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POSTERIOR CONTRACTION RATE FOR NON-PARAMETRIC BAYESIAN
ESTIMATION OF THE DISPERSION COEFFICIENT OF A STOCHASTIC

DIFFERENTIAL EQUATION

Shota Gugushvili
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and Peter Spreij
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Abstract. We consider the problem of non-parametric estimation of the deterministic dispersion
coefficient of a linear stochastic differential equation based on discrete time observations on its solution.
We take a Bayesian approach to the problem and under suitable regularity assumptions derive the
posteror contraction rate. This rate turns out to be the optimal posterior contraction rate.
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1. Introduction

Suppose a simple linear stochastic differential equation

dXt = s(t)dWt, X0 = x, t ∈ [0, 1], (1.1)

with a deterministic dispersion coefficient s and a deterministic initial condition X0 = x is given. Here W is
a Brownian motion. Without loss of generality, we take x = 0. The process X is Gaussian with mean zero
and covariance ρ(u, v) =

∫ u∧v

0
(s(t))2dt. By Ps we will denote the law of the process X corresponding to the

dispersion coefficient s in (1.1). The dispersion coefficient s can be interpreted as a signal passing through a
noisy channel, where the noise is multiplicative and is modelled by the Brownian motion.

Suppose that corresponding to the true dispersion coefficient s = s0, a sample Xti,n , i = 1, . . . , n, from the
process X is at our disposal, where ti,n = i/n, i = 0, . . . , n. Our goal is non-parametric Bayesian estimation of
s0. Related references employing the frequentist approach for a similar model are [2,8,14]. For a non-parametric
Bayesian approach, see [7]. Note that our model shows obvious similarities to a standard non-parametric regres-
sion model, or to the white noise model (see e.g. [12] or [16] for these models in the non-parametric Bayesian
context), but also possesses distinctive features of its own. Two recent works dealing with theoretical proper-
ties of non-parametric Bayesian techniques applied in stochastic differential equation models are [17] and [11],
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but we note that both the models and observation schemes in those papers are rather different from the ones
considered in this work.

Let X denote some (non-parametric) class of dispersion coefficients s. The likelihood corresponding to the
observations Xti,n is given by

Ln(s) =
n∏

i=1

⎧⎨⎩ 1√
2π

∫ ti,n

ti−1,n
s2(u)du

ψ

⎛⎝ Xti,n −Xti−1,n√∫ ti,n

ti−1,n
s2(u)du

⎞⎠⎫⎬⎭ , (1.2)

where ψ(u) = exp(−u2/2). For a prior Π on X , the posterior measure of any measurable set S ⊂ X can be
obtained through Bayes’ formula,

Π(S|Xt0,n . . . , Xn,n) =

∫
S Ln(s)Π(ds)∫
X Ln(s)Π(ds)

·

One can then proceed with the computation of other quantities of interest in the Bayesian paradigm, for instance
point estimates of s0, credible sets and so on.

A desirable property of a Bayes procedure is posterior consistency. In our context posterior consistency means
that for every neighbourhood Us0 of s0 (in a suitable topology)

Π(U c
s0
|Xt0,n , . . . , Xtn,n)

Ps0−−→ 0

as n→ ∞. In other words, when viewed under the true law Ps0 , a consistent Bayesian procedure asymptotically
puts posterior mass equal to one on every fixed neighbourhood of the true parameter s0. Study of posterior con-
sistency is similar to study of consistency of frequentist estimators, and in fact, if posterior consistency holds, the
center of the posterior distribution (in an appropriate sense) will provide a consistent (in the frequentist sense)
estimator of the parameter of interest. For an introduction to consistency issues in Bayesian non-parametric
statistics, see e.g. [6] and [18]. Posterior consistency for the model (1.1) was shown under suitable conditions
in [7].

