M

(0)
τ ∪

M
(1)
τ , where M

(i)
τ = {i} × [0, 1] × Cτ for any i ∈ {0, 1}. A mark from M

(0)
τ is interpreted as a germ in the

germ-grain model used to define the modulated Poisson point process, whereas points of the dominating point
process from which the modulated Poisson point process is obtained as thinning are endowed with a mark
from M

(1)
τ . We also fix λ1, λ2 ≥ 0 as the intensities in the two phases of the modulated Poisson point process.

In order to establish sub-additivity easily, we assume that λ2 ≥ λ1. Any ζ ∈ SOd defines a measurable map
M

mod
τ → M

mod
τ by leaving the first two components invariant and acting canonically on the last component. To

define the geometric realization we make use of the observation that a modulated Poisson point process can
be regarded as a suitable thinning of a Poisson point process. The geometric realization fgeom : NMmod

τ
→ N is

defined by ϕ �→ S1(ϕ) ∪ S2(ϕ), where

S1(ϕ) =
{
x ∈ ∪(y,0,v,n)∈ϕ(y + n) : (x, 1, u,m) ∈ ϕ for some (u,m) ∈ [0, λ1/λ2] × Cτ

}
,

S2(ϕ) =
{
x ∈ R

d \ ∪(y,0,v,n)∈ϕ(y + n) : (x, 1, u,m) ∈ ϕ for some (u,m) ∈ [0, 1]× Cτ

}
.

Then, properties (F1)–(F3) are immediate. Next, we introduce our precise assumptions on the random input
for the geometric realization. Note that any independently Mmod

τ -marked Poisson point process X can be de-
composed as an independent superposition X = X(0) ∪X(1), where X(i) = X ∩ M

(i)
τ , i ∈ {0, 1}. Furthermore,

the last two components of the typical marks of both X(0) and X(1) are assumed to be of the form Y = (U,M),
where U,M are independent, U is uniform on [0, 1] and M forms an isotropic random element of Cτ . Then, (F4)
is obvious provided that λ2 > 0. Finally, as in the case of Matérn-type hard-core point processes, fgeom(X) can
be considered as thinning of a homogeneous Poisson point process, so that (F5) and (F6) follow immediately.

4. Moderate deviations of shortest-path lengths

To prove Theorem 2.1, we follow the approach of [25], where first-passage percolation using i.i.d. weights on
the edges of the planar Poisson−Delaunay tessellation is considered. The key idea of this approach is based
on a martingale concentration technique appearing originally in [18]. In the proof of Theorem 2.1 we have
to overcome several difficulties that do not appear in the i.i.d. Delaunay setting. Since we consider Euclidean
first-passage percolation, the edge weights are no longer independent of the underlying random segment process.
This gives rise to more complex dependencies that have to be dealt with accordingly. Additionally, the Delaunay
tessellation is a random segment process with a very high degree of connectivity, whereas our techniques also
apply to sparser random segment processes such as the relative neighborhood graph.

We provide a rough outline of the proof, before going into the technical details. First, using conditions
(H3) and (H5) stated below, it can be seen that it suffices to prove the assertion for the case where r = n is
an integer. Next, in Section 4.1, we introduce a general class of random segment processes that encompasses
Delaunay tessellations, Voronoi tessellations as well as relative neighborhood graphs, and for which Theorem 2.1
is shown. In Section 4.2, we explain how to apply ([18], Thm. 3) in order to obtain a concentration result for
moderate deviations of

∣∣	n−E	n
∣∣, where 	n describes the length of the shortest path from q(o) to q(ne1), when



MODERATE DEVIATIONS FOR SHORTEST-PATH LENGTHS ON RANDOM SEGMENT PROCESSES 267

the considered random segment process is constructed from a regularized variant of fgeom(X). This regularization
is discussed in detail in Section 4.2 (see also Fig. 2 below). In Section 4.3, we prove that 	n is sufficiently close
to 	n, so that a concentration result for |	n − E	n| follows from the corresponding concentration result for
|	n−E	n|. Finally, in Section 4.4 it is shown that in the expression |	n−E	n| it is possible to replace E	n by μn.

4.1. A general class of random segment processes

In order to prove Theorem 2.1 for Voronoi tessellations, Delaunay tessellations and relative neighborhood
graphs, it is convenient to introduce a special class of random segment processes that encompasses all three
models. To be more precise, we consider random segment processes of the form G = ggeom(X), where ggeom(X) =
g(fgeom(X)) and g : N → G is a measurable and motion-covariant function. Similar to [14], we need to impose
additional constraints on the random segment process G = ggeom(X), which are described in the following.

First, the random segment process G should satisfy two suitable stability conditions with respect to X . On
the one hand, the configuration of X far away from a bounded sampling window W ⊂ Rd does not influence the
configuration of the random segment process inside the set W . Conversely, changing X inside W does not affect
the random segment process far away from the set W . Furthermore, we require a strong connectivity condition.
In an appropriately chosen environment of the sampling window W , any two points on G∩W can be connected
by a path on G. Finally, we also need two growth conditions in order to bound the total length of the random
segment process G inside cubic sampling windows. On the one hand, the segment process should be sufficiently
dense so that the distance from any point in the window to the graph G is not too large. On the other hand,
the edge set of G in big windows should still not be too long with high probability.

In order to deal with the relative neighborhood graph, it is more convenient to impose the conditions that
we have just described for an auxiliary family of measurable and motion-covariant construction rules {gr}r>1,
gr : N → G, which are well-behaved by definition, but still can approximate the original construction rule g
arbitrarily closely. This approximation step is not needed for the Delaunay and Voronoi graphs, so that readers
mainly interested in these two examples may simply replace gr by g in the following.

For s > 0 and x ∈ Rd we write Bs(x) = {y ∈ Rd : |y − x| ≤ s} for the ball in Rd with center x ∈ Rd and
radius s > 0. In the general setting, we assume the existence of a family of measurable and translation-covariant
construction rules {gr}r>1, gr : N → G with ggeom(ϕ) ⊂ gr, geom(ϕ) def= gr

(
fgeom(ϕ)

)
for all r > 1 and ϕ ∈ NM

and such that for r > 1 the events ggeom(X)∩Qr(o) = gr, geom(X)∩Qr(o) occur whp. Additionally, assume the
existence of α1, α2 ≥ d and a family of events {Ar}r>1 in NM with the following properties

(A) (ϕ(0) − rz) ∩QM
r (o) ∈ Ar for all sufficiently large r > 1 and all z ∈ Zd;

(B) if ϕ ∈ NM is such that (ϕ− rz) ∩QM
r (o) ∈ Ar for all z ∈ Zd, then the following properties hold:

(H1)′ gr, geom(ϕ∩QM
3r(o))∩Qr(o) = gr, geom

(
(ϕ∩QM

3r(o))∪ψ
)∩Qr(o) for all ψ ∈ NM with ψ ⊂ Rd,M\QM

3r(o)
(stability condition I);

(H1′) ggeom(ϕ ∩QM
3r(o)) ∩Qr(o) = ggeom

(
(ϕ ∩QM

3r(o)) ∪ ψ
) ∩Qr(o) for all ψ ∈ NM with ψ ⊂ Rd,M \QM

3r(o)
(stability condition I′);

(H2)′ gr, geom(ϕ) \ Q3r(o) = gr, geom

(
(ϕ \ QM

r (o)) ∪ ψ) \ Q3r(o) for all ψ ∈ NM with ψ ⊂ QM
r (o) (stability

condition II);
(H3)′ gr, geom(ϕ) ∩ Q5r(o) is contained in a connected component of gr, geom(ϕ) ∩ Q7r(o) (connectivity

condition);
(H4′) q(x, ggeom(ϕ)) ∈ Br/2(x) for all x ∈ Qr(o) (growth condition I′),
(H5)′ ν1

(
gr, geom(ϕ) ∩Q7r(o)

) ≤ rα1 (growth condition II);
(H6)′ q(o, gr, geom(ϕ)) and q(re1, gr, geom(ϕ)) can be connected by a path in gr, geom(ϕ) of length at most

α2r (path-length condition).

We assume that for r > 1 the events X ∩QM
r (o) ∈ Ar occur whp.

Note that since ggeom(ϕ) ⊂ gr, geom(ϕ) the introduction of a growth condition (H4) with respect to gr, geom

corresponding to (H4′) would be redundant. Finally, we also assume a linear growth bound for 	n in the sense
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that for n > 1 the events 	n ≥ n/2 occur whp and there exists a positive integer p1 ∈ Z ∩ [1,∞) such that

lim inf
yn→∞

min{y,n}≥p1

log(− log P(	n > yn))
log(yn)

> 0. (4.1)

In this section, we show how to derive moderate deviations of shortest-path lengths in random segment
processes satisfying these conditions.

Proposition 4.1. Let β > 1/2 be an arbitrary fixed number, assume that conditions (A) and (B) above are
satisfied and that (4.1) holds. Then, for r > 1 the events |	r − μr| ≤ rβ occur whp.

Next, in Section 5, we prove Theorem 2.1 by verifying that conditions (A) and (B) above are satisfied for
Voronoi tessellations, Delaunay tessellations and relative neighborhood graphs. For these models the validity of
condition (4.1) has been shown in ([14], Thm. 1). Indeed, it follows from Lemmas 5.4 and 5.5 below that the
events {fgeom(X) ∩ Qa(o) 
= ∅} and {#(fgeom(X) ∩ Q1(o)) ≤ a} occur whp. Finally, condition (D2) of ([14],
Sect. 3) coincides with condition (F6) above.

4.2. A martingale concentration inequality

A crucial step in the proof of Proposition 4.1 consists in relating the shortest-path lengths 	n for integers
n ≥ 1 to appropriate martingales and to apply the martingale concentration result derived in [18]. To embed our
shortest-path problem into a martingale framework, we first define a suitable filtration. As in the lattice model
discussed in [18], it turns out that when defining such a filtration surprisingly few properties of the Euclidean
space Rd have to be taken into account. Indeed, we may fix an arbitrary enumeration {z1, z2, . . .} of Zd and
consider the canonical probability space

(
NM,NM,P

)
associated with the independently M-marked Poisson

point process X . Then, we note that for every n ≥ 1 the σ-algebras F (n)
m = σ

(
X ∩ ⋃m

i=1Q
M

nδ(nδzi)
)
, m ≥ 1

form a filtration of NM. In particular, it is possible to consider 	n as the limit of the martingales E
(
	n | F (n)

m

)
as

m→ ∞ and the following concentration result (a special case of ([16], Lem. 5.6), which in turn is based on [18],
Thm. 3) explains why this interpretation is worthwhile.

Lemma 4.2. Let (Ω,F ,P) be a probability space, let (Fk)k≥1 be a filtration of F and let H be an F-measurable
random variable in L1. Furthermore, put Hk = E

(
H

∣∣ Fk
)
, Δk = Hk − Hk−1 and assume the existence of a

constant b > 1 such that P
(∣∣Δk

∣∣ ≤ b
)

= 1. Let (Uk)k≥1 be a sequence of F-measurable positive random variables
such that

∑∞
k=1 Uk ≤ b and E(Δ2

k | Fk−1) ≤ E(Uk | Fk−1) a.s. for all k ≥ 2. Then limk→∞Hk = H exists, is
finite a.s. and there exist constants C1, C2 > 0 (independent of b), such that

P
(|H | ≥ x

√
b
) ≤ C1 exp(−C2x) for all x ≤ b.

Remark 4.3. Apart from Lemma 4.2 also the concentration inequalities obtained in [5] seem suitable for
obtaining concentration results on moderate-deviations in Euclidean first-passage percolation. Indeed, various
lattice-based cases have been considered in [4, 10]. However, the conditions of Lemma 4.2 are easier to verify,
since the martingale approach allows a greater degree of averaging in comparison to [5]. Furthermore, it seems
unlikely that by using a more advanced concentration inequality one can avoid the necessity of having to
introduce regularizations. Finally, we note that simpler martingale concentration inequalities require stronger
assumptions, such as the a.s. boundedness of

∑
k≥1 E(Δ2

k | Fk−1) (see [21], Thm. 3.15) and are therefore difficult
to apply in the present setting.

Unfortunately though, the a.s. boundedness of the martingale increments Δk is not satisfied when trying to
apply Lemma 4.2 directly to the martingale E

(
	n | F (n)

m

)−E	n,m ≥ 1. As will be explained below, the martingale
increments can be interpreted in terms of differences of certain shortest-path lengths, but their absolute value
is not almost surely bounded by a fixed threshold b. Therefore, we first consider suitable regularizations of the
point process X which remove this undesirable property.
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(a) Configuration ω (b) Configuration σ (c) Configuration [ω, σ](2)

Figure 2. Construction of [ω, σ](2).

