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A TEST FOR THE EQUALITY OF MONOTONE TRANSFORMATIONS
OF TWO RANDOM VARIABLES
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Abstract. It is frequent that observations arise from a random variable modified by an unknown
transformation. This problem is considered in a two-sample context when two random variables are
perturbed by two unknown transformations. We propose a test for the equality of those transformations.
Two cases are considered: first, the two random variables have known distributions. Second, they
have unknown distributions but they are observed before transformations. We propose nonparametric
test statistics based on empirical cumulative distribution functions. In the first case the asymptotic
distribution of the test statistic is the standard normal distribution. In the second case it is shown
that the asymptotic distribution is a convolution of exponential distributions. The convergence under
contiguous alternatives is studied. Monte Carlo studies are performed to analyze the level and the
power of the test. An illustration is presented through a real data set.
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1. Introduction

Transformations of random variables appear naturally in probability and have many applications. In the
case of unknown transformations, estimators may be constructed by non-parametric methods. This situation is
common in statistic when a signal is observed after being disturbed by an unknown transformation. A simple
case is the linear one, and old results exist to construct estimators of the parameters (see for instance [14]). More
generally, there are many situations where an unknown transformation act on a signal, as for instance in the field
of acoustical or optic signals (see the examples given in [7]) or in finance (see [11], or more recently [10]) when only
the transformed signal is observed. This phenomena can be modeled as follows: If Y is the original unobserved
signal, denoting by g the unknown transformation acting on Y , we assume that the transformed signal X = g(Y )
is observed. When Y is a random variable and g is a measurable function, the observation of an i.i.d. sample from
X can lead to estimation and test on g, as soon as we have information on Y . For instance if the distribution
of Y is known or estimated and if g(y) = ay + b, the problem consists in estimating a and b. This particular
situation coincides with the estimation of both the mean and the variance of g(Y ). But in general the form of g
is not specified and the problem is non-parametric. Another situation concerns the two sample case, when two
transformed signals are observed and when the problem is to estimate and to compare the two transformations.
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A very simple frequently encountered situation is when both transformations are translations; in this basic case
the comparison of functions reduces to a comparison of means. Similarly, one can consider a comparison of
variances if the transformations are scaling functions. In a more general case, at our knowledge, it seems that
few works have been intended to compare general transformations of random variables. The most closed works
are those of [1,2] concerning comparisons of counting processes, this of [9] comparing autocovariances functions,
and this of [8] comparing variances. Another similar problem of comparison of transformations is considered
in [3] within the frame of panels data, with a technic based on CUSUM statistic. See also the work of [16] testing
mean functions within the frame of panel count data.

In this paper we consider a non-parametric two sample problem as follows: we assume that two transformed
random variables are observed, say X and X̃, and are transformations of two signals Y and Ỹ , namely

X = g(Y ), X̃ = g̃(Ỹ ), (1.1)

where g and g̃ are continuous monotone unknown functions. Our purpose is to test the equality between g(y)
and g̃(y) for any given value y in the support of the probability distributions of Y and Ỹ . The choice of y can
be guided by prior information, as for instance y = 0 if Y and Ỹ are known to be centered. Then we consider
the hypotheses

H0(y) : g(y) = g̃(y) against H1(y) : g(y) �= g̃(y), (1.2)

based on two i.i.d. samples satisfying (1.1). The problem of testing (1.2) is of interest in various applications
when a signal is noised. We illustrate this situation with the Framingham study on coronary heart disease
described by [4]. The data consist of measurements of systolic blood pressure obtained at two different dates,
and measured twice for each individual. The two measures of the first date coincide with two different random
variables Y and Ỹ , and the two measures of the second date are considered as an unknown transformations of
the first ones, that is: X = g(Y ) and X̃ = g̃(Ỹ ). Our purpose is to test the equality of these transformations,
the null hypothesis meaning that there is a stability of the transformation of the systolic blood pressure since
the modifications of the measurements are both the same.

To construct our test statistic we will distinguish two important cases:

Case 1: The distributions of Y and Ỹ are known and we observe two samples from (1.1).This situation may
be encountered when two signals are controlled in entry but observed with perturbations in exit of a
system. In this case the choice of y in (1.2) can take into account the knowledge of the distributions,
as for instance a mode of a distribution, or the mean.

Case 2: The distributions of Y and Ỹ are unknown and we first observe two independent samples permitting
to estimate their distributions (similarly to [6] or [5]). Then we observe contaminated samples X and
X̃ satisfying (1.1). This situation may be encountered when two unknown signals are observed at the
same time with and without transformation.

For both cases we construct a test statistics based on non parametric empirical estimators of g and g̃, adapting
limit results on empirical processes. In Case 1, we obtain a standard normal asymptotic distribution for the
test statistic. In Case 2, the asymptotic null distribution is a convolution of exponential distributions. Our test
statistics can be easily implemented and we observe through simulations that they have a good power against
various alternatives.

