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Abstract. We consider N independent stochastic processes (Xi(t), t ∈ [0, T ]), i = 1, . . . , N , defined by
a stochastic differential equation with diffusion coefficients depending linearly on a random variable φi.
The distribution of the random effect φi depends on unknown population parameters which are to be
estimated from a discrete observation of the processes (Xi). The likelihood generally does not have any
closed form expression. Two estimation methods are proposed: one based on the Euler approximation
of the likelihood and another based on estimations of the random effects. When the distribution of
the random effects is Gamma, the asymptotic properties of the estimators are derived when both N
and the number of observations per component Xi tend to infinity. The estimators are computed on
simulated data for several models and show good performances.
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1. Introduction

Stochastic differential equations (SDEs) with random effects have been the subject of several recent con-
tributions, with various applications such as pharmacokinetic/pharmacodynamic, neuronal modeling [2, 5, 10].
Several estimation methods have been proposed to provide estimators in these complex models. For general
mixed effects models (not only SDE), the main reference for a theoretical study of the exact maximum like-
lihood is Nie [9]. But the likelihood has no explicit expression except in some special cases and assumptions
are then very difficult to verify. In Delattre et al. [3], the case of a linear random effect in the drift together
with a specific distribution for the random effects is investigated. In this case, the exact maximum likelihood
estimator is explicit and studied. In the general case, Picchini et al. [10]; Picchini and Ditlevsen [11] propose
approximations of the likelihood based on Hermite expansion and Gaussian quadrature. All these references
work with random effects in the drift, and not in the diffusion coefficient, except Delattre and Lavielle [2] who
incorporate measurement error and propose an approximation of the likelihood with the extended Kalman filter.
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Here, we focus on discretely observed SDEs with a random effect in the diffusion coefficient. The distribution
of the random effect depends on unknown parameters to be estimated. Applications of these models have been
considered in population pharmacokinetics or pharmacodynamic where the diffusion coefficient represents the
intra-individual variability, which may vary from one individual to another, thus being modeled as a random
effect [2]. We assume that there is a linear random effect in the diffusion coefficient. For simplicity, we assume
that the drift is zero in Sections 2 and 3, and give the extension to the case of non null drift in Section 4.

Statistical inference for discretely observed SDEs with no random effects has been widely studied (see [8], and
references therein). In Genon-Catalot and Jacod [6] the estimation of unknown fixed parameters in the diffusion
coefficient is studied with discrete observations of a single trajectory when the sampling interval tends to zero.
The likelihood of these observations is not explicit, therefore estimating equations are built based on the Euler
approximation of the SDE with drift set to zero. One of the strategies described below follows the same idea,
but here the parameters are random. This complicates the definition and the theoretical study of the estimator.

More precisely, we consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with dynamics
ruled by the following SDEs:

dXi(t) = φi σ(Xi(t)) dWi(t), Xi(0) = x0
i , i = 1, . . . , N, (1.1)

where (Wi)1≤i≤N are N independent Wiener processes, (φi)1≤i≤N are N i.i.d. random variables taking values in
(0,+∞), (φi)1≤i≤N and (Wi)1≤i≤N are independent. The function σ(x) is known and real-valued. Each process
(Xi(t)) represents an individual, the variable φi represents the random effect of individual i. The variables
(φi)1≤i≤N have a common distribution g(ϕ, θ)dν(ϕ) on (0,+∞) where ν is a dominating measure and θ is a
vector of unknown parameters called population parameters, belonging to a set Θ ⊂ �

p.
Our aim is to estimate θ from discrete observations {Xi(tj), j = 1, . . . , n, i = 1, . . . , N} where tj = jT/n and

T is fixed. In the case of a linear random effect in the diffusion coefficient (1.1), choosing an inverse Gamma
distribution leads to explicit estimators. Therefore, we consider the specific case

φi =
1

Γ
1/2
i

with Γi ∼ G(a, λ), a > 0, λ > 0, θ = (a, λ). (1.2)

We study the exact maximum likelihood estimator in the case σ(.) ≡ 1. When σ(.) �≡ 1, we build estimating
equations based on the Euler’s approximation of the fixed effect diffusion model. The difficulty of these estimating
equations is that the Euler’s approximation has to be integrated out with respect to the distribution of the
random effects. Moreover, we build another type of estimating equations, corresponding to the ideal likelihood
of directly observed random effects where estimators of the random effects are plugged in. This second approach
has the advantage to be easily generalized to any distribution for the random effects.

The paper is organized as follows. Section 2 introduces some assumptions and gives the exact likelihood and
its approximation obtained by Euler’s scheme. Our asymptotic framework is when the number N of subjects
tends to infinity. In Section 3, we study the asymptotic properties of the estimators. When σ(.) ≡ 1, the
exact maximum likelihood estimator of θ is asymptotically Gaussian with rate

√
N both for fixed number of

measurements per subject n and for n tending to infinity. When σ(.) �≡ 1, we must assume that n depends on
N and satisfies the constraint N/n → 0 for the first method,

√
N/n → 0 for the second. Our estimators are

asymptotically Gaussian with rate
√
N . Section 4 deals with a non nul drift. Simulations illustrate the behavior

of the estimators and results are presented in Section 5. Section 6 concludes the paper with some extensions.
Proofs are gathered in Appendix.

2. Exact and approximate likelihoods

Consider N real valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N , with dynamics ruled by (1.1). The
processes (Wi)1≤i≤N and the r.v.’s (φi)1≤i≤N are defined on a common probability space (Ω,F ,�). Consider
the filtration (Ft, t ≥ 0) defined by Ft = σ(φi,Wi(s), s ≤ t, i = 1, . . . , N). As Ft = σ(Wi(s), s ≤ t) ∨ F i

t ,
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with F i
t = σ(φi, φj ,Wj(s), s ≤ t, j �= i) independent of Wi, each process Wi is a (Ft, t ≥ 0)-Brownian motion.

Moreover, the random variables φi are F0-measurable. In what follows, we assume that

(H1) The function σ belongs to C2(�) and for all x ∈ �, 0 < σ2
0 ≤ σ2(x) ≤ σ2

1 , |σ′(x)| + |σ′′(x)| ≤ K.

Under (H1), the process (Xi(t)) is well-defined and (φi, Xi(t)) is strong Markov adapted to the filtration (Ft, t ≥
0). The N processes (φi, Xi(.))1≤i≤N are independent. For all ϕ, and all x0

i ∈ �, the fixed effect SDE

dXϕ,x0
i

i (t) = ϕσ(Xϕ,x0
i

i (t)) dWi(t), X
ϕ,x0

i

i (0) = x0
i (2.1)

admits a unique strong solution process (Xϕ,x0
i

i (t), t ≥ 0) adapted to the filtration (Ft, t ≥ 0). From the Markov
property of (φi, Xi(t)), we deduce that the conditional distribution of Xi given φi = ϕ is identical to the
distribution of Xϕ,x0

i

i (for more details, see [3]).
For i = 1, . . . , N , the process (Xi(t), t ∈ [0, T ]) is discretely observed at times tj = jT/n, j = 0, . . . , n and we

set for fixed T :
Δ =

T

n
, Xi = (Xi(tj), j = 1, . . . , n), i = 1, . . . , N. (2.2)

We start with the exact likelihood of (2.2). The distribution of the observations (Xi)1≤i≤N on
∏N

i=1 �
n

has the form Pθ = ⊗N
i=1P

i
θ where P i

θ is the distribution of Xi on �
n. If Qi

ϕ,x0
i

denotes the distribution of

Xϕ
i = (Xϕ,x0

i
i (tj), j = 1, . . . , n) and pt(x, y, ϕ) the transition density of (2.1), then Qi

ϕ,x0
i

admits the density∏n
j=1 pΔ(xi,j−1, xi,j , ϕ) w.r.t. the Lebesgue’s measure of �n (with xi,0 = x0

i ). Therefore, the density of P i
θ w.r.t.

the Lebesgue’s measure of �n is given by:

λi(θ,xi) =
∫ +∞

0

g(ϕ, θ)
n∏

j=1

pΔ(xi,j−1, xi,j , ϕ)dν(ϕ),

where xi = (xi,j , j = 1, . . . , n). The exact likelihood is ΛN(θ) =
∏N

i=1 λi(θ,xi). Here, we are faced with two
problems. First, the transition densities of (2.1) are generally not explicit. Second, and this is specific to random
effect models (SDE or more generally non Gaussian models), even if these transition densities were explicit,
it is generally not possible to get a closed-form expression for the marginal density of Xi, which corresponds
to the integral λi(θ,xi). Therefore the exact likelihood is not explicit and difficult to study theoretically and
numerically.

