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PENULTIMATE GAMMA APPROXIMATION IN THE CLT
FOR SKEWED DISTRIBUTIONS

Michael V. Boutsikas1

Abstract. Sharp upper bounds are offered for the total variation distance between the distribution of
a sum of n independent random variables following a skewed distribution with an absolutely continuous
part, and an appropriate shifted gamma distribution. These bounds vanish at a rate O(n−1) as n → ∞
while the corresponding distance to the normal distribution vanishes at a rate O(n−1/2), implying that,
for skewed summands, pre-asymptotic (penultimate) gamma approximation is much more accurate than
the usual normal approximation. Two illustrative examples concerning lognormal and Pareto summands
are presented along with numerical comparisons confirming the aforementioned ascertainment.
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1. Introduction

The Central limit theorem (CLT) plays a significant role in probability and statistics providing a very simple
approximation for the unknown or complicated distribution of a sum of n independent random variables (r.v.’s).
It is well-known (via asymptotic expansions, e.g. see Petrov [9]) that the corresponding rate of convergence to
the normal distribution is of order O(n−1/2) for skewed summands, while it is of order at least O(n−1) for
smooth symmetric ones. This is due to the fact that the approximation error is of order O(n−(r−1)/2) when the
standardized distribution of the summands possesses an absolutely continuous part and has the same r (r ≥ 2)
first moments with the standard normal distribution N . Therefore, when Xi’s are smooth and non symmetric, it
seems natural to pursue a more accurate than normal approximation by employing an appropriate (preferably
infinitely divisible) distribution which has the same first three moments as the summands, i.e. belongs to a
class of distributions with location, scale and shape parameters. Perhaps the most tractable such distribution is
the (shifted) gamma distribution. A similar observation was also made by Hall [6] who derived (via Edgeworth
expansions) asymptotic expansions for the distribution function of the sum of n independent r.v.’s using upper
critical points of the chi-square distribution.

The purpose of this paper is to investigate the above idea of pre-asymptotic (penultimate) approximation in
the CLT by constructing sharp recursive, closed form and asymptotic bounds for the total variation distance
between the distribution of the sum of n independent r.v.’s and an appropriate shifted gamma distribution. More
specifically, let X, X1, X2, . . . be independent r.v.’s following a skewed distribution F , with EX = 0, EX2 =
1, EX3 = 2/λ, EX4 < ∞ for some λ > 0. The case of negatively skewed Xi’s can be treated by considering
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the −Xi’s. Assume also that F has an absolutely continuous part. Denoting by SGθ the (shifted by −θ)
gamma distribution with scale parameter θ and shape parameter θ2, we show that the total variation distance,
d(Fn,SG√

nλ), between the distribution Fn of the standardized sum n−1/2
∑n

i=1 Xi and SG√
nλ, is bounded

above by a closed form upper bound Dn (cf. Thm. 3.2) which is of order O(n−1). It is further proved (cf.
Thm. 3.4 and (3.9)) that for a large class of distributions of the summands, the same distance is asymptotically
bounded above by
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where ‖ϕ(k)‖ denotes the L1 norm of the kth order derivative of the density ϕ of the standard normal law N .
Note that the corresponding distance between Fn and N is (cf. Sirazhdinov and Mamatov [15])

d(Fn,N ) ∼ ‖ϕ(3)‖
12

√
n

∣∣EX3
∣∣ , (

‖ϕ(3)‖ = 2+8e−3/2√
2π

≈ 1.51
)

(1.1)

(we write an ∼ bn when an/bn → 1) and therefore Fn approaches SG√
nλ with an approximation error of order

O(n−1), while both SG√
nλ and Fn converge slower to N , at a rate O(n−1/2). Consequently, in practice it may

be preferable to consider a gamma (SG√
nλ, λ = 2/EX3) instead of normal approximation for standardized

sums of skewed r.v.’s, especially when the summands follow heavy tailed distributions (but with finite first four
moments), and for relatively small and moderate values of n, since for large n, the distributions SG√

nλ and N
are practically identical.

It is worth mentioning that Fn could also be approximated by appropriate asymptotic expansions with
the same O(n−1) or higher order (cf. e.g. Petrov [9]). The advantage of our approach is that we use a proper
probability distribution (SG√

nλ) and that we offer explicit (closed form) error bounds whereas the approximation
error of the asymptotic expansions do not possess a closed form.

The idea of using the first three or four moments of a sum of r.v.’s in order to approximate its unknown skewed
distribution has been employed by many researchers in diverse practical applications. Usually a three or four
parameter distribution is proposed in order to fit given data by equating the sample and distribution moments.
For example, in the actuarial literature various approximations have been proposed for the distribution of the
aggregate claims in a nonlife insurance portfolio. These include shifted gamma, inverse Gaussian (IG), and
gamma-IG (e.g. cf. Reijnen et al. [14] and the references therein). The results of the present article theoretically
justify the use of a shifted gamma distribution by relying on the first three moments of Fn. It seems that if we
could exploit more than the first three moments, we could obtain results with even higher approximation order,
but the whole analysis would then be much more complicated.

The organization of the paper is as follows. In the following Section 2 we present necessary notations and
auxiliary results, concerning properties (i) of specific probability metrics and (ii) of the standardized gamma
distribution. In Section 3 we offer recursive, closed form and asymptotic upper bounds for the total variation
distance of interest. Our methodology is based on elementary properties of probability metrics and certain
smoothing inequalities (cf. Lem. 2.1). In the second part of this section we demonstrate how the shifted gamma
distribution can be used for quantile approximations, and include an example concerning the noncentral chi-
squared distribution. Finally, in Section 4, we present two illustrative examples concerning sums of lognormal
and Pareto r.v.’s, along with numerical comparisons that reveal the applicability and the performance of our
main results.

Note that all the results are formulated using the total variation distance d, but with a proper modification
of our methodology, analogous results could also be established for other distances, e.g. for the Kolmogorov
distance ρ. Nevertheless, since ρ ≤ d, all the upper bounds for d are also upper bounds for ρ.
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2. Preliminaries-Notations

2.1. Probability metrics

We denote by LY , FY and fY the distribution, the cumulative distribution function (c.d.f.) and the probability
density function (p.d.f.) respectively of a r.v. Y. The total variation and Zolotarev’s distance ( ζ-metrics of order
s ∈ N) between the distributions of two r.v.’s W, Y are defined respectively by

d (LW,LY ) = sup
A∈B(R)

|P (W ∈ A) − P (Y ∈ A)| =
1
2

∫
R

|fW (x) − fY (x)|dx, (2.1)

ζs(LW,LY ) = 1
(s−1)!

