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CONVERGENCE OF THE SPECTRUM OF EMPIRICAL COVARIANCE
MATRICES FOR INDEPENDENT MRW PROCESSES

Romain Allez1,2, Rémi Rhodes1,2 and Vincent Vargas1,2

Abstract. We study the asymptotic of the spectral distribution for large empirical covariance matrices
composed of independent lognormal Multifractal Random Walk processes. The asymptotic is taken as
the observation lag shrinks to 0. In this setting, we show that there exists a limiting spectral distribution
whose Stieltjes transform is uniquely characterized by equations which we specify. We also illustrate
our results by numerical simulations.
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1. Introduction

Since the seminal work of Marchenko and Pastur [12] in 1967, there has been growing interest in studying
the asymptotic of large empirical covariance matrices. These studies have found applications in many fields of
science: physics, telecommunications, information theory and finance, etc. The main motivation of this work
stems from finance: the study of covariance matrices is a crucial tool for minimizing the risk Rw of a portfolio
w that invests wi in asset number i. Indeed, if we denote by ri the price variation of asset i, Rw can be defined
as the variance of the random variable

∑
iwiri and can be computed in terms of the covariance matrix R of

the ri (defined as Rij = E[rirj ]):
Rw = wtRw.

Of course, practitioners do not have access to R; instead, they must consider a noisy empirical estimator of R,
which consists of a large empirical covariance matrix. A key tool in distinguishing noise from real correlations is
the study of the eigenvalues of the empirical covariance matrix: we refer to [6,15] for more extended discussions
on the applications of large empirical covariance matrices in finance and in particular in portfolio theory.

We will work in a high frequency setting: we consider N stock price processes Xi(t) for i = 1, . . . , N that
evolve continuously with respect to time t ∈ [0; 1] but we observe those prices only on a discrete finite grid
{j/T, j = 1, . . . , T} where T is the number of observations. Using this discrete grid, we can compute the price
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variations ri(j) (that we will abusively call returns) for each asset price Xi on every time interval [(j − 1)/T ;
j/T ] by:

ri(j) := Xi

(
j

T

)
−Xi

(
j − 1
T

)
.

Then, we define the N ×T matrix XN such that XN (ij) = ri(j) that enables to define the empirical covariance
matrix RN as follows

RN := XNX
t
N .

In this work, we will be interested in the statistics of the symmetric matrix RN and in particular in its spec-
trum, or more precisely, in its limiting spectral distribution in the limit of large matrices (i.e. when N → ∞)
for different models of the i.i.d. random continuous processes (Xi(t)), i ∈ {1, . . . , N} (see below for precise defi-
nitions). For this purpose, the Marchenko–Pastur paper enables to deal with the case where stock prices follow
independent Brownian motions. More precisely, in this case, the matrix XN is defined as:

XN(ij) = Bi

(
j

T

)
−Bi

(
j − 1
T

)
(1.1)

where the Bi are i.i.d. standard Brownian motions.
If λ1, . . . , λN are the eigenvalues of RN , the empirical spectral distribution of the matrix RN is the probability

measure defined by:

μRN =
1
N

N∑
i=1

δλi . (1.2)

The Marchenko–Pastur (MP) result states that, in the limit of large matrices N,T → ∞ with N/T → q ∈ (0, 1],
the empirical spectral distribution μRN weakly converges (almost surely) to a probability measure whose density
ρ0(x) is:

ρ0(x) =
1

2πq

√
(γ+ − x)(x − γ−)

x
�[γ−,γ+]dx (1.3)

where γ± = 1 + q ± 2
√
q.

Independently of the aforementioned work on random matrix theory, much work has been devoted to studying
the statistics of financial stocks. It turns out that most financial assets (stocks, indices, etc.) possess universal
features, called stylized facts. In short, one can observe empirically the following properties (the list below is
obviously non exhaustive) for asset returns on financial markets:

• The returns are multifractal; in particular on short scales, they are heavy tailed but tend to have distribution
closer to the Gaussian law on larger scales.

• The volatility fluctuates randomly and follows approximately a lognormal distribution.
• While the returns are rapidly decorrelated, the volatility exhibits long range correlations following a power

law.