Instead of using the exact transition densities of (2.1), it is now standard to use the approximation given
by the transition densities of the corresponding Euler’s scheme, i.e. the one-step discretisation of (2.1) (see
e.g. [4, 6, 8]), although for small n, it may give a bias. Therefore, we introduce

L̃i(Xi, ϕ) =
1

ϕn
∏n

j=1 σ (Xi (tj−1))
exp

(
− Si

2ϕ2

)
∝ 1
ϕn

exp
(
− Si

2ϕ2

)
,

with, for i = 1, . . . , N ,

Si =
1
Δ

n∑
j=1

(Xi(tj) −Xi(tj−1))
2

σ2(Xi(tj−1))
· (2.3)

Note that when σ(.) ≡ 1, L̃i(Xi, ϕ) is the exact density of (Xϕ,x0
i

i (tj), j = 1, . . . , n) (see (2.1)). To estimate θ,
instead of the exact likelihood, we introduce the approximate likelihood, corresponding to the Euler’s scheme
integrated with respect to the random effects distribution:

Λ̃N (θ) =
N∏

i=1

∫ +∞

0

ϕ−n exp
(
− Si

2ϕ2

)
g(ϕ, θ)dν(ϕ). (2.4)
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When σ(.) ≡ 1, the problem reduces to Si/n = φ2
i

1
n

∑n
j=1

(Wi(tj)−Wi(tj−1))2

Δ and 1
nΔ

∑n
j=1(Wi(tj)−Wi(tj−1))2

has a distribution χ2(n)/n, and is independent of φi. Thus the model can be seen as an observation of φi with
a multiplicative error. In both cases of σ(.) ≡ 1 and σ(.) �≡ 1, a theoretical study of the estimators based on
Λ̃N (θ) could be possible using the approach developed by [9] but his assumptions are generally difficult to verify.
Below, as in Delattre et al. [3], we rather introduce a specific distribution for the random effects allowing to
obtain an explicit formula for (2.4). In Section 3, we are able to directly study the corresponding estimators.

Remark 2.1. Except in the case σ(.) ≡ 1 where (2.4) is the exact likelihood, our approach based on an
approximate likelihood imposes a double asymptotic framework where both N and n tend to infinity. As
n → ∞, note that the statistic Si based on the ith trajectory provides an estimator of the random effect φ2

i .

Indeed, let Mi(t) =
∫ t

0

σ(Xi(s))dWi(s), and

Ri =
n∑

j=1

(Mi(tj) −Mi(tj−1))2/σ2(Xi(tj−1)). (2.5)

By standard properties of quadratic variations, Ri/T → 1 in probability as n → ∞. Thus, using Xi(tj) =
Xi(tj−1) +

∫ tj

tj−1
φiσ(Xi(s))dWi(s), Si/n = φ2

iRi/T tends to φ2
i .

3. A specific distribution for the random effect

For a general distribution g(ϕ, θ)dν(ϕ) of the random effect φi, the integral in (2.4) has no explicit expression.
However, for the conjugate distribution, namely the inverse Gamma (1.2), an explicit expression is obtained.
The unknown parameter is then θ = (a, λ) ∈ Θ = �

+ × �
+. The true value is denoted by θ0.

Let us start with the ideal case of directly observed random effects φi (or Γi). Then, the exact log-likelihood
of (Γ1, . . . , ΓN ) is given by:

�N(θ) = Na logλ−N logΓ (a) + (a− 1)
N∑

i=1

logΓi − λ

N∑
i=1

Γi (3.1)

with associated score function SN (θ) =
(

∂
∂λ�N (θ) ∂

∂a�N(θ)
)′

where

∂

∂λ
�N (θ) =

N∑
i=1

(a
λ
− Γi

)
,
∂

∂a
�N (θ) =

N∑
i=1

(−ψ(a) + logλ+ logΓi),

where ψ(z) = Γ ′(z)
Γ (z) is the di-gamma function. By standard properties of Gamma distributions, we have, under

the true value θ0, (1/
√
N)SN (θ0) →D N2(0, I(θ0)), where I(θ) is

I(θ) =
(

a
λ2 − 1

λ− 1
λ ψ′(a)

)
. (3.2)

Note that using properties of the di-gamma function (see Sect. 6), I(θ) is invertible for all θ ∈ (0,+∞)2.
The maximum likelihood estimator based on the observation of Γ1, . . . , ΓN , denoted θN = θN (Γ1, . . . , ΓN ) is
consistent and satisfies

√
N(θN − θ0) →D N2(0, I−1(θ0)) as N tends to infinity.

But the Γi’s are not observed. Two different strategies are studied. Following Remark 2.1, a natural idea
consists in plugging in �N(θ) the estimator n/Si of Γi. This reveals to be more complex than expected (Sect. 3.2)
and we will need to truncate the estimator n/Si. The other strategy (Sect. 3.1) is based on (2.4). We provide
asymptotic results when n is fixed and N → ∞ in the case σ(.) ≡ 1, and when both n,N → ∞ for a general σ(.).
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3.1. Estimation based on the Euler approximation of the likelihood

Let L̃N (θ) = log Λ̃N(θ) be the log Euler contrast (see (2.3) and (2.4)).

Proposition 3.1. Under (H1) and (1.2), we have:

L̃N (θ) =
N∑

i=1

log
(
Γ (a+ n/2)

Γ (a)

)
+ aN logλ−

N∑
i=1

(a+ n/2) log
(
λ+

1
2
Si

)
. (3.3)

The associated gradient vector (pseudo-score function)

G̃N (θ) =
(
∂

∂λ
L̃N (θ)

∂

∂a
L̃N (θ)

)′
(3.4)

is given by ∂
∂λ L̃N (θ) =

∑N
i=1

(
a
λ − a+n/2

λ+Si/2

)
and ∂

∂a L̃N (θ) =
∑N

i=1 (ψ(a+ n/2) − ψ(a)) +
∑N

i=1 log
(

λ
λ+Si/2

)
.

For the Hessian matrix (pseudo Fisher information matrix)

ĨN (θ) = −
(

∂2

∂λ2 L̃N (θ) ∂2

∂λ∂a L̃N (θ)
∂2

∂λ∂a L̃N (θ) ∂2

∂a2 L̃N (θ)

)
, (3.5)

we get ∂2

∂λ2 L̃N (θ) = −∑N
i=1

(
a
λ2 − a+n/2

(λ+Si/2)2

)
, ∂2

∂λ∂a L̃N (θ) =
∑N

i=1

(
1
λ − 1

λ+Si/2

)
and

∂2

∂a2 L̃N (θ) = −N (ψ′(a) − ψ′(a+ n/2)). We study the estimators defined by the estimating equation:

G̃N (θ̃N ) = 0. (3.6)

We consider two asymptotics: n fixed (Sect. 3.1.1) and n→ ∞ (Sect. 3.1.2).

3.1.1. Fixed number of observations per subject

We assume that the number n of observations per subject is fixed and that the number of subjects N tends
to infinity. The only model that can be studied with this asymptotic is the special case σ(.) ≡ 1. We denote by
the upper index 1 all the quantities associated to this model: dX1

i (t) = φidWi(t), and the statistic is

S1
i =

n∑
j=1

(X1
i (tj) −X1

i (tj−1))2/Δ. (3.7)

The distribution of S1
i can be explicitly computed.

Proposition 3.2. Under Pθ, the random variables β1
i (λ) = λ

λ+S1
i /2

, i = 1, . . . , N, are independent and β1
i (λ)

has distribution beta of the first kind on (0, 1) with parameters (a, n/2). The random variables S1
i /(2λ) are

independent with distribution on (0,+∞) beta of the second kind with parameters (n/2, a).