Before we provide a precise and formal description of this regularization, let us start by explaining the main
idea by considering the case of the Poisson−Delaunay graph. First, every nδ-cube of the form QM

nδ(nδz), z ∈ Zd

is considered, and it is checked whether the configuration of the Poisson point process inside this cube is in
a certain sense pathological. For instance, in the Poisson−Delaunay model, this could happen if no points of
the Poisson point process are contained inside the cube. Then, for every cube that exhibits a pathological
configuration of points, we replace the Poisson point process inside that cube by a regular point pattern.

To make this more precise, recall from condition (F1) that we assumed the existence of a positive number
r0 > 0 and a locally finite set ϕ(0) ∈ NM such that fgeom(ϕ(0)) = r0Z

d. Next, we define the r-coupling of ϕ by
ϕ(0) to be the locally finite set ϕ = ϕ(r) =

⋃
z∈Zd ϕz, where

ϕz =

{
ϕ ∩QM

r (rz) if (ϕ− rz) ∩QM
r (o) ∈ Ar,

ϕ(0) ∩QM
r (rz) otherwise.

(4.2)

Since we assumed that (ϕ(0)−rz)∩QM
r (o) ∈ Ar for all z ∈ Zd, we see that ϕz−rz = (ϕ(r)−rz)∩QM

r (o) ∈ Ar for all
z ∈ Zd. By property (B) of Section 4.1, this implies that properties (H1)–(H6) hold. If X is an independently and
isotropically M-marked homogeneous Poisson point process in Rd, then the expression X(r) is to be understood
accordingly. In the remainder of the present subsection, we fix δ ∈ (0, 1/(8α1)). For any ϕ ∈ NM let 	n(ϕ) denote
the length of the shortest path from q(o) to q(re1) in the segment process g(ϕ) = gnδ, geom

(
ϕ(nδ)

)
. Furthermore,

we put 	n = 	n(X) and

H(n)
m = E

(
	n | F (n)

m

) − E	n. (4.3)

Observe that due to the Poisson assumption, for any n ≥ 1 the probability space (NM,NM,P) can be con-
sidered as a product space associated with the sequence of random variables {X ∩Qnδ (nδzk)}k≥1. In fact, this
observation is the reason for the apparent difficulty to generalize the results to non-Poissonian settings. For
j ≥ 1, let σj = σ∩QM

nδ(nδzj) denote the restriction of σ ∈ NM to the cube QM

nδ(nδzj). Formally, we should write
σj,n instead of σj , but in the present subsection the value of n ≥ 1 will always be clear from the context, so
that we prefer to use simple notation. For the martingale construction, it will be more intuitive to put ω = X .
Hence, the σ-algebra F (n)

m is generated by {ωj}1≤j≤m. We write Pj for the distribution of ωj and [ω, σ](j) for
the marked point process given by

[ω, σ](j) ∩QM

nδ (nδzi) =

{
ωi if i ≤ j,

σi otherwise,

where σ ∈ NM. Figure 2 illustrates the construction of [ω, σ](2).
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ρn

Q
4nδ (nδzk)

Figure 3. Illustration of the event {I(n)
k = 1}.

Observe that we may compute the conditional expectations E
(
	n | F (n)

k

)
appearing in (4.3) by integrating

over everything except the first k coordinates of the entire product measure P =
∏∞
j=1 Pj , so that

Δ
(n)
k =

∫
	n([ω, σ](k)) − 	n([ω, σ](k−1))

∞∏
j=k

Pj(dσj). (4.4)

It is important to note that no regularization is performed in the construction of the point processes [ω, σ](k)

or [ω, σ](k). The regularization appears only through application of the functional 	n.
Recall from Section 2.2 that for x, y ∈ G we write R(x, y) for the family of geodesics connecting x and y.

Throughout Section 4, for any x, y ∈ Rd let ρ(x, y) denote the lexicographically smallest element in R(q(x), q(y)),
where we say that a path γ1 is lexicographically smaller than γ2 if the list of vertices defining γ1 is lexicograph-
ically smaller than the list of vertices defining γ2. For n ≥ 1 and ϕ ∈ NM we also write ρn(ϕ) for the geodesic
ρ(o, ne1) in the segment process g(ϕ) and put ρn = ρn(X). Using these definitions, we now proceed as in ([25],
Lem. 2.3) to provide an upper bound for the expression appearing inside the integral (4.4). For the conve-
nience of the reader, we present a detailed proof. For k, n ≥ 1, let I(n)

k denote the indicator of the event
ρn ∩ Q4nδ (nδzk) 
= ∅. If the value of n ≥ 1 is understood, then we also write Ik instead of I(n)

k . The event
{I(n)
k = 1} is illustrated in Figure 3.

Lemma 4.4. Let k, n ≥ 2 and ω, σ ∈ NM. Then,∣∣	n([ω, σ](k−1)) − 	n([ω, σ](k))
∣∣ ≤ nδα1 max

{
Ik([ω, σ](k−1)), Ik([ω, σ](k))

}
.

Proof. We begin by considering the case Ik([ω, σ](k)) = 0. Observe that conditions (H2) and (H4′) imply that

q
(
x, g([ω, σ](k−1))

)
= q

(
x, g([ω, σ](k))

)
for all x ∈ {o, ne1}. Moreover, from (H2) we conclude that ρn([ω, σ](k)) also forms a path in the segment process
g([ω, σ](k−1)), so that

	n([ω, σ](k−1)) ≤ 	n([ω, σ](k)). (4.5)
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Here, and in the previous statement, we used that Ik([ω, σ](k)) = 0. Next, consider the case Ik([ω, σ](k)) = 1 and
assume additionally that {o, ne1} ⊂ Rd \Q4nδ(nδzk); the other cases are similar. Then, for every x ∈ {o, ne1},

q
(
x, g([ω, σ](k−1))

)
= q

(
x, g([ω, σ](k))

)
.

In particular, there is no harm in using the abbreviations q(o) and q(ne1). Denote by xF the first point of
ρn([ω, σ](k)) contained in Q5nδ(nδzk) and similarly by xL the last point of ρn([ω, σ](k)) contained in Q5nδ (nδzk).
Note that we exclude neither xF = q

(
o
)

nor xL = q(ne1) and that we used Ik([ω, σ](k)) = 1 to deduce the
existence of xF , xL. Observe that (H2) and (H3) imply that xF and xL can be connected by a path γ in
g([ω, σ](k−1)) ∩ Q7nδ(nδzk) and we consider the concatenation of the geodesic from q(o) to xF in the segment
process g([ω, σ](k)), the path γ and the geodesic from xL to q(ne1) in the segment process g([ω, σ](k)). Due
to the definition of xF and xL, these geodesics are also paths in the segment process g([ω, σ](k−1)). Hence, by
conditions (H2) and (H5),

	n([ω, σ](k−1)) ≤ ν1(γ) + 	n([ω, σ](k)) ≤ nδα1 + 	n([ω, σ](k)). (4.6)

Finally, combining (4.5) and (4.6) yields 	n([ω, σ](k−1)) − 	n([ω, σ](k)) ≤ nδα1Ik([ω, σ](k)). Since 	n([ω, σ](k)) −
	n([ω, σ](k−1)) ≤ nδα1Ik([ω, σ](k−1)) can be shown similarly, this completes the proof of Lemma 4.4. �

Next, following ([25], Lem. 3.4), we put b(n) = n1+8δα1 , n ≥ 2. It is also convenient to define U
(n)
k =

2n2δα1Ik(ω), k ≥ 2.

Lemma 4.5. Let k, n ≥ 2. Then, |Δ(n)
k | ≤ b(n) and E

(
(Δ(n)

k )2 | F (n)
k−1

) ≤ E
(
U

(n)
k | F (n)

k−1

)
.

Proof. The inequality |Δ(n)
k | ≤ b(n) is an immediate consequence of Lemma 4.4. To deduce the second claim we

may apply Lemma 4.4 and the Cauchy–Schwarz inequality to compute that

E
(
(Δ(n)

k )2
∣∣ F (n)

k−1

)
(ω) =

∫ ⎛⎝∫
	n([ω, σ](k)) − 	n([ω, σ](k−1))

∞∏
j=k

Pj(dσj)

⎞⎠2

Pk(dωk)

≤ n2δα1

∫ ⎛⎝∫
max

{
Ik([ω, σ](k)), Ik([ω, σ](k−1))

} ∞∏
j=k

Pj(dσj)

⎞⎠2

Pk(dωk)

≤ n2δα1

∫ ∫
max

{
Ik([ω, σ](k)), Ik([ω, σ](k−1))

} ∞∏
j=k

Pj(dσj)Pk(dωk)

≤ n2δα1

∫ ∫
Ik([ω, σ](k)) + Ik([ω, σ](k−1))

∞∏
j=k

Pj(dσj)Pk(dωk),

which is equal to E
(
U

(n)
k

∣∣ F (n)
k−1

)
(ω) a.s., since

E
(
Ik(ω)

∣∣ F (n)
k−1

)
=

∫ ∫
Ik

(
[ω, σ](k−1)

) ∞∏
j=k

Pj(dσj)Pk(dωk) =
∫ ∫

Ik
(
[ω, σ](k)

) ∞∏
j=k

Pj(dσj)Pk(dωk) a.s. �

In order to be able to provide a suitable bound on P(
∑∞

k=1 U
(n)
k > x), we need the following elementary

result on the volume of the Minkowski sausage on polygonal curves, where κd = νd(B1(o)) and νd denotes the
Lebesgue measure in Rd. Moreover, for B1, B2 ⊂ Rd we put B1 ⊕B2 =

{
b1 + b2 : b1 ∈ B1, b2 ∈ B2

}
.

Lemma 4.6. Let γ ⊂ Rd be a polygonal curve. Then, νd
(
γ ⊕Br(o)

) ≤ κd2drd−1ν1(γ) + κd2drd for all r > 0.



272 CH. HIRSCH ET AL.

Proof. We prove the claim by induction on �ν1(γ)/r�. Let x denote the starting point of the curve γ. If γ ⊂ Br(x),
then the claim is trivial. Otherwise, x′ denotes the first intersection point of γ and ∂Br(x) and γ′ the sub-path
of γ starting at x′. Then,

νd
(
γ ⊕Br(o)

) ≤ νd
(
B2r(x)

)
+ νd(γ′ ⊕Br(o)) ≤ 2κd2drd + κd2drd−1ν1(γ′) ≤ κd2drd + κd2drd−1ν1(γ). �

As a final preliminary result, we note that 	n grows linearly in n, where α2 is introduced in condition (H6).

Lemma 4.7. It holds that 	n ∈ [n/2, 3α2n] for all sufficiently large n ≥ 1.

Proof. For the lower bound, we note that

	n ≥ |q(ne1) − q(o)| ≥ n− |q(o)| − |q(ne1) − ne1| ≥ n− nδ ≥ n/2,

for all sufficiently large n ≥ 1. In order to prove the second claim, we begin by choosing n′ ≥ 1 such that
ne1 ∈ Qnδ (n′nδe1). Then, using (H6) repeatedly, we see that q(o) and q(n′nδe1) can be connected by a path
of length at most n′α2n

δ and the latter expression is bounded from above by 2α2n for sufficiently large n.
Furthermore, combining conditions (H3), (H4′) and (H5) shows that q(n′nδe1) and q(ne1) can be connected
by a path of length at most nδα1 , and the latter expression is bounded from above by n, since we assumed
δ ∈ (0, 1/(8α1)). �

Now, we have collected all auxiliary results and proceed to prove the desired almost sure upper bound for∑
k≥1 U

(n)
k . In other words, we show that the support of this random variable is bounded, which is a stronger

property than the sub-exponential decay considered in [16, 18, 25]. Our improvement is due to the difference in
the regularization. While in [16, 18, 25] the regularization is performed on the level of single segment weights,
we use a spatial block construction. To be more precise, although [25] uses a construction based on nδ-blocks,
still in the regularization every single weight of a segment in a block is subject to a truncation. On the other
hand, we benefit from the observation that it is easier to control spatial averages in large sampling windows
than trying to impose a suitable regularization on the microscopic level of single segment weights.

Lemma 4.8. There exists n0 ≥ 1 such that P(
∑∞
k=1 U

(n)
k > n1+8δα1) = 0 for all n ≥ n0.