∫ ∞

−∞

∣∣E(W − t)s−1
+ − E(Y − t)s−1

+

∣∣ dt,

where B(R) denotes the Borel sets of R, and ys
+

def= (max{y, 0})s. The second equality in (2.1) holds true
when the densities fW , fY exist. It follows readily from (2.1) that d(Lg(W ),Lg(Y )) ≤ d(LW,LY ) for every
measurable g, and thus the law of g(W ) approximates the law of g(Y ) with (at least) the same accuracy as
the law of W approximates the law of Y . Note also that the distance ζs(LW,LY ) can be used only when
EW i = EY i, i = 1, 2, . . . , s−1 (and in this case, it is bounded above by (E|W |s + E|Y |s) /s!) because otherwise
it is not finite. In what follows, for simplicity, we shall write Y instead of LY in d or ζs.

The metrics d and ζs possess the regularity, the homogeneity and the subadditivity property for independent
summands (e.g., see Rachev [11], p. 264). Thus, for ζs it can be proved that,

ζs

(
c

n∑
i=1

Wi, c

n∑
i=1

Yi

)
≤ cs

n∑
i=1

ζs(Wi, Yi), n, s ∈ N, c > 0, (2.2)

for independent Wi’s and independent Yi’s. It is also worth mentioning that when the distributions of two r.v.’s
W, Y are s-convex ordered, the distance ζs(W, Y ) takes on a very simple form. Specifically, if W ≤s−cx Y, for
some s ∈ N (i.e. Eφ(W ) ≤ Eφ(Y ) for all regular s-convex functions φ for which the expectations exist; cf.
Denuit et al. [4]), then (cf. Boutsikas and Vaggelatou [3]),

ζs(W, Y ) =
EY s − EW s

s!
· (2.3)

The following Lemma 2.1 offers two smoothing inequalities for the metric d. Part (a) has been employed in
the past for the derivation of Berry–Esseen-type or Poisson approximation results. Its proof can be found in
Rachev [11], p. 274 (see also Boutsikas and Vaggelatou [3] for a more general result). Part (b) was given by
Boutsikas [1] while similar inequalities can be found in a number of papers in the literature (e.g. see Rachev [11],
p. 325; Zolotarev [17], p. 294 or Rachev and Ruschendorf [12]). Recall that the L1 norm of a function f is
‖f‖ =

∫∞
−∞ |f(x)| dx.

Lemma 2.1.

(a) If the r.v.’s Y, Y ′ are independent of the r.v.’s W, W ′ then

d(W + Y, W + Y ′) ≤ 2d(Y, Y ′)d(W, W ′) + d(W ′ + Y, W ′ + Y ′).

(b) Let Z be a r.v., independent of the r.v.’s W, Y, with Lebesgue density fZ , k-times differentiable on R, and
denote by f

(k)
Z its kth order derivative (f0 = f). If ζk(W, Y ) < ∞, k ≥ 1, then,

d(W + Z, Y + Z) ≤ 1
2

∥∥∥f (k)
Z

∥∥∥ ζk(W, Y ).
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2.2. (ii) The shifted gamma distribution

We denote by G(κ, λ, c) the shifted gamma distribution with p.d.f.,

fG(κ,λ,c)(x) =
λκ

Γ (κ)
(x − c)κ−1e−λ(x−c), x ≥ c,

where κ > 0, λ > 0 and c ∈ R are the shape, scale and location parameters respectively. Obviously, the ordinary
gamma distribution simply is G(κ, λ, 0) ≡ G(κ, λ) and if a r.v. G ∼ G(κ, λ) then Y = G + c ∼ G(κ, λ, c) and for
k = 1, 2, . . .,

EGk =

∏k−1
j=0 (κ + j)

λk
, EY k = E(G + c)k = ck +

k∑
i=1

(
k

i

)∏i−1
j=0(κ + j)

λi ck−i.

It is easy to verify that, if the independent r.v.’s Y1, Y2, . . . , Yn ∼ G(κ, λ, c) then the sum S =
∑n

i=1(bYi + d) for
b > 0, d ∈ R, follows the shifted gamma distribution G(nκ, λ/b, n(d+ bc)). We observe that, if X ∼ G(λ2, λ,−λ)
then

EX = 0, EX2 = 1, EX3 =
2
λ

, EX4 = 3 +
6
λ2 ·

We call the above distribution standardized gamma with parameter λ and denote it by SGλ ≡ G(λ2, λ,−λ). It
can be easily verified through the CLT that SGλ converges to the standard normal distribution, N , as λ → ∞.

We also denote by ϕ(x) = (2π)−1/2e−x2/2 the standard normal density, and by f
(k)
G(κ,λ,c) and ϕ(k) the kth

order derivative (k = 1, 2, . . .) of fG(κ,λ,c) and ϕ respectively. In the next lemma we offer a simple in form upper

bound for the norm
∥∥∥f (4)

G(κ,λ,c)

∥∥∥ =
∥∥∥f (4)

G(κ,λ)

∥∥∥ and derive its asymptotic relation with the norm
∥∥ϕ(4)

∥∥ ≈ 2.80061.

Lemma 2.2. (a)
∥∥∥f (4)

G(κ,λ)

∥∥∥ < 6
κ2 λ4, κ ≥ 9. (b) κ2

∥∥∥f (4)
G(κ,λ)

∥∥∥→ ∥∥ϕ(4)
∥∥λ4 as κ → ∞.

Proof. See Appendix. �

Throughout, we shall assume that
∑k

i=j ai = 0 when j > k.

3. Main results

3.1. Bounds for the total variation distance

Let X, X1, X2, . . . be a sequence of independent and identically distributed (i.i.d.) r.v.’s with EX = 0, EX2 =
1, EX3 = 2/λ > 0, EX4 < ∞. The restriction of a positively skewed distribution for Xi’s could be relaxed to
EX3 �= 0 because when EX3 < 0 we can work with −Xi’s. Denote by

dn = d
(
Fn,SG√

nλ

)
, λ =

2
EX3

,

the total variation distance between the distribution Fn of 1√
n

∑n
i=1 Xi and the standardized gamma distribution

SG√
nλ. Note that SG√

nλ has the same first three moments as Fn. The next result offers a recursive bound for
the above distance.

Lemma 3.1. The total variation distance dn between the distribution of 1√
n

∑n
i=1 Xi and the standardized

gamma distribution SG√
nλ, satisfies the following recursive bound

dn ≤ β

n−1∑
j=2

∥∥∥f (4)

G((n−j)λ2,λ)

∥∥∥dj−1 +
n

2

∥∥∥f (4)

G((n−1)λ2,λ)

∥∥∥β + 2d1dn−1, (3.1)

where β = ζ4(X,SGλ) < ∞.
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Proof. Let Z1, Z2, . . . be a sequence of i.i.d. r.v.’s, independent also of Xi’s, following the standardized gamma
distribution SGλ. From the triangle inequality we deduce that,

dn = d

(
n∑

i=1

Xi,

n∑
i=1

Zi

)
≤

n∑
j=1

d
(
Wj + Yj , Wj + Y ′

j

)
,

where Yj = Xj +
∑n

i=j+1 Zi, Y
′
j =

∑n
i=j Zi, Wj =

∑j−1
i=1 Xi, W

′
j =

∑j−1
i=1 Zi.The r.v.’s Yj , Y

′
j are independent of

Wj , W
′
j and by employing Lemma 2.1(a) we get for n ≥ 2, j = 1, 2, . . . , n,

dn ≤
n∑

j=1

(
2d(Yj , Y

′
j )d(Wj , W

′
j) + d(W ′

j + Yj , W
′
j + Y ′

j )
)