Then, L̃N (θ) = L̃1
N (θ) where Si is replaced by S1

i in the exact log-likelihood. Define the associated exact
maximum likelihood estimator as any solution of:

θ̂1N = Argsupθ L̃1
N (θ). (3.8)

Proposition 3.3. Assume that n is fixed. Then, the maximum likelihood estimator θ̂1N (3.8) is consistent. Let

In(θ) =

(
a(n/2)

λ2(a+1+n/2) − n/2
λ(a+n/2)

− n/2
λ(a+n/2) ψ′(a) − ψ′(a+ n/2)

)
. (3.9)

Then, the matrix In(θ0) is invertible and under Pθ0

√
N(θ̂1N − θ0) →D N2(0, I−1

n (θ0)).

Remark that In(θ) = I(θ) + O( 1
n ). The proof of Proposition 3.3 is standard and omitted. It is simply the

asymptotic study of the maximum likelihood estimator based on the i.i.d. sample (S1
i , i = 1, . . . , N) whose

distribution is specified by Proposition 3.2.
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3.1.2. Number of observations per subject goes to infinity

Now, we assume that both n and N tend to infinity for some fixed T . The strategy consists in studying
the case σ(.) ≡ 1 where computations can all be done explicitely and then studying the difference between the
general case and the case σ(.) ≡ 1. Some preliminary results on the moments of Ri/T are needed (Prop. 3.4).
For these results specifically, we do not assume that the φ2

i ’s have inverse Gamma distribution. As already said
before, Si/n = φ2

iRi/T tends to φ2
i as n tends to infinity (see (2.5) for the definition of Ri). Let us define the

equivalent of Ri for the model σ(.) ≡ 1: R1
i =

∑n
j=1(Wi(tj) −Wi(tj−1))2.

We denote by �θ = ⊗i≥1�
i
θ the distribution of the sequence of processes (φi, (Xi(t), t ∈ [0, T ])), i ≥ 1 on

(0,+∞) ×∏i≥1 C([0, T ]), by �θ the corresponding expectation. Note that Pθ is the marginal distribution of
(Xi, i = 1, . . . , N) under �θ.

Both Ri/T and R1
i /T tend to 1 in probability as n→ ∞. Furthermore:

Proposition 3.4. Under (H1), for all θ, we have �θ(
R1

i

T − 1|φi) = 0, |�θ(Ri

T − 1|φi)| ≤ C T
nφ

2
i , and |�θ(Ri

T −
R1

i

T |φi)| ≤ C T
nφ

2
i , and for all p ≥ 1, �θ((Ri

T − 1)2p|φi) ≤ C(T p

np + T 2p

n2p (φ2p
i + φ4p

i )) and

�θ((Ri

T − R1
i

T )2p|φi) ≤ C T 2p

n2p (φ2p
i + φ4p

i ).

We now study the score function (3.4) and the Fisher information matrix (3.5).

Proposition 3.5. Recall G̃N (θ0) defined by (3.4) and I(θ0) given in (3.2).
For σ(.) ≡ 1, as N,n tend to infinity, under Pθ0 , G̃N (θ0)/

√
N converges in distribution to N2(0, I(θ0)).

In the general case, if �θ0φ
8
i < +∞, i.e. if a0 > 4 and N,n tend to infinity in such a way that N/n tends

to 0, the same result holds.

The convergence of the Fisher information matrix is as follows:

Proposition 3.6. In the case σ(.) ≡ 1 and the general case, the pseudo Fisher information matrix given
in (3.5), ĨN (θ0)/N , converges in probability to I(θ0) (see (3.2)) as N,n tend to infinity, under Pθ0 .

Now we study the estimator θ̃N defined by (3.6).

Proposition 3.7. Assume that n,N → +∞ in such a way that N/n tends to 0. Then, an estimator θ̃N which
solves (3.6) exists with probability tending to one as N tends to infinity under Pθ0 and is weakly consistent. The
matrix I(θ0) is invertible and under Pθ0 ,

√
N(θ̃N − θ0) →D N2(0, I−1(θ0)).

Moreover, the estimator θ̃N is asymptotically equivalent to the MLE θN = θN (Γ1, . . . , ΓN ) based on the direct
observation of (Γ1, . . . , ΓN ).

If we discretely observe N trajectories of a fixed effect SDE, i.e. dXi(t) = ϕσ(Xi(t))dWi(t), the rate of
convergence for ϕ is

√
Nn with the same constraint N/n = o(1). This is because all the N discrete trajectories

are used to estimate a unique parameter ϕ. In the case of a random effect SDE, the rate of convergence of θ
is

√
N , which is the same as the one obtained when the random effects Γi are directly observed.

3.2. Approach based on estimators of the random effects

In this section, we exploit directly the fact that the random effect φ2
i = Γ−1

i can be estimated using the
vector Xi = (Xi(tj), j ≤ n) by Si/n. The idea is simply to replace the random variables Γi by their estimator
n/Si in the likelihood (3.1) of (Γ1, . . . , ΓN ). But this works only when σ(.) ≡ 1. More precisely, in this case, let
us set:

UN (θ) = Na logλ−N logΓ (a) + (a− 1)
N∑

i=1

log (n/S1
i ) − λ

N∑
i=1

(n/S1
i ).
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and consider the estimators θ∗N given by
∇UN (θ∗N ) = 0. (3.10)

Otherwise, we must define estimators of logΓi and Γi which have appropriate moment properties. These prop-
erties are obtained by associating a truncation to the estimators log (n/Si) and n/Si. Let us define:

l̃ogΓi = log (n/Si)�(Si/n≥k/
√

n), Γ̃i = (n/Si)�(Si/n≥k/
√

n).

where k is a constant. Note that, by the above definitions, l̃ogΓi and Γ̃i are set to 0 outside the set (Si/n ≥ k/
√
n)

where Si/n is not bounded from below. The following holds.

Lemma 3.8. Assume that �θ0φ
8
i < +∞, i.e. a0 > 4 and that n > 4. Then,

�θ0

(
n

Si
�(Si/n≥k/

√
n) −

n

S1
i

)2

+ �θ0

(
log

Si

n
�(Si/n≥k/

√
n) − log

S1
i

n

)2

≤ C

n2
·

Then we consider the function

VN (θ) = Na logλ−N logΓ (a) + (a− 1)
N∑

i=1

l̃ogΓi − λ

N∑
i=1

Γ̃i, (3.11)

and the associated estimator θ∗∗N defined by the estimating equation:

∇VN (θ∗∗N ) = 0. (3.12)

Proposition 3.9. Assume that σ(.) ≡ 1. If N,n tend to infinity in such a way that
√
N/n tends to 0, then

an estimator θ∗N which solves (3.10) exists with probability tending to 1 under �θ0 and is weakly consistent.
Moreover,

√
N(θ∗N − θ0) converges in distribution to N2(0, I−1(θ0)) and θ∗N is asymptotically equivalent to the

exact MLE θN associated to (Γ1, . . . , ΓN ), i.e.
√
N(θ∗N − θN ) = oPθ0

(1).
When σ(.) is not equal to 1, the same result holds for θ∗∗N under the condition �θ0φ

8
i < +∞, i.e. a0 > 4.

Note that in this approach, even when σ(.) ≡ 1, the constraint
√
N/n→ 0 is required.

4. Extension to nonnul drift

The estimation results obtained above can be extended to more general SDEs with a drift term. Indeed,
assume that the observed processes are given by:

dXi(t) = b(Xi(t))dt+ φiσ(Xi(t)) dWi(t), Xi(0) = x0
i , i = 1, . . . , N,

where the drift function b : � → � may be known or unknown. We define, for i = 1, . . . , N , Si with the same
formula (2.3)

Si =
1
Δ

n∑
j=1

(Xi(tj) −Xi(tj−1))
2

σ2(Xi(tj−1))
·

We consider the same estimation procedures using Si. If b is bounded, it is easy to see that Proposition 3.4
holds.