Proof. Indeed, applying Lemmas 4.6 and 4.7, we see that for all sufficiently large n ≥ 1,

∞∑
k=1

U
(n)
k = 2n2δα1

∞∑
k=1

Ik = 2n2δα1#{z ∈ Z
d : ρn ∩Q4nδ (nδz) 
= ∅} ≤ 2n2δα1

νd
(
ρn ⊕B4

√
dnδ (o)

)
nδd

≤ 2n2δα1
κd2d4dnδddd/2 + κd2dnδ(d−1)4d−1d(d−1)/2	n

nδd

≤ κd23d+1dd/2n2δα1 + 3α2κd2d+1d(d−1)/24d−1n1+δ(2α1−1).

The proof is completed since the latter expression is at most n1+8δα1 , provided that n ≥ 1 is sufficiently
large. �

Finally, we can deduce the desired concentration result for
∣∣	n − E	n

∣∣.
Proposition 4.9. There exist n0 ≥ 1 and constants C1, C2 > 0 such that for all sufficiently large n ≥ n0,

P
(∣∣	n − E	n

∣∣ > n1/2+8δα1
) ≤ C1 exp(−C2n

4δα1).

Proof. Indeed, the statement follows by combining Lemmas 4.2, 4.5 and 4.8. �
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4.3. Comparison of �n and �n

To show that 	n and 	n are sufficiently close, we follow again the approach of [25]. First, observe that as a
corollary to Lemma 4.7, we obtain an auxiliary result on the diameter of ρn.

Corollary 4.10. Let δ ∈ (0, 1/(8α1)) be arbitrary. Then ρn ⊂ Q8α2n(o) for all sufficiently large n ≥ 1.

Proof. By condition (H4′) we have q(o, g(X)) ∈ Qnδ (o), so that ρn 
⊂ Q8α2n(o) implies 	n ≥ 4α2n−√
dnδ. An

application of Lemma 4.7 completes the proof of Corollary 4.10. �
Remark 4.11. Applying very similar arguments as in Corollary 4.10, one may use (4.1) to show that for n > 1
the events ρn ⊂ Q4p1n(o) occur whp.

Using Corollary 4.10 we may now deduce the following auxiliary result on the relation between 	n and 	n.

Lemma 4.12. Let δ ∈ (0, 1/(8α1)). Then, for n > 1 the events 	n = 	n occur whp, and for every k ≥ 1,

sup
n≥1

max
{
E

∣∣	n − 	n
∣∣k , n−k

E	kn
}
<∞.

Proof. To begin with, we prove the first assertion. Using Corollary 4.10 in conjunction with its remark implies
that ρn ∪ ρn ⊂ Qp2n(o) whp, where we put p2 = max{4p1, 8α2}. Moreover, we claim that for n ≥ 1 also the
events {

gnδ, geom(X) ∩Qp2n(o) = gnδ, geom

(
X

) ∩Qp2n(o)} ∩ {
ρn ∪ ρn ⊂ Qp2n(o)

}
(4.7)

occur whp. First, recall from the assumptions stated in Section 4.1 that we have X ∩ Qnδ (o) = X ∩ Qnδ(o)
whp. Since our definition of ‘whp’ imposes stretched exponential decay for the probabilities of the comple-
ments, whereas Q2p2n(o) is covered by a polynomial number of nδ-cubes, we conclude that also the events
X ∩Q2p2n(o) = X ∩Q2p2n(o) occur whp. Now, (4.7) follows from condition (H1). Since, additionally, for n > 1
the events gnδ, geom(X) ∩Qp2n(o) = ggeom(X) ∩Qp2n(o) occur whp, the first assertion is proved by noting that
the intersection of these events implies 	n = 	n. For the second assertion, observe that by (4.1) and Lemma 4.7
there exists α′ > 0 such that

P
( ∣∣	n − 	n

∣∣ > ny
) ≤ P

(
	n > ny/2

)
+ P

(
	n > ny/2

) ≤ exp
( − (ny)α

′)
,

for all y ≥ p2 and all sufficiently large n ≥ 1. In particular,

E
∣∣	n − 	n

∣∣k = k

∫ ∞

0

P
(∣∣	n − 	n

∣∣ > z
)
zk−1dz = knk−1

∫ ∞

0

P
( ∣∣	n − 	n

∣∣ > ny
)
yk−1dy

= knk−1
(
p2P

(
	n 
= 	n

)
+

∫ ∞

p2

exp
( − (ny)α

′)
yk−1dy

)
.

Finally, observe that

n−k
E	kn = n−kk

∫ ∞

0

P
(
	n > z

)
zk−1dz = k

∫ ∞

0

P
(
	n > ny

)
yk−1dy = kpk1 + k

∫ ∞

p1

exp
( − (ny)α

′)
yk−1dy,

which completes the proof of the second claim. �

As a corollary we obtain the following concentration result on moderate deviations of the shortest-path lengths 	n
from their expectation.

Proposition 4.13. Let β > 1/2 be arbitrary. Then, for n ≥ 1 the events |	n − E	n| ≤ nβ occur whp.

Proof. Put δ = (β − 1/2)/(8α1) and note that by Lemma 4.12

P(|	n − E	n| ≥ nβ) ≤ P(|	n − 	n| ≥ nβ/3) + P(|	n − E	n| ≥ nβ/3)

for all sufficiently large n ≥ 1. Hence, the claim follows from Corollary 4.9 and Lemma 4.12. �
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4.4. Controlling E�n

Next, to deduce Proposition 4.1 from Proposition 4.13, we derive suitable bounds for |E	n − μn|. In order to
achieve this goal, we consider the approach outlined in [16,25]. Using similar arguments as in [16], the following
analog of ([16], Lem. 4.1) can be derived. For the convenience of the reader, we provide a detailed proof.

Lemma 4.14. Let β > 1/2 be arbitrary. Then, E	2n ≥ 2E	n − nβ for all sufficiently large n ≥ 1.

Proof. First, put δ = (β − 1/2)/(8α1), where we may assume that β ∈ (1/2, 1). Note that since for r > 1 the
events X ∩QM

r (o) ∈ Ar and gr, geom(X) ∩Qr(o) = ggeom(X) ∩Qr(o) occur whp, there exists a family of events
{A′

r}r>1 such that for r > 1 the events {A′
r}r>1 occur whp and such that if X ∈ A′

r, then q(x) ∈ Q3r(o) for all
x ∈ Qr(o) and 	(x, y) ≤ rα1 for all x, y ∈ ggeom(X) ∩Q3r(o). Finally, put

Fn =
{
X − nδz ∈ A′

nδ for all z ∈ Z
d ∩Q4n(o)

}
and note that the events Fn occur whp. Next, put x1 = ne1 and choose nd−1 further points x2, . . . , xnd ∈ ∂Bn(o)
such that ∂Bn(o) ⊂

⋃nd

i=1Q1(xi). Moreover, define x′i = 2ne1 − xi. Then, the first step consists of establishing
the following lower bound for 	2n :

	2n ≥
(

min
1≤i≤nd

	(o, xi) + min
1≤j≤nd

	(x′j , 2ne1) − 2nδα1

)
1Fn . (4.8)

Denote by xF the first intersection point of ρ2n with ∂Bn(o) and by xL the last intersection point of ρ2n with
∂Bn(2ne1), so that 	2n ≥ 	(o, xF )+	(xL, 2ne1). By construction, there exists i1 ∈ {1, . . . , nd} with xF ∈ Q1(xi1 )
and we choose zi ∈ Zd with xi1 ∈ Qnδ(nδzi). Observe that if Fn occurs, then q(xi1 ) ∈ Q3nδ (nδzi), so that xF
and q(xi1 ) can be connected by a path whose length is bounded from above by nδα1 . Therefore,

	(o, xF ) ≥ (
	(o, xi1) − nδα1

)
1Fn ≥

(
min

1≤i≤nd
	(o, xi) − nδα1

)
1Fn ,

and similarly 	(xL, 2ne1) ≥
(
min1≤j≤nd 	(x′j , 2ne1) − nδα1

)
1Fn , which shows (4.8).

Since x1 = x′1 = ne1 we can deduce the following refined version of (4.8)

	2n +
(
	(o, ne1) + 	(ne1, 2ne1)

)
1F c

n
≥ min

1≤i≤nd
	(o, xi) + min

1≤j≤nd
	(x′j , 2ne1) − 2nδα1 .

In particular, by the Cauchy–Schwarz inequality,

E	2n + 2nδα1 + 2
√

E	2nP(F cn) ≥ 2E min
1≤i≤nd

	(o, xi).

As observed above, the events Fn occur whp so that using Lemma 4.12, we conclude that

E	2n − 2E	n + 3nδα1 ≥ −2E

(
max

1≤i≤m(n)
E	(o, xi) − 	(o, xi)

)
for all sufficiently large n ≥ 1. Finally, put ε = β − 1/2 and note that Proposition 4.13 implies

E

(
max

1≤i≤nd
E	(o, xi) − 	(o, xi)

)
≤ n1/2+ε/4 +

nd∑
i=1

P
( |	(o, xi) − E	(o, xi)| ≥ n1/2+ε/4

)
E	n

= n1/2+ε/4 + ndP
( |	n − E	n| ≥ n1/2+ε/4

)
E	n,

which is at most n1/2+ε/2 for all sufficiently large n ≥ 1. �
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Next, for the convenience of the reader, we restate ([16], Lem. 4.2).

Lemma 4.15. Let μ > 0 and let (an)n≥1, (bn)n≥1 be sequences in (0,∞) satisfying an/n → μ, bn/n → 0,
a2n ≥ 2an − bn and ψ = lim supn≥1 b2n/bn < 2. Then, an ≤ μn + cbn for all sufficiently large n ≥ 1, where
c = 2/(2 − ψ).

Finally, using Lemmas 4.14 and 4.15 (with an = E	n and bn = nβ), we obtain the following corollary which can
be used to complete the proof of Proposition 4.1.

Corollary 4.16. Let β > 1/2 be arbitrary. Then, μn ≤ E	n ≤ μn+ nβ for all sufficiently large n ≥ 1.

Proof of Proposition 4.1. Let β ∈ (1/2, 1) be arbitrary and put δ = (β − 1/2)/(8α1). Choosing n1(r) ≥ 1 such
that re1 ∈ Q1(n1(r)e1) yields

	(o, re1) − μr ≤ |	n1(r) − μn1(r)| + 	(n1(r)e1, re1) + μ|n1(r) − r|.

By condition (H4′) we have q(n1(r)e1), q(re1) ∈ Q3n1(r)δ(n1(r)e1) whp. In particular, conditions (H3) and (H5)
imply that 	(n1(r)e1, re1) ≤ n1(r)δα1 whp. Finally, by Corollary 4.16, the events |	n1(r)−μn1(r)| ≤ n1(r)(2β+1)/4

occur whp. �

5. Proof of Theorem 2.1

In this section, we complete the proof of Theorem 2.1. First, we provide a direct proof if the underlying segment
process is given by the isotropic Poisson line model in R2. For Voronoi tessellations, Delaunay tessellations and
relative neighborhood graphs, Theorem 2.1 is proved by verifying conditions (H1)–(H6) from Section 4.1.

5.1. Poisson line tessellation

First, we discuss the elementary case of the isotropic Poisson line tessellation in R
2. That is, we assume that

G is the planar segment process induced by the lines of an isotropic planar Poisson line process with intensity
λ > 0.

Proposition 5.1. Let β > 1/2 be arbitrary. Then, for r > 1 the events |	r − r| ≤ rβ occur whp.

Proof. We put ε = β−1/2, where we may assume that β ∈ (1/2, 1) and begin by introducing some useful events.
Let E(1,a)

r denote the event that there exists a quadrilateral Ξa ⊂ R2 such that Br1/2+ε/4(o) ⊂ Ξa ⊂ Br1/2+ε/2(o)
and whose boundary is defined by four lines of the Poisson line process. Similarly, E(1,b)

r denotes the event that
there exists a quadrilateral Ξb ⊂ R2 such that Br1/2+ε/4(re1) ⊂ Ξb ⊂ Br1/2+ε/2(re1) and whose boundary is
defined by four lines of the Poisson line process. Furthermore, let E(2)

r denote the event that there exists a
line l1 of the line process intersecting B√

r(o) and whose angle with the x-axis is contained in [0, r−1/2+ε/8]. An

illustration for the occurrence of the events E(1,a)
r , E(1,b)

r and E(2)
r is shown in Figure 4.