= 2
n−1∑
j=2

d

⎛
⎝Xj +

n∑
i=j+1

Zi, Zj +
n∑

i=j+1

Zi

⎞
⎠dj−1 + 2d1dn−1 +

n∑
j=1

d

⎛
⎝Xj +

∑
i∈An,j

Zi,

n∑
i=1

Zi

⎞
⎠ , (3.2)

where An,j = {1, . . . , n} − {j}. Invoking now Lemma 2.1(b) for k = 4, and taking also into account that∑n
i=j+1 Zi ∼ G((n − j)λ2, λ,−(n − j)λ), the distances appearing in the sums of (3.2) are bounded above as

follows

d

⎛
⎝Xj +

n∑
i=j+1

Zi, Zj +
n∑

i=j+1

Zi

⎞
⎠ ≤ 1

2

∥∥∥f (4)

G((n−j)λ2,λ)

∥∥∥ ζ4(Xj , Zj),

d

⎛
⎝Xj +

∑
i∈An,j

Zi,

n∑
i=1

Zi

⎞
⎠ ≤ 1

2

∥∥∥f (4)

G((n−1)λ2,λ)

∥∥∥ ζ4(Xj , Zj).

The above inequalities, combined with (3.2), readily lead to (3.1). Finally, since EX i
j = EZi

j , i = 1, 2, 3, and
EX4

j < ∞ we have that

β = ζ4(Xj , Zj) ≤
EX4

j + EZ4
j

4!
=

EX4
j + 3 + 6

λ2

4!
< ∞. �

Employing Lemma 2.2(a), the above result implies that, for λ ≥ 3, the total variation distance dn satisfies
the following recursive bound

dn ≤ 6β

n−1∑
j=2

dj−1

(n − j)2
+ 3β

n

(n − 1)2
+ 2d1dn−1, n ≥ 2. (3.3)

Using the bounds (3.1) or (3.3) we can construct recursive upper bounds for dn in terms of d1 = d(X,SGλ)
and β = ζ4(X,SGλ). For example from (3.3) we can get,

d2 ≤ 6β + 2d2
1, d3 ≤

(
9
4

+ 18d1

)
β + 4d3

1, d4 ≤
(

6d1 + 36β + 48d2
1 +

4
3

)
β + 8d4

1,

and so forth. If, for instance, d1 ≤ 0.05 and β ≤ 0.02, then d5 ≤ 0.0358,d10 ≤ 0.0134,d30 ≤ 0.0033, and
d100 ≤ 0.0009. The recursive bound for dn that is derived via (3.3) is worse (i.e. larger) but computationally
simpler than the one that follows from (3.1). Obviously, a closed form upper bound for dn would be more
convenient. Such a bound is offered (under certain conditions) in the next theorem by employing (3.3).

Theorem 3.2. If d1 = d (X,SGλ) < 1/8, λ ≥ 3 and ε = 8d1
1+δd1

+27β < 1, where δ = 296/45, β = ζ4(X,SGλ),
then

dn = d

(
1√
n

n∑
i=1

Xi,SG√
nλ

)
≤ n

(n − 1)2
3β

(1 − ε)
+

1
2
(2d1)n def= Dn, n ≥ 2. (3.4)
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Proof. We shall use induction. For n = 2, inequality (3.3) leads to

d2 ≤ 6β + 2d2
1 ≤ 6β

1 − ε
+ 2d2

1 = D2 (3.5)

and therefore (3.4) is valid for n = 2. Likewise, for n = 3, inequality (3.3) along with (3.5) yields

d3 ≤ 6βd1 + 2d1d2 +
9β

4
≤ 6βd1 + 2d1(6β + 2d2

1) +
9β

4

which is easily verified to be less than or equal to D3, and thus (3.4) is valid also for n = 3. Assume now
that (3.4) holds for n = 2, 3, . . . , m−1 (m ≥ 4). We shall show that it also holds for n = m. Invoking again (3.3)
we get

dm ≤ 6βd1

(m − 2)2
+ 6β

m−1∑
j=3

dj−1

(m − j)2
+ 2d1dm−1 +

3βm

(m − 1)2
,

and hence, using the induction assumption (i.e. replacing all dn, n ≤ m−1 with their upper bound Dn), we get

dm ≤ 6βd1

(m − 2)2
+

m−1∑
j=3

6β

(m − j)2

(
j − 1

(j − 2)2
3β

(1 − ε)
+

(2d1)j−1

2

)

+
d1(m − 1)
(m − 2)2

6β

1 − ε
+

1
2
(2d1)m +

3βm

(m − 1)2
, m ≥ 4, (3.6)

which is proved to be upper bounded by Dm as follows. Initially it will be shown that,

m−1∑
j=3

(2d1)j−2

(m − j)2
(1 − ε) +

(m − ε)
(m − 2)2

≤ 4m

(m − 1)2(1 + δd1)
· (3.7)

For m = 4, the above inequality reduces to

2d1 (1 − ε) +
4 − ε

4
≤ 16

9(1 + δd1)
,

which, taking also into account that ε ≥ 8d1
1+δd1

, reduces to 1 + (2δ − 16)d2
1 + δd1 ≤ 16/9. The latter is easily

verified to be true for d1 ≤ 2−3. For m ≥ 5, we invoke Lemma 19 of Boutsikas [1] (for k = 4), according to
which

∑m−1
j=3 42−j(m − j)−2 ≤ 2m(m − 1)−2/5, m ≥ 5. By this inequality and the assumption d1 ≤ 2−3, we

ascertain that the left part of inequality (3.7) is bounded above by

m−1∑
j=3

(1
4 )j−2

(m − j)2
(1 − ε) +

m

(m − 2)2
≤ 2m

5(m − 1)2

(
1 − 8d1

1 + δd1

)
+

m

(m − 2)2

≤ (2
5 (1 + (δ − 8)d1) + 16

9 (1 + δd1))m
(m − 1)2(1 + δd1)

≤ 4m

(m − 1)2(1 + δd1)
,

and thus (3.7) is valid for all m ≥ 4.

Next, applying the inequality
∑m−1

j=3
(j−1)

(m−j)2(j−2)2 ≤ 9
2m(m − 1)−2, m ≥ 4 (cf. Lem. 18 of Boutsikas [1], for

k = 4), we get that, for m ≥ 4,

1
1 − ε

m−1∑
j=3

(j − 1)62β2

2(m − j)2(j − 2)2
+

3βm

(m − 1)2
+

(2d1)m

2
≤ 9

1 − ε

m62β2

4(m − 1)2
+

3βm

(m − 1)2
+

(2d1)m

2
· (3.8)

Adding by parts (3.7) (after multiplying both sides by 6βd1/(1 − ε)) and (3.8) we finally get that (3.6) is
bounded above by Dm and the proof is completed. �
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Remark 3.3. It is worth mentioning that the distance β = ζ4(X,SGλ) appearing in the above expressions can
be easily evaluated when X ≤4−cx Y or Y ≤4−cx X (cf. (2.3)), where Y ∼ SGλ, since in this case,

β =
|EY 4 − EX4|

4!
=

1
4!