The extension of our estimation results to the case of b or σ unbounded is not straightforward because φi is
not bounded. Nevertheless, the simulation results for Examples 2−4 below show that good results are obtained
even for unbounded functions b, σ.
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Table 1. Example 1: σ(.) ≡ 1. Empirical mean and standard deviation (in brackets) of θ̃
(method 1) and θ∗ (method 2) computed from 100 datasets.

N = 50 N = 100
n = 100 n = 500 n = 100 n = 500

(a0 = 5, λ0 = 3)
ã 5.16 (1.33) 5.21 (1.17) 5.05 (0.75) 5.04 (0.64)

λ̃ 3.12 (0.87) 3.14 (0.76) 3.06 (0.47) 3.05 (0.41)
a∗ 4.70 (0.99) 5.10 (1.12) 4.60 (0.62) 4.94 (0.62)
λ∗ 2.79 (0.64) 3.07 (0.73) 2.73 (0.39) 2.98 (0.39)

(a0 = 6, λ0 = 1)
ã 6.11 (1.61) 6.09 (1.31) 5.94 (0.86) 5.93 (0.94)

λ̃ 1.02 (0.29) 1.01 (0.23) 0.99 (0.15) 0.99 (0.14)
a∗ 5.43 (1.31) 5.95 (1.25) 5.32 (0.68) 5.80 (0.79)
λ∗ 0.89 (0.23) 0.98 (0.22) 0.87 (0.12) 0.96 (0.14)

Table 2. Example 2: σ2(x) = 1 + x2. Empirical mean and standard deviation (in brackets) of
θ̃ (method 1) and θ∗∗ (method 2) computed from 100 datasets.

N = 50 N = 100
n = 100 n = 500 n = 100 n = 500

(a0 = 5, λ0 = 3)
ã 4.80 (1.16) 4.95 (0.99) 4.89 (0.81) 5.08 (0.74)

λ̃ 2.94 (0.75) 2.99 (0.64) 2.96 (0.49) 3.04 (0.43)
a∗∗ 4.35 (1.08) 4.85 (0.95) 4.47 (0.68) 4.99 (0.71)
λ∗∗ 2.61 (0.68) 2.93 (0.61) 2.65 (0.40) 2.97 (0.42)

(a0 = 6, λ0 = 1)
ã 6.11 (1.51) 6.20 (1.23) 5.80 (0.93) 5.83 (0.77)

λ̃ 1.01 (0.26) 1.02 (0.22) 0.98 (0.17) 0.98 (0.14)
a∗∗ 5.43 (1.18) 6.05 (1.17) 5.22 (0.75) 5.71 (0.96)
λ∗∗ 0.88 (0.21) 1.00 (0.20) 0.86 (0.13) 0.96 (0.13)

5. Numerical simulation results

We compare the performances of both estimation methods on simulated data for several models. Two sets
of population parameters θ0 are used: (a0 = 6, λ0 = 1) and (a0 = 5, λ0 = 3). In each case, 100 datasets are
generated with an Euler’s scheme with sampling interval δ = 10−4T on time interval [0, T ], with T = 5, and
N = 50, 100 subjects, n = 100, 500. The parameter θ0 is estimated via θ̃N (method 1) and via either θ∗N or θ∗∗N

(method 2). The empirical mean and standard deviation are computed from the 100 datasets. We consider:

Example 1. dXi(t) = φidWi(t) , Xi(0) = 0.

Example 2. dXi(t) = φi

√
1 +X2

i (t)dWi(t) , Xi(0) = 0.

Example 3. dXi(t) = −ρXi(t)dt+ φidWi(t) , Xi(0) = 0.

Example 4. dXi(t) = −ρXi(t)dt+ φi

√
1 +X2

i (t)dWi(t), Xi(0) = 0.

For Example 1, estimation method 1 leads to the exact MLE of θ0. Examples 2−4 rely on Section 4.
Both methods require to optimize a criterion. The two criteria use the function gamma, which takes large

values. Thus, the optimization is implemented vanishing the gradients of the two criteria, which are more stable.
The results for Examples 1−4 are displayed in Tables 1−4 respectively. The results are satisfactory overall

and similar for the 4 models, even when the model includes a drift. Method 1 estimators are biased for n = 100.
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Table 3. Example 3 (ρ = 1): Empirical mean and standard deviation (in brackets) of θ̃
(method 1) and θ∗∗ (method 2) computed from 100 datasets.

N = 50 N = 100
n = 100 n = 500 n = 100 n = 500

(a0 = 5, λ0 = 3)
ã 5.16 (1.26) 5.12 (1.14) 5.01 (0.71) 4.98 (0.68)

λ̃ 3.03 (0.75) 3.06 (0.68) 2.93 (0.43) 2.97 (0.41)
a∗∗ 4.68 (1.03) 5.02 (1.09) 4.57 (0.60) 4.89 (0.65)
λ∗∗ 2.70 (0.61) 2.99 (0.65) 2.62 (0.36) 2.90 (0.39)

(a0 = 6, λ0 = 1)
ã 6.44 (1.35) 6.35 (1.23) 6.10 (0.99) 6.04 (0.88)

λ̃ 1.07 (0.23) 1.07 (0.21) 0.98 (0.19) 1.00 (0.17)
a∗∗ 5.72 (1.07) 6.20 (1.17) 5.44 (0.81) 5.90 (0.84)
λ∗∗ 0.93 (0.18) 1.04 (0.19) 0.86 (0.15) 0.97 (0.15)

Table 4. Example 4. (ρ = 1) Empirical mean and standard deviation (in brackets) of θ̃
(method 1) and θ∗∗ (method 2) computed from 100 datasets.

N = 50 N = 100
n = 100 n = 500 n = 100 n = 500

(a0 = 5, λ0 = 3)
ã 4.97 (0.90) 5.08 (0.83) 4.86 (0.74) 4.97 (0.74)

λ̃ 2.90 (0.58) 3.04 (0.55) 2.83 (0.47) 2.96 (0.46)
a∗∗ 4.54 (0.75) 4.98 (0.81) 4.45 (0.61) 4.88 (0.71)
λ∗∗ 2.60 (0.48) 2.98 (0.53) 2.54 (0.39) 2.90 (0.44)

(a0 = 6, λ0 = 1)
ã 6.21 (1.28) 6.17 (1.15) 6.01 (0.81) 6.01 (0.76)

λ̃ 1.01 (0.22) 1.02 (0.20) 0.98 (0.15) 1.00 (0.14)
a∗∗ 5.48 (1.17) 6.02 (1.10) 5.38 (0.66) 5.88 (0.73)
λ∗∗ 0.88 (0.20) 1.00 (0.19) 0.86 (0.12) 0.98 (0.13)

When σ(.) �≡ 1, this is expected due to the Euler approximation of the likelihood. Nevertheless, for fixed N , we
observe the convergence of the estimators to the true value when n increases. We also observe the convergence
of the estimators to the true values when both N and n increase. This clearly illustrates consistency of the
estimators when both n and N tend to infinity. Finally, the implementation of the method 2 in Examples 2−4
requires to choose a value for the threshold k. The results are displayed for k = 0.5. Simulations with various
values of k have not shown any significant impact of k on the estimators performances.

6. Extensions and concluding remarks

In this paper, we study the estimation of population parameters in a SDE with a linear random effect in
the diffusion coefficient from discrete observations of N i.i.d. trajectories on a fixed length time interval. We
especially study the case of a null drift and of φi = 1/Γ 1/2

i with Γi ∼ G(a, λ). This leads to estimators using
two different approaches. The first method is based on an approximation of the exact likelihood relying on
the Euler’s scheme of the SDE. The second method uses a plug-in of estimators of the random effects in the
likelihood of (φ1, . . . , φN ).

Several extensions are possible. The theoretical results extend easily to N individual processes observed
on [0, Ti], i = 1, . . . , N at n discrete time points ti,j = jTi/n with all Ti’s fixed and Ti ≤ T for some fixed T .
Another direction for extensions is to look at other distributions for the random effects. In particular, the plug-in
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method applies for any distribution provided that we introduce appropriate truncations as is done here. The
Euler approximation could also be applied with other distributions but numerical integration would then be
necessary. For a more general model for the diffusion coefficient including a non linear random effect, the two
approaches studied here could be extended, in particular the second method.