It is clear that when the hypothesis H0(y) is rejected, then the more general hypothesis H0 : g = g̃ can also
be rejected. However, if H0(y) is not rejected, no general conclusion can be drawn. In this case, a resampling
procedure may be used to test the global equality H0. We will develop this approach in our simulation study.
We illustrate the test procedure with a study of the Framingham dataset.

The paper is organized as follows: in Section 1 we consider the construction of the test statistics. First the
case where the two original signals have known distributions is considered. Then we relax this assumption by
assuming that we observe the two signals after and before perturbations. The convergence of both test statistics
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under the null and under contiguous alternatives are obtained. In Section 2 a simulation study is presented and
a complementary bootstrap procedure if proposed. A real data set is analyzed in Section 3.

2. The test statistics

2.1. Case 1: The two signal distributions of Y and Ỹ are known

Let Y and Ỹ be two independent random variables and consider n (resp. ñ) i.i.d. observations X1, . . . , Xn

(resp. X̃1, . . . , X̃ñ) from (1.1). We will denote by FY and FỸ the cumulative distribution functions of Y and Ỹ ,
respectively. It is assumed here that these functions are known and invertible. The cumulative distribution
functions of X and X̃ will be denoted by FX and FX̃ . We will denote by X (resp. X̃ ) the support of the
probability distribution of X (resp. of X̃). It is assumed that the transformations g and g̃ are monotone and,
without loss of generality, that they are increasing. Note that g(y) = F−1

X (FY (y)) and g̃(y) = F−1

X̃
(FỸ (y)).

Hence natural nonparametric estimators of the contaminating functions are given by

ĝ(·) = X([nFY (·)]+1) and ˆ̃g(·) = X̃([ñFỸ (·)]+1), (2.1)

where X(i) and X̃(i) denote the ith order statistics, and [x] denotes the integer part of the real x. A fundamental
Theorem (see for instance [15]) states the following convergence in distribution

√
n
(
Z([np]+1) − F−1

Z (p)
) D→ N

(
0,

p(1 − p)
f2

Z(F−1
Z (p))

)
, ∀p ∈ (0, 1), (2.2)

for any i.i.d. sample (Z1, . . . , Zn), where D→ denotes the convergence in distribution, fZ denotes the common
density of Zi, i = 1, . . . , n, and N (m, σ2) the normal distribution with mean m and variance σ2. We will need
the following standard assumptions:

• (A1) There exists 0 < a < 1 such that n/(n + ñ) → a.
• (A2) For all x ∈ X there exists c > 0 such that fX(x) > c, and for all x′ ∈ X̃ , there exists c̃ > 0 such that

fX̃(x′) > c̃; and fX is Ck, fX̃ is Ck̃, for some positive integers k, k̃.
• (A3) There exists constants B, B̃ > 0 and B′, B̃′ > 0 such that, for all x ∈ X , for all x′ ∈ X̃ , fX(x) < B,

fX̃(x′) < B̃ and f ′
X(x) < B′, f ′

X̃
(x′) < B̃′, where f ′ denotes the derivative.

• (A(y)) : 0 < FY (y) < 1 or 0 < FỸ (y) < 1,

We deduce a first result which is a main tool for the construction of the test statistic.

Proposition 2.1. Let assumptions (A1)−(A2) hold. Under H0(y), for y satisfying the assumption (A(y)) we
have √

nñ

n + ñ

(
ĝ(y) − ˆ̃g(y)

)
D→ N (0, σ2(y)), as n → ∞, ñ → ∞, (2.3)

where

σ2(y) = (1 − a)
FY (y)(1 − FY (y))

f2
X(g(y))

+ a
FỸ (y)(1 − FỸ (y))

f2
X̃

(g̃(y))
·

Proof. By choosing (Z1, . . . , Zn) = (X1, . . . , Xn) and p = FY (y), respectively (Z1, . . . , Zñ) = (X̃1, . . . , X̃ñ) and
p = FỸ (y), in (2.2) we get

√
n
(
ĝ(y) − g(y)

) D→ N
(
0, σ2

1

)
, (2.4)

√
ñ
(ˆ̃g(y) − g̃(y)

) D→ N
(
0, σ2

2

)
, (2.5)
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where

σ2
1 =

FY (y)(1 − FY (y))
f2

X(g(y))
, σ2

2 =
FỸ (y)(1 − FỸ (y))

f2
X̃

(g̃(y))
·

Combining assumption (A1), (2.4), (2.5), and the independence of the two samples, it follows that under the
null H0(y): √

nñ

n + ñ

(
ĝ(y) − ˆ̃g(y)

)
D→ N (0, σ2(y)), as n → ∞, ñ → ∞. �

Remark 2.2. Assumptions (A1), (A2) and (A(y)) ensure that σ2(y) > 0 and hence the limit in (2.3) is not
degenerate.

We will estimate the variance σ2 by using a nonparametric method. Consider a kernel K(·) such that

• (A4) The support K of K is compact and K is of the kth degree; that is, its moments satisfy:
∫
K

yiK(dy) = 0

for i < k and
∫
K ykK(dy) �= 0.