∣∣∣∣3 +
6
λ2 − EX4

∣∣∣∣ =
1
8

∣∣∣∣1 +
(EX3)2

2
− EX4

3

∣∣∣∣ · (3.9)

In the following theorem we prove an asymptotic result for the total variation distance between the distribu-
tion of n−1/2

∑n
i=1 Xi and SG√

nλ that holds true when the common c.d.f. F of Xi’s has an absolutely continuous
part. Its proof is based on Lemma 3.1 and Theorem 3.2 but the additional assumptions imposed in Theorem 3.2
are no longer necessary. Note that every c.d.f. F can be written in the form F = pFac + (1 − p)Fs, p ∈ [0, 1]
where Fs is a singular c.d.f. (discrete and/or singular continuous) and Fac is an absolutely continuous c.d.f. A
c.d.f. F has an absolutely continuous part when p > 0.

Theorem 3.4. If the distribution of Xi’s has an absolutely continuous part, then

lim sup
n→∞

n · d
(

1√
n

n∑
i=1

Xi,SG√
nλ

)
≤ 1

2

∥∥∥ϕ(4)
∥∥∥β.

where β = ζ4(X,SGλ).

Proof. Consider the sequence of i.i.d. r.v.’s Xi,r = 1√
r

∑ir
j=(i−1)r+1 Xj , i = 1, 2, . . . for some positive integer r.

It is easy to verify that EXi,r = 0, EX2
i,r = 1, EX3

i,r = 2/λr > 0, EX4
i,r < ∞ where λr = λr1/2. Applying (3.1)

for the sequence of r.v.’s X1,r, X2,r, . . . along with Lemma 2.2(a) we get

dm,r ≤ 6βr

m−1∑
j=2

dj−1,r

(m − j)2
+
∥∥∥f (4)

G((m−1)λ2
r ,λr)

∥∥∥ mβr

2
+ 2d1,rdm−1,r, m ≥ 2, (3.10)

where, also using known properties of ζ4 (cf. (2.2)),

βr = ζ4(X1,r,SGλr
) = ζ4

(
1√
r

r∑
i=1

Xi,SG√
rλ

)
≤ ζ4(X1,SGλ)

r
=

β

r
,

dm,r = d

(
1√
m

m∑
i=1

Xi,r,SG√
mλr

)
= d

(
1√
mr

mr∑
i=1

Xi,SG√
mrλ

)
= dmr, m ≥ 1.

Moreover, applying Theorem 3.2 for the sequence X1,r, X2,r, . . . , we also get the inequality

dn,r ≤ n

(n − 1)2
3βr

(1 − εr)
+

1
2
(2d1,r)n, n ≥ 2. (3.11)

provided that εr = 8d1,r

1+δd1,r
+ 27βr < 1 (δ = 296/45), λr ≥ 3 and d1,r < 1/8. Combining now inequalities (3.10)

and (3.11) we deduce, for m ≥ 3,

dm,r ≤ 6βrd1,r

(m − 2)2
+ 6βr

m−1∑
j=3

(j−1)3βr

(j−2)2(1−εr) + (2d1,r)j−1

2

(m − j)2

+
∥∥∥f (4)

G((m−1)λ2
r,λr)

∥∥∥ mβr

2
+ 2d1,r

(
(m−1)3βr

(m−2)2(1−εr) + (2d1,r)m−1

2

)
· (3.12)
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Applying the inequality
∑m−1

j=3
(j−1)

(m−j)2(j−2)2 ≤ 9
2m(m − 1)−2, m ≥ 4 (cf. Lem. 18 of Boutsikas [1], for k = 4)

and taking into account that βr = β/r,di,r = dir, λr = λ
√

r, inequality (3.12) readily leads to

dmr ≤ 6drβ

r(m − 2)2
+

81mβ2

r2(1 − εr)
(m − 1)−2 + 3

β

r

m−1∑
j=3

(2dr)j−1

(m − j)2

+
∥∥∥f (4)

G((m−1)λ2r,λ
√

r)

∥∥∥ mβ

2r
+

6dr(m − 1)β
r(m − 2)2(1 − εr)

+ (2dr)m

2 , (3.13)

for m ≥ 4, r ≥ 1, provided that εr = 8dr

1+δdr
+ 27β

r < 1, λ
√

r ≥ 3 and dr < 1/8.

Observe now that every integer n can be written in the form n = mr + j with m = r = [
√

n] (the integer
part of

√
n) and some integer j ∈ {0, 1, . . . , 2[

√
n]}. If Z1, Z2, . . . is a sequence of i.i.d. r.v.’s, independent also

of Xi’s, following the standardized gamma distribution SGλ then from the triangle inequality we deduce that,

dn = d

(
mr+j∑
i=1

Xi,

mr+j∑
i=1

Zi

)
≤ d

(
mr+j∑
i=1

Xi,
mr∑
i=1

Zi +
mr+j∑

i=mr+1

Xi

)
+ d

(
mr∑
i=1

Zi +
mr+j∑

i=mr+1

Xi,

mr+j∑
i=1

Zi

)
. (3.14)

Invoking the regularity property of the metric d we realize that the first term in the right part of (3.14) is less
than or equal to dmr. Applying also Lemma 2.1(b) for the second term in the right part, and then employing
Lemma 2.2(a) (for mrλ2 ≥ 9) and the subadditivity property of the metric ζs, we get

dn ≤ dmr + 1
2

∥∥∥f (4)

G(mrλ2,λ)

∥∥∥ ζ4

(
mr+j∑

i=mr+1

Xi,

mr+j∑
i=mr+1

Zi

)
≤ dmr +

3
(mr)2

mr+j∑
i=mr+1

ζ4(Xi, Zi)

= dmr +
3jβ

(mr)2
· (3.15)

Notice also that d
(

1√
r

∑r
i=1 Xi,N

)
→r→∞ 0, provided that LX has an absolutely continuous part (see

Prokhorov [10]) and thus, as r → ∞,

dr = d

(
1√
r

r∑
i=1

Xi,SG√
rλ

)
≤ d

(
1√
r

r∑
i=1

Xi,N
)

+ d
(N ,SG√

rλ

)→ 0. (3.16)

Therefore, for large enough n such that m ≥ 4, εr < 1, λ
√

r ≥ 3,dr < 1/8, and mrλ2 ≥ 9, where
m = r = [

√
n], relations (3.13) and (3.15) yield

ndn ≤ 6ndrβ

r(m − 2)2
+

81nmβ2

r2(1 − εr)(m − 1)2
+ 3

nβ

r

m−1∑
j=3

(2dr)j−1

(m − j)2

+
∥∥∥f (4)

G((m−1)λ2r,λ
√

r)

∥∥∥ nmβ

2r
+

6ndr(m − 1)β
r(m − 2)2(1 − εr)

+
n(2dr)m

2
+

3njβ

(mr)2
· (3.17)

Using (3.16) and the fact that m2
∥∥∥f (4)

G((m−1)λ2r,λ
√

r)

∥∥∥ = λ4r2m2
∥∥∥f (4)

G((m−1)λ2r,1)

∥∥∥ →n→∞
∥∥ϕ(4)

∥∥ (cf.