Appendix A. Proofs

Proof of Proposition 3.1. Using the fact that φ−2
i has Gamma distribution G(a, λ), we get the result as:

λ̃i(θ,Xi) =
∫

(0,+∞)

λaγa−1+n/2

Γ (a)
exp

[
−γ
(
λ+

1
2
Si

)]
dγ =

λaΓ (a+ n/2)

Γ (a)
(
λ+ 1

2Si

)a+n/2
· �

Proof of Proposition 3.2. Let χi =
∑n

j=1(Wi(tj) −Wi(tj−1))2/Δ = R1
i /Δ. As S1

i = Γ−1
i χi, (see 3.7), β1

i (λ) =
λΓi

λΓi+
1
2 χi

,
S1

i

2λ = χi/2
λΓi

Under Pθ, Γi and χi are independent, Γi is G(a, λ) and χi is χ2(n) = G(n/2, 1/2). Hence
the results using Proposition B.1. �

Proof of Proposition 3.4. We need the following Lemma and Proposition:

Lemma A.1. For all θ, �θ((Xi(t) −Xi(s))2p|φi) ≤ C(2p)σ2p
1 φ2p

i |t− s|p where C(2p) is a numerical constant.

Proposition A.2. (R1
i /T ) − 1 = T−1

∫ T

0
Hn

i,1(s)dWi(s) and

(Ri/T )− 1 = T−1

(∫ T

0

Hn
i (s)dWi(s) +

∫ T

0

Kn
i (s)dWi(s) +

∫ T

0

Ln
i (s)ds

)
,

where, for j = 1, . . . , n and s ∈]tj−1, tj ], Hn
i,1(s) = 2(Wi(s) −Wi(tj−1)),

Hn
i (s) = 2

(Mi(s) −Mi(tj−1))σ(Xi(s))
σ2(Xi(tj−1))

, Kn
i (s) = 2φi(tj − s)

σ2(Xi(s))σ′(Xi(s))
σ2(Xi(tj−1))

,

Ln
i (s) = φ2

iκ(Xi(s))(tj − s)
σ2(Xi(s))

σ2(Xi(tj−1))
, with κ = σσ′′ + (σ′)2.

Lemma A.1 and Proposition A.2 yield �θ(
R1

i

T − 1|F0) = 0 and

�θ

(
Ri

T
− 1|F0

)
= �θ

(
Ri

T
− R1

i

T
|F0

)
=

1
T

∫ T

0

�θ(Ln
i (s)|F0)ds.

Using (H1), we get |Ln
i (s)| ≤ Cφ2

i

∑n
j=1 �]tj−1,tj ](s)(tj − s) ≤ Cφ2

iΔ�]0,T ](s), for C depending on σ0, σ1,K.
Thus, the first inequality of Proposition 3.4.

As (Ri

T −1)2p = (A1 +A2+A3)2p ≤ 32p−1
∑3

i=1A
2p
i , we study separately the three terms A2p

i . We have A2p
3 =(

1
T

∫ T

0
Ln

i (s)ds
)2p

≤ (Cφ2
iΔ)2p. Next, we use the Burkholder–Davies–Gundy (BDG), the Hölder’s inequalities

and (H1):

T 2p
�θ(A

2p
2 |F0) ≤ C(2p)�θ

((∫ T

0

(Kn
i (s))2ds

)p

|F0

)
≤ C(2p)T p−1

�θ

(∫ T

0

�θ((Kn
i (s))2p|F0)ds

)

where (Kn
i (s))2p ≤ Cφ2p

i Δ
2p
�]0,T ](s). Finally, for T 2p

�θ(A
2p
1 |F0) we study

(∫ T

0
(Hn

i (s))2ds
)p

. By the Holder’s
inequality, we have, (∫ T

0

(Hn
i (s))2ds

)p

≤ Cpnp−1
n∑

j=1

Δp−1

∫ tj

tj−1

(Mi(s) −Mi(tj−1))2pds.
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Consequently, for constants C depending on σ0, σ1,K,

�θ

((∫ T

0

(Hn
i (s))2ds

)p

|F0

)
≤ C

n∑
j=1

∫ tj

tj−1

�θ(

(∫ s

tj−1

σ2(Xi(u))du

)p

|F0)ds ≤ CΔp.

Finally, to study the difference Ri − R1
i , we only need to study the term:

∫ T

0 (Hn
i (s) − Hn

i,1(s))dWi(s) =∫ T

0
2
∑3

k=1

∑n
j=1 �]tj−1,tj ](s)Z

k
i,j(s)dWi(s) with

Z1
i,j(s) =

σ(Xi(s)) − σ(Xi(tj−1))
σ2(Xi(tj−1))

∫ s

tj−1

(σ(Xi(u)) − σ(Xi(tj−1)))dWi(u),

Z2
i,j(s) =

σ(Xi(s)) − σ(Xi(tj−1))
σ(Xi(tj−1))

∫ s

tj−1

dWi(u),

Z3
i,j(s) =

1
σ(Xi(tj−1))

∫ s

tj−1

(σ(Xi(u)) − σ(Xi(tj−1)))dWi(u),

These terms are studied analogously using the BDG and Cauchy−Schwarz’s inequalities. �

Proof of Lemma A.1. Recall that φi is F0-measurable and when dealing with the process (Xi(t)), conditioning
on φi is equal to conditioning on F0. We have �θ((Xi(t)−Xi(s))2p|F0) = φ2p

i �θ((Mi(t)−Mi(s))2p|F0). By the
BDG inequality and (H1), for s ≤ t,

�θ((Mi(t) −Mi(s))2p|F0) ≤ C(2p)�

((∫ t

s

σ2(Xi(u))du
)p

|F0

)
≤ C(2p)σ2p

1 (t− s)2p. �

Proof of Proposition A.2. By the Ito’s formula, we have:

(Mi(tj) −Mi(tj−1))2 = 2
∫ tj

tj−1

(Mi(s) −Mi(tj−1))σ(Xi(s))dWi(s) +
∫ tj

tj−1

σ2(Xi(s))ds.

We split: σ2(Xi(s)) = σ2(Xi(tj−1)) + σ2(Xi(s)) − σ2(Xi(tj−1)) and use the Ito formula: σ2(Xi(s)) −
σ2(Xi(tj−1)) = φi

∫ s

tj−1
(σ2)′(Xi(u))σ(Xi(u))dWi(u) + 1

2φ
2
i

∫ s

tj−1
(σ2)′′(Xi(u))σ2(Xi(u))du. Integrating, Fubini

formula yields:∫ tj

tj−1

(σ2(Xi(s)) − σ2(Xi(tj−1)))ds =φi

∫ tj

tj−1

(tj − u)(σ2)′(Xi(u))σ(Xi(u))dWi(u)

+
1
2
φ2

i

∫ tj

tj−1

(tj − u)(σ2)′′(Xi(u))σ2(Xi(u))du.

The result for R1
i corresponds to σ(.) ≡ 1. Hence the results. �

Proof of Proposition 3.5. Recall that Si = nΓ−1
i Ri/T . We have by (3.4) G̃N (θ0) = SN (θ0) +(

N∑
i=1

Yi(θ0)
N∑

i=1

Zi(θ0)

)′

where Yi(θ0) = Γi −
(a0 + n

2 )Γi

λ0Γi + Ci
and Zi(θ0) = ψ(a0 + n

2 ) − log (λ0Γi + Ci).

Therefore, we have to prove that 1√
N

(∑N
i=1 Yi(θ0)

∑N
i=1 Zi(θ0)

)′
tends to 0 in �θ0-probability as n,N tend

to infinity. To distinguish the two cases σ(.) ≡ 1 and σ(.) �≡ 1, we introduce the random variables Y 1
i (θ0), Z1

i (θ0)
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where we replaced Si by S1
i . We proceed on two steps:

(1) 1√
N

(∑N
i=1 Y

1
i (θ0)

∑N
i=1 Z

1
i (θ0)

)′
= o�θ0

(1) as N,n→ ∞.