We refer to the references [7,8] for a discussion on this topic. Many models have been proposed in the literature
that take into account these stylized facts. Among them, there has been growing interest in the lognormal
Multifractal Random Walk (MRW) model introduced in [2] (see also [1, 16]). The lognormal MRW model
satisfies several of the so-called stylized facts, but a few of them remain unchecked such as asymmetry of returns
and Leverage effect (see [5]). The lognormal MRW is simply defined as:

X(t) = B (M [0, t]) (1.4)

where B is a standard Brownian motion and M is an independent lognormal multifractal random measure
(MRM for short) formally defined, for t � 0, by:

M [0; t] =
∫ t

0

eω(x)− 1
2 E[ω(x)2]dx, (1.5)
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Figure 1. Simulated path of a multifractal random walk with intermittency parameter γ2 = 1
and with integral scale τ = 1/4. Note the intermittent bursts in volatility.

where (ω(x))x∈R is a stationary centered “Gaussian process” with a covariance function K(x, y) := E [ω(x)ω(y)]
of the form

K(x, y) = γ2 ln+

(
τ

|x− y|
)
,

where ln+ x = max(ln x, 0). Note here that the variance E[ω(x)2] = K(x, x) is infinite so that the process
(ω(x)) is not well defined. We will see in Section 2.1 how to define the measure M with a limiting procedure
with Gaussian processes ωε(x) with covariance function Kε(x, y) such that limε→0Kε(x, y) = K(x, y). The two
parameters γ2 and τ are respectively called intermittency parameter and integral scale (or correlation length)
of the lognormal random multifractal measure M .

Figure 1 represents a simulated path of a lognormal MRW X(t) = B(M([0; t])) where B is a standard
Brownian motion independent of the multifractal random measure M with intermittency parameter γ2 = 1 and
integral scale τ = 1/4. The reader can find a more precise reminder of the construction/definition of a more
general class of Multifractal Random Measure (MRM), as well as (standard) notations used throughout the
paper in Section 2.1.

We thus aim at studying the large sample covariance matrices where the underlying price processes evolve
as lognormal MRW. More precisely, the matrix XN is defined, for 1 � i � N, 1 � j � T , as:

XN (ij) = Bi
(
M i

(
0,
j

T

))
−Bi

(
M i

(
0,
j − 1
T

))
(1.6)

where the Bi are i.i.d. Brownian motions and the Mi are i.i.d. lognormal MRM independent of the Bi. Let
us mention the work [11] which considers high frequency covariance matrices in the context of diffusion pro-
cesses (see also [14] for studies of high frequency large empirical covariance matrices motivated by financial
applications). The processes described by (1.6) are typically not diffusions.

In the spirit of the MP Theorem, the purpose of this work is to characterize the limit of the empirical spectral
measure μRN when N,T → ∞ with N/T → q ∈ (0, 1]. It is interesting to understand how the long-memory
volatility process affects the covariance matrix in the limit of large matrices. In particular, we will see that
the intermittent volatility has the effect to spread the spectrum of the covariance matrix RN in a wider region
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of R+. Indeed the spectral density has a compact support [γ−; γ+] in the Marchenko–Pastur setting (in which
the prices follow Brownian motions) whereas it has an infinite support with a tail that gets heavier as the
intermittency parameter grows. We mention that our results can be extended to many different auto-correlated
volatility processes.

The effect of the integral scale τ on the empirical covariance matrix RN is also very interesting in the context
of price variations measured on a very short scale (high frequency). The high frequency case corresponds to large
values of the parameter τ while low frequency case corresponds to small values of τ . Indeed, if X is a lognormal
MRW with integral scale τ , then the process X̂(t) defined on [0; 1] as X̂(t) = X(t/2) is a lognormal MRW
with integral scale 2τ . Note that this discussion on high freqency measurement is irrelevant in the MP case
when asset prices follow independent Brownian motions since, in this model, the distribution of price variations
is the same on any scale: It is Gaussian, only the variance will change with the scale and up to the variance
parameter the limiting spectral distribution will always be the same at different scales. However, if asset prices
follow lognormal MRW (or even another process with a correlated in time volatility process), the price variations
measured on small scales will have a distribution with higher kurtosis (i.e. the probability mass of the tail is
heavier) and therefore the spectrum of the empirical covariance matrix RN should be affected by decreasing the
measurement scale. We therefore expect stronger right tail for the spectral distribution. The numerical analysis
of our results indeed confirms this guess: The larger the integral scale is, the heavier the right tail is.