Lem. 2.2(b) and relation (A.1)), it can be verified that the right part of inequality (3.17), tends to 1
2

∥∥ϕ(4)
∥∥β

as n → ∞ and hence finally

lim sup
n→∞

n dn ≤ 1
2

∥∥∥ϕ(4)
∥∥∥β. �
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From the above theorem it is evident that, when LX possesses an absolutely continuous part, the distribution
of 1√

n

∑n
i=1 Xi approaches SG√

nλ, λ = 2/EX3, and consequently the distribution of the sum
∑n

i=1 Yi of the non-

standardized Yi = μ+σXi, i = 1, 2, . . . , n, can be approximated by G(nλ2, λ
σ , nμ−σnλ) with an approximation

error of order O(n−1). In particular, dn is asymptotically upper bounded by

D∗
n =

1
2n

∥∥∥ϕ(4)
∥∥∥β =

∥∥ϕ(4)
∥∥

16n

∣∣∣∣1 +
(EX3)2

2
− EX4

3

∣∣∣∣ ,
where

∥∥ϕ(4)
∥∥ ≈ 2.8006, and the last equality holds true when X ≤4−cx SGλ or X ≥4−cx SGλ. It is noteworthy

that, at least in the cases treated in the last section, the distance dn is almost equal to its asymptotic bound
D∗

n, sometimes even for relatively small values of n (see Tabs. 3, 4, 5). Note that the closed form upper bound
Dn ≈ 3

(1−ε)nβ that follows from Theorem 3.2 is usually 2 to 4 times larger than D∗
n.

Remark 3.5. In view of the conditions imposed in Theorem 3.2, the bound (3.4) is valid when λ ≥ 3 and
the distances β = ζ4(X,SGλ) and d1 = d (X,SGλ) are relatively small, that is, the distribution LX of the
summands is relatively close to SGλ. However, we can always overcome these requirements as was accomplished
in the proof of Theorem 3.4, provided that LX has an absolutely continuous part. More specifically, we can
apply Theorem 3.2 for the i.i.d. r.v’s Xi,r = 1√

r

∑ir
j=(i−1)r+1 Xj , i = 1, 2, . . . for appropriately large r. For these

r.v.’s we observe that EXi,r = 0, EX2
i,r = 1, EX3

i,r = 2λ−1
r , λr =

√
rλ and d1,r = d (Xi,r,SGλr

) = O(r−1) (cf.
Thm. 3.4) and βr = ζ4(Xi,r,SGλr

) ≤ 1
r β (see (2.2)). Therefore, we can always find r large enough such that

d1,r < 1/8, λr ≥ 3 and εr = 8d1,r

1+δd1,r
+ 27βr < 1, and employ Theorem 3.2 for the sequence Xi,r, i = 1, 2, . . ., to

deduce for dn, n = rm, the inequality

dn = d

(
1√
rm

rm∑
i=1

Xi, SG√
rmλ

)
= d

(
1√
m

m∑
i=1

Xi,r, SG√
mλr

)

≤ m

(m − 1)2
3βr

(1 − εr)
+

1
2
(2d1,r)m, for m ≥ 2. (3.18)

3.2. Distribution and quantile approximation

In this subsection we demonstrate how we can use the above shifted gamma disribution to approximate
the c.d.f. and the a-quantile of

∑n
i=1 Ui, where U1, U2, . . . is a sequence of positively skewed i.i.d. r.v.s. Let

μ = EUi, σ
2 = VUi, and Xi = (Ui − μ)/σ, i = 1, 2, . . .. Let also G be a r.v. that follows a G(λ2

n, λn) distribution
with λn = λ

√
n = 2

√
n/EX3. It follows that G−λn ∼ G(λ2

n, λn, λn) = SG√
nλ. Therefore, invoking Theorem 3.2

and the properties of the total variation distance (cf. preliminaries section) we deduce that, under appropriate
conditions, ∣∣∣P (g ( 1√

n

∑n

i=1
Xi

)
∈ A

)
− P (g (G − λn) ∈ A)

∣∣∣ ≤ Dn (3.19)

for every Borel set A and every measurable function g. By choosing A = (−∞, (x − nμ)/(σ
√

n)] and g(t) = t,
we readily get from (3.19) that, for every x ∈ R,∣∣∣∣∣P

(
n∑

i=1

Ui ≤ x

)
− FG(λ2

n,λn)

(
x − nμ

σ
√

n
+ λn

)∣∣∣∣∣ ≤ Dn, λn =
2
√

n

EX3
, (3.20)

where FG(λ2
n,λn) denotes the c.d.f. of a gamma distribution with shape parameter λ2

n and scale parameter λn.

Hence, the c.d.f. of
∑n

i=1 Ui can be approximated at x by FG(λ2
n,λn)((x − nμ)/(σ

√
n) + λn). Recall that the

corresponding Normal approximation is Φ ((x − nμ)/(σ
√

n)) . Utilizing the above inequality (3.20) we can also
extract an approximation for the a-quantile of

∑n
i=1 Ui. Indeed, if we denote by xa the upper (1 − a)-level
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critical point of this distribution, i.e. P (
∑n

i=1 Ui ≤ xa) = 1 − a, then, by setting x = xa in (3.20) we readily
deduce that,

nμ + σ
√

n
(
F−1
G(λ2

n,λn)
(1 − a − Dn) − λn

)
≤ xa ≤ nμ + σ

√
n
(
F−1
G(λ2

n,λn)
(1 − a + Dn) − λn

)
,

where F−1
G(λ2

n,λn)
is the inverse of the c.d.f. FG(λ2

n,λn). The above implies that the upper (1 − a)-level critical
point (referred to as Value at Risk when

∑n
i=1 Ui expresses the total loss on a financial portfolio) can be

approximated by,
xa ≈ xSG

a = nμ + σ
√

n
(
F−1
G(λ2

n,λn)
(1 − a) − λn

)
. (3.21)

The respective normal approximation is xa ≈ xN
a = nμ + σ

√
nza, where za = Φ−1(1 − a).