More generally, instead of a fixed neighbourhood Us0 of the true parameter s0, one can also take a sequence
of neighbourhoods Us0,εn shrinking to s0 at a rate εn → 0 (the sequence εn determines the size of the neigh-
bourhood) and ask at what rate is εn allowed to decay to zero, so that the neighbourhoods Us0,εn still manage
to capture most of the posterior mass. A formal way to state this is

Π(U c
s0,εn

|Xt0,n , . . . , Xtn,n)
Ps0−−→ 0 (1.3)

as n→ ∞. The rate εn is called the posterior contraction rate, or the posterior convergence rate. Note that εn

is not uniquely defined: if εn is a posterior contraction rate, then so is e.g. 2εn, because U c
s0,2εn

⊂ U c
s0,εn

. This,
however, is true also for the convergence rate of frequentist estimators, cf. a discussion on page 79 in [15]. In
general, we are interested in determination of the ‘fastest’ rate of decay of εn, so that (1.3) still holds. Some
references on derivation of posterior convergence rates under various statistical setups are [3,4,13]. Study of this
question parallels the analysis of convergence rates of various estimators in the frequentist literature. In fact,
a property like (1.3) also implies that Bayes point estimates have the convergence rate εn (in the frequentist
sense), cf. pages 506–507 in [3]. It is well-known that in finite-dimensional (i.e. parametric) statistical problems
under suitable regularity assumptions Bayes procedures yield optimal (in the frequentist sense) estimators. The
situation is much more subtle in the infinite-dimensional setting: a careless choice of the prior might violate
posterior consistency, or the posterior might concentrate around the true parameter value at a suboptimal
rate (here by ‘suboptimal’ we mean the rate slower than the minimax rate for estimation of s0). Hence the
importance of derivation of the posterior contraction rate.

The general structure of the present work is similar to our earlier paper [7] on posterior consistency, but
with a crucial difference. To get out main result on the contraction rate we heavily rely on more sophisticated
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results from empirical process theory. The outline of the paper is as follows. In Section 2 we formulate a theorem
establishing (1.3) under suitable conditions and provide a discussion on it. The proof of the theorem is given in
Section 3, while the Appendix contains a number of technical lemmas used in the proof of the theorem.

Throughout the paper we will use the following notation to compare two sequences an and bn of real numbers:
an � bn will mean that there exists a constant B > 0 that is independent of n and is such that an ≤ Bbn;
an � bn will mean that there exists a constant A > 0 that is independent of n and is such that Aan ≥ bn; an � bn
will mean that an and bn are asymptotically of the same order, i.e. −∞ < lim infn→∞ an/bn ≤ lim supn→∞
an/bn <∞.

2. Main theorem

We first specify the non-parametric class X of dispersion coefficients s.

Definition 2.1. Let X be some collection of dispersion coefficients s : [0, 1] → [κ,K], such that ‖s′‖∞ ≤ M.
Here 0 < κ < K < ∞ and 0 < M < ∞ are three constants independent of a particular s ∈ X , while ‖ · ‖∞
denotes the L∞-norm (supremum norm).

Remark 2.2. Since Ps = P−s, a positivity assumption on s ∈ X in Definition 2.1 is a natural identifiabil-
ity requirement. Furthermore, strict positivity of s allows one to avoid complications when manipulating the
likelihood (1.2). Boundedness and differentiability of s also come in handy in the proof of Theorem 2.4 below.

We summarise the assumptions on our statistical model.

Assumption 2.3. Assume that

(a) the model (1.1) is given with x = 0 and s ∈ X , where X is as in Definition 2.1;
(b) s0 ∈ X denotes the true dispersion coefficient;
(c) a discrete-time sample {Xti,n} from the solutionX to (1.1) corresponding to s0 is available, where ti,n = i/n,

i = 0, . . . , n.

For ε > 0 introduce the notation

Us0,ε = {s ∈ X : ‖s− s0‖2 < ε} , Vs0,ε = {s ∈ X : ‖s− s0‖∞ < ε} .

Here ‖ ·‖2 denotes the L2-norm. We will establish (1.3) for the complements of the neighbourhoods Us0,εn of the
true parameter s0 and determine the corresponding posterior contraction rate εn. The choice of the L2-norm to
define neighbourhoods Us0,ε appears to be quite natural, because under Assumption 2.3 the distribution of X1

has as its standard deviation the L2-norm of s0. Hence the obvious notion of a distance between two dispersion
coefficients should be that norm as well.