Here, we are mainly interested in the case where asset prices follow lognormal MRW but we will also present
our results for two other related models where asset prices follow independent Brownian motions with a time
change, which can be thought of as a volatility process with memory (i.e. the volatility process is correlated in
time).

The next sections are organized as follows. In Section 2, we remind the definition of MRW and introduce
the main notations of the paper. In Section 3, we state our main theorems which are characterizations of the
limiting spectral measure of RN through its Stieltjes transform for different types of underlying processes X .
These equations are tedious to invert analytically and it is hard to extract the properties (continuity, tails of
the distribution) of the associated spectral density. In Section 4, we invert these equations numerically so as to
get informations on the spectral measure of the covariance matrix RN as N → ∞ and we check the validity
and applicability of our results using numerical simulations. The proofs appear in Section 5 with some auxiliary
lemmas proved in the appendix. The strategy of our proofs is classical among the random matrix literature (the
so-called resolvent method) as it relies on the Schur recursion formula for the Stieltjes transform; in particular,
we follow the approach of [4]. The main difficulty lies in handling the Stieltjes transforms in a multifractal
setting.

2. Background, notations and main results

2.1. Reminder of the construction of lognormal MRM

To fix precisely the notations that we will use throughout the paper, we quickly remind the main steps of
the construction of lognormal Multifractal Random Measures (MRM). Such measures attracted recently a lot
of interest in various probabilistic settings and found numerous applications in natural sciences (see [13] for a
general review on Gaussian multiplicative chaos). The description is necessarily concise and is restricted to the
lognormal case. The reader is referred to [2] for further details on log Lévy MRM.

For γ > 0, we set

ϕ(p) = −iγ
2

2
p− γ2

2
p2.

We work on the half-space S = {(t, y); t ∈ R, y ∈ R∗
+} on which we consider the positive measure

θ(dt, dy) = y−2dt dy. (2.1)
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Let μ be an independently scattered Gaussian random measure on S associated to the couple (ϕ, θ). It is worth
recalling the properties which define an independently scattered Gaussian random measure:

• for every sequence of disjoint sets (An)n of S, (μ(An))n is a sequence of independent random variables and:

μ

(⋃
n

An

)
=
∑
n

μ(An), almost surely.

• for any θ-measurable set A, μ(A) is a Gaussian random variable with mean −γ2θ(A)/2 and variance γ2θ(A).
Its characteristic function is

E[eiqμ(A)] = eϕ(q)θ(A)

We also introduce the Laplace exponent ψ(p) = ϕ(−ip) = γ2

2 (p− p2).

Definition 2.1 (Filtration (Fε)ε>0).
Let Ω be the probability space on which μ is defined.
The σ-algebra Fε is defined as the σ-algebra generated by the family of random variable {μ(A × B);A ∈

B(R2), A ⊂ S, dist(A,R2 \ S) � ε}.
Given a positive parameter τ , let us also define f : R+ → R by:

f(r) =
{
r, if r � τ
τ if r � τ

.

The cone-like subset Aε(t) of S is defined by:

Aε(t) = {(s, y) ∈ S; y � ε,−f(y)/2 � s− t � f(y)/2}. (2.2)

We can then define the stationary process (ωε(t))t∈R by:

ωε(t) = μ (Aε(t)) . (2.3)

The truncated random measures Mε (for which we will later check almost sure convergence to the so called
lognormal multifractal random measure M) is then defined by: For all Borel sets A,

Mε(A) =
∫
A

eωε(t) dt.

Note that E[Mε(A)] = |A| 3.
The covariance structure of the Gaussian process (ωε(t))t∈R is

Kε(s, t) := E

[(
ωε(s) +

γ2

2

(
ln
(τ
ε

)
+ 1

))(
ωε(t) +

γ2

2

(
ln
(τ
ε

)
+ 1

))]

=

⎧⎪⎪⎨⎪⎪⎩
γ2
(
ln
(
τ
ε

)
+ 1 − |t−s|

ε

)
, if |t− s| � ε,

γ2 ln
(

τ
|t−s|

)
if |t− s| � ε.

The (Radon) random measure M is then defined as the almost sure limit (in the sense of weak convergence
of Radon measures) by:

M(A) := lim
ε→0+

Mε(A)

3 In the formal definition equation (1.5) of the introduction, the “process” (ω(t)) in (1.5) is centered. The process ωε is not.
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for any Lebesgue measurable subset A ⊂ R. The convergence is ensured by the fact that the family (Mε(A))ε>0

is a right-continuous positive martingale with respect to the filtration (Fε)ε>0.
We introduce the structure exponent ζ defined by

ζ(p) := p− ψ(p) =
(

1 +
γ2

2

)
p− γ2

2
p2.