Example (Noncentral chi-squared distribution − numerical comparison with the results of Hall [6]). As already
noted in the introduction, Hall [6] has also proposed a penultimate approximation in the CLT, by employing an
appropriate (standardized) chi-squared distribution. Hall’s approximation yields an error of the same order as
our bound, Dn (see (3.20)), while his approach is based on asymptotic expansions with remainder terms that
are expressed via o(n−p). As an application, he proposed an approximation for the quantiles of the noncentral
chi-squared distribution and proceeded to a numerical evaluation of his approximation for specific values of the
parameters (cf. Table 1 in Hall [2]). In what follows we shall also treat the same problem in order to illustrate
the quantile approximation presented above and also for comparison reasons.

Let Z1, Z2, . . . , Zn be independent standard normal r.v.s and set Ui = (Zi +
√

ξ/n)2, i = 1, 2, . . . , n. It is
well-known that the r.v.

∑n
i=1 Ui follows a noncentral chi-squared distribution with n degrees of freedom and

noncentrality parameter ξ > 0. It can be easily verified that

μ = EUi = 1 +
ξ

n
, σ2 = VUi = 2

(
1 +

2ξ

n

)
, EX3

i = E

(
Ui − μ

σ

)3

=
23/2(1 + 3ξ/n)
(1 + 2ξ/n)3/2

·

Thus, the upper (1− a)-level critical point, xa, of the noncentral chi-squared distribution (n, ξ) can be approx-
imated by (cf. (3.21)),

xSG
a = n + ξ +

√
2(n + 2ξ)

(
F−1
G(λ2

n,λn)
(1 − a) − λn

)
, λn =

2
√

n(1 + 2ξ/n)3/2

23/2(1 + 3ξ/n)
·

We numerically compare the above approximating formula, xSG
a , with the one proposed by Hall (denoted by

xH
a ). The corresponding values are shown in Table 1, where we have also included the exact value of xa (up to

4 decimals) for a = 0.1. The first four rows of this table are the same as in Hall [6] (recalculated). The last two
rows exhibit the performance of the shifted gamma approximation, xSG

a , and the usual normal approximation,
xN

a = nμ + σ
√

nza.
In Table 2 we numerically compare the same quantities, but this time we choose a very small a in order to

show the performance of xH
a , xSG

a and xN
a further in the right tail of the noncentral χ2 distribution.

From the above tables it is evident that the shifted gamma approximation, xSG
a , exhibits a very good overall

performance in the right tail, also slightly better than xH
a . The advantage of xH

a is that it relies on the upper
critical points of the (central) chi-squared distribution which sometimes are more readily available (e.g. when a
computer is not ready for use). The second table also shows that the usual normal approximation is remarkably
poor at the far right tail of this distribution and in practice should be avoided.

4. Applications

4.1. The distribution of the sum of lognormal r.v.’s

As a first simple example we consider the case where the summands follow a lognormal distribution, LN (μ, σ).
This distribution appears in numerous applications in various research areas (e.g. finance, actuarial theory,
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Table 1. Approximating the upper critical points of the noncental χ2 distribution, a = 0.1.

n 10 15 20 25 10 15 20 25
ξ 2.935 3.599 4.161 4.658 9.432 11.189 12.677 13.992

xa 20.4833 27.4882 34.1692 40.6465 29.5876 37.6969 45.3151 52.6203
xH

a − xa −0.1128 −0.1246 0.0999 0.0750 −0.1493 −0.0564 0.0494 −0.0455
xSG

a − xa −0.0128 −0.0083 −0.0061 −0.0047 −0.0285 −0.0210 −0.0166 −0.0136
xN

a − xa −0.3283 −0.3501 −0.3629 −0.3715 −0.4185 −0.4274 −0.4325 −0.4359

Table 2. Approximating the upper critical points of the noncental χ2 distribution, a = 0.001.

n, ξ 5, 1 10, 2 20, 4 30, 6 40, 8 50, 10 60, 12

xa 24.0662 34.8901 53.675 70.8733 87.254 103.113 118.602
xH

a − xa −0.3348 0.2689 −0.1926 −0.0307 0.0814 0.1690 −0.0688
xSG

a − xa 0.0643 0.0554 0.0443 0.0380 0.0338 0.0308 0.0285
xN

a − xa −6.5036 −6.5381 −6.5498 −6.5508 −6.5501 −6.5489 −6.5477

reliability theory, telecommunications, biology, hydrology, etc.). The distribution of the sum of i.i.d. lognormally
distributed r.v.’s has no closed-form analytic expression and therefore an effective approximation seems essential
(e.g. see Mehta et al. [8], Dufresne [5] and the references therein). Lognormal is a skewed distribution and
therefore normal approximation may not be so efficient, especially for moderate or small values of n. More
formally, we consider independent r.v.’s L1, L2, . . . with Li ∼ LN (μi, σ) and p.d.f.

fLN (μi,σ)(x) =
1

x
√

2πσ2
e−

(ln x−μi)
2

2σ2 , x > 0.

We shall work with the standardized i.i.d. r.v.’s Xi = (Li − ELi)/
√

VLi, i = 1, 2,. . . for which we have EXi =
0, EX2

i = 1 and

EX3
i = (2 + eσ2

)
√

eσ2 − 1 =
2
λ

, EX4
i = −3 + e2σ2

(3 + eσ2
(2 + eσ2

)). (4.1)

Note that the distribution of Xi has only one parameter, σ (does not depend on μi). It can be easily checked
numerically (at least for σ < 1) that LXi ≥4−cx SGλ. Indeed, according to the Karlin–Novikoff criterion
(cf. Karlin and Novikoff [7]), the corresponding p.d.f.’s cross each other at most 4 times and after their last
crossing (at right) the p.d.f. of Xi is above the p.d.f. of SGλ. Thus (cf. 3.9),

β = ζ4(Xi,SGλ) =
EX4

i − (3 + 6
λ2 )

4!
=

2e4σ2
+ e3σ2 − 3e2σ2

2 · 4!
· (4.2)

Employing Theorem 3.4 we derive that

lim sup
n→∞

n dn ≤
∥∥ϕ(4)

∥∥β

2
= 2e

−3−√
6

2
e
√

6
√

3−√
6+

√
3+

√
6√

π/3

2e4σ2
+ e3σ2 − 3e2σ2

2 · 4!
= nD∗

n, (4.3)

and therefore D∗
n is a simple in form asymptotic bound for dn = d(n−1/2

∑n
i=1 Xi,SG√

nλ), λ = 2/EX3
i .

Hence, when μi = μ, the distribution of
∑n

i=1 Li can be approximated by G(nλ2, λ/σL, nμL − nλσL), where
μL = ELi = eμ+σ2/2, and σL =

√
VLi =

√
eσ2 − 1eμ+σ2/2. If, for example, σ = 0.6 and n = 30, we readily

compute that SG√
nλ ≈ SG6.26, and D∗

n ≈ 0.0050 while the corresponding distance from the normal distribution
is dN

n = d(n−1/2
∑n

i=1 Xi,N ) ≈ 0.0519 (cf. Eq. (1.1)).