Theorem 2.4. Suppose that Assumption 2.3 holds. Let the sequence ε̃n of strictly positive numbers be such
that ε̃n � n−1/3 logn, and let the prior Π on X be such that

Π(Vs0,ε̃n
) � e−Cnε̃2

n (2.1)

for some constant C > 0 that is independent of n. Then for a large enough constant M̃ and a sequence εn = M̃ε̃n,

Π(U c
s0,εn

|Xt0,n , . . . , Xtn,n)
Ps0−−→ 0

holds.
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Remark 2.5. Theorem 2.4 states that under the differentiability assumption on the members s of the class X
of dispersion coefficients, the posterior contracts around the true dispersion coefficient s0 at the rate n−1/3 logn.
This implies existence of Bayes estimates that converge (in the frequentist sense) to s0 at the same rate. By
Proposition 1 from [8], the rate n−1/3 is the minimax convergence rate for estimation of the diffusion coefficient s20
with L2-loss function in essentially the same model as ours. In this sense the rate derived in Theorem 2.4 can
be thought of as essentially (up to a logarithmic factor) optimal posterior contraction rate. The logarithmic
factor is perhaps an artefact of our proof of Theorem 2.4. We add that the use of the empirical process theory
techniques involves the choice of many constants that cannot always be easily controlled, and it is at various
instances unclear whether our technical estimates and inequalities continue to hold without the logarithmic
term. See for instance the proofs of (A.1) and (A.5) below, to mention two examples.

Remark 2.6. An essential condition in Theorem 2.4 is (2.1). A prior Π satisfying condition (2.1) can be
constructed, for instance, through a construction similar to the one given in Section 3 of [3], that is based
on finite approximating sets (this type of prior was introduced in [5]). Let ε̂n = cn−1/3 logn for a constant
c > 0 to be chosen later on, and let {λn} be a sequence of weights, such that λn ≥ 0,

∑∞
n=1 λn = 1, and

log(λn) ≥ −c′ logn (some c′ > 0). Given a function u ∈ X , an upper bracket u] (note that our notation is
non-standard and that we require u ∈ X ) of size ε̂n relative to the supremum norm is defined as the set of all
those functions s ∈ X , such that s(t) ≤ u(t), ∀t ∈ [0, 1], and ‖s− u‖∞ < ε̂n (as a side remark we mention that
we could also have used lower brackets, or ordinary brackets). For every n ∈ N, let Πn be a uniform distribution
on N],∞(ε̂n,X ) upper bracket functions uj ’s, obtained by covering X with a minimal number of upper brackets
of size ε̂n. We will call N],∞(ε̂n,X ) the ε̂n-upper bracketing number of X relative to the supremum norm (cf.
p. 510 in [3]). Next we define the prior Π by

Π =
∞∑

n=1

λnΠn.

Now consider the set Vs0,ε̃n
and note that s0 is contained in one of the N],∞(ε̂n,X ) upper brackets uj] of size ε̂n.

Then, by construction,

Π(Vs0,ε̃n
) ≥ λn

1
N],∞(ε̂n,X )

,

provided the constant c is chosen small enough. The ε̂n-upper bracketing numbers N],∞(ε̂n,X ) are not larger
than bracketing numbers N∞(ε̂n/2,X ) of X relative to the L∞-norm (defined implicitly in Def. 2.3 in [1]). By
Lemma 2.3 and Problem 2.5 in [1], we obtain for the ε̂n-entropy of X relative to the supremum norm an upper
estimate

H∞(ε̂n/2,X ) = logN∞(ε̂n/2,X ) � 1
ε̂n
,

so that as a consequence

log
(
λn

1
N],∞(ε̂n,X )

)
� −nε̃2n,

and (2.1) follows.

Remark 2.7. Theorem 2.4 can be generalised to the case where the members of the class X of dispersion
coefficients are β > 1 times differentiable with derivatives satisfying suitable boundedness assumptions, and
s0 ∈ X . The convergence rate that can be obtained in that case is (up to a logarithmic factor) n−β/(2β+1). The
general structure of the proof of the corresponding statement is similar to that of Theorem 2.4, one notable
modification being that in the proof of Lemmas A.1 and A.3 one will have to use different entropy estimates for
the class X . A suitable prior can be exhibited through a construction similar to the one given in Remark 2.6
for the case of Theorem 2.4.
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Remark 2.8. Equation (1.1) specifies a model for the observations without drift. This model can be expanded
by including a drift term as well, and in Bayesian analysis this naturally calls for a prior on it. However, since
the drift cannot be consistently estimated under our observation scheme, such an extension would drastically
complicate our analysis. Alternatively, one could work in the spirit of [10] and try to establish convergence
under misspecification to a ‘wrong’ model, that is in terms of Kullback–Leibler divergence nearest to the true
probability that governs the observations. It seems that in this approach it is possible to establish an analogue
of Theorem 2.4. We leave this to future research.