It can be shown (see [2]) that the measure M is different from 0 if and only if γ2 < 2. If γ2 < 2, one can
check that there exists ε > 0 such that ζ(1 + ε) > 1. In this case, we have the following theorem.

Theorem 2.2. The measure M is stationary and satisfies the exact stochastic scale invariance property: For
any λ ∈]0, 1], we have the following equality in law between the two families of random variables indexed by the
Borel sets A included in the Euclidean ball B(0; τ) of radius τ

(M(λA))A⊂B(0,τ)
law=

(
λeΩλM(A)

)
A⊂B(0,τ)

, (2.4)

where Ωλ is a Gaussian random variable independent of (M(A))A⊂B(0,τ), with mean −γ2/2 lnλ and variance
γ2 lnλ.

In addition, it is proven in [2] that for any p > 0, we have E[M [0; 1]q] < +∞ if and only if ζ(q) � 1. For such
q, it is easy to deduce from (2.4) that for all λ ∈ [0; τ ], we have

E [M [0;λ]q] = λζ(q) E [M [0; 1]q] . (2.5)

The function ζ is concave, the relation (2.5) exhibits the multifractal behavior of the measure M . The function
ζ is often referred as the structure exponent in the multifractal formalism.

2.2. Notations

Let N and T := T (N) be two integers, the aim of this paper is to compute the empirical spectral measure of
the matrix RN := XN

tXN as N → ∞, where XN is a N ×T real matrix the entries of which are given by (1.6).
Recall that the number N of sampled processes is supposed to be comparable with the sample size T := T (N),
and more precisely, we will suppose in the following that there exists a parameter q ∈]0, 1] such that:

lim
N→∞

N

T
= q. (2.6)

We further set R̃N := tXNXN , and if M is a symmetric real matrix, we will denote by μM the empirical spectral
measure of M .

Define the (T +N) × (T +N) matrix BN by:

BN =
(

0 tXN

XN 0

)
.

We also define for z ∈ C \ R,

AN (z) = (zIT+N −BN ) =
(
zIT −tXN

−XN zIN

)
.

Notice that

B2
N =

(
R̃N 0
0 RN

)
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and that the eigenvalues of R̃N are those of RN augmented with T −N zero eigenvalues. We thus have:

μB2
N

= 2
N

N + T
μRN +

T −N

N + T
δ0, (2.7)

where δx stands for the Dirac mass at x. Combining this equality with the relation∫
f(x)μB2

N
(dx) =

∫
f(x2)μBN (dx) (2.8)

true for all bounded continuous functions f on R, we see that it is sufficient to study the weak convergence of
the spectral measure of BN for the study of the convergence of the spectral measure μRN .

We will thus work on the (weak) convergence of the spectral measures μBN and E [μBN ] in the following. To
that purpose, it is sufficient to prove the convergence of the Stieltjes transform of these two measures. Recall
that, for a probability measure μ on R, the Stieltjes transform Gμ of μ is defined, for all z ∈ C \ R, as:

Gμ(z) =
∫

R

1
z − x

μ(dx). (2.9)

and one can note that:
GμBN

(z) =
1

N + T
Trace(GN (z)), (2.10)

where we have set:
GN (z) = (AN (z))−1 . (2.11)

Hence, we have to investigate the convergence of the right-hand side of (2.10). Let us introduce the two following
complex measures L1,z

N and L2,z
N such that, for all bounded and measurable function f : [0, 1] → R:

L1,z
N (f) =

1
T

T∑
k=1

f

(
k

T

)
GN (z)kk (2.12)

L2,z
N (f) =

1
N

N∑
k=1

f

(
k

N

)
GN (z)k+T,k+T (2.13)

Clearly, we have the relation

1
N + T

Trace(GN (z)) =
T

N + T
L1,z
N ([0, 1]) +

N

N + T
L2,z
N ([0, 1]) (2.14)

so that it suffices to establish the convergence of the two complex measures L1,z
N and L2,z

N .

3. Main results

We will make the assumption that the intermittency parameter γ2 is small enough so as to overcome in our
proofs the strong correlations of the model.