(2) 1√
N

(∑N
i=1(Yi(θ0) − Y 1

i (θ0))
∑N

i=1(Zi(θ0) − Z1
i (θ0))

)′
= o�θ0

(1) as N,n → ∞ under the constraints

N/n→ 0 and �θ0φ
8
i < +∞.

Proof of (1). Let C1
i = nR1

i /(2T ) = ΓiS
1
i /2 and G0

i = λ0Γi. We have Y 1
i (θ0) = Γi − a0+n/2

λ0

G0
i

G0
i +C1

i
. In what

follows, we use repeatedly the fact that G0
i and C1

i are independent, that G0
i ∼ G(a0, 1) and C1

i ∼ G(n/2, 1).
Hence, G0

i +C1
i and G0

i /(G
0
i +C1

i ) are independent, the latter with distribution β(1)(a0, (n/2)), the former with
distribution G(a0 + (n/2), 1).

The r.v. Y 1
i (θ0), i = 1, . . . , N are i.i.d. with �θ0(Y 1

i (θ0)) = 0, �θ0(Y 1
i (θ0)2) = a0(a0+1)

λ2
0(a0+1+n/2)

. Therefore,

N−1/2
∑N

i=1 Y
1
i (θ0) = o�θ0

(1).
Analogously, Z1

i (θ0) = ψ(a0 + n/2)− log (G0
i + C1

i ) satisfies �θ0(Z1
i (θ0)) = 0,�θ0(Z1

i (θ0))2 = 1/(a0 + n/2) +

o(1/n). Thus, N−1/2
N∑

i=1

Z1
i (θ0) = o�θ0

(1).

Proof of (2). We introduce Ci = nRi/(2T ). We have Yi(θ0)−Y 1
i (θ0) =

(
a0 + n

2

)
Γi

G0
i + C1

i

− (a0 + n
2 )Γi

G0
i + Ci

, and Zi(θ0)−
Z1

i (θ0) = log (G0
i + C1

i ) − log (G0
i + Ci). Thus,

Yi(θ0) − Y 1
i (θ0) =

a0 + n
2

λ0

G0
i

(G0
i + Ci)(G0

i + C1
i )
n

2

(
Ri

T
− R1

i

T

)
We introduce the set Ωi = {|(Ri/T ) − 1| ≤ 1/2}. On Ωi, we use G0

i + Ci ≥ (n/4). So

�θ0 |Yi(θ0) − Y 1
i (θ0)|�Ωi ≤ 2

a0 + n
2

λ0
�θ0

(
G0

i

G0
i + C1

i

∣∣∣∣Ri

T
− R1

i

T

∣∣∣∣) ·

Then, if �θ0φ
4
i < +∞, we have by Proposition 3.4

�θ0

(
G0

i

G0
i + C1

i

)2

= O

(
1
n2

)
and �θ0

(
Ri

T
− R1

i

T

)2

≤ (T/n)2�θ0φ
4
i .

Therefore, using the Cauchy−Schwarz’s inequality, �θ0 |Yi(θ0) − Y 1
i (θ0)|�Ωi ≤ Cn

(
C
n4

)1/2 ≤ C
n .

On Ωc
i , we use G0

i /(G
0
i + Ci) ≤ 1. Therefore,

|Yi(θ0) − Y 1
i (θ0)|�Ωc

i
≤

n
2 (a0 + n

2 )
λ0

1
G0

i + C1
i

|Ri

T
− R1

i

T
|�Ωc

i
.

We have if �θ0φ
8
i < +∞, by Proposition 3.4, �θ0

(
1

G0
i +C1

i

)4

= O
(

1
n4

)
, �θ0

(
Ri

T − R1
i

T

)4

≤ (T/n)4�θ0(φ4
i + φ8

i ),

and �θ0(Ωc
i ) ≤ 22p

�θ0 |Ri

T − 1|2p. Using the Cauchy−Schwarz’s inequality twice, the above inequality with p = 2
and Proposition 3.4 with the condition �θ0φ

8
i < +∞, we get:

�θ0 |Yi(θ0) − Y 1
i (θ0)|�Ωc

i
≤ Cn2(C/n4)1/4(C/n4)1/4 (�θ0(Ω

c
i ))

1/2 ≤ C/n.

We can conclude that under the condition �θ0φ
8
i < +∞,

�θ0

∣∣∣∣∣ 1√
N

N∑
i=1

(Yi(θ0) − Y 1
i (θ0))

∣∣∣∣∣ ≤ C
√
N/n. (A.1)
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We now turn to the other difference. We have by the Taylor’s formula

Zi(θ0) − Z1
i (θ0) =

n

2
1

G0
i + n/2

(
R1

i

T
− Ri

T

)
+
n

2

(
R1

i

T
− Ri

T

)∫ 1

0

fi(s)ds,

where fi(s) = −
s n

2

(
R1

i
T −1

)
+(1−s) n

2 (Ri
T −1)

(G0
i +n/2)(G0

i +s n
2

R1
i

T +(1−s) n
2

Ri
T )
. We use that:

∣∣∣∣�θ0

n

2
1

G0
i + n/2

(
R1

i

T
− R1

i

T

)
|F0

∣∣∣∣ ≤ n

2
C

n

1
G0

i + n/2
φ2

i = C
1

Γ 2
i (G0

i + n/2)

and if �θ0φ
4
i < +∞, �θ0

1
Γ 2

i (G0
i +n/2)

≤ C
(

1
(a0+n/2−1)(a0+n/2−2)

)1/2

, to obtain that,

1√
N

N∑
i=1

�θ0

∣∣∣∣�θ0

n

2
1

G0
i + n/2

(
R1

i

T
− Ri

T

)
|F0

∣∣∣∣ ≤ C
√
N

n
·

On the other hand, noticing that for s ∈ [0, 1]: |fi(s)| ≤ n/2
(G0

i +n/2)G0
i

(
|R1

i

T − 1| + |Ri

T − 1|
)
, if �θ0φ

8
i < +∞,

�θ0

(∫ 1

0

fi(s)ds
)2

≤
(
�θ0

1
(G0

i )4
�θ0

(∣∣∣∣R1
i

T
− 1
∣∣∣∣4 +

∣∣∣∣Ri

T
− 1
∣∣∣∣4
))1/2

≤ C

(
T

n

)
·

Finally, we have �θ0
n
2 |
(

R1
i

T − Ri

T

) ∫ 1

0
fi(s)ds| ≤ (

C
n

)1/2
. Therefore, �θ0 | 1√

N

∑N
i=1(Zi(θ0) − Z1

i (θ0))| ≤
C
√
N(1/n+ 1/n1/2). �

Proof of Proposition 3.6. To obtain ĨN (θ0)/N = I(θ0) + o�θ0
(1), we have to prove that 1

N

∑N
i=1Ai(θ0) → 0,

and 1
N

∑N
i=1 Bi(θ0) → 0, in �θ0 − probability where

Ai(θ0) =
a0 + n/2

(λ0 + Si/2)2
=
a0 + n/2

λ2
0

(G0
i )

2

(G0
i + Ci)2

, Bi(θ0) =
1

λ0 + Si/2
=

Γi

G0
i + Ci

· (A.2)

As in the previous proposition, we separate the cases σ(.) ≡ 1 and σ(.) �≡ 1 and define the random variables
A1

i (θ0), B
1
i (θ0) where Si is replaced by S1

i :

A1
i (θ0) =

a0 + n/2
λ2

0

(G0
i )

2

(G0
i + C1

i )2
, B1

i (θ0) =
Γi

G0
i + C1

i

·

Recall that C1
i ∼ G(n/2, 1) and is independent of Γi. Thus,

�θ0A
1
i (θ0) =

a0(a0 + 1)
λ2

0(a0 + n/2 + 1)
= O

(
1
n

)
, �θ0B

1
i (θ0) =

a0

λ0(a0 + n/2)
= O

(
1
n

)
·

This implies 1
N

∑N
i=1 �θ0A

1
i (θ0) = O( 1

n ), 1
N

∑N
i=1 �θ0B

1
i (θ0) = O( 1

n ). Next, we study the differences Ai(θ0)−
A1

i (θ0), Bi(θ0) − B1
i (θ0).