3. Proof of Theorem 2.4

Before proceeding any further, we would like to make a general comment on the Proof of Theorem 2.4:
in principle, it is conceivable that its statement could be derived from some general result on the posterior
contraction rate, see e.g. Sections 2 and 3 in [4]. However, in this work we take an alternative approach, that is
similar in some respects to the one in [13] and that relies on results from empirical process theory (see e.g. [1]).
This alternative approach is not necessarily the shortest or simplest, and the choice of a specific path to the
derivation of a posterior convergence rate is perhaps a matter of taste.

Throughout this section and the Appendix, Rn(s) = Ln(s)/Ln(s0) will denote the likelihood ratio corre-
sponding to the observations Xti,n. We will use the notation Pi,n,s to denote the law of Yi,n = Xti,n −Xti−1,n

corresponding to the parameter value s in (1.1), and Pi,n,0 to denote the law of Yi,n corresponding to the true
parameter value s0 in (1.1). The corresponding densities will be denoted by pi,n,s and pi,n,0. We also set

zi = ti−1,n, Wi = 1 − Y 2
i,n∫ ti,n

ti−1,n
s20(u)du

, fs(z) =

∫ z+1/n

z [s20(u) − s2(u)]du∫ z+1/n

z
s2(u)du

·

The latter notation is reminiscent of the one used in [1]. Note that the Wi’s are i.i.d. with zero mean and
variance equal to two. Each Wi is distributed as a random variable 1 − Z2

i , for Zi having a standard normal
distribution. As distributions matter in what follows, this justifies omission of a formally required extra index n
in Wi = Wi,n. Furthermore, zi’s and fs also formally require an extra index n, but we omit it as no confusion
will arise.

Proof of Theorem 2.4. We have

Π(U c
s0,εn

|Xt0,n . . . , Xtn,n) =

∫
Uc

s0,εn

Ln(s)Π(ds)∫
X Ln(s)Π(ds)

=

∫
Uc

s0,εn

Rn(s)Π(ds)∫
X Rn(s)Π(ds)

=
Nn

Dn
·

We will establish the theorem by separately bounding Dn and Nn and then combining the bounds.
Let Sn(s) = n−1 logRn(s). Then Dn =

∫
X exp(nSn(s))Π(ds). We have

Sn(s) =
1
2

1
n

n∑
i=1

Wifs(zi) +
1
2

1
n

n∑
i=1

[log (1 + fs(zi)) − fs(zi)] .

Let n be large enough and assume that s ∈ Vs0,ε̃n
. As a consequence of Lemmas A.1 and A.2 from the Appendix

and by condition (2.1) on the prior, we get that with probability tending to one as n→ ∞,

1
Dn

≤
(∫

Vs0,ε̃n

Rn(s)Π(ds)

)−1

� exp
((

8K2

κ4
+ C

)
nε̃2n

)
. (3.1)

This finishes derivation of a bound for Dn. We now turn to Nn. In Lemma A.3 from the Appendix we show that
with probability tending to one as n→ ∞, for some constant c1 > 0 we have Nn ≤ exp(−c1nε2n). Combination
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of this bound with (3.1) gives that with probability tending to one as n→ ∞, the inequality

Π(U c
s0,εn

|Xt0,n . . . , Xtn,n) � exp
(
−c1nε2n +

(
8K2

κ4
+ C

)
nε̃2n

)
is valid. From this it immediately follows that for εn = M̃ε̃n with a large enough constant M̃, the left-hand side
of the above display converges to zero in probability. This completes the proof of the theorem. �

Appendix

Throughout the Appendix we will use the following notation: for any ε > 0, Mε will denote the smallest
positive integer, such that 2Mεε2 ≥ 4K2. Note that by definition 2Mεε2 ≤ 8K2 (because 2Mε−1ε2 < 4K2) and
that for ε → 0 we have Mε � log2(1/ε). We set Aj,ε = {s ∈ X : 2jε2 ≤ ‖s − s0‖2

2 < 2j+1ε2} and Bj,ε = {s ∈
X : ‖s− s0‖2

2 < 2j+1ε2} for j = 0, 1, . . . ,Mε. We will also let Zi,n,s(Yi,n) = log(pi,n,s(Yi,n)/pi,n,0(Yi,n)) denote
the log-likelihood ratio corresponding to one ‘observation’ Yi,n.