PENULTIMATE GAMMA APPROXIMATION IN THE CLT FOR SKEWED DISTRIBUTIONS 601

Table 3. Approximation error estimates (σ = 0.2), and upper critical points (a = 0.001).

n dN
n dn Dn D∗

n x̂a x̂a − xSG
a x̂a − xN

a

2 0.0542657 0.0032673 0.0341953 0.0032769 3.135 0.012 0.194
4 0.0385001 0.0016331 0.0075798 0.0016384 5.546 0.009 0.191
8 0.0272744 0.0008174 0.0027844 0.0008192 10.151 0.006 0.188
16 0.0193058 0.0004091 0.0012127 0.0004096 19.056 0.004 0.185
32 0.0136576 0.0002046 0.0005678 0.0002048 36.433 0.003 0.184
64 0.0096598 0.0001023 0.0002750 0.0001024 70.573 0.004 0.185
128 0.0068314 0.0000512 0.0001353 0.0000512 137.97 −0.002 0.179

Furthermore, should we wish to construct an explicit upper bound for dn we can use Theorem 3.2. For this
purpose we need to compute the value of d1 = d(X1,SGλ). For illustration purposes we shall examine two
cases: (i) σ = 0.2 (where Thm. 3.2 is readily applicable) and (ii) σ = 0.5 (where we have to follow the procedure
described in Rem. 3.5).

(i) For σ = 0.2, we compute λ ≈ 3.25577 (cf. (4.1)), β ≈ 0.00468036 (cf. (4.2)), d1 ≈ 0.0065625 (cf. (2.1)) and
ε = 8d1(1 + 296

45 d1)−1 + 27β ≈ 0.176698 < 1. Since ε < 1, λ > 3 and d1 < 1/8, we can apply Theorem 3.2,
and get

dn = d

(
1√
n

n∑
i=1

Xi, SG√
nλ

)
≤ Dn =

n

(n − 1)2
3β

(1 − ε)
+

(2d1)n

2
, n ≥ 2.

The performance of the above bound, Dn, is shown in Table 3, where we have also included the asymptotic
upper bound D∗

n ≈ 0.00655391× n−1, as well as the exact values of the distances dn and dN
n , which were

evaluated numerically (via numerical integration of the n-fold convolution integral). In order to show the
performance of the shifted gamma approximation at the far right tail of the distribution, we present in
the same table the Monte Carlo estimated values, x̂a, of the upper 99.9%-level critical point xa of the
distribution of

∑n
i=1 Li for μi = 0, σ = 0.2 (based on 106 samples), along with its shifted gamma (xSG

a ,
cf. (3.21)) and its usual normal approximation (xN

a ). Note that when
∑n

i=1 Li expresses the total loss on
a portfolio of n financial assets, xa is also referred to as Value at Risk. The approximation through the
chi-square distribution suggested by Hall [6] is almost identical to xSG

a (they differ only beyond the 2nd
decimal place) and thus it is not included in the table. All computations were performed using Wolfram
Mathematica Software.

(ii) For σ = 0.5, we similarly compute λ ≈ 1.14273, β ≈ 0.0543208, d1 ≈ 0.087255 and ε ≈ 1.91016. In this case
we cannot apply directly Theorem 3.2 since ε > 1 and λ < 3. According to Remark 3.5 we can overcome
this by considering the r.v.’s Xi,r = r−1/2

∑ir
j=(i−1)r+1 Xj , i = 1, 2, . . . . By choosing r = 8 we have that

λr = λr1/2 ≈ 3.23214, d1,r = d (X1,r,SGλr
) ≈ 0.008691, βr =

β

r
≈ 0.0067901

and thus εr ≈ 0.249101. Now the conditions εr < 1, λr > 3, d1,r < 1/8 are satisfied for the sequence
X1,r, X2,r,. . ., and Theorem 3.2 leads to (cf. (3.18))

dn ≤ Dm,r =
m

(m − 1)2
3β

(1 − εr)r
+

1
2
(2d1,r)m, n = mr, m ≥ 2.

Similarly to (i) we construct the following Table 4.

From Tables 3 and 4 we observe that the asymptotic upper bound D∗
n is very close to the true value of dn

even for small values of n. It is evident that the n-fold convolution of the lognormal distribution can be efficiently
approximated by the standardized gamma distribution SGλ with λ = 2(EX3

i )−1 = 2(2 + eσ2
)−1(eσ2 − 1)−1/2,

while the normal approximation performs rather poorly. The performance of the approximation xSG
a for the

upper 99.9%-level critical point xa seems also quite satisfactory, much superior to xN
a .
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Table 4. Approximation error estimates (σ = 0.5), and upper critical points (a = 0.001).

n = mr dN
n dn Dm,r D∗

n x̂a x̂a − xSG
a x̂a − xN

a

16 0.0540407 0.0044506 0.0544068 0.0047540 27.26 0.14 1.67
32 0.0385208 0.0022781 0.0120569 0.0023770 48.48 0.14 1.66
64 0.0273708 0.0011591 0.0044290 0.0011885 89.05 0.08 1.60
128 0.0193924 0.0005846 0.0019290 0.0005942 167.73 0.06 1.57

4.2. The distribution of the sum of Pareto r.v.’s

In this example we consider the case where the independent summands follow a Pareto distribution Pa(α)
with p.d.f.

f(x) =
α

xα+1
, x > 1.

This distribution appears in many applications (economics, actuarial theory, hydrology, reliability theory, etc.).
It is also used to model the tail of heavy tailed distributions in extreme value theory. For example, peaks over
high thresholds of heavy tailed r.v.’s (having regularly varying tails with index −α) follow asymptotically (when
the threshold tends to infinity) a Pareto distribution with parameter α. Thus, the sum of exceedances of i.i.d.
heavy tailed r.v.’s above a high threshold can be considered as a sum of i.i.d. Pareto r.v.’s. The kth order
moment of Pa(α) is finite only when k < α and therefore we assume α > 4 so that Pa(α) possesses finite first
four moments. Note that, when 0 < α < 2, the distribution of the sum of Pareto r.v.’s is usually approximated
through the generalized CLT by a α-stable distribution (e.g. see Zaliapin, Kagan and Schoenberg [16] and the
references therein) while for α integer the distribution of this sum can be approximated by inverting its Laplace
transform (see Ramsay [13]).

In what follows we will examine a penultimate gamma distribution approximation when α > 4. Let
Y, Y1, Y2, . . . , be independent r.v.’s following a Pa(α) distribution. The moments of Y are EY k = α

α−k , k < α.

We shall work with the standardized r.v.’s Xi = (Yi − EYi)/
√

VYi. Obviously, EXi = 0, EX2
i = 1 and also

EX3
i =

2(α + 1)
√

α − 2√
α(α − 3)

=
2
λ

, EX4
i =

3(α − 2)(2 + α + 3α2)
α(α − 3)(α − 4)

·

Again, it can be easily checked numerically (at least for α < 10) that SGλ ≥4−cx LXi. Therefore,

β = ζ4(Xi,SGλ) =
EX4 − (3 + 6

λ2 )
4!