For instance we can choose the quartic kernel defined by K(x) = 15
16 (1 − x2)21(−1,1)(x), and an associated

bandwidth hn. In the sequel, we will set Khn(x) = K( x
hn

). Write

f̂X(x) =
1

nhn

n∑
i=1

Khn(Xi − x) and f̂X̃(x) =
1

ñhñ

ñ∑
i=1

Khñ(X̃i − x), (2.6)

and to avoid small values for denominators in the estimation of the variance we use

f̂X,en(x) = max
(

f̂X(x), en

)
and f̂X̃,eñ

(x) = max
(

f̂X̃(x), eñ

)
,

where en > 0 and en → 0, when n tend to infinity. An estimator of σ2 is then

σ̂2(y) = (1 − a)
FY (y)(1 − FY (y))

f̂2
X,en

(ĝ(y))
+ a

FỸ (y)(1 − FỸ (y))

f̂2
X̃,en

(̂̃g(y))
,

and we consider the statistic

T1(y) =
nñ

n + ñ
σ̂(y)−2

(
ĝ(y) − ˆ̃g(y)

)2

. (2.7)

Proposition 2.3. Let assumptions (A1)−(A4) hold. If hn � n−c1 , en � n−c2 for some positive constants
0 < c1 < 1 and 0 < c2 < 1/4 such that c2

k < c1 < 1 − 2c2, then under H0(y) with y satisfying (A(y)) we have:

T1(y) D→ Z1(y), as n → ∞, ñ → ∞, (2.8)

where Z1(y) is chi-squared distributed with one degree of freedom.

Proof. We need the fundamental lemma (see [13]):

Lemma 2.4. Under assumptions (A2) and (A4) the kernel estimators given by (2.6) satisfy

sup
x∈X

|f̂2
X(x) − f2

X(x)| = OP

(
h2k

n +
log n

nhn

)

sup
x∈X̃

|f̂2
X̃

(x) − f2
X̃

(x)| = OP

(
h2k

ñ +
log ñ

ñhñ

)
·



514 M. BOUTAHAR AND D. POMMERET

We can write

σ̂2(y) =
u(y)

f̂2
X,en

(ĝ(y))
+

v(y)

f̂2
X̃,eñ

(̂̃g(y))
,

where u(y) = (1 − a)FY (y)(1 − FY (y)) and v(y) = aFỸ (y)(1 − FỸ (y)). Using the mean value theorem there
exist A > 0 and B > 0 such that

σ̂2(y) = σ2(y) + u(y)
(

f̂2
X,en

(ĝ(y)) − f2
X(g(y))

)(
−1
A2

)
+ v(y)

(
f̂2

X̃,eñ
(̂̃g(y)) − f2

X̃
(g̃(y))

)(
−1
B2

)
,

where A2 ≥ min(f̂2
X,en

(ĝ(y)), f2
X(g(y)) ≥ min(e2

n, f2
X(g(y))) and B2 ≥ min(e2

ñ, f2
X̃

(g̃(y))). We have∣∣∣∣f̂2
X,en

(ĝ(y)) − f2
X(g(y))

∣∣∣∣ ≤ ∣∣∣∣f̂2
X,en

(ĝ(y)) − f̂2
X(ĝ(y))

∣∣∣∣
+
∣∣∣∣f̂2

X(ĝ(y)) − f2
X(ĝ(y))

∣∣∣∣+ ∣∣∣∣f2
X(ĝ(y)) − f2

X(g(y))
∣∣∣∣

= (I) + (II) + (III).

We clearly have (I) ≤ 2 e2
n, and

(I)
A2

≤ 2e2
n

max(e2
n, f2

X(g(y)))
= 21{fX(g(y))<en} +

2e2
n

f2
X(g(y))

1{fX(g(y))>en} = oP(1), ∀y ∈ Y.

From Lemma 2.4, (II) = OP

(
h2k

n + log n
nhn

)
, and then

(II)
A2

= oP(1).

By the mean value theorem combined with (A3) we have

(III) ≤ 2BB′
∣∣∣∣ĝ(y) − g(y)

∣∣∣∣ = OP(1/
√

n),

and by assumption

(III)
A2

= oP(1).

We finally have ∣∣∣∣f̂2
X,en

(ĝ(y)) − f2
X(g(y))

∣∣∣∣ = oP(1).

In the same manner we can see that
∣∣∣∣f̂2

X̃,eñ
(̂̃g(y))− f2

X̃
(g̃(y))

∣∣∣∣ = oP(1) and since u and v are bounded we obtain

σ̂2(y) = σ2(y) + oP(1). (2.9)

To prove (2.8) we can write

T1(y) =
σ2(y)
σ̂2(y)

nñ

n + ñ

(
ĝ(y) − ˆ̃g(y)

σ(y)

)2

,

hence the convergence (2.8) follows from (2.9) and Proposition 2.1.
�
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2.2. Case 2: The two signal distributions of Y and Ỹ are unknown but observed
before transformations

Consider nx (resp. ñx) i.i.d. observations X1, . . . , Xnx (resp. X̃1, . . . , X̃ñx) and ny (resp. ñy) i.i.d. observations
Y1, . . . , Yny (resp. Ỹ1, . . . , Ỹñy), such that the X ’s and X̃’s satisfy (1.1). It is assumed that Yi and Ỹj are
independent for all i, j, and for simplicity of notation we set nx = ny = n and ñx = ñy = ñ.