Lemma A.1. Let the conditions of Theorem 2.4 hold. Then

sup
fs∈Fs0,ε̃n

∣∣∣∣∣ 1n
n∑

i=1

Wifs(zi)

∣∣∣∣∣ = OPs0
(δn) ,

where Fs0,ε̃n
= {fs : ‖s− s0‖∞ < ε̃n} and δn is an arbitrary sequence of positive numbers, such that δn � ε̃2n.

Proof. We will establish the lemma using empirical process theory. In particular, we will employ Corollary 8.8
from [1]. In light of the fact that ε̃n � n−1/3 logn, in order to prove the lemma it suffices to show that

sup
gs∈Gs0,ε̃n

∣∣∣∣∣ 1n
n∑

i=1

Wigs(zi)

∣∣∣∣∣ = OPs0
(δn) ,

where

gs(z) =
s20(z) − s2(z)

s2(z)
, Gs0,ε̃n

= {gs : ‖s− s0‖∞ < ε̃n},

and the notation resembles the one in [1], so that the arguments become more transparent. Indeed, it suffices to
note that by Assumption 2.3 we have fs(zi) = gs(zi) + O(n−1) (the remainder term is of order 1/n uniformly
in s), whence

sup
fs∈Fs0,ε̃n

∣∣∣∣∣ 1n
n∑

i=1

Wifs(zi)

∣∣∣∣∣ ≤ sup
gs∈Gs0,ε̃n

∣∣∣∣∣ 1n
n∑

i=1

Wigs(zi)

∣∣∣∣∣ +OPs0

(
1
n

)
.

In order to apply Corollary 8.8 from [1], we need to verify its conditions, and in particular we need to check
formulae (8.23)–(8.29) there. This involves somewhat lengthy computations. Firstly, we need to find a con-
stant Rn, such that supgs∈Gs0,ε̃n

‖gs‖2
Qn

≤ R2
n. Here Qn = n−1

∑n
i=1 δzi is the empirical measure associated

with the points zi and ‖gs‖2
Qn

= n−1
∑n

i=1 g
2
s(zi). Now, ‖gs‖2

Qn
≤ 4K2ε̃2n/κ

4 for gs ∈ Gs0,ε̃n
, and thus it suffices

to take Rn = 2Kε̃n/κ
2. Next, set K1 = 3. Using the rough bound |ex − 1 − x| ≤ x2e|x|, we get that

2K2
1Es0

[
e|Wi|/K1 − 1 − |Wi|

K1

]
≤ 2Es0

[
W2

i e|Wi|/3
]
<∞.

Let σ2
0 = 2Es0

[W2
i e|Wi|/3

]
and note that this quantity is finite. With these K1 and σ0, (8.23) in [1] will be

satisfied. Next we need to find a constant K2, such that the inequality supgs∈Gs0,ε̃n
‖gs‖∞ ≤ K2 holds. One

can take K2 = 2Kε̃n/κ
2, and this verifies (8.24) in [1]. We take C1 = 3, set K = 4K1K2, and note that for
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all n large enough, δn ≤ C12R2
nσ

2
0/K and δn ≤ 8

√
2Rnσ0 hold, because ε̃n → 0. This choice of C1 and K thus

yields (8.25)–(8.27) in [1]. Next let C0 = 2C, where C is a universal constant as in Corollary 8.8 in [1]. This
choice of C0 yields (8.29) in [1]. It remains to check (8.28) in [1], i.e.