=
(α − 1)3

2(α − 4)(α − 3)2α
·

We can now approximate 1√
n

∑n
i=1 Xi by SG√

nλ, or equivalently, the sum
∑n

i=1 Yi of Pareto Pa(α) r.v.’s can
be approximated by the shifted gamma distribution

G
(

nλ2,
λ√
VY

, nEY − nλ
√

VY

)
= G

(
nα(α−3)2

(α+1)2(α−2) ,
(α−3)(α−1)

(α+1) , nα(α−1)
(α+1)(α−2)

)

and the value of their distance, dn, can approximated by the asymptotic upper bound D∗
n = 1

2

∥∥ϕ(4)
∥∥β/n (cf.

Thm. 3.4). This approximation is demonstrated in Table 5 for α = 7, where we have also included the exact
values of the distances dn and dN

n , which, as in the previous application, were evaluated numerically using
Wolfram Mathematica Software. In the same table, we also present the Monte Carlo estimated values x̂a of the
upper 99.9% -level critical points of

∑n
i=1 Yi (using 106 generated samples), along with its shifted gamma (xSG

a ,
cf. (3.21)) and normal approximation (xN

a ). As was expected, the shifted gamma approximation outperforms
the usual normal approximation.
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Table 5. Approximation error estimates (α = 7), and upper critical points (a = 0.001).

n dN
n dn D∗

n x̂a x̂a − xSG
a x̂a − xN

a

2 0.26703 0.19665 0.22504 4.19 0.07 0.99
4 0.18897 0.08293 0.11252 6.96 0.13 1.07
8 0.13514 0.03696 0.05625 12.16 0.15 1.10
16 0.09785 0.01876 0.02812 22.22 0.15 1.11
32 0.07076 0.00997 0.01406 41.90 0.16 1.12
64 0.05093 0.00539 0.00703 80.64 0.14 1.10

Finally an explicit upper bound for dn can be derived via Theorem 3.2 (and e.g. α = 7) by considering the
r.v.’s X1,r, X2,r,. . . since d1 ≈ 0.362 > 1/8 (cf. Rem. 3.5). By choosing r = 32 we compute

λr = λr1/2 ≈ 3.34664, d1,r ≈ 0.00997937, βr =
β

r
≈ 0.321429

32
, εr ≈ 0.346123.

From Theorem 3.2 we get (n = mr)

dn ≤ m

(m − 1)2
3β

r

(1 − εr)
+

1
2
(2d1,r)m ≈ 0.046085

m

(m− 1)2
, m ≥ 2. (4.4)

Appendix A.

Proof of Lemma 2.2. The fourth derivative of the p.d.f. of G(γ + 1, 1) is equal to

f
(4)
G(γ+1,1)(x) = gγ(x)fG(γ+1,1)(x), where gγ(x) = (γ−3)(γ−2)(γ−1)γ−4(γ−2)(γ−1)γx+6(γ−1)γx2−4γx3+x4

x4 ·

An analytical form of
∥∥∥f (4)

G(γ+1,1)

∥∥∥ can be expressed via the roots ργ,i, i = 1, 2, 3, 4, of the polynomial in x at the
nominator of gγ . The explicit form of these roots is

ργ,i = γ + ri

√
γ + cγ + ui

√
2γ − cγ + ri2γ√

γ+cγ
, where cγ = − γ

bγ
+

γ2

bγ
+

bγ

2
,

bγ = 21/3(γ3−γ2 +
√

(2 − γ)(γ − 1)2γ3)1/3 and (ri, ui) equals to (−1,−1), (−1, 1), (1,−1), (1, 1) for i = 1, 2, 3, 4

respectively. By denoting ργ,0 = 0, ργ,5 = ∞, we can express
∥∥∥f (4)

G(γ+1,1)

∥∥∥ as follows,

∥∥∥f (4)
G(γ+1,1)

∥∥∥ =
∫ ∞

0

∣∣∣f (4)
G(γ+1,1)(x)

∣∣∣ dx =
5∑

i=1

(−1)i+1

ργ,i∫
ργ,i−1

f
(4)
G(γ+1,1)(x)dx = 2

4∑
i=1

(−1)i+1f
(3)
G(γ+1,1)(ργ,i).

Unfortunately, the above complicated form cannot be easily upper bounded for all γ. We shall use an alternative
way to find a bound for large γ. If a r.v. Z ∼ G(γ + 1, 1), and γ ≥ 8 then,

∥∥∥f (4)
G(γ+1,1)

∥∥∥ =
∫ ∞

0

∣∣∣f (4)
G(γ+1,1)(x)

∣∣∣ dx =
∫ ∞

0

|gγ(x)| fG(γ+1,1)(x)dx = E |gγ(Z)| ≤ (Egγ(Z)2
)1/2

=
(

24(5+γ)(42+γ(37+γ))
(γ−1)···(γ−7)

)1/2

< 6
(γ+1)2 ,
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where the last inequality is valid for γ ≥ 176. This is true since the only real root of the polynomial

h(γ) = 62(γ − 1) · · · (γ − 7) − (γ + 1)424(5 + γ)(42 + γ(37 + γ))

is approximately equal to ρ = 175.342 and therefore h(γ) > 0 for γ > ρ (because h(γ) → ∞ as γ → ∞).
Finally, since

∥∥∥f (4)
G(γ+1,1)

∥∥∥ is a smooth function of γ we easily verify numerically that,
∥∥∥f (4)

G(γ+1,1)

∥∥∥ < 6/ (γ + 1)2

for 8 ≤ γ < 176. For the second part of the lemma we observe that cγ/γ → (1 +
√

3)/2 as γ → ∞, and thus
(ργ,i − γ)/

√
γ → ri

√
3 + riui

√
6, i = 1, 2, 3, 4. Moreover, it can be shown that f

(3)
G(γ,1)(γ + x

√
γ)γ2 → ϕ(3)(x) as

γ → ∞, and therefore,

γ2
∥∥∥f (4)

G(γ,1)

∥∥∥ = 2
4∑

i=1

(−1)i+1f
(3)
G(γ,1)(γ +

ργ−1,i − γ√
γ

√
γ)γ2 →

γ→∞ 2
4∑

i=1

(−1)i+1ϕ(3)(ri

√
3 + riui

√
6)

which can be easily verified that is equal to
∥∥ϕ(4)

∥∥ =
∫∞
−∞

∣∣ϕ(4)(y)
∣∣ dy.

To complete the proof of parts (a),(b) it finally suffices to observe that

∥∥∥f (4)
G(γ,λ)

∥∥∥ =
∫ ∞

0

∣∣∣f (4)
G(γ,λ)(x)

∣∣∣ dx =
∫ ∞

0

∣∣∣λ5f
(4)
G(γ,1)(λx)

∣∣∣ dx =
y=λx

λ4

∫ ∞

0

∣∣∣f (4)
G(γ,1)(y)

∣∣∣ dy = λ4
∥∥∥f (4)

G(γ,1)

∥∥∥ . (A.1)
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