Assumption 3.1. More precisely, let us suppose that:

γ2 <
1
3
. (3.1)

Though we conjecture that our results hold as soon as the measure M is non degenerated, i.e. γ2 < 2 (see [2]),
Assumption 3.1 is largely sufficient to cover most practical applications. For instance, in financial applications
or in the field of turbulence, γ2 is found empirically around 2 × 10−2.

We can now state our main result about the convergence of the empirical spectral measure and mean empirical
spectral measure of the matrix RN .
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Theorem 3.2.

(i) The mean spectral measure E[μRN ] converges weakly when N goes to ∞ to a probability measure on R+

denoted ρ(dx).
(ii) The spectral measure μRN converges weakly in probability to the probability measure ρ(dx). More precisely,

for any bounded and continuous function f ,
∫
f(x)μRN (dx) converges in probability to

∫
f(x)ρ(dx) when

N goes to +∞.
(iii) Let Nk be an increasing sequence of integers such that

∑∞
k=1N

−1
k < +∞, then the sequence μRNk

converges
weakly almost surely to the probability measure ρ(dx) when k goes to +∞.

We first prove Theorem 3.3 which establishes the convergence of the complex measures E[L1,z
N ] and E[L2,z

N ].
Theorem 3.2 is then implied by Theorem 3.3, equations (2.10) and (2.14) noting in addition that the probability
measure ρ(dx) is the push-forward of the measure υ(dx) (introduced in Thm. 3.3) by the mapping x �→ x2. In
the sequel, we will use the notation ρ = υ ◦ (x2)−1.

Theorem 3.3.

(i) The measures E[L1,z
N ] and E[L2,z

N ] converge weakly towards two complex measures. More precisely, there
exist a unique μ2

z ∈ C and a unique bounded measurable function Kz(x) over [0, 1] such that, for all bounded
and continuous function f on [0, 1], we have respectively:

E

[
L1,z
N (f)

]
→N→∞

∫ 1

0

Kz(x)f(x) dx,

E

[
L2,z
N (f)

]
→N→∞ μ2

z

∫ 1

0

f(x) dx.

(ii) In addition, we have the following relation between μ2
z ∈ C and Kz(x):∫ 1

0

Kz(x) dx = qμ2
z +

1 − q

z
(3.2)

(iii) Furthermore, there exists a unique probability measure υ on R whose Stieltjes transform is μ2
z, meaning

that for all z ∈ C \ R,

μ2
z =

∫
R

υ(dx)
z − x

. (3.3)

In the following Theorem, we give a characterization of the probability measure υ by means of its Stieltjes
transform μ2

z.

Theorem 3.4. The constant μ2
z and the bounded function Kz(x) are uniquely determined for all z ∈ C \R, by

the following system of equations:

μ2
z = E

[(
z −

∫ 1

0

Kz(t)M(dt)
)−1

]
, (3.4)

Kz(x) =

⎛⎝z − qE

⎡⎣(z − ∫ 1

0

(
τ

|t− x|
)γ2

+

Kz(t)M(dt)

)−1
⎤⎦⎞⎠−1

(3.5)

where4 M is the MRM with structure exponent ζ(q) = (1 + γ2/2)q − q2γ2/2.

4 The notation (·)+ is a shortcut for max (·, 1).
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Our approach to show the convergence of E[L1,z
N ] and E[L2,z

N ] consists in proving tightness and characterizing
uniquely the possible limit points. The classical Schur complement formula is our basic linear algebraic tool to
study E[L1,z

N ] and E[L2,z
N ] recursively on the dimension N , as is usual when the resolvent method is used. The

original part of our proof is that we apply the Schur complement formula two times in a row to find the second
equation of the system in Theorem 3.4 involving the limit point Kz(x) of the measure E[L1,z

N ]. We will also show
that the limit points of the two complex measures E[L1,z

N ] and E[L2,z
N ] satisfy a fixed point system (written in

Thm. 3.4).
Let us notice that one can give a precise meaning to (3.5) for all γ2 ∈ [0, 2[. Indeed, we can define for all

x ∈ [0, 1] and all continuous function f , the following almost sure limit as a definition:∫ 1

0

(
τ

|t− x|
)γ2

+

f(t)M(dt) = lim
η→0

∫
t∈[0,1];|t−x|>η

(
τ

|t− x|
)γ2

+

f(t)M(dt) (3.6)

Note that the above limit exists almost surely since, for x fixed:

lnM [x− εk, x+ εk]
ln εk

→
k→∞

1 +
γ2

2
, a.s.

where εk = 1/2k. One can also check with this definition that we have:∫ 1

0

(
τ

|t− x|
)γ2

+

f(t)M(dt) = lim
ε→0

∫ 1

0

ecov(ωε(t),ωε(x))f(t)eωε(t)dt

Conjecture 3.5. With this extended definition, we conjecture that Theorem 3.4 holds in the lognormal multi-
fractal case for all γ2 ∈ [0, 2[.