The two samples Y1, . . . , Yn and Ỹ1, . . . , Ỹñ can be viewed as two independent training set which permit to
estimate the initial densities of the signals before perturbations. Again we want to test H0(y) : g(y) = g̃(y), but
we now estimate g and g̃ by

ĝ(·) = F̂−1
X

(
F̂Y (·)

)
= X([nF̂Y (·)])

and

ˆ̃g(·) = F̂−1

X̃

(
F̂Ỹ (·)

)
= X̃([ñF̂Ỹ (·)]), (2.10)

where

F̂Y (y) =
1
n

n∑
i=1

1{Yi≤y} and F̂Ỹ (y) =
1
ñ

ñ∑
i=1

1{Ỹi≤y}, (2.11)

are the empirical distribution functions of Y and Ỹ respectively.
Let

λ̂1(y) = f̂X̃(ˆ̃g(y)) and λ̂2(y) = f̂X(ĝ(y)),

where f̂X and f̂X̃ are given by (2.6). When the distributions of Y and Ỹ are known, Proposition 2.1 states that

the limiting distribution of G(n, ñ) =
√

nñ

n + ñ

(
ĝ(y) − ˆ̃g(y)

)
is Gaussian. If the distributions of Y and Ỹ are

unknown, the limiting distribution of G(n, ñ) is not Gaussian but a convolution of exponential distributions as
follows:

Proposition 2.5. Let assumptions (A1)−(A4) hold. Under H0(y) we have

nñ

n + ñ
λ̂1(y)λ̂2(y)

(
ˆ̃g(y) − ĝ(y)

)
D→ X(y), as n → ∞, ñ → ∞, (2.12)

with
X(y) = (1 − a)λ1(y)E1 − aλ2(y)E2, (2.13)

where E1, E2 are two independent exponential random variables with mean 1, λ1(y) = fX̃(g̃(y)), and λ2(y) =
fX(g(y)).

Proof. We first show that

En,1 = nλ̂2(y) (g(y) − ĝ(y)) D→ E1 as n → ∞. (2.14)

Let

Ki =
{

Xi if Xi ≤ g(y)
−∞ if Xi > g(y) , i = 1, . . . , n.
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Under H0(y) we have

F̂Y (y) =
1
n

n∑
i=1

1Xi≤g(y),

that we combine with (2.1) to get

ĝ(y) = max
1≤i≤n

Ki, and ĝ(y) ≤ g(y).

Note first that for all z ≥ g(y), P (K1 ≤ z) = 1. Assume that 0 ≤ z ≤ g(y). Then

P (ĝ(y) ≤ z) = (P (K1 ≤ z))n , since the variables Ki are i.i.d.

We now use
{K1 ≤ z} = {K1 ≤ z} ∩ {X1 ≤ g(y)} ∪ {K1 ≤ z} ∩ {X1 ≥ g(y)} .

If X1 ≤ g(y) then {K1 ≤ z} = {X1 ≤ z} and if X1 > g(y) then {K1 ≤ z} = Ω.
Therefore we have

P (K1 ≤ z) = P ({X1 ≤ z} ∩ {X1 ≤ g(y)}) + P (X1 ≥ g(y))
= FX(z) + 1 − FX(g(y)).

Hence

Fĝ(z) = P (ĝ(y) ≤ z)

= {1 + FX(z) − FX(g(y)))}n
,

and

P (n(g(y) − ĝ(y)) ≤ z) = 1 − Fĝ

(
g(y) − z

n

)
= 1 −

{
1 + FX

(
g(y) − z

n

)
− FX(g(y))

}n

.

By Taylor’s expansion we obtain

FX

(
g(y) − z

n

)
≈ FX(g(y)) − z

n
fX(g(y)).

It follows that {
1 − FX(g(y)) + FX

(
g(y) − z

n

)}n

≈
{
1 − z

n
fX((g(y)))

}n

.

By Taylor’s expansion again we get {
1 − z

n
fX((g(y)))

}n

≈ e−zfX (g(y)).

Therefore
P (n(g(y) − ĝ(y)) ≤ z) ≈ 1 − e−zfX ((g(y))),

which means that
n (g(y) − ĝ(y)) D→ E1/λ2(y) ∼ Exp(λ2(y)).

To get the desired conclusion (2.14), we note that

P (|λ̂2(y) − λ2(y)| > ε) = P (|f̂X ◦ ĝ(y) − fX ◦ g(y)| > ε)

≤ P (|f̂X ◦ ĝ(y) − fX ◦ ĝ(y)| + |fX ◦ ĝ(y) − fX ◦ g(y)| > ε),
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and under (A2), by Taylor’s formula, there exists ξ such that fX ◦ ĝ(y) − f ◦ g(y) = (ĝ(y) − g(y))f ′(ξ). Both
estimators f̂X and ĝ are consistent and thus it is also satisfied for λ̂2 which implies (2.14).