Observe that if E(1,a)
r , E(1,b)

r and E(2)
r occur, then the distance of l1 from re1 is at most

√
r + r sin r−1/2+ε/8 ≤ √

r + r1/2+ε/8,

so that l1 ∩Br1/2+ε/4(re1) 
= ∅ (provided that r ≥ 1 is sufficiently large). Hence, if E(1,a)
r , E(1,b)

r and E(2)
r occur,

then 	(o, re1) ≥ |q(o) − q(re1)| ≥ r − 2r1/2+ε/2 and choosing suitable P1 ∈ l1 ∩ Ξa and P2 ∈ l1 ∩ Ξb yields

	(o, re1) ≤ 	(q(o), P1) + 	(P1, P2) + 	(P2, q(re1)) ≤ 2r1/2+ε/2 + πr1/2+ε/2 + r + πr1/2+ε/2 + 2r1/2+ε/2.

Therefore, it suffices to show that that limr→∞ P(E(1,a)
r ∩E(1,b)

r ∩E(2)
r ) = 1. Note that by definition of the Poisson

line process, 1 − P(E(2)
r ) = exp(−λ√rr−1/2+ε/8/π), which tends to 0 as r → ∞. Furthermore, by stationarity
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o re1

l1

Ξa Ξb

Figure 4. Configuration after occurrence of E(1,a)
r ∩ E(1,b)

r ∩ E(2)
r .

P(E(1,a)
r ) = P(E(1,b)

r ), so that it suffices to show P(E(1,a)
r ) → 1 as r → ∞. Let E(3)

r denote the event that
there exists a line l from the Poisson line process whose angle is contained in [π/2 − π/6, π/2 + π/6] and that
intersects the ball B√

r(r1/2+3ε/8e1). Furthermore, for i ∈ {1, . . . , 4} let E(3,i)
r denote the event obtained from

E
(3)
r by applying a rotation of angle (i − 1)π/2 and center o. Then, using elementary geometry, we see that⋂4
i=1E

(3,i)
r implies the existence of the desired quadrilateral Ξa, provided that r > 0 is sufficiently large. The

proof of Proposition 5.1 is therefore completed upon noting that 1 − P(E(3)
r ) = exp(−2λr1/2/3). �

5.2. Auxiliary results for point-process based models

In contrast to the Poisson line model considered in Section 5.1, it seems difficult to derive a moderate-deviation
estimate for shortest-path lengths on Voronoi and Delaunay tessellations, as well as the relative neighborhood
graph directly and our goal is therefore to apply the results of Section 4. In the present subsection, we show
that condition (H6) is redundant in the sense that it can be deduced from conditions (H1) to (H5).

Let g : NM → G be a measurable, covariant construction-rule and let {g̃r}r>1 be a family of approximations
of g such that g(ϕ) ⊂ g̃r(ϕ) for all r > 1 and all ϕ ∈ NM. As a first preliminary, we show that if (H1)–(H5) are
satisfied at some fine resolution, then these conditions are also satisfied at a coarser resolution.

Lemma 5.2. Let
{
Ãr

}
r>1

be a family of events that satisfy conditions (H1)–(H5) for the construction rules
{g̃r}r>1. For every r > 1, put gr = g̃r′ , where r′ = r/a′r and a′r = 2

⌈
r1−1/α1

⌉
+ 1, and define

A′
r =

{
ϕ ∈ NM : (ϕ− r′z) ∩QM

r′(o) ∈ Ãr′ for all z ∈ Z
d ∩Qa′r (o)

}
.

Then, for each r > 1, the elements of A′
r satisfy (H1)–(H5) for the construction rules {gr}r>1 with α1 replaced

by α1 + 1.

Proof. In this proof, we assume that ϕ ∈ NM is such that (ϕ− rz) ∩QM
r (o) ∈ A′

r for all z ∈ Z
d. Let ψ ∈ NM be

such that ψ ⊂ Rd \QM
3r(o). Then, for every z ∈ Qa′r (o) ∩ Zd,

gr, geom

(
(ϕ ∩QM

3r(o)) ∪ ψ
) ∩Qr′(r′z) = g̃r′, geom

(
(ϕ ∩QM

3r(o)) ∪ ψ
) ∩Qr′(r′z)

= g̃r′, geom(ϕ ∩QM

3r′(r
′z)) ∩Qr′(r′z),

which equals g̃r′, geom(ϕ ∩QM
3r(o)) ∩Qr′(r′z). For conditions (H1′) and (H2) one can argue similarly. To verify

condition (H3), let x, y ∈ gr, geom(ϕ) ∩Q5r(o) be arbitrary. Furthermore, choose z1, . . . , zk ∈ Q5a′r (o) such that
x ∈ Qr′(r′z1), y ∈ Qr′(r′zk) and |zi+1 − zi|∞ ≤ 1 for all i ∈ {1, . . . , k − 1}. Then, for every i ∈ {1, . . . , k − 1},
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the points q(r′zi) and q(r′zi+1) can be connected by a path in g̃r′, geom(ϕ) ∩ Q7r′(r′zi). Additionally, x and
q(r′z1) as well as q(r′zk) and y can be connected by paths in g̃r′, geom(ϕ)∩Q7r′ (r′z1) and g̃r′, geom(ϕ)∩Q7r′ (r′zk),
respectively. This proves (H3). Moreover, condition (H4′) is clearly satisfied. Finally,

ν1
(
gr, geom(ϕ) ∩Q7r(o)

)
=

∑
z∈Q7a′

r
(o)

ν1
(
g̃r′, geom(ϕ) ∩Qr′(r′z)

) ≤
∑

z∈Q7a′
r
(o)

(r′)α1 ≤ 7drα1 (a′r)
d−α1 .

Since α1 ≥ d and 7drα1 ≤ rα1+1 for all sufficiently large r > 1, this proves the claim. �

In order to verify condition (H6), we consider a refinement of the family of events {A′
r}r≥1 considered in

Lemma 5.2, which ensures that two specific points close to the left and right boundary of Qr(o) can be connected
to q(o) by a short path on gr, geom(ϕ). By establishing this short path using a large number of small intermediate
steps, we can ensure that this event is not influenced by the configuration of ϕ outside the sampling window
Qr(o). To be more precise, we put Ar = A′

r ∩Br, where Br denotes the family of all ϕ ∈ NM, such that

	(r)
(
q(ir′e1, ggeom(ϕ)), q((i + 1)r′e1, ggeom(ϕ))

) ≤ p1r
′ (5.1)

for all i ∈ Z such that −(a′r − 1)/2 + 2p1 + 1 ≤ i ≤ (a′r − 1)/2 − 2p1 − 1, where 	(r) denotes the shortest-path
length in the segment process gr, geom(ϕ), and where p1 ≥ 1 is chosen as in (4.1). Furthermore, as in Lemma 5.2,
we put r′ = r/a′r.

Lemma 5.3. For each r > 1, the elements of Ar satisfy (H1)–(H6) for the construction rules {gr}r>1. More-
over, if the events {A′

r}r>1 occur whp, then the events {Ar}r>1 occur whp.

Proof. In this proof, we assume that (ϕ − rz) ∩ QM
r (o) ∈ Ar for all z ∈ Zd. It follows from Lemma 5.2 that

conditions (H1)–(H5) are satisfied. Next, we claim that condition (H6) is satisfied with α2 = 6p1 + 5. From
condition (H1′) we conclude that for every z ∈ Qa′r−2(o), we have

ggeom

(
ϕ ∩QM

r (o)
) ∩Qr′(r′z) = ggeom(ϕ) ∩Qr′(r′z),

which implies that
ggeom

(
ϕ ∩QM

r (o)
) ∩Qr−2r′(o) = ggeom(ϕ) ∩Qr−2r′(o).

Similarly, condition (H1) shows that these identities remain true when replacing ggeom by gr, geom. In particular,
ϕ ∩QM

r (o) ∈ Br yields
	(r)(q(ir′e1, ggeom(ϕ)), q((i + 1)r′e1, ggeom(ϕ))) ≤ p1r

′

for all i ∈ Z with −(a′r−1)/2+2p1+1 ≤ i ≤ (a′r−1)/2−2p1−1. Hence, q(o, ggeom(ϕ)) and q
(
((a′r−1)/2−2p1−

1)r′e1, ggeom(ϕ)
)

can be connected by a path in gr, geom(ϕ) of length at most p1r. Next, a repeated application
of conditions (H3) and (H5) implies that q(((a′r − 1)/2 − 2p1 − 1)r′e1, ggeom(ϕ)) and q(((a′r + 1)/2 + 2p1 +
1)r′e1, ggeom(ϕ)) can be connected by a path in gr,geom(ϕ) of length at most (4p1 + 3)(r′)α1 ≤ (4p1 + 3)r. We
also observe that q(o, ggeom(ϕ)) and q(o, gr, geom(ϕ)) as well as q(re1, ggeom(ϕ)) and q(re1, gr, geom(ϕ)) can be
connected by paths in gr, geom(ϕ) of length at most (r′)α1 ≤ r. Finally, the same reasoning used to construct
a path connecting q(o, ggeom(ϕ)) and q(((a′r − 1)/2 − 2p1 − 1)r′e1, ggeom(ϕ)) can be applied to obtain a path
connecting q(re1, ggeom(ϕ)) and q(((a′r + 1)/2 + 2p1 + 1)r′e1, ggeom(ϕ)). Concatenation of all constructed paths
shows that q(o, gr, geom(ϕ)) and q(re1, gr, geom(ϕ)) can be connected by a path in gr, geom(ϕ) of length at most
(r + p1r + (4p1 + 3)r + p1r + r), as desired. It remains to show that for r > 1 the events X ∩ QM

r (o) ∈ Ar
occur whp. First, we observe that if X ∩QM

r (o) ∈ A′
r, then X ∩QM

r (o) ∈ Br is equivalent to X ∈ Br. Moreover,
from (4.1) and 	(r)(·, ·) ≤ 	(·, ·), we know that for r > 1 the events 	(r)(q(o, ggeom(X)), q(r′e1, ggeom(X))) ≤ p1r

′

occur whp. Hence, for r > 1 also the events Br occur whp, which completes the proof of Lemma 5.3. �
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We conclude this subsection with some observations concerning conditions (F1)–(F5) that will be used in
the following. Furthermore, recalling the appearance of τ in condition (F3), conditions (F3) and (F4) have
important consequences on the asymptotic behavior of the number of points of fgeom(X) in bounded sampling
windows.

Lemma 5.4. Under conditions (F3) and (F4), there exists c0 > 0 such that

P
(
fgeom(X) ∩QM

r−τ(o) = ∅) ≤ exp(−c0rd)

for all sufficiently large r > 1.

Proof. The cube QM
r−τ (o) contains k = �(r − 2τ)/2τ�d disjoint sub-cubes Qr,1, . . . , Qr,k of side length 2τ . For

i ∈ {1, . . . , k} let Ei =
{
fgeom(X) ∩ (Qr,i � QM

τ (o)) 
= ∅} denote the event that the intersection of fgeom(X)
with the inner cube Qr,i �QM

τ (o) is non-empty. Note that by (F3) and the Poisson assumption, the events Ei,
i ∈ {1, . . . , k} are independent and (F4) implies p = P(Ei) > 0. Hence,

P
(
fgeom(X) ∩QM

r−τ (o) = ∅) ≤
k∏
i=1

(1 − P(Ei)) = exp
((
k log(1 − p)/rd

)
rd

)
. �

Next, we consider the following result that can be seen as a complement to Lemma 5.4.

Lemma 5.5. Under conditions (F2) and (F5), there exists c > 0 such that for all sufficiently large r > 1,

P
(
#(fgeom(X) ∩QM

r (o)) ≥ crd
) ≤ exp(−rd).

Proof. For r > 1 sufficiently large we can subdivide QM
r (o) into k ≤ 2rd/τd not necessarily congruent sub-boxes

Q1, . . . , Qk such that the longest side in each of these boxes is bounded from above by τ . By sub-additivity we
then obtain #fgeom(X ∩QM

r (o)) ≤ ∑k
i=1 #fgeom(X ∩Qi) and note that by the Poisson assumption, the random

variables #fgeom(X ∩Qi), i = 1, . . . , k are independent. Put c1 = log E exp
(
h0#fgeom(X ∩QM

τ (o))
)
. Then, for

every c > 0,

P
(
#fgeom(X ∩QM

r (o)) ≥ crd
) ≤ exp(−h0cr

d) exp(kc1) ≤ exp
(−rd(h0c− 2c1/τd)

)
. �

5.3. Voronoi tessellations

In the present subsection, we verify that conditions (F1)–(F6) imply conditions (H1)–(H5) for the Voronoi
tessellation. We begin by defining events Ãr for r > 1 by putting

Ãr = C̃r ∩ D̃r, (5.2)

where

C̃r =
{
ϕ ∈ NM : fgeom(ϕ) ∩Qr/(4d+1)−τ (rz/(4d+ 1)) 
= ∅ for all z ∈ Z

d ∩Q4d+1(o))
}
,

D̃r =
{
ϕ ∈ NM : #fgeom

(
ϕ ∩QM

r/(4d+1)(rz/(4d+ 1))
) ≤ c(r/(4d+ 1))d for all z ∈ Z

d ∩Q4d+1(o)
}
.