√
nδn ≥ C0

(∫ √
2Rnσ0

0

H
1/2
B

(
u√
2σ0

,Gs0,ε̃n
, Qn

)
du ∨√

2Rnσ0

)
, (A.1)

where HB (δ,Gs0,ε̃n
, Qn) is the δ-entropy with bracketing of Gs0,ε̃n

for the L2(Qn)-metric (see Def. 2.2 in [1]),
and a ∨ b denotes the maximum of two numbers a and b. By Lemma 2.1 in [1] and Problem 2.5 there,
HB (δ,Gs0,ε̃n

, Qn) ≤ H∞(δ/2,Gs0,ε̃n
), where H∞(δ,Gs0,ε̃n

) is the δ-entropy of Gs0,ε̃n
for the supremum norm (see

Def. 2.3 in [1]). Lemma 3.9 in [1] implies that there exists a constant A1 > 0, such that H∞(δ,Gs0,ε̃n
) ≤ A1δ

−1

for all δ > 0 (the fact that the matrix ΣQn from the statement of that lemma is non-singular, can be shown by
a minor variation of an argument from the proof of Lem. 1.4 in [15]). Hence

∫ √
2Rnσ0

0

H
1/2
B

(
u√
2σ0

,Gs0,ε̃n
, Qn

)
du ≤

√
A1

∫ √
2Rnσ0

0

(
u√
22σ0

)−1/2

du ≤ 4σ0

√
A1Rn �

√
ε̃n.

Since ε̃n → 0, the right-hand side of (A.1) is of order
√
ε̃n, and then ε̃n � n−1/3 logn is enough to ensure

that (A.1), or equivalently, formula (8.28) in [1], holds for all n large enough. This completes verification of the
conditions in Corollary 8.8 in [1]. As a result, cf. formula (8.30) in [1], for all n large enough we get the bound

Ps0

(
sup

g∈Gs0,ε̃n

∣∣∣∣∣ 1n
n∑

i=1

Wig(zi)

∣∣∣∣∣ ≥ δn

)
≤ C exp

(
− nδ2n
C2(C1 + 1)2R2

nσ
2
0

)
.

The right-hand side of this expression converges to zero as n→ ∞, because nε̃2n → ∞. This completes the proof
of the lemma. �

Lemma A.2. Let the conditions of Theorem 2.4 hold, assume that n is large enough and let s ∈ Vs0,ε̃n
. Then

1
2

1
n

n∑
i=1

{log(1 + fs(zi)) − fs(zi)} ≥ −1
2

∫ 1

0

(s20(u) − s2(u))2

s4(u)
du+O

(
1
n

)
≥ −2K2

κ4
ε̃2n +O

(
1
n

)
,

where the remainder term is of order n−1 uniformly in s.

Proof. By the elementary inequality | log(1 + t) − t| ≤ t2 that is valid for |t| < 1/2, we have for all n large
enough and uniformly in s ∈ Vs0,ε̃n

that

|log (1 + fs(zi)) − fs(zi)| ≤ f2
s (zi).

Hence
log (1 + fs(zi)) − fs(zi) ≥ −f2

s (zi),

and therefore
1
2

1
n

n∑
i=1

{log(1 + fs(zi)) − fs(zi)} ≥ −1
2

1
n

n∑
i=1

f2
s (zi).



150 S. GUGUSHVILI AND P. SPREIJ

The statement of the lemma now follows by a simple computation employing Assumption 2.3 and the Riemann
sum approximation of the integral, yielding that for all n large enough,

−1
2

1
n

n∑
i=1

f2
s (zi) = −1

2

∫ 1

0

(s20(u) − s2(u))2

s4(u)
du+O

(
1
n

)
≥ −2K2

κ4
ε̃2n +O

(
1
n

)
,

where the remainder term is of order n−1 uniformly in s. �

Lemma A.3. Let the conditions of Theorem 2.4 hold and let εn � n−1/3 logn. Denote σ2
0 = 2Es0

[W2
i e|Wi|/3

]
.

There exists a constant c̃0 > 0, such that c̃0 ≤ K4σ0 (σ0 ∧ 4) /κ4, another constant c1, such that c1 < c̃0κ
2/(2K4),

and a universal constant C > 0, for which the inequality

Ps0

(
sup

s∈Uc
s0,εn

n∏
i=1

pi,n,s(Yi,n)
pi,n,0(Yi,n)

≥ exp
(−c1nε2n)

)
≤ CMεn exp

(
− (c̃0κ2/(2K4) − c1)2

8C2(4K2/κ4 + 1)σ2
0

nε2n

)
holds for all n large enough. Here a∧ b denotes the minimum of two numbers a and b. In particular, as n→ ∞,
the right-hand side of the above display converges to zero.