Similarly we obtain

Eñ,2 = ñλ̂1(y)
(
g̃(y) − ˆ̃g(y)

)
D→ E2 as ñ → ∞. (2.15)

For the proof of (2.12) we write

λ̂1(y)λ̂2(y)
nñ

n + ñ

(
ˆ̃g(y) − ĝ(y)

)
=

ñ

n + ñ
λ̂1(y)En,1 −

n

n + ñ
λ̂2(y)Eñ,2. �

To test the null hypothesis (1.2), we will use the following statistic

T2(y) =
{

nñ

n + ñ
λ̂1(y)λ̂2(y)

(
ˆ̃g(y) − ĝ(y)

)}2

. (2.16)

The limiting distribution of T2(y) follows immediately from Proposition 2.5.

Proposition 2.6. Let assumptions (A1)−(A4) hold. Under H0(y) we have

T2(y) D→ Z2(y) = X2(y), as n → ∞, ñ → ∞, (2.17)

where X(y) is given by (2.13).

Remark 2.7. Writing U = (1 − a)λ1(y) and V = aλ2(y), the cumulative distribution function of Z2(y) is
given by

FZ2 (z) = 1 − 1
U + V

{
Ue−

1
U

√
z + V e−

1
V

√
z
}

. (2.18)

Note that FZ2 (z) depends on the probability densities of the output data, Xt and X̃t, and also on the common
transformation g. However a consistent estimator of the critical values can be constructed from data. From (2.18)
it is easily seen that a consistent estimator for the p-value corresponding to the statistic T2(y) is given by

p̂v = 1 − 1

Û + V̂

{
Ûe−

1
Û

√
z + V̂ e−

1
V̂

√
z
}

,

where Û = (1 − a)λ̂1(y) and V̂ = aλ̂2(y).

2.3. Behaviour of the tests under alternatives

We will study convergence properties of the tests T1 and T2 under both general and local alternatives. Let
assumptions (A1)−(A4) hold.

General alternatives We consider the limit distribution under H1(y).

Proposition 2.8. Let assumptions (A1)−(A4) hold. For all y satisfying (A(y)) such that g(y) �= g̃(y) we have

T1(y) P→ +∞ and T2(y) P→ +∞,

where P→ denotes the convergence in probability,
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Proof. We can write

T1(y) = (T1,1(y) + T1,2(y))2 , (2.19)

where

T1,1(y) =
1

σ̂(y)

√
nñ

n + ñ
(ĝ(y) − g(y)) − 1

σ̂(y)

√
nñ

n + ñ
(ˆ̃g(y) − g̃(y)), (2.20)

T1,2(y) =
1

σ̂(y)

√
nñ

n + ñ
(g(y) − g̃(y)). (2.21)

Results (2.4), (2.5) and (2.9) do not depend on the null H0(y) nor the alternative H1(y), therefore we have

T1,1(y) D→ N(0, 1). (2.22)

Under the alternative H1(y) we have

T1,2(y) P→ (+∞)sgn(g(y) − g̃(y)),

where sgn(x) = 1 if x > 0 and sgn(x) = −1 if x < 0. It follows that

T1(y) P→ +∞.

Similarly we can write

T2(y) = (T2,1(y) + T2,2(y))2 , (2.23)

where

T2,1(y) =
nñ

n + ñ
λ̂1(y)λ̂2(y)(g(y) − ĝ(y)) − nñ

n + ñ
λ̂1(y)λ̂2(y)(g̃(y) − ˆ̃g(y)), (2.24)

T2,2(y) =
nñ

n + ñ
λ̂1(y)λ̂2(y)(g̃(y) − g(y)). (2.25)

The term T2,1(y) converges in distribution to the finite random variable X(y) given by (2.13), whereas under
the alternative H1(y) the term T2,2(y) converges in probability to (+∞)sgn(g̃(y) − g(y)), which implies that

T2(y) P→ +∞. �

Local alternatives Write m = nñ
n+ñ . We consider the local alternatives

H ′
1(y) : g̃(y) = g(y) +

k(y)
mβ

·

The behaviour of the test statistics T1 and T2 can be described as follows:

Proposition 2.9. Let assumptions (A1)−(A4) hold. Under H ′
1(y) for y satisfying (A(y)) and when n → ∞,

ñ → ∞, we have:

(a) If β > 1/2 then

T1(y) D→ Z1(y),
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(b) If β = 1/2 then

T1(y) D→ Z1,k(y),

(c) If 0 < β < 1/2 then

T1(y) P→ +∞.