Note that by Lemmas 5.4 and 5.5, for r > 1 the events X ∩QM
r (o) ∈ Ãr occur whp. Also note that (F3) shows

that ϕ ∈ C̃r implies fgeom

(
ϕ∩QM

r/(4d+1)(rz/(4d+1))∪ψ)∩Qr/(4d+1)−τ (rz/(4d+1)) 
= ∅ for all z ∈ Zd∩Q4d+1(o)
and all ψ ∈ NM with ψ ⊂ Rd,M \QM

r/(4d+1)(rz/(4d+1)). For the Voronoi tessellation no additional regularization
of the construction rule is needed, so that we may choose g̃r = Vor for all r ≥ 1. Next, we verify conditions
(H1)–(H5).

Lemma 5.6. The Voronoi graph satisfies conditions (H1)–(H5).
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Proof. Let (ϕ − rz) ∩QM
r (o) ∈ Ãr for all z ∈ Zd and, for readability, put a = 4d + 1. Moreover, the following

arguments are valid for all sufficiently large r > 1. Consider the event Ãr given in (5.2). To prove (H1),
let ψ, ψ′ ∈ NM with ψ, ψ′ ⊂ Rd,M \ QM

3r(o) be arbitrary. Then, it suffices to show the following. For every
x ∈ fgeom(ϕ ∩ QM

3r(o) ∪ ψ) whose Voronoi cell Θ = Z(x, fgeom(ϕ ∩ QM
3r(o) ∪ ψ)) intersects Qr(o) it holds that

x ∈ fgeom(ϕ∩QM
3r(o)∪ψ′) and Θ∩Qr(o) = Θ′∩Qr(o), where Θ′ = Z(x, fgeom(ϕ∩QM

3r(o)∪ψ′)). Let y ∈ Θ∩Qr(o)
be arbitrary and choose z ∈ Z

d ∩Qa(o) such that y ∈ Qr/a(rz/a). Then, for all

x′ ∈ fgeom(ϕ ∩QM

3r(o) ∪ ψ) ∩Qr/a−τ (rz/a) = fgeom(ϕ ∩QM

r/a(rz/a)) ∩Qr/a−τ (rz/a)

we have |x′ − y| ≤ √
dr/a < r/2 − τ. In particular, the center x of Θ is contained in

fgeom

(
ϕ ∩QM

3r(o) ∪ ψ
) ∩Q3r−τ (o) = fgeom

(
ϕ ∩QM

3r(o) ∪ ψ′) ∩Q3r−τ (o),

and y ∈ Θ′. A similar argument verifies (H2), but we provide some details for the convenience of the reader.
Let ψ, ψ′ ∈ NM with ψ ⊂ QM

r (o) be arbitrary. Furthermore, let Θ be a cell of Vorgeom

(
(ϕ \ QM

r (o)) ∪ ψ)
with

Θ 
⊂ Q3r(o). Let y ∈ Θ \Q3r(o) and suppose that the center x ∈ fgeom

(
(ϕ \QM

r (o))∪ψ)
of Θ was not contained

(Rd \Qr(o)) � Qτ (o). Let η ∈ ∂Q3r(o) denote the intersection of ∂Q3r(o) with the line segment connecting x
and y and choose z ∈ Q3a(o) such that η ∈ Qr/a(rz/a). Then, for all

x′ ∈fgeom

(
(ϕ \QM

r (o)) ∪ ψ) ∩Qr/a−τ (rz/a) = fgeom(ϕ ∩QM

r/a(rz/a)) ∩Qr/a−τ (rz/a)

we have |η − x| ≤ √
dr/a < |η − x|, which contradicts the assumption that η lies in the Voronoi cell Θ

associated with x. In fact, this argument also shows that y is contained in the Voronoi cell of x with respect
to fgeom

(
(ϕ \ QM

r (o)) ∪ ψ′). In particular, we have verified (H2). For (H3), we observe that the following two
statements are satisfied.

(1) the center of every Voronoi cell intersecting Q5r(o) is contained in Q6r(o); and
(2) every Voronoi cell whose center lies in Q6r(o) is contained in Q7r(o).

Similarly, for all x ∈ Qr(o) and all y ∈ ∂Br/2(x) the points x and y lie in different Voronoi cells. This proves
(H4′). To check (H5) note that

(1) the center of every Voronoi cell intersecting Q7r(o) is contained in Q8r(o); and
(2) every Voronoi cell whose center is located in Q8r(o) is contained in Q9r−τ (o).

As any edge in the Voronoi tessellation is determined by d adjacent cells, we obtain that

ν1(Vor(ϕ) ∩Q7r(o)) ≤ 7r
√
d
(
#

(
fgeom(ϕ) ∩Q9r−τ(o)

))d
.

Hence, sub-additivity of fgeom yields that ν1(Vor(ϕ) ∩Q7r(o)) can be bounded from above by

7r
√
d
(
#

(
fgeom(ϕ) ∩Q9r−τ(o)

))d ≤ 7r
√
d
(
#fgeom(ϕ ∩QM

9r(o))
)d ≤ 7r

√
d

⎛⎝ ∑
z∈Z

d∩Q9a(o)

#fgeom

(
ϕ ∩QM

r/a(rz/a)
)⎞⎠d

,

which is at most 7r
√
d(c9drd)d. �

Finally, we note that when choosing ϕ(0) ∈ NM such that fgeom(ϕ(0)) = r0Z
d, then (ϕ(0) − rz) ∩Qr(o) ∈ Ar =

A′
r ∩Br provided that the discretization parameter r is sufficiently large.
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5.4. Delaunay tessellation

Using very similar arguments, the analogue of Lemma 5.6 holds for the Delaunay model, too. Also for the
Delaunay tessellation no regularization of the construction rule is needed, so that we may choose g̃r = Del for
all r > 1.

Lemma 5.7. The Delaunay graph satisfies conditions (H1)–(H5).

Proof. As in the case of Voronoi tessellations, we suppose that (ϕ − rz) ∩ QM
r (o) ∈ Ãr for all z ∈ Zd. As

in Lemma 5.6, the following arguments are valid for all sufficiently large r > 1 and we put a = 4d + 1.
Consider the events Ãr given in (5.2). To prove (H1), let ψ, ψ′ ∈ NM with ψ, ψ′ ⊂ R

d,M \QM
3r(o) be arbitrary.

Furthermore, let e be an edge of Delgeom(ϕ∩QM
3r(o)∪ψ) with e∩Qr(o) 
= ∅. We show that e also forms an edge

in Delgeom(ϕ ∩QM
3r(o) ∪ ψ′). In order to achieve this goal, we note that there exists a ball B ⊂ Rd containing e

and satisfying fgeom(ϕ∩QM
3r(o)∪ψ)∩ int(B) = ∅, where int(B) denotes the topological interior of B. If B is not

contained in Q3r−τ (o), then there exists z ∈ Zd ∩Q3a(o) such that Qr/a(rz/a) ⊂ B ∩Q3r−τ (o). In particular,

∅ = Qr/a(rz/a) ∩ fgeom(ϕ ∩QM

3r(o) ∪ ψ) = Qr/a(rz/a) ∩ fgeom(ϕ ∩QM

3r(o))

contradicting the assumption (ϕ− rz) ∩QM
r (o) ∈ C̃r. Therefore, B ⊂ Q3r−τ (o) which implies that

B ∩ fgeom(ϕ ∩QM

3r(o) ∪ ψ) = B ∩ fgeom(ϕ ∩QM

3r(o)) = B ∩ fgeom(ϕ ∩QM

3r(o) ∪ ψ′).

As (H2) can be shown by analogous arguments, the corresponding proof is omitted. For (H3), we observe that by
the same argument as before any Delaunay cell intersecting Q5r(o) is already contained in Q7r(o). Furthermore,
(H4′) holds trivially. In order to verify the final condition, observe that any Delaunay simplex intersecting Q7r(o)
is already contained in Q9r−τ(o). In particular, ν1(Del(ϕ) ∩ Q7r(o)) ≤ 7r

√
d
(
#

(
fgeom(ϕ) ∩ Q9r−τ (o)

))2. This
shows that ν1(Del(ϕ) ∩Q7r(o)) can be bounded from above by

7r
√
d
(
#

(
fgeom(ϕ) ∩Q9r−τ (o)

))2 ≤ 7r
√
d
(
#fgeom(ϕ ∩QM

9r(o))
)2

≤ 7r
√
d

⎛⎝ ∑
z∈Z

d∩Q9a(o)

#fgeom(ϕ ∩QM

r/a(rz/a))

⎞⎠2

,

which is at most 7r
√
d
(
c9drd

)2. �

As before, if we choose ϕ(0) ∈ NM such that fgeom(ϕ(0)) = r0Zd, then (ϕ(0) − rz) ∩ QM
r (o) ∈ Ar = A′

r ∩ Br
provided that the discretization parameter r is sufficiently large.

5.5. Relative neighborhood graph

When considering moderate-deviation properties, relative neighborhood graphs differ from Voronoi and
Delaunay tessellations in two important aspects. First, they tend to be rather unstable in regions, where the
underlying point process contains many pairs of atoms that are at (almost) identical distances. Second, it is more
difficult to control boundary effects in the sense that even if the configurations of the point process inside two
neighboring cubes seem non-pathological, undesirable effects might still occur due to interactions between points
close to the interface of the two cubes. In contrast to Voronoi and Delaunay tessellations, we therefore need
to regularize not only the underlying point process, but also the construction rule of the relative neighborhood
graph.

In the present subsection, we show that the relative neighborhood graph Rnggeom(X) satisfies conditions
(H1)–(H5) if X is an independently marked Poisson point process satisfying conditions (F1)–(F6). First, we
introduce a suitable family of regularizations of construction rules

{
R̃ngr

}
r≥1

, where we add some additional
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edges in order to guarantee good connectivity properties even under rather pathological configurations. To be
more precise, for any ϕ ∈ N, let R̃ngr(ϕ) denote a segment process on the vertex set ϕ with the following edge
set. Two vertices x, y ∈ ϕ are connected by an edge in R̃ngr(ϕ) if

(1) x and y are connected by an edge in Rng(ϕ); or
(2) |x − y| ≤ r1/(2d+4) and there exist x0, x1, . . . , xm ∈ ϕ such that {x0, x1} = {x, y}, |xm − x0| > r/4 and

|x0 − x1| > |x1 − x2| > · · · > |xm−1 − xm|.
The second possibility can also be rephrased as saying that |x − y| ≤ r1/(2d+4) and there exists a descending
chain starting from the line segment [x, y] and leaving the r/4-ball around the starting point.

Our first goal is the construction of a family of events
{
Ãr

}
r>1

such that conditions (H1)–(H5) are satisfied.
To achieve this goal, we put ar = (4

⌈
r1−1/(2d+4)

⌉
+ 1)(4d + 1) and proceed similarly to the Voronoi and the

Delaunay model by defining

Ãr = C̃r ∩ D̃r, (5.3)

where

C̃r =
{
ϕ ∈ NM : fgeom(ϕ) ∩Qr′−τ (r′z) 
= ∅ for all z ∈ Z

d ∩Qar(o)
}
,

D̃r =
{
ϕ ∈ NM : #fgeom(ϕ ∩QM

r′(r
′z)) ≤ c(r′)d for all z ∈ Z

d ∩Qar (o)
}
,

and r′ = r/ar. Again, we observe that by Lemmas 5.4 and 5.5, for r > 1 the events X ∩QM
r (o) ∈ Ãr occur whp.

Lemma 5.8. The family of segment processes
{
R̃ngr

}
r>1

satisfies conditions (H1)–(H5).