Ai(θ0) −A1
i (θ0) =

a0 + n/2
λ2

0

(Ci − C1
i )
(

(G0
i )

2

(G0
i + Ci)(G0

i + C1
i )2

+
(G0

i )
2

(G0
i + Ci)2(G0

i + C1
i )

)
·
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Thus: |Ai(θ0)−A1
i (θ0)| ≤ a0+n/2

λ2
0

|C1
i −Ci| 2G0

i

(G0
i +Ci)(G0

i +C1
i )
. We introduce again the set Ωi = {|(Ri/T )−1| ≤ 1/2}.

On Ωi, using G0
i + Ci ≥ (n/4), we have

�θ0|Ai(θ0) −A1
i (θ0)|�Ωi ≤ 2

a0 + n/2
λ2

0(n/4)

[
�θ0

(
G0

i

G0
i + C1

i

)2

�θ0

(
C1

i − Ci

)2]1/2

≤ C/n.

Next, using G0
i /(G

0
i +Ci) ≤ 1 on Ωc

i , we have |Ai(θ0)−A1
i (θ0)|�Ωc

i
≤ a0+n/2

λ2
0

|C1
i −Ci| 2

(G0
i +C1

i )
. Thus, using the

same arguments than in proof of Proposition 3.5

�θ0(|Ai(θ0) −A1
i (θ0)|�Ωc

i
) ≤ C (�θ0(Ω

c
i ))

1/2 ≤ C

n
·

Analogously, Bi(θ0)−B1
i (θ0) = 1

λ0
(C1

i −Ci)
G0

i

(G0
i +Ci)(G0

i +C1
i )
. Introducing the set Ωi again, we obtain |Bi(θ0) −

B1
i (θ0)| ≤ C

(
G0

i

G0
i +C1

i
+ �Ωc

i

n
G0

i +C1
i

)
|Ri/T −R1

i /T |. We conclude �θ0 |Bi(θ0) − B1
i (θ0)| ≤ C

n + (�θ0(Ωc
i ))

1/2
. So

the proof is complete. �

Proof of Proposition 3.7. To obtain the weak consistency of θ̃N and its asymptotic normality, we follow the
scheme described in [1] (Thm. 3.4 and Lem. 3.5) and [7] (Thm. 4.1), see also [12]. We must prove that:

(1) Under Pθ0 , G̃N (θ0)/
√
N →D N2(0, I(θ0)) as N → ∞.

(2) ĨN (θ0)/N → I(θ0) in Pθ0 -probability.
(3) supθ∈Mc,N

|ĨN (θ)/N − I(θ0)| → 0 in Pθ0 -probability, where Mc,N = {θ ∈ (0,+∞)2, ‖θ − θ0‖ ≤ c/
√
N}.

(Uniformity condition)

Points (1) and (2) are directly implied by Propositions 3.5 and 3.6. It remains to prove (3). We will prove

(a) �θ0(supθ∈Mc,N
|Ĩ1

N (θ)/N − Ĩ1
N (θ0)/N |) → 0.

(b) �θ0(supθ∈Mc,N
|Ĩ1

N (θ)/N − ĨN (θ)/N |) → 0.

Point (a). Let ε > 0 be such that a0 − ε > 0, λ0 − ε > 0. Choose N large enough to ensure that Mc,N =
{(a, λ) ∈ (0,+∞)2, |a− a0| ≤ c/

√
N, |λ− λ0| ≤ c/

√
N} ⊂ [a0 − ε, a0 + c] × [λ0 − ε, λ0 + c] and n > 8. We have

Ĩ1
N (θ)/N − Ĩ1

N (θ0)/N = I(θ) − I(θ0) +

(
D11

N (θ, θ0) D12
N (θ, θ0)

D12
N (θ, θ0) D22

N (θ, θ0)

)

where D11
N (θ, θ0) = 1

N

∑N
i=1(A

1
i (θ) − A1

i (θ0)), D
12
N (θ, θ0) = 1

N

∑N
i=1(B

1
i (θ) − B1

i (θ0)), D22
N (θ, θ0) = −(ψ′(a +

n/2)−ψ′(a0+n/2)). We only studyD11 andD12 which are the most difficult. We can writeD11
N (θ, θ0) = cN +dN ,

with Gi = λΓi and

cN = (λ− λ0)(a0 + n/2)
1
N

N∑
i=1

Γi(Gi +G0
i + 2C1

i )
(Gi + C1

i )2(G0
i + C1

i )2
, dN = (a0 − a)

1
N

N∑
i=1

Γi

(Gi + C1
i )2

·

For θ ∈Mc,N , we have the bounds |dN | ≤ c
(λ0−ε)2

√
N
, and

|cN | ≤ c(a0 + n/2)√
N

[
(2λ0 + c)

(
Γi

C1
i

)4

+
(

2
Γi

C1
i

)3
]

We have, for n > 2k, �θ0

(
Γi

2C1
i

)k

= (2λ0)−k (a0+k−1)(a0+k−2)...a0
(n/2−1)(n/2−2)...(n/2−k) .
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Thus, �θ0 supθ∈Mc,N
|cN | ≤ C√

Nn2 . Thus �θ0 supθ∈Mc,N
|D11

N (θ, θ0)| = O(1/
√
N). For the other term, (a) is

proved as we have

sup
θ∈Mc,N

|D12
N (θ, θ0)| ≤ |λ− λ0| 1

λ0(λ0 − ε)
= O(1/

√
N).

We now prove (b). For this, we prove the convergence to 0 of (see (A.2): �θ0 supθ∈Mc,N
|Ai(θ) − A1

i (θ)| and

�θ0 supθ∈Mc,N
|Bi(θ) − B1

i (θ)|. We have |Ai(θ) − A1
i (θ)| ≤ a0+n/2+c

(λ0−ε)2 |C1
i − Ci| 2Gi

(Gi+Ci)(Gi+C1
i )
. On the set Ωi =

{|(Ri/T )− 1| ≤ 1/2}, Ri/T ≥ 1/2 and Gi +Ci ≥ n/4. Thus, as Gi +C1
i > C1

i and Gi and C1
i are independent,

for n > 4,

�θ0 sup
θ∈Mc,N

|Ai(θ) −A1
i (θ)|�Ωi

≤ 2
a0 + n/2 + c

(λ0 − ε)2(n/4)
(n/2)

(
�θ0(R

1
i /T −Ri/T )2�θ0((λ0 + c)Γi)2�θ0(1/C

1
i )2)

)1/2

≤ C
T

n

(
�θ0(φ

2
i + φ4

i )
)1/2

= O

(
1
n

)
·

Next (n > 8, �θ0φ
8
i < +∞)

�θ0 sup
θ∈Mc,N

|Ai(θ) −A1
i (θ)|�Ωc

i

≤ 2(a0 + n/2 + c)n/2
(λ0 − ε)2

(�θ0(Ω
c
i ))

1/2

(
�θ0(R

1
i /T −Ri/T )4�θ0

1
(nR1

i /T )4

)1/4

= o(1).

We have Bi(θ) −B1
i (θ) = Γi

(λΓi+
nRi
2T )(λΓi+

nR1
i

2T )
(nR1

i

2T − nRi

2T ). Using that λ ≥ λ0 − ε,

�θ0 sup
θ∈Mc,N

|Bi(θ) −B1
i (θ)| ≤ C

n

2(λ0 − ε)
T

n

(
1

(n/2 − 1)(n/2 − 2)
�θ0(φ

2
i + φ4

i )
)1/2

= O

(
1
n

)
·

Therefore, the proof of the first part of Proposition 3.7 is complete.
The fact that

√
N(θ̃n − θN ) = o�θ0

(1) can be deduced from the above proof. �

Proof of Proposition 3.9. We first consider the case σ(.) ≡ 1 and the estimating function ∇UN (θ). To get the
result, it is enough to prove that:

1√
N

N∑
i=1

(
n

S1
i

− Γi

)
= o�θ0

(1),
1√
N

N∑
i=1

(
log

n

S1
i

− logΓi

)
= o�θ0

(1), (A.3)

where we recall that S1
i /n = Γ−1

i R1
i /T and nR1

i /T is independent of Γi and has distribution χ2(n). Using results
recalled in Section 6, for n > 2, we have �θ0(

n
S1

i
−Γi) = �θ0Γi�θ0(

n/2
C1

i
− 1) = a0

λ0
O(n−1). Analogously, for n > 4,

�θ0(
n
S1

i
−Γi)2 = �θ0Γ

2
i �θ0(

n/2
C1

i
−1)2 = O(n−1). This implies: �θ0(

1√
N

∑N
i=1(

n
S1

i
−Γi))2 = O(n−1)+N−1

2 (O(n−1))2.