Proof. As in the proof of Lemma A.1, we will use empirical process theory to establish the result. We use the
convention that the supremum over the empty set is equal to zero. By Assumption 2.3, we have ‖s−s0‖2

2 ≤ 4K2.
Hence, using the definition of Mεn and Aj,εn at the beginning of this appendix, we can write

Ps0

(
sup

s∈Uc
s0,εn

n∏
i=1

pi,n,s(Yi,n)
pi,n,0(Yi,n)

≥ exp
(−c1nε2n)

)
=

Mεn∑
j=0

Ps0

(
sup

s∈Aj,εn

n∏
i=1

pi,n,s(Yi,n)
pi,n,0(Yi,n)

≥ exp
(−c1nε2n)

)
.

We will individually bound the summands on the right-hand side of the above display, thereby obtaining a
bound on its left-hand side, and will show that this upper bound converges to zero as n→ ∞.

Using Lemma A.4 ahead (note that the constant c̃0 in its statement can be taken arbitrarily small) and
recalling the definition of Zi,n,s(Yi,n), Aj,εn and Bj,εn at the beginning of this appendix, we obtain that for all
n large enough

Ps0

(
sup

s∈Aj,εn

n∏
i=1

pi,n,s(Yi,n)
pi,n,0(Yi,n)

≥ exp
(−c1nε2n)) ≤ Ps0

(
sup

s∈Aj,εn

exp

(
n∑

i=1

{Zi,n,s(Yi,n) − Es0 [Zi,n,s(Yi,n)]}
)

≥ exp

(
2jnε2n

(
c̃0κ

2

K4
− C̃0

2jnε2n
− c1

2j

)))

≤ Ps0

(
sup

s∈Bj,εn

exp

(
n∑

i=1

{Zi,n,s(Yi,n) − Es0 [Zi,n,s(Yi,n)]}
)

≥ exp

(
2jnε2n

(
c̃0κ

2

K4
− C̃0

2jε2nn
− c1

2j

)))

≤ Ps0

(
sup

s∈Bj,εn

∣∣∣∣∣ 1n
n∑

i=1

Wifs(zi)

∣∣∣∣∣ ≥ δn

)
, (A.2)

where we have set

δn = δ2j+1ε2n =

(
c̃0κ

2

K4
− C̃0

2jε2nn
− c1

2j

)
2j+1ε2n. (A.3)
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Positivity of δ for n large enough is a consequence of the assumptions in the statement of the lemma. We want
to apply Corollary 8.8 from [1] to the last term in (A.2). In order to do so, we need to verify its conditions, which
can be done using arguments similar to those from the proof of Lemma A.1 in this Appendix. We first need to
find a constant Rn, such that sups∈Bj,εn

‖fs‖Qn ≤ Rn. We have for all n large enough and all j = 0, 1, . . . ,Mεn ,

1
n

n∑
i=1

{∫ zi+1

zi
[s20(u) − s2(u)]du∫ zi+1

zi
s2(u)du

}2

=
∫ 1

0

(s20(u) − s2(u))2

s4(u)
du+

[
1
n

n∑
i=1

{∫ zi+1

zi
[s20(u) − s2(u)]du∫ zi+1

zi
s2(u)du

}2

−
∫ 1

0

(s20(u) − s2(u))2

s4(u)
du

]

≤
(

4K2

κ4
+ 1

)
2j+1ε2n,

where we used Assumption 2.3, definition of Bj,εn and the assumption that εn � n−1/3 log n to see the last
inequality. We can thus take

Rn =
{

4K2

κ4
+ 1

}1/2

2(j+1)/2εn.

Next, define the constants K1, C, C0 and C1 as in the proof of Lemma A.1. Since ‖fs‖∞ ≤ 2K2/κ2, we can take
K2 = 2K2/κ2. We also set K = 4K1K2. We want that the inequalities δn ≤ C12R2

nσ
2
0/K, δn ≤ 8

√
2Rnσ0 and

√
nδn ≥ C0

(∫ √
2Rnσ0

0

H
1/2
B

(
u√
2σ0

, Bj,εn , Qn

)
du ∨√

2Rnσ0

)
(A.4)

hold. It is not difficult to check by a direct computation that the first two of these inequalities hold with δn
as in (A.3) and c̃0 and c1 as in the statement of the lemma. Verification of (A.4), on the other hand, requires
some additional arguments. In order to check (A.4), we need to show that for all n large enough and all
j = 0, 1, . . . ,Mεn , the inequalities nδ2n ≥ C2