Proof. As in the case of Voronoi tessellations, we suppose that (ϕ−rz)∩QM
r (o) ∈ Ãr for all z ∈ Zd. The following

arguments are valid for all sufficiently large r > 1. Consider the events Ãr given in (5.3). To prove (H1), let
ψ, ψ′ ∈ NM with ψ, ψ′ ⊂ Rd,M \QM

3r(o) be arbitrary. Furthermore, let e be an edge of R̃ngr,geom(ϕ∩QM
3r(o)∪ψ1)

with e∩Qr(o) 
= ∅. We show that e also forms an edge in R̃ngr,geom(ϕ∩QM
3r(o)∪ψ2). First, if ν1(e) ≤ r1/(2d+4),

then the existence of a descending chain starting from the line segment e and leaving a ball of radius r/4 only
depends on

fgeom(ϕ ∩QM

3r(o) ∪ ψi) ∩Q3r−τ (o) = fgeom(ϕ ∩QM

3r(o)) ∩Q3r−τ (o),

and in particular does not depend on ψ1 or ψ2. Hence, it remains to consider edges of the relative neighborhood
graph Rnggeom(ϕ∩QM

3r(o)∪ψi), i ∈ {1, 2}. Note that whether e forms an edge in the graph Rng(ϕ∩QM
3r(o)∪ψi)

only depends on fgeom(ϕ∩QM
3r(o)∪ψi)∩(e⊕Bν1(e)(o)) and therefore is independent of ψ1 and ψ2 if ν1(e) ≤ r/4.

Finally, if ν1(e) ≥ r/4, then there exists a ball B ⊂ Rd with diameter e and whose interior does not intersect
fgeom(ϕ∩QM

3r(o)∪ψ1). Moreover, there exists z ∈ Zd∩Q3a(o) such that Qr′(r′z) ⊂ B∩Q3r−τ (o). In particular,

∅ = fgeom(ϕ ∩QM

3r(o) ∪ ψ1) ∩Qr′−τ (r′z) = fgeom(ϕ ∩QM

3r(o)) ∩Qr′−τ (r′z)

contradicting the assumption (ϕ− rz) ∩QM
r (o) ∈ C̃r for all z ∈ Zd ∩Q3(o). For conditions (H1′) and (H2) very

similar arguments can be used and therefore proofs are omitted. To prove (H3), let x, y ∈ R̃ngr, geom(ϕ)∩Q5r(o)
be arbitrary. As before, we note that x, y are located on edges contained in gr, geom(ϕ)∩Q6r(o) whose endpoints
are denoted by x′, x′′ and y′, y′′. Choose z1, . . . , zk ∈ Q6ar(o) such that x′ ∈ Qr′(r′z1), y′ ∈ Qr′(r′zk) and
zi+1 ∈ Q3(zi) for all i ∈ {1, . . . , k − 1}. Moreover, choose xi ∈ fgeom(ϕ) ∩Qr(r′zi) for all i ∈ {1, . . . , k}, where
we assume that x1 = x′ and xk = y′. Note that |xi − xi+1| ≤ r1/(2d+4) for all i ∈ {1, . . . , k − 1}, so that xi and
xi+1 are connected by an edge in R̃ngr,geom(ϕ) ∩Q7r(o) if there exists a descending chain starting at [xi, xi+1]
and leaving Br/4(xi). On the other hand, if such a chain does not exist, then proceeding as in ([1], Lem. 10
or [14], Lem. 6) one can show that xi and xi+1 are connected by a path in Rnggeom(ϕ) ∩ Q7r(o). Condition
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(H4′) is clearly satisfied, so that it remains to consider condition (H5). Observe that every edge of R̃ngr,geom(ϕ)
intersecting Q7r(o) is already contained in Q9r−τ (o). In particular, ν1

(
R̃ngr,geom ∩ Q7r(o)

)
is bounded from

above by 7r
√
d
(
#

(
fgeom(ϕ) ∩Q9r−τ (o)

))2. Hence, ν1
(
R̃ngr, geom(ϕ) ∩Q7r(o)

)
can be bounded from above by

7r
√
d
(
#

(
fgeom(ϕ) ∩Q9r−τ(o)

))2 ≤ 7r
√
d
(
#fgeom

(
ϕ ∩Q9r(o)

))2 ≤ 7r
√
d

⎛⎝ ∑
z∈Z

d∩Q9ar (o)

#fgeom

(
ϕ ∩Qr′(r′z)

)⎞⎠2

,

which is at most 7r
√
d(c9drd)2. �

As before, if we choose ϕ(0) ∈ NM such that fgeom(ϕ(0)) = r0Zd, then (ϕ(0) − rz) ∩ QM
r (o) ∈ Ar = A′

r ∩ Br
provided that the discretization parameter r is sufficiently large. We conclude this subsection by noting that for
r > 1 the events R̃ngr, geom(X) = Rnggeom(X) occur whp. By definition of the regularization R̃ngr, it suffices to
prove that whp there does not exist x ∈ X ∩QM

2r(o) for which there exists a descending chain starting from the
spatial coordinate of x, leaving the r/4-ball centered at this point and consisting of segments of length at most
r1/(2d+4). But this is shown in ([14], Lem. 5); see also ([1], Lem. 11) and [9] for related results.

6. Applications

Next, we discuss two applications of Theorem 2.1 illustrating the usefulness of being able to control the
deviation of 	r from μr up to an error term of order r1/2+ε.

6.1. Lower bounds on time constants

To begin with, we show that the time constant μ of the planar Voronoi tessellation, the Delaunay tessellation
and the relative neighborhood graph constructed from suitable Poisson-based point processes is strictly greater
than 1. In [2] it has been shown rigorously that in the Poisson−Delaunay case μ ≤ 4/π. Similarly, for the
Poisson−Voronoi graph numerical results stated in [28] indicate μ ≈ 1.145. Using Theorem 2.1 we provide a
rigorous proof that μ > 1. This shows that the asymptotic behavior of shortest-path lengths in these random
segment processes is genuinely different from the situation in Poisson line tessellations, where it is known that
μ = 1, see Section 5.1 and also [28].

Theorem 6.1. Let X denote an independently M-marked Poisson point process and assume that conditions
(H1)–(H6) are satisfied for the construction rules (ggeom, {gr}r≥1). Furthermore, assume that there exists θ ≥ 1
such that the probability that there exists an edge e in ggeom(X ∩QM

5r(o))∩Q3r(o) with sin ∠(e, e1) ∈ (−r−θ, r−θ)
tends to 0 as r → ∞. Then μ > 1.

Proof. Fix δ = 1/(8θ + 12). If γ is any path in G and x, y ∈ γ, then it is convenient to write γ(x, y) for the
sub-path of γ starting at x and ending at y. In the following, γ = γ(n) denotes a shortest path on ggeom(X)
connecting q(o) to q(ne1), n ≥ 1. We will show that the event ν1(γ(n)) − n ≥ n5/8 occurs whp, so that
Theorem 2.1 yields μ > 1. We begin by defining a site-percolation model on Zd and put r = nδ. A site z ∈ Zd

is said to be n-good if there exists an edge e in ggeom(X ∩QM
5r(rz))∩Q3r(rz) with sin∠(e, e1) ∈ (−r−θ, r−θ). In

particular, if z is n-bad, then for every edge e = [x, y] in ggeom(X ∩QM
5r(rz)) ∩Q3r(rz),

1 − |〈x− y, e1〉|
|x− y| ≥ |x− y|2 − 〈x − y, e1〉2

(|x− y| + |〈x− y, e1〉|)|x− y| ≥
(
sin∠(x − y, e1)

)2
/2 ≥ r−2θ/2,

where 〈·, ·〉 denotes the standard scalar product in Rd. Hence, if γ′ is a path in ggeom(X ∩ QM
5r(rz)) ∩ Q3r(rz)

consisting of segments [x0, x1], . . . , [xk−1, xk], then

ν1(γ′) − 〈xk − x0, e1〉 =
k∑
i=1

|xi − xi−1| − 〈xi − xi−1, e1〉 ≥ r−2θ
∑k

i=1 |xi − xi−1|
2

=
r−2θν1(γ′)

2
· (6.1)
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The site-percolation process of n-good sites is clearly 5-dependent. Hence ([20], Thm. 0.0) shows that any ∗-
connected component of n-good sites intersecting Zd∩Qn(o) consists of at most nδ sites whp. Here, we say that
two sites are ∗-adjacent if their | · |∞-distance equals 1. We conclude from Theorem 2.1 that γ is contained in
Qnr(o) whp. Furthermore, (H1) implies that whp for every z ∈ Zd∩Qn(o) we have ggeom(X∩QM

5r(rz))∩Q3r(rz) =
ggeom(X) ∩Q3r(rz). Therefore, whp there exists a set of m ≥ nr−4 distinct n-bad sites {z1, . . . , zm} ⊂ Z

d such
that

(1) |zi − zj|∞ ≥ 5 for all i, j ∈ {1, . . . ,m} with i 
= j and
(2) γ ∩Qr(rzi) 
= ∅ for all i ∈ {

1, . . . ,m
}
.

For each i ∈ {1, . . . ,m} we choose x
(1)
i , x

(2)
i ∈ γ ∩ ∂Q3r(rzi) such that γi = γ(x(1)

i , x
(2)
i ) ⊂ Q3r(rzi) and

γi ∩Qr(rzi) 
= ∅. Since the site zi is n-bad we can apply (6.1), to deduce that

ν1(γi) − 〈x(2)
i − x

(1)
i , e1〉 ≥ r−2θν1(γi)/2 ≥ r−2θ+1.

Hence,

ν1(γ) − 〈q(ne1) − q(o), e1〉 ≥
m∑
i=1

ν1(γi) − 〈x(2)
i − x

(1)
i , e1〉 ≥ mr−2θ+1.

Therefore, whp,

ν1(γ) − n ≥ mr−2θ+1 + (〈q(ne1) − q(o), e1〉 − n) ≥ n1−4δn−(2θ−1)δ − n1/2 ≥ n5/8,

so that Theorem 2.1 implies μ > 1. �

We conclude the present subsection by showing that if we consider the planar Voronoi tessellation, the Delaunay
tessellation or the relative neighborhood graph, then the second condition in Theorem 6.1 can be deduced from
a simple condition on the underlying marked point process X .

Lemma 6.2. Let X be an independently and isotropically M-marked homogeneous Poisson point process with
intensity λ and let g : N → G denote the planar Voronoi tessellation, the Delaunay tessellation or the relative
neighborhood graph. Furthermore, assume that the probability that there exist distinct x, y ∈ fgeom(X ∩QM

5r(o))
with sin ∠([x, y], e1) ∈ (−r−θ, r−θ) tends to 0 as r → ∞. Then, the probability that there exists an edge e in
ggeom(X ∩QM

5r(o)) ∩Q3r(o) with sin ∠(e, e1) ∈ (−r−θ, r−θ) tends to 0 as r → ∞.

Proof. In the Delaunay tessellation (and therefore also in the relative neighborhood graph) every edge of
ggeom(X ∩ QM

5r(o)) ∩ Q3r(o) is of the form [x, y] for some x, y ∈ fgeom(X ∩ QM
5r(o)), so that the claim is im-

mediate. Similarly, in the Voronoi model every edge of the random segment process ggeom(X ∩QM
5r(o))∩Q3r(o)

is perpendicular to a segment of the form [x, y] for some x, y ∈ fgeom(X ∩QM
5r(o)), so that isotropy of X allows

us to complete the proof of Lemma 6.2. �

Note that if f ′
geom : NM → NM describes a thinning of NM in the sense that f ′

geom(ϕ) ⊂ fgeom(ϕ) for all ϕ ∈ NM,
then in order to check the condition of Lemma 6.2 for f ′

geom, it suffices to verify it for fgeom. Additionally, the
following result shows that Lemma 6.2 can be applied to a large class of finite-range Poisson-cluster processes.