The behaviour of the statistic T2 is quite different from T1 and can be described as follows:

(d) If β > 1 then

T2(y) D→ Z2(y),

(e) If β = 1 then

T2(y) D→ Z2,k(y),

(f) If β < 1 then

T2(y) P→ +∞,

where Z1(y) and Z2(y) are given by (2.8) and (2.17) respectively. Z1,k(y) is a non central Chi-squared distributed
with one degree of freedom and parameter k2(y)/σ2(y). The cumulative distribution function of Z2,k(y) is given by

F2,k(z) =

⎧⎪⎪⎨⎪⎪⎩
V e−

1
a

λ1(y)k(y)

U+U

{
e

1
V

√
z − e−

1
V

√
z
}

if
√

z ≤ λ1(y)λ2(y)k(y)

F2(z) if
√

z > λ1(y)λ2(y)k(y)

where

F2(z) = 1 − 1
U + V

{
Ue−

1
U (

√
z−λ1(y)λ2(y)k(y)) + V e−

1
V (

√
z−λ1(y)λ2(y)k(y))

}
,

with U = (1 − a)λ1(y) and V = aλ2(y).

Proof. Behaviour of the statistic T1(y).
Note first that T1(y) can be written as (2.19)−(2.21). The first term T1,2(y) converges to a standard normal

distribution N (0, 1). Under the local alternative H ′
1(y), the second term T1,2(y) becomes

T1,2(y) = − 1
σ̂(y)

k(y)m1/2−β .

Therefore

(a) If β > 1/2 then T1,2(y) P→ 0, and hence T1(y) D→ Z1(y),

(b) If β = 1/2 then T1,2(y) P→ −k(y)/σ(y), and hence T1(y) D→ Z1,k(y),

(c) If 0 < β < 1/2 then T1,2(y) P→ (−∞)sgn(k(y)), and hence T1(y) P→ +∞.

Behaviour of the statistic T2(y).
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The term T2(y) can be written as (2.23)–(2.25). The term T2,1(y) converges in distribution to the finite
random variable X(y) given by (2.13), whereas under the alternative H ′

1(y) the second term T2,2(y) becomes

T2,2(y) = λ̂1(y)λ̂2(y)k(y)m1−β .

Therefore

(d) If β > 1 then T2,2(y) P→ 0, and hence T2(y) D→ Z2(y),

(e) If β = 1 then T2,2(y) P→ λ1(y)λ2(y)k(y), and hence T2(y) D→ Z2,k(y),

(f) If β < 1 then T2,2(y) P→ (+∞)sgn(k(y)), and hence T2(y) P→ +∞. �

3. Simulations study

3.1. Application of the test statistics for testing H0(y)

For all empirical powers or empirical levels we carry out experiments of 10000 samples and we use three
different sample sizes: n = 50, n = 100, and n = 500. When the distributions of Y and Ỹ are unknown we
will use the same sample size to estimate them. For each replication we compute the statistics T1(y) and T2(y)
given by (2.7) and (2.16). Both signals Yt and Ỹt are centered and we will choose y = 0 for testing H0(0). The
bandwidth is chosen as hn = n−1/5 and the trimming as en = n−1/6.

3.1.1. Study of the empirical levels.

We will denote by N (0, 1) the standard normal distribution with mean zero and variance 1. We assume that
Yt and Ỹt are independent and N (0, 1) distributed.

To study the empirical levels of T1 and T2 we choose

g(y) = g̃(y) = 3y + 5,

and we fix a theoretical level α = 5%. Table 1 shows empirical levels of the two tests under H0(0). It can be
observed that for small sample size T1 seems to over estimate to the theoretical asymptotic value and T2 seems
to provide smaller levels.

Remark 3.1. To evaluate the effect of the bandwidth we used two different values for hn. We chose hn =
an−1/5, with a = 0.5 and 2. Empirical levels are given in Table 4. Results with a = 2 are similar to those
obtained with a = 1. With a = 0.5 we obtained results not as good as with a = 2 or a = 1.

Table 1. Empirical levels of T1 and T2 (in %) for a theoretical level α = 5%.

n = 50 n = 100 n = 500
T1 7.96 6.88 5.72
T2 2.76 3.53 4.45
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Table 2. Empirical levels of T1 and T2 (in %) for a theoretical level α = 5% with hn = an−1/5.

n = 50 n = 100 n = 500
T1 a = 0.5 11.02 9.22 6.35

a = 2 6.10 5.62 4.82
T2 a = 0.5 3.93 3.46 3.96

a = 2 2.74 3.57 4.68

Table 3. Empirical powers of T1 and T2 (in %) for a theoretical level α = 5%.

T1 T2 T1 T2 T1 T2

g̃1 g̃1 g̃2 g̃2 g̃3 g̃3

n = 50 90.35 89.54 99.96 99.25 81.15 82.44
n = 100 93.06 92.53 99.98 99.62 85.79 89.01
n = 500 96.18 98.83 100 99.94 93.29 98.43

Table 4. Empirical powers of T1 (in %) for a theoretical level α = 5% under local alternative g̃4.

β = 1/4 β = 1/2 β = 4
n = 50 94.67 71.19 8.08
n = 100 95.70 71.83 6.54
n = 500 97.67 73.71 6.06

Table 5. Empirical powers of T2 (in %) for a theoretical level α = 5% under local alternative g̃4.