4. Numerical results

We want to extract information on the spectral density υ ◦ (x2)−1 of the covariance matrix RN in the limit of
large matrices. This section will also give evidence that our equations are easy to use in practice for applications.

The information on the measure υ is entirely contained in its Stieltjes transform μ2
z which is the unique

solution of the system of equations (3.4) and (3.5). Let us admit for clarity at this point that the measure υ has
a continuous density, at least on the set R \ {0}. One should be able to show that this is indeed true using the
two equations (3.4) and (3.5) that characterize the probability measure υ. Under this continuity assumption for
υ(x), we can re-find the density υ(x) from μ2

z by the relation

lim
ε→0

1
π
	(μ2

x−iε) = υ(x). (4.1)

Note that we just need to find the unique family of functions (Kz(x))x∈[0;1] for z ∈ C\R near the real line, that
verifies the fixed point equation (3.5). Indeed, knowing (Kz(x))x∈[0;1], we can compute μ2

z by using equation (3.4),
or even simpler, the additional relation that we stated above∫ 1

0

Kz(x) dx = qμ2
z +

1 − q

z
· (4.2)

Let C([0; 1],C) be the space of bounded functions from [0; 1] to C. For z ∈ C \ R fixed, the idea to find
(Kz(x))x∈[0;1] is to use the fixed point method due to Picard. Let us introduce the operator T : C([0; 1],C) →
C([0; 1],C) by setting, for g ∈ C([0; 1],C) and for all x ∈ [0, 1]:

Tg(x) =
1

z − qE

[(
z − ∫ 1

0

(
τ

|t−x|
)γ2

+
g(t)M(dt)

)−1
] · (4.3)
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Figure 2. Comparison between the theoretical value of the density υ ◦ (x2)−1(x) and the
empirical histogram computed through a sample of simulated empirical covariance matrices
RN as defined in the introduction with q = 1. The stock prices follow lognormal multifractal
random walks with intermittency parameter γ2 = 1/2.

It can easily be shown (see Sect. 5.6) that if z ∈ C \R is sufficiently far from the real line, then the operator T
is contracting and therefore admits a unique fixed point Kz(·) in C([0; 1],C). To find the fixed point Kz, we will
iterate the operator T starting from any fixed initial function K(0)

z . We know that, for z such that the operator
T is contracting, the n-th iteration of the function K

(n)
z := T (K(n−1)

z ) converges to the unique fixed point Kz.
In fact, numerically, there is no need in applying the iteration on T for z such that T is contracting (i.e. for z
far from the real line) and one can apply the Picard method directly near the real line5 and find the fixed point
after a reasonable number of iterations of the operator T .

The multifractal lognormal random measure M(dt) and multifractal random walk are simulated through the
standard method by simulating first, with the use of fast Fourier transform, a Gaussian process with covariance
function given for η > 0 small by

Kη(|t− s|) = γ2 ln+

(
τ

|t− s| + η

)
.

The lognormal multifractal random measure and random walk are then constructed from this Gaussian process
through the standard formulas (see e.g. [2, 16]).

The results are as follows. In Figure 2, we show the comparison between the theoretical value of the density
υ ◦ (x2)−1(x) (computed numerically as described above) and an empirical histogram of the eigenvalues of
a sample of simulated covariance matrices RN (defined in the introduction) for N = 1024 and q = 1. The
agreement is excellent as expected from Theorems 3.2, 3.3 and 3.4. The figure is done for an intermittency
parameter γ2 = 1/2 and an integral scale τ = 1/4, suggesting that our prediction remains true for γ2 > 1/3
(see conjecture 3.5 which also covers the case γ2 ∈ [1, 2[).