Lemma 6.3. Let τ > 0 and let X denote an independently Nτ -marked homogeneous Poisson point process in
Rd with intensity λ > 0. Let Y ∈ Nτ denote the typical mark of X. Moreover, assume that E#Y <∞ and that
there exists θ ≥ 5 such that the probability that there exist distinct x, y ∈ Y with sin∠([x, y], e1) ∈ (−r−θ, r−θ)
is of order o(r−d). Then, the probability that there exist distinct x, y ∈ fgeom(X ∩QNτ

5r (o)) with sin∠([x, y], e1) ∈
(−r−θ , r−θ) tends to 0 as r → ∞.
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Proof. We distinguish two cases. First, let E1,r be the event that there exist (x0, ψ) ∈ X ∩QNτ
5r (o) and x, y ∈ ψ

with sin∠([x, y], e1) ∈ (−r−θ, r−θ). Then,

P(E1,r) ≤ λ5drdP
(
sin ∠([x, y], e1) ∈ (−r−θ, r−θ) for some x, y ∈ Y

)
,

which by our assumption tends to 0 as r → ∞. Next, let E2,r be the event that there exist (x0, ψ), (x′0, ψ
′) ∈

X ∩ QNτ
5r (o) and x ∈ ψ, x′ ∈ ψ′ with sin∠([x0 + x, x′0 + x′], e1) ∈ (−r−θ, r−θ). Furthermore, let Y , Y ′ be two

independent copies of the typical mark of X . Then,

P(E2,r) ≤ λ2
E

∑
x∈Y

∑
x′∈Y ′

∫
Q5r(o)

∫
Q5r(o)

1(−r−θ,r−θ)(sin ∠([x0 + x, x′0 + x′], e1))dx0dx′0

≤ 2κd−1λ
2
E

∑
x∈Y

∑
x′∈Y ′

5drd5
√
dr

(
5
√
dr · r−θ)d−1

≤ 2κd−1λ
252ddd/2r2d−θ(d−1)(E#Y )2,

which tends to 0 as r → ∞. �

6.2. Moderate deviations for geodesics

In the present section, we prove Theorem 2.2, i.e., we provide a result on moderate deviations of geodesics
from the straight line segment connecting their endpoints. Let G be a stationary, isotropic and ergodic random
segment process in Rd satisfying (2.2) as well as (G1) and (G2). Under these assumptions we prove the following
variant of ([16], Thm. 2.4) (see also ([24], Lem. 4.1) for a related result), where we recall that for η, η′ ∈ G we
write R(η, η′) for the set of all paths γ in G connecting η and η′ and satisfying ν1(γ) = 	(η, η′).

Proposition 6.4. Let β > 3/4 and σ > 0 be arbitrary. Then, for r ≥ 1 the events

sup
η∈G∩Bσ(o)
η′∈G∩Bσ(re1)

sup
γ∈R(η,η′)

x∈γ

dist(x, [η, η′]) ≤ rβ

occur whp.

Proof. Fix an arbitrary value δ ∈ (0, 1/(8d)) and assume β < 1 (we may do so without loss of generality).
For r ≥ 1 let Ar denote the event that i) q(o) ∈ Qr(o), ii) G ∩ Qr(o) is contained in a connected component
of G ∩ Q3r(o) and iii) ν1(G ∩ Q3r(o)) ≤ rd+1. For r ≥ 1 let E(1)

r denote the event that there exist z ∈ Zd

with rδz ∈ Q3r(o) and such that G − rδz 
∈ Arδ . Furthermore, let E(2)
r denote the event that there exist

η ∈ G ∩ Bσ(o), η′ ∈ G ∩ Bσ(re1) with dist(x, [η, η′]) ≥ rβ for some x ∈ γ and γ ∈ R(η, η′). Note that if E(2)
r

occurs, then there exist z ∈ Zd, γ ∈ R(η, η′) and x ∈ γ∩Qrδ(rδz) such that rδz ∈ Q3r(o) and dist(x, [η, η′]) ≥ rβ .
It is easy to see that this also implies dist(x, [o, re1]) ≥ r3/4+3ε/4, where ε = β − 3/4. To fix ideas, we assume,
additionally, that ζ = 〈rδz, e1〉/r ∈ [−1, 2] and |rδz − 〈rδz, e1〉e1| ≥ rβ

′
, where β′ = 3/4 + ε/2. The remaining

cases may be treated similarly. Finally, let E(3,a)
r and E

(3,b)
r denote the events that there exists z ∈ Zd with

rδz ∈ Q3r(o) and such that 	(o, rδz) < μrδ |z| − r1/2+ε/2 and 	(rδz, re1) < μ|rδz − re1| − r1/2+ε/2, respectively.
If E(2)

r occurs, then sub-additivity of 	 yields

	(o, re1) − μr ≥ 	(η, η′) − 	(η, o) − 	(η′, re1) − μr = 	(η, x) + 	(x, η′) − 	(η, o) − 	(η′, re1) − μr

≥ 	(o, rδz) + 	(rδz, re1) − 2	(x, rδz) − 2	(η, o) − 2	(η′, re1) − μr.

Furthermore, if neither of E(1)
r , E

(3,a)
r and E(3,b)

r occurs, then the last line is at least

μ
(|rδz| + |rδz − re1| − r

) − 4r1/2+ε/2 ≥ μr
(√

ζ2 + r2β′−2 +
√

(1 − ζ)2 + r2β′−2 − 1
) − 4r1/2+ε/2.
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Now,

√
ζ2 + r2β′−2 − ζ =

r2β
′−2√

ζ2 + r2β′−2 + ζ
≥ r2β

′−2/8,

and similarly,
√

(1 − ζ)2 + r2β′−2 − (1− ζ) ≥ r2β
′−2/8. Hence, 	(o, re1)− μr ≥ r1/2+ε/2, provided that r > 0 is

sufficiently large. To complete the proof we note that by (G1) and (G2) for r ≥ 1 the complements of the events
E

(1)
r occur whp and by (2.2) the complements of the events E(3,a)

r , E
(3,b)
r and E(2)

r \ (E(1)
r ∪E(3,a)

r ∪E(3,b)
r ) occur

whp. �

Using Proposition 6.4 we can now prove Theorem 2.2.

Proof of Theorem 2.2. Observe that if x1 ∈ Q1(o), x2 ∈ Rd, γ ∈ R(x1, x2) and y ∈ γ and z ∈ Zd are such that
x2 ∈ Q1(z) and dist(y, [x1, x2]) ≥ |x1 − x2|3/4+ε, then

dist(y, [x1, x2]) ≥ |x1 − x2|3/4+ε ≥
(|z| − 2

√
d
)3/4+ε ≥ |z|3/4+ε/2 ,

where the last inequality holds provided that |z| is sufficiently large. Therefore, using Proposition 6.4 in con-
junction with the isotropy assumption and the Borel−Cantelli lemma proves the claim. �

6.3. Shortest-path trees

We conclude this section by explaining how the framework of [16] can be used to see that Theorem 2.2
gives rise to non-trivial implications on the geometry of so-called shortest-path trees. First, we need to resolve
a technical issue related to non-uniqueness of geodesics. Suppose G forms a random segment process in Rd

and x1, x2 ∈ G(0) are such that there exist several distinct paths of minimal length 	(x1, x2) connecting x1

and x2, where G(0) denotes the set of all endpoints of segments of G. In Section 4, we used the lexicographic
ordering to select one of these paths. Although this rule is compatible with respect to translations of G, it is in
general incompatible with respect to rotations. In order to preserve isotropy, we introduce a new selection rule
involving additional randomness. To be more precise, we assign U([0, 1]) distributed, i.i.d. weights {Uv}v∈G(0) to
the endpoints of segments of G. These weights are assumed to be independent of G. Then, for each finite path γ
in G starting and ending at some vertex of G, let σ(γ) denote the sum of weights associated with the endpoints
of segments occurring in γ. Finally, among all paths γ connecting x1, x2 and such that ν1(γ) = 	(x1, x2) let
ρ(x1, x2) denote the path γ with minimal value of σ(γ).

Now, we introduce shortest-path trees, which loosely speaking can be thought of as the union of all shortest
Euclidean paths emanating from a given point on the underlying segment process G. To be more precise, the
shortest-path tree spt(G, η) associated with G and rooted at η ∈ G is defined as a random segment process on the
vertex set {η} ∪G(0). Two nodes x, y ∈ {η} ∪G(0) are connected by an edge in spt(G, η) if and only if the line
segment [x, y] is a subset of the geodesic ρ(η, x), or of the geodesic ρ(η, y). An illustration for the shortest-path
tree on a Delaunay tessellation is shown in Figure 5. Here, we only draw shortest paths from the vertices to the
root. The dots mark points for which the shortest path to the root is not unique.

From [16] we recall two further concepts. First, we consider the notion of asymptotic omnidirectionality.

Definition 6.5. A locally finite set ϕ ⊂ Rd is said to be asymptotically omnidirectional if for all k ≥ 1, the set
{q/|q| : q ∈ ϕ, |q| > k} is dense in the unit sphere ∂B1(o) = {x ∈ Rd : |x| = 1}.
Next, we discuss a.s. asymptotic omnidirectionality for the random segment processes under consideration.

Lemma 6.6. Let G be a stationary, isotropic and ergodic random segment process. Then, G(0) is a.s. asymp-
totically omnidirectional.
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(a) Cut-out of Poisson-Delaunay tessellation and
distinguished root

(b) Shortest-path tree

Figure 5. Construction of the shortest-path tree on a Poisson−Delaunay tessellation.

Proof. For v ∈ ∂B1(o) and ε ∈ (0, 1/2), let Av,ε denote the event that {q/|q| : q ∈ G(0)} ⊂ ∂B1(o) does not
contain any accumulation points in ∂B1(o) ∩ Bε(v). Isotropy implies P(Av,ε) = P(Ae1,ε) for any v ∈ ∂B1(o),
and #G(0) = ∞ yields P(Ae1,ε) < 1. Ergodicity then shows P(Ae1,ε) = 0. Since ε > 0 was arbitrary, this proves
the claim. �

For x ∈ Rd and w ∈ [0, π/2) let C(x,w) = {y ∈ Rd : |∠([o, x], [o, y])| ≤ w} denote the cone with apex o, axis
ox and angle w. Moreover, for u, u′ ∈ t(0) let tout(u, u′) denote the set of all u′′ ∈ t(0) such that the unique path
on t connecting u′′ to u contains u′. Then, we recall the definition of δ-straightness from [16].

Definition 6.7. For δ > 0 a tree t ⊂ Rd is called δ-straight at u ∈ t(0) if

tout(u, u′) ⊂ u+ C(u′ − u, |u′ − u|δ)
for all u′ ∈ t with |u′| sufficiently large.

In order to verify δ-straightness, the following deterministic result is useful.

Lemma 6.8. Let d ≥ 2, δ ∈ (0, 1/4). Then, there exists a constant c > 0 with the following property. Let
q1, . . . , qn ∈ Rd be any sequence of distinct points in Rd, such that

1. |qi| ≥ 31/δ for all i ∈ {1, . . . , n};
2. |qj+1 − qj | ≤ |qj |3/4 for all j ∈ {1, . . . , n};
3. dist(qj , [o, qk]) ≤ |qk|1−δ for all j, k ∈ {1, . . . , n} with j < k.

Then, |∠([o, qj ], [o, qk])| ≤ c|qj |−δ for all j, k ∈ {1, . . . , n} with j < k.

Proof. Lemma 6.8 constitutes a minor generalization of ([16], Lem. 2.7) and the proof of the latter result in fact
yields the presented more general claim. �

In particular, combining Lemma 6.8 with Corollary 2.2, we see that if G is a stationary, isotropic, ergodic
random segment process in R

d which satisfies (2.2) and conditions (G1) and (G2), then with probability 1 for
every point η ∈ G the shortest path tree spt(G, η) associated with G and rooted at η is δ-straight at η.
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For a subset B ⊂ Rd and a direction v ∈ ∂B1(o) we say that B has asymptotic direction v if

lim
|x|→∞
x∈B

x/|x| = v.

Now, we deduce from ([16], Prop. 2.8) and the above discussion the following result that will be used in Section 7.

Corollary 6.9. Let G be a stationary, isotropic and ergodic random segment process in Rd, which satisfies (2.2)
as well as conditions (G1) and (G2). Furthermore, write T = spt(G∗, o) for the shortest path tree with respect
to the origin o. Then, with probability 1, the tree T exhibits the following properties.

1. Every semi-infinite path in T starting from o has an asymptotic direction.
2. For every v ∈ ∂B1(o) there exists at least one semi-infinite path in T starting from o with asymptotic

direction v.
3. The set V of all v such that there exists more than one semi-infinite path starting from o with asymptotic

direction v is dense in ∂B1(o).

7. Competition interfaces

In the present section, we consider further implications of Theorem 2.1 for the case of planar segment pro-
cesses. We explain to what extent modifications of the results on competition interfaces considered in [3] can
be applied in the current setting. In the following, we assume that G denotes a planar, stationary, isotropic
and ergodic random segment process which satisfies (2.2) as well as conditions (G1) and (G2). Moreover, let
T = spt(G∗, o) denote the shortest-path tree on the Palm version G∗ of G, i.e., on the random segment process
whose distribution is determined by

Eh(G∗) =
1

Eν1(G ∩ [0, 1]2)
E

∫
G∩[0,1]2

h(G− x)ν1(dx),

where h : G → [0,∞) is any G-measurable function. Note that since the origin lies in the interior of an edge of
G∗ with probability 1, the tree T can be decomposed into two subtrees T1 and T2 rooted at o. We first introduce
the notion of competition interfaces based on ([3], Def. 1).