β = 1/2 β = 1 β = 4
n = 50 87.72 13.98 2.46
n = 100 91.53 15.66 3.34
n = 500 96.40 16.51 4.37

3.1.2. Study of the empirical powers

We consider the model where Yt and Ỹt are independent and N (0, 1) distributed. To study the empirical
powers of T1 and T2 we consider g(y) = 3y + 5 and the three following transformations:

g̃1(y) = exp((y + 3)/(y + 5)), g̃2(y) = −(y + 11)/(y + 5), g̃3(y) = y/2 + 3,

and we also study local alternatives by considering:

g̃4(y) = g(y) +
2(y + 5)

nβ
·

Tables 3−5 present empirical powers for T1 and T2 under fixed and local alternatives, for a theoretical level α
equal to 5%.From Table 3, it seems that the empirical powers of T1 and T2 are very close. The test statistic T2

provides slightly better power than T1 for the alternative g̃3(y) which is not far from the null hypothesis. Table 4
indicates that T1 provides good power for β ≤ 1/2. For β > 1/2 the power converges to the theoretical level α.
Table 5 indicates that T2 provides good power for β ≤ 1. For β > 1 the power converges to the theoretical
level α. These comments are in accordance with the theoretical results stated in Proposition 2.9.
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3.2. Resampling procedure

When the hypothesis H0(y) is not rejected a bootstrap procedure can be used for the global comparison
H0 : g = g̃. We propose to use a grid y1, . . . , yM , where we will compare g and g̃. The associated test statistics
are defined by:
Case 1 (the distributions of Y and Ỹ are known)

T1 =
1
M

M∑
i=1

T1(yi). (3.1)

Case 2 (the distributions of Y and Ỹ are estimated)

T2 =
1
M

M∑
i=1

T2(yi), (3.2)

where T1 and T2 are given by (2.7) and (2.16), respectively. From Propositions 2.1 and 2.3, under H0 : g = g̃,
T1 is asymptotically distributed as the sum of dependent chi-squared random variables and T2 as the sum of
dependent mixtures of exponential random variables. In both cases the asymptotic distribution is not explicit.
To overcome this problem we construct a naive bootstrap statistic. The test statistic Tj , j = 1, 2, is compared
to the empirical bootstrap distribution of (Tj

∗b)b=1,...,B, where each Tj
∗b, b = 1, . . . , B, is constructed as follows:

From the sample E =
(
(X1, Y1), . . . , (Xn, Yn), (X̃1, Ỹ1), . . . , (X̃ñ, Ỹñ)

)
,

• Draw randomly with replacement two bootstrap samples of size n and ñ, respectively.
• Consider the first bootstrap sample E∗

1, and for each i = 1, . . . , M compute ĝ1
∗(yi) = pĝ1(yi)+ (1−p) ̂̃g1(yi),

where p (resp. (1-p)) is the observed proportion of variables X ’s (resp of X̃’s) in E∗
1, ĝ1 and ̂̃g1 are estimators

obtained by (2.1) and (2.10) based on the (X, Y )’s and the (X̃, Ỹ )’s belonging to E∗
1.

• Similarly construct an estimator ̂̃g2
∗
(yi) = qĝ2(yi) + (1 − q) ̂̃g2(yi) from the second bootstrap sample E∗

2.

• Using ĝ1
∗(yi) and ̂̃g2

∗
(yi) construct the bootstrap statistic T ∗b

1 (yi) and T ∗b
2 (yi) as follows

T ∗b
1 (yi) =

nñ

n + ñ
σ̂∗−2(yi)

(
ĝ1

∗(yi) − ̂̃g2
∗
(yi)

)2

,

where σ̂∗2(yi) = (1 − a)s2
1 + as2

2 with

s2
1 = p2 FY (yi)(1 − FY (yi))

f̂2
X,en

(ĝ1
∗(yi))

+ (1 − p)2
FỸ (yi)(1 − FỸ (yi))

f̂2
X̃,en

( ̂̃g1
∗
(yi))

,

s2
2 = q2 FY (yi)(1 − FY (yi))

f̂2
X,en

(ĝ2
∗(yi))

+ (1 − q)2
FỸ (yi)(1 − FỸ (yi))

f̂2
X̃,en

( ̂̃g2
∗
(yi))

·

T ∗b
2 (yi) =

{
nñ

n + ñ
λ̂∗

1(y)λ̂∗
2(yi)

(
ĝ1

∗(yi) − ̂̃g2
∗
(yi)

)}2

,

where λ̂1(yi) = f̂X̃( ̂̃g2
∗
(yi)) and λ̂2(yi) = f̂X(ĝ1

∗(yi)).
• Compute T ∗b

j = 1
M

∑M
i=1 T ∗b

j (yi), j = 1, 2.

We reject H0 as soon as the test statistic is larger than the empirical bootstrap threshold. We did not study the
convergence of this bootstrap method. One possibility would be to follow the approach of [12], but it exceeds
the scope of this paper. Eventually, our test procedure is based on the resampling method, as in permutation
tests theory, excepted that we did not use all permutations to keep a reasonable calculation time and make the
test applicable. Thus, we can see this procedure as a permutation test, but with a limited number of resampling.