Hence, the first part of (A.3) holds provided that
√
N/n = o(1).

For the second assertion, we compute �θ0(log n
S1

i
−logΓi) = −ψ(n/2)+log (n/2) = O(n−1), and Varθ0(log n

S1
i
−

log Γi) = �θ0(− logC1
i + ψ(n/2))2 = O(n−1).ψ′(n/2) Therefore, the second part of (A.3) also holds for√

N/n = o(1).
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Next, the result on θ∗N will follow analogously from the fact that TN = (
√
N)−1

∑N
i=1(l̃ogΓi − logΓi) and

τN = (
√
N)−1

∑N
i=1(Γ̃i − Γi) both tend to 0 in probability. The result follows from the first part of the proof

and from Lemma 3.8 which we prove now.

Proof of Lemma 3.8. We write: Γ̃i − n
S1

i
= n

Si
�(Si/n≥k/

√
n) − n

S1
i

= νi + ν′i with

νi =
(
n

Si
− n

S1
i

)
�(Si/n≥k/

√
n), ν′i = − n

S1
i

�(Si/n<k/
√

n). (A.4)

And analogously log Si

n �(Si/n≥k/
√

n) − log S1
i

n = τi + τ ′i with

τi =
(

log
Si

n
− log

S1
i

n

)
�(Si/n≥k/

√
n), τ ′i = − log

S1
i

n
�(Si/n<k/

√
n). (A.5)

For n > 4 and �θ0φ
8
i < +∞, using explicit computations, �θ0(

n
S1

i
)2 = O(1), �θ0 log2 S1

i

n = O(1). To obtain that
�θ0(ν′i + τ ′i)

2 = O(n−2), we now prove that:

�θ0(Si/n < k/
√
n) ≤ C/n2. (A.6)

Proof of (A.6). We remark:(
Si

n
<

k√
n

)
⊂
(∣∣∣∣φ2

i −
Si

n

∣∣∣∣ > φ2
i −

k√
n
, φ2

i ≥ 2
k√
n

)
∪
(
φ2

i < 2
k√
n

)
⊂
(∣∣∣∣φ2

i −
Si

n

∣∣∣∣ > φ2
i

2

)
∪
(
φ−2

i >

√
n

2k

)
=
(∣∣∣∣1 − Ri

T

∣∣∣∣ > 1
2

)
∪
(
φ−2

i >

√
n

2k

)
·

Consequently, using the Markov’s inequality and Proposition 3.4 yields:

�θ0(Si/n < k/
√
n) ≤ C

(
24

(
T

n

)2

(1 + �θ0(φ
4
i + φ8

i ) +
(2k)4

n2
�θ0φ

−4
i

)
≤ c′/n2.

So the proof of (A.6) is complete. �

It remains to study the terms νi, τi. We have on (Si/n ≥ k/
√
n):

|νi| =
∣∣∣∣ 1
S1

i /n
(S1

i /n− Si/n)
(

1
Si/n

− Γi + Γi

)∣∣∣∣
≤ 1
R1

i /T

∣∣∣∣(R1
i

T
− Ri

T

)(
1 − Ri

T

)∣∣∣∣Γ−1
i

√
n

k
+

Γi

R1
i /T

∣∣∣∣R1
i

T
− Ri

T

∣∣∣∣ ·
We use Proposition 3.4, the Cauchy−Schwarz’s inequality and the exact distribution of Γi and 1

R1
i /T

to obtain,
for n > 4 and �θ0φ

8
i < +∞:

�θ0ν
2
i ≤ C

⎡⎣ n
k2

(
�θ0

(
R1

i

T
− Ri

T

)4

�θ0(1 − Ri

T
)4
)1/2

+

(
�θ0

(
R1

i

T
− Ri

T

)2
)⎤⎦ ≤ C′

n2
·

For the term τi, we use the Taylor’s formula and get:

τi = (Si/n− S1
i /n)

∫ 1

0

ds
s(Si/n) + (1 − s)(S1

i /n)
·
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Then, we split the integral:∫ 1

0

ds
s(Si/n) + (1 − s)(S1

i /n)
=

1
S1

i /n
+
∫ 1

0

s(S1
i /n− Si/n)

(s(Si/n) + (1 − s)(S1
i /n))S1

i /n
ds.

Thus, on (Si/n ≥ k/
√
n), we obtain, after simplifications:

|τi| ≤ 1
R1

i /T
|Ri/T −R1

i /T |+
√
n

k

1
R1

i /T
Γ−1

i (Ri/T −R1
i /T )2.

This yields �θ0τ
2
i ≤ C/n2. The proof of Lemma 3.8 is now complete. �

Applying Lemma 3.8, we obtain the result of Proposition 3.9.

Appendix B. Auxiliary results

We recall some properties of Gamma and related distributions. The Gamma distribution with parameters
(a, λ) (a > 0, λ > 0), G(a, λ), has density γa,λ(x) = (λa/Γ (a))xa−1e−x

�(0,+∞)(x), where Γ (a) is the Gamma
fonction. The digamma function ψ(a) = Γ ′(a)/Γ (a) admits the following integral representation: ψ(z) = −γ +∫ 1

0 (1 − tz−1)/(1 − t)dt. (where γ = ψ(1) = Γ ′(1)). For all positive a, we have ψ′(a) = − ∫ 1

0
log t
1−t ta−1dt.

Consequently, using an integration by part, −aψ′(a) = −1− ∫ 1

0
tag(t)dt, where g(t) = (log t/(1− t))′. A simple

study yields that tag(t) is integrable on (0, 1) and positive except at t = 1. Thus, 1− aψ′(a) �= 0. The following
asymptotic expansions as a tends to infinity hold:

log Γ (a) =
(
a− 1

2

)
log a− a+

1
2

log 2π +O

(
1
a

)
, (B.1)

ψ(a) = log a− 1
2a

+O

(
1
a2

)
, ψ′(a) =

1
a

+O

(
1
a2

)
(B.2)

The following results are classical.

Proposition B.1. If X has distribution G(a, λ), then λX has distribution G(a, 1). For all integer k, �(λX)k =
Γ (a+k)

Γ (a) . For a > k, �(λX)−k = Γ (a−k)
Γ (a) . Moreover, � log (λX) = ψ(a), Var [log (λX)] = ψ′(a).

If X,Y are independent, X having distribution G(a, 1) and Y having distribution G(b, 1) (a, b > 0), then,
X + Y and X/(X + Y ) are independent, X + Y has distribution G(a+ b, 1), T = X

X+Y has distribution beta of
the first kind with parameters (a, b), denoted by β(1)(a, b), and density

fT (t) =
1

B(a, b)
ta−1(1 − t)b−1

�(0,1)(t),

with B(a, b) = Γ (a)Γ (b)
Γ (a+b) and Z = X/Y has distribution beta of the second kind with parameters (a, b), denoted

by β(2)(a, b), and density

fZ(z) =
1

B(a, b)
za−1

(1 + z)a+b
�(0,+∞)(z).

We have E(T ) = a
a+b , E(T 2) = a(a+1)

(a+b)(a+b+1) , Var(T ) = ab
(a+b)2(a+b+1) , E logT = ψ(a)−ψ(a+b), Var(logT ) =

ψ′(a) − ψ′(a+ b), Cov(T, logT ) = b
(a+b)2 .
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