02R2
nσ

2
0 and

nδ2n ≥ C2
0

(∫ √
2Rnσ0

0

H
1/2
B

(
u√
2σ0

, Bj,εn , Qn

)
du

)2

(A.5)

hold. It is easy to see that the first of these two inequalities follows from the fact that nε2n → ∞. As far as the
second one is concerned, we note that for all δ > 0 for some constant A > 0,

HB(δ,Bj,εn , Qn) ≤ A

δ
,

where we have used the fact that Bj,εn ⊆ X , as well as Lemma 2.1 and Theorem 2.4 from [1]. Therefore,∫ √
2Rnσ0

0

H
1/2
B

(
u√
2σ0

, Bj,εn , Qn

)
du ≤

√
A

∫ √
2Rnσ0

0

(
u√
22σ0

)−1/2

du

= 4
√
ARnσ0.

Since

nδ
2
22(j+1)ε4n ≥ 16C2

0Aσ
2
0

(
4K2

κ4
+ 1

)
2(j+1)/2εn

for all n large enough and all j = 0, 1, . . . ,Mεn (this follows from the assumption that εn � n−1/3 logn), we
get that (A.5), and hence (A.4) too, hold. Thus all the assumptions from Corollary 8.8 in [1] are satisfied.
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As a result, the inequality (8.30) from Corollary 8.8 combined with formula (A.2) and some further bounding
gives that

Ps0

(
sup

s∈Aj,εn

n∏
i=1

pi,n,s(Yi,n)
pi,n,s(Yi,n)

≥ exp
(−c1nε2n)

)
≤ C exp

(
− (c̃0κ2/(2K4) − c1)2

8C2σ2
0(4K2/κ4 + 1)

nε2n

)
holds for all n large enough and all j = 0, 1, . . . ,Mεn . The statement of the lemma is an easy consequence of
this bound, the fact that Mεn � log2(1/εn) for εn → 0 and the fact that εn � n−1/3 logn. �

Lemma A.4. Under the same conditions as in Lemma A.3, there exist two constants c̃0 > 0 and C̃0 > 0, such
that for all n large enough and all s ∈ Aj,εn , j = 0, 1, . . . ,Mεn , we have

n∑
i=1

Es0 [Zi,n,s(Yi,n)] ≤ − c̃0κ
2

K4
2jε2nn+ C̃0.

Proof. Thanks to Assumption 2.3, using the differentiability of the integrands, we have

∫ zi+1

zi

(s2(u) − s20(u))2

s4(u)
du− 1

n

{∫ zi+1

zi
[s20(u) − s2(u)]du∫ zi+1

zi
s2(u)du

}2

=
1
n

(s2(zi) − s20(zi))2

s4(zi)
+O

(
1
n2

)
− 1
n

{
[s20(zi) − s2(zi)] +O(n−1)

s2(zi) +O(n−1)

}2

= O

(
1
n

)
,

where the last term is of order 1/n uniformly in s. Note that

Es0 [Zi,n,s(Yi,n)] =
1
2

log

(
1 +

∫ zi+1

zi
[s20(u) − s2(u)]du∫ zi+1

zi
s2(u)du

)

− 1
2

∫ zi+1

zi
[s20(u) − s2(u)]du∫ zi+1

zi
s2(u)du

·

A standard argument shows that for any fixed constant C0 > 0, there exists another constant c̃0 > 0, such that
for −1 ≤ x < C0, the inequality log(1 + x) − x ≤ −c̃0x2 holds. Therefore, for all n large enough,

n∑
i=1

Es0 [Zi,n,s(Yi,n)] ≤ − c̃0n
2

1
n

n∑
i=1

{∫ zi+1

zi
[s20(u) − s2(u)]du∫ zi+1

zi
s2(u)du

}2

= − c̃0n
2

∫ 1

0

(s2(u) − s20(u))2

s4(u)
du +O(1)

≤ − c̃0κ
2

K4
2jε2nn+ C̃0,

where we used Assumption 2.3 and the definition of Aj,εn . Here C̃0 > 0 is some constant independent of a
particular s and n, by the argument at the beginning of this proof. This completes the proof of the lemma. �
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