Table 6 shows empirical powers with the bootstrap procedure under alternatives g̃1, g̃2 and g̃3. It can be
observed that all alternatives are very well detected by the bootstrap approach.
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Table 6. Empirical powers of T1 and T2 (in %) for a theoretical level α = 5%.

T1 T2 T1 T2 T1 T2

g̃1 g̃1 g̃2 g̃2 g̃3 g̃3

n = 50 100 89.54 100 99.25 96.90 100
n = 100 100 92.53 100 99.62 100 100
n = 500 100 98.83 100 99.94 100 100

4. Real example: Framingham data

We consider the Framingham Study on coronary heart disease described in [4] (see more recently [17]).
The data consist of measurements of systolic blood pressure (SBP) obtained at two different examinations in
1615 males on an 8-year follow-up. At each examination, the SBP was measured twice for each individual. The
four variables of interest are:

Y = the first SBP at examination 1,

Ỹ = the second SBP at examination 1,

X = the first SBP at examination 2,

X̃ = the second SBP at examination 2.

Our purpose is to examine whether the distribution of the SBP changed during time, and which type of
transformation it underwent. Following our notations, we will study the transformation between Y and X and
also the one between Ỹ and X̃.

Table 7 indicates that all the distributions of X , Y , X̃ and Ỹ are skewed to the right and are leptokurtic, KS
is the Kolomogorov–Smirnov statistic, the associated p-values are lesser than 2.210−6 and hence the normality
assumption is strongly rejected. Figure 1 represents nonparametric estimations of the probability densities of X ,
Y , X̃ and Ỹ .

From Figure 1, it seems that the distributions of the variables Y and X have a similar shape. However, from
Table 7 we observe a noticeable decrease in the mean and an increase in the variance. Figure 2 represents ĝ,̂̃g, and ĝ0, the common estimator under H0 obtained by aggregation of the two previous ones. Based on these

Table 7. Descriptive statistics of Framingham data

Y X
Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max.
80.0 120.0 130.0 132.8 142.0 230.0 88.0 118.0 128.0 131.2 142.0 260.0

Var. Skewness. Kurtosis. KS. Var. Skewness. Kurtosis. KS.
419.12 1.27 7.79 0.0119 439.11 1.39 6.65 0.1125

Ỹ X̃
Min. 1st Qu. Median Mean 3rd Qu. Max. Min. 1st Qu. Median Mean 3rd Qu. Max.
75.0 118.0 128.0 130.2 140.0 270.0 85.0 115.0 125.0 128.8 138.0 270.0

Var. Skewness. Kurtosis. KS. Var. Skewness. Kurtosis. KS.
409.97 1.46 7.25 0.1171 410.21 1.47 7.10 0.1117
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Figure 1. Kernel estimates of the probability densities of X, Y, X̃, Ỹ . In the top panel: f11
(resp. f21) is the Kernel estimate of the density of Y (resp. of X). In the bottom panel: f12
(resp. f22) is the Kernel estimate of the density of Ỹ (resp. of X̃).

nonparametric estimators, we can postulate that only the location and the scale are affected by time, therefore,
the transformation g should be linear; that is, g(y) = ay + b. Similarly the distributions of the variables Ỹ
and X̃ should be linked by g̃(y) = ãy + b̃.

By applying our test statistic T2(y) given by (2.16) to the central value y = (Y + Ỹ )/2 = 131.5, we obtain a
p-value equal to 1, and hence we can consider that g(y) = g̃(y), that is the two transformations coincide for the
central value y. This is in agreement with Figure 2.

We thus consider the more global hypothesis H0 : g = g̃ and then we apply the bootstrap procedure described
in Section 3.2. We use the grid G = {yi, i = 1, . . . , M} with yi = c + (d − c)i/M , belonging to the interval [c, d]
where

c = max(min(Yi), min(Ỹj)) and d = min(max(Yi), max(Ỹj)).

For the Framingham data we obtain c = 80 and d = 230. We compute the approximate bootstrap significance
level which is defined by

ASLboot =
1
B

B∑
b=1

1{T ∗b
2 ≥T2,obs},

where T2,obs is the observed value of the statistic T2, for a grid of size M ∈ {10, 50, 100} and for a number of
replications B ∈ {100, 500, 1000}.

The ASLboot is close to 10%, which is very different from the p-value obtained with the first method for
testing g(y) = g̃(y). When M = 100 the ASLboot is less than 10%, what should contradict the equality of both

Table 8. Approximate bootstrap significance level.

M 10 50 100
B

100 0.13 0.09 0.08
500 0.092 0.132 0.086
1000 0.089 0.124 0.078
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Figure 2. Nonparametric estimators of g and g̃ and the aggregated estimator on the interval
[c, d]: ghat (resp. gthat and g0hat) denotes ĝ (resp. ̂̃g and ĝ0).

functions. In Figure 2 we observe that ĝ, ̂̃g and ĝ0 seem to be linear on the interval [c, d]. However in the border
(near c and d) the approximations are not good implying that ĝ and ̂̃g should be different where there are
not enough observations. Despite this difference, the equality between g and g̃ is not rejected at 5% level of
significance on the whole interval [c, d].
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