Definition 7.1. The competition interface Γ ⊂ G∗ is defined as the subset consisting of all x ∈ G∗ such that
for every ε > 0 there exist y1, y2 ∈ Bε(x) ∩G∗ with ρ(o, y1) ∩ ρ(o, y2) = {o}.
An illustration of the competition interface can be seen in Figure 6.

In the following, for any interval I ⊂ ∂B1(o) let CI = {x ∈ R2 | ∠(e1, [o, x]) ∈ I} denote the planar sector of
points whose angle with the x-axis is contained in I, where we identify ∂B1(o) with [0, 2π] mod 2π. Then, we
derive the following analog of ([3], Prop. 9).

Proposition 7.2. If both subtrees T1 and T2 are unbounded, then there exists a partition of the competition
interface Γ ⊂ G∗ into subsets Γ1, Γ2 ⊂ Γ such that both Γ1 and Γ2 admit an asymptotic direction. In particular,
there exist random intervals I1, I2 ⊂ [0, 2π] such that int I1 ∩ int I2 = ∅, I1 ∪ I2 = ∂B1(o) and for all δ > 0 there
exists an a.s. finite random r0 > 0 such that G∗ ∩ CIi�Bδ(o) \ Br0(o) ⊂ Ti, and Ti \ Br0(o) ⊂ CIi⊕Bδ(o) for all
i ∈ {1, 2}.
Proof. For the convenience of the reader, we recall the main ideas presented in ([3], Prop. 9). For i ∈ {1, 2} let
γi,h and γi,� denote the (trigonometrically) highest and lowest semi-infinite path contained in the subtree Ti.
Note that the competition interface Γ is contained in the union of two subsets M1,M2 ⊂ R2 enclosed by
γ1,h ∪ γ2,� on the one hand and by γ2,h ∪ γ1,� on the other hand, see Figure 7. Furthermore, we conclude from
Corollary 6.9 that γ1,h, γ2,h, γ1,� and γ2,� admit asymptotic directions θ1, θ2, θ′1 and θ′2, respectively. Also note
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(a) Cut-out of Poisson−Delaunay tessellation and
distinguished root

(b) Two subtrees of shortest-path tree (red and
blue) and competition interface (green)

Figure 6. Construction of the competition interface on a Poisson−Delaunay tessellation.
(Color online).

that θ1 = θ′2 and θ2 = θ′1. Indeed, if θ1 < θ′2 then Corollary 6.9 would imply the existence of a semi-infinite
path γ′′ with asymptotic direction θ′′ = (θ1 + θ′2)/2 and by the choice of γ1,h and γ2,�, this semi-infinite path
could be contained neither in T1 nor in T2. Therefore, Γ ∩M1 admits the asymptotic direction θ1, whereas
Γ ∩M2 admits the asymptotic direction θ2.

To prove the remaining claims, we put I1 = [θ′1, θ1] and I2 = [θ′2, θ2], where the intervals are to be considered
mod 2π. We may restrict our attention to the case I1 without loss of generality. To prove the first claim, let
δ > 0 be arbitrary. The curve γ1,� ∪ γ1,h \ (γ1,� ∩ γ1,h) subdivides R2 into two closed sets A(1)

1 and A(1)
2 . Exactly

one of these sets, say A(1)
1 , is disjoint from T2, see Figure 7. Then, by definition of θ1, θ′1, all x ∈ G∗∩C[θ′1+δ,θ1−δ]

with |x| sufficiently large are contained in A
(1)
1 . We omit the proof of the last claim, since it is shown using

similar arguments. �

Remark 7.3. The second part of Proposition 7.2 remains true in the case, where one of the subtrees, say T1,
is bounded. Indeed, then we put I1 = ∅, I2 = [0, 2π) and make the convention that C∅ = {o}.
Example 7.4. Let G∗ ⊂ R2 denote the Palm version of an isotropic planar Poisson line tessellation G with
intensity λ > 0. It is well-known that G∗ can be obtained from G by adding an isotropic line 	0 through the
origin. The origin separates 	0 into two rays and each of the subtrees T1, T2 contains precisely one of these rays.
In particular, both T1 and T2 are unbounded with probability 1.

For general random segment processes, it is difficult to determine the probability of the event that both
subtrees T1, T2 are unbounded. One can show that for Poisson−Voronoi and Poisson−Delaunay graphs one of
the subtrees T1, T2 is bounded with positive probability. However, preliminary Monte Carlo simulations indicate
that this appears to be a rather pathological event. We conclude this section by expressing a sufficient condition
implying that with positive probability both subtrees T1, T2 are unbounded. First, we need a variant of the
classical result on the uniqueness of semi-infinite paths in the two-dimensional case, which is based on the
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M1

M2

γ1,�γ1,h

γ2,�

γ2,h

A
(1)
1

A
(2)
2

Figure 7. Subtrees T1 (red) and T2 (blue); geodesics γ1,�, γ1,h, γ2,� and γ2,h; domains M1 (light
gray) and M2 (dark gray). (Color online).

framework developed in [19] (see also [8, 15] for further applications). For the convenience of the reader, we
present the details.

Proposition 7.5. Let v ∈ ∂B1(o) be arbitrary. Then, with probability 1, for every x ∈ G(0) there exists exactly
one semi-infinite path in spt(G, x) with asymptotic direction v starting from x.

Proof. If there exist two distinct semi-infinite paths γ1, γ2 in T = spt(G, x) starting from x ∈ G(0) and with
asymptotic direction v, then x0 denotes the last vertex common to both γ1 and γ2 and let x1 be the successor
vertex of x0 in γ1. Furthermore, we consider the subtree T out(x0, x1) of T introduced in Definition 6.7. As
the semi-infinite sub-path of γ1 starting from x1 is contained in T out(x0, x1), we conclude that T out(x0, x1)
is unbounded. The trigonometrically lowest and trigonometrically highest semi-infinite path in T out(x0, x1) is
denoted by γ�(x0, x1) and γh(x0, x1) ⊂ T out(x0, x1), respectively. As either γ�(x0, x1) or γh(x0, x1) lies between γ1

and γ2 we also conclude that at least one of γ�(x0, x1) and γh(x0, x1) admits the asymptotic direction v. Denoting
by D(v) the event that there exists a point in G(0) admitting two semi-infinite paths with asymptotic direction v
and by S(v) the family of all semi-infinite paths with asymptotic direction v, an application of Fubini’s theorem
yields∫ 2π

0

P
(
D(v)

)
dv = Eν1

({
v ∈ ∂B1(o) : D(v)

}) ≤ E

∑
x0,x1∈X

1T out(x0,x1) is unbounded

∫ 2π

0

1{γ�(x0,x1),γh(x0,x1)}∩S(v) �=∅dv,

which equals 0, as the integrand can be non-zero for at most two values in [0, 2π). In particular, there exists
v ∈ ∂B1(o) with P

(
D(v)

)
= 0 and isotropy then completes the proof. �

It is useful to have a more specific description of the uniquely determined geodesic with a given direction.

Lemma 7.6. Let v ∈ ∂B1(o) and x ∈ G be such that there exists a unique semi-infinite path γ in spt(G, x) with
asymptotic direction v starting from x. Furthermore, let {ζn}n≥1 be any semi-infinite path in G with asymptotic
direction v starting from x. Then γ is the unique semi-infinite path contained in

⋃
n≥0 ρ(x, ζn) starting from x.

Additionally, for every z ∈ γ it holds that z ∈ ρ(x, ζn) for all sufficiently large n ≥ 0.
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γ′
−

x

x′z
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Figure 8. Semi-infinite geodesics γ−, γ′− and γ+.

Proof. From Corollary 2.2 and Lemma 6.8 we conclude that for all ε > 0 there exist r, n0 ≥ 1 such that for
every n ≥ n0 the subset ρ(x, ζn) \ Br(x) is contained in the cone at x with axis direction v and angle ε. In
particular,

⋃
n≥0 ρ(x, ζn) admits the asymptotic direction v. Hence, our assumption implies that γ is the unique

semi-infinite path starting from x that is contained in
⋃
n≥0 ρ(x, ζn). To verify the second claim, suppose that

there exist infinitely many positive integers ni such that z 
∈ ρ(x, ζni). Then, by the same argument as before,⋃
i≥0 ρ(x, ζni) admits the asymptotic direction v, so that γ forms the unique semi-infinite path starting from x

that is contained in
⋃
i≥0 ρ(x, ζni ). In particular, z ∈ ρ(x, ζni ) for some i ≥ 1. �

In the next result, we express a sufficient condition for the property that simultaneous unboundedness of the
subtrees T1 and T2 occurs with positive probability.

Proposition 7.7. Suppose that P
(⋂

x,y∈G(0){#R(x, y) = 1}) = 1, i.e., with probability 1 any two vertices of
G are connected by a unique geodesic. Then, with positive probability, both subtrees T1 and T2 of spt(G∗, o) are
unbounded.

Proof. Let I denote the subset of all x ∈ G for which both subtrees of spt(G, x) are unbounded. By definition
of the Palm version, it suffices to show that I contains a segment of positive length with probability 1. If γ is a
path in G and x, y ∈ G lie on γ, then it is convenient to write γ(x, y) for the sub-path of γ starting from x and
ending at y. If γ is a semi-infinite path, we write γ(x) for the semi-infinite sub-path starting from x. Let x ∈ G(0)

be any point such that if γ+ and γ− denote the unique semi-infinite paths starting from x with asymptotic
directions e1 and −e1, respectively, then γ+ and γ− intersect only at x. We can find such a point x by starting
from an arbitrary element x0 ∈ G(0) and considering the last point that is common to the semi-infinite paths
starting from x0 with asymptotic directions −e1 and e1, respectively. Furthermore, let x′ denote the successor
vertex of x in γ+ and let γ′− denote the semi-infinite path with direction −e1 starting from x′. See Figure 8 for
an illustration of the configuration.

Then, for every y ∈ (x, x′) the shortest-path tree spt(G, y) contains the semi-infinite path γ+, so that it
suffices to show that there exists y ∈ (x, x′) such that the path [y, x] ∪ γ− is contained in spt(G, y). Uniqueness
of geodesics implies that [x, x′] ∪ γ′− cannot form a semi-infinite path in spt(G, x). In particular, there exists a
vertex z ∈ γ′− such that ν1(ρ(x, z)) < |x − x′| + ν1(γ′−(x′, z)). Therefore, we can choose y ∈ (x, x′) such that
|y − x|+ ν1(ρ(x, z)) < |y− x′|+ ν1(γ′−(x′, z)). In particular, writing γ− = {ζn}n≥0 we obtain for all n ≥ 0 with
z ∈ ρ(x′, ζn) that

|y − x| + ν1(ρ(x, ζn)) ≤ |y − x| + ν1(ρ(x, z)) + ν1(ρ(z, ζn)) < |y − x′| + ν1(γ′−(x′, z)) + ν1(ρ(z, ζn)),

which equals |y−x′|+ν1(ρ(x′, ζn)). Lemma 7.6 now implies that the path [y, x]∪γ− is contained in spt(G, y). �

We conclude the present paper by providing an explicit example fitting into the framework described above.
More precisely, we show that the Delaunay tessellation and the relative neighborhood graph on a suitable
family of point processes satisfy the condition of Proposition 7.7. Indeed, we recall the following result from ([9],
Lem. 3.1)
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Lemma 7.8. Let X be a stationary point process in Rd such that for every n ≥ 1 the nth factorial moment
measure of X is absolutely continuous with respect to the Lebesgue measure in Rnd. Furthermore, let k ≥ 1
and let {ci,j}1≤i<j≤k be such that ci,j 
= 0 for some i < j. Then, the event that there exist pairwise distinct
x1, . . . , xk ∈ X with

∑
1≤i<j≤k ci,j |xi − xj | = 0 occurs with probability 0.

For the Poisson−Voronoi model, the absolute continuity of the nth factorial moment measure corresponding
to the point process of vertices is a non-trivial issue, which would requires a separate proof. The probability
density of the second factorial moment measure is explicitly determined in [12], but it seems difficult to generalize
the results to factorial moment measures of arbitrary order.
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