5 Recall that, in view of equation (4.1), we are interested in the value of the Stieltjes transform near the real line.
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Figure 3. Log-log plot of the density υ ◦ (x2)−1 with q = 1, τ = 1/4 for three different
intermittency parameter: γ2 = 0 (black dashed line), γ2 = 1/4 (blue line) and γ2 = 1/2 (red
line). (Color online).

In Figure 3, we represent three curves (axis are in log-log) corresponding to the theoretical density υ◦(x2)−1(x)
for a parameter q = 1, an integral scale τ = 1/4 and for three different values of γ2. The black dashed curve
corresponds to γ2 = 0, which in fact is the Marchenko-Pastur case: asset prices are following independent
Brownian motions with a trivial constant volatility process. In this case, the support is compact and the right
edge of the spectrum is known to be equal to 4. The blue curve corresponds to an intermittency parameter equal
to 1/4 and the red curve is for γ2 = 1/2. In this way, we see precisely the distortion of the spectrum induced
by the auto-correlated volatility process. The most interesting part for applications is certainly about the tails
of the distribution: the higher the intermittency parameter γ2 is, the heavier the tail of the distribution is.

In Figure 4, we represent four curves corresponding to the theoretical density υ ◦ (x2)−1(x) but varying the
integral scale τ instead of the intermittency parameter γ2. We chose for this plot q = 1 and γ2 = 1/4 and
represented the density υ ◦ (x2)−1(x) for τ = 0 (corresponding to the trivial MP case) and for τ = 1/4, 1, 2. The
result on the right tail of the distribution is the following: the higher the integral scale is, the heavier the right
tail of the distribution is. As mentionned above, large integral scale corresponds to measuring price variations
on small scales. On small scales, it is known that price variations will have distribution with larger kurtosis
than price variations on larger scales and therefore it was expected to find heavier right tail distribution for the
spectral distribution of the corresponding covariance matrix.

5. Proofs of the main results

In this section, we give the proofs of Theorems 3.2, 3.3 and 3.4. The proofs are very similar when q = 1 or
when q < 1. To simplify notations, we assume T = N and hence q = 1 in the proofs that follow.

We begin by showing tightness.
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Figure 4. Log-log plot of the density υ ◦ (x2)−1 with q = 1, γ2 = 1/4 for four different integral
scales τ : τ = 0 (black dashed line), τ = 1/4 (red line), τ = 1 (blue line) and τ = 2 (green line).
(Color online).

5.1. Tightness of the complex measures E[L1,z
N ], E[L2,z

N ] and limit points

Lemma 5.1. The two families of complex measures (E[Li,zN ])N∈N, i = 1, 2 are tight and bounded in total varia-
tion.

Proof. Let us present the proof for (E[L1,z
N ])N∈N; the other proof is similar.

One has, for each N , ∣∣∣E [L1,z
N

]∣∣∣ [0, 1] =
1
N

N∑
k=1

|E [GN (z)kk]| � 1
| 	(z) | , (5.1)

and so the family of complex measures (E[L1,z
N ])N∈N is bounded in total variation. It is obviously tight since

the support of all the complex measures in the family is included in [0, 1], which is a compact set.
Using Prokhorov’s theorem, we know that those two families of complex measures are sequentially compact

in the space of complex Borel measures on [0, 1] equipped with the topology of weak convergence. In particular,
there exists a subsequence such that, for all bounded continuous function f , one has, when N goes to +∞ along
this subsequence:

E

[
L1,z
N (f)

]
→
∫ 1

0

f(x)μ1
z(dx). (5.2)

Lemma 5.2. The complex measure μ1
z(dx) has Lebesgue density; more precisely, there exists a bounded mea-

surable function Kz(x) such that:

μ1
z(dx) = Kz(x)dx. (5.3)
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Proof. One has:

∣∣∣E [L1,z
N (f)

]∣∣∣ � 1
N

N∑
k=1

|f(k/N)|E [GN (z)kk] (5.4)

� 1
|	(z)|

1
N

N∑
k=1

|f(k/N)| (5.5)

Letting N → +∞ along a subsequence, one obtains:∣∣∣∣∫ 1

0

f(x)μ1
z(dx)

∣∣∣∣ � 1
|	(z)|

∫ 1

0

|f(x)|dx. (5.6)

This proves the lemma. �

Thus, there exists a subsequence such that, as N tends to +∞ along this subsequence:

E

[
L1,z
N (f)

]
→
∫ 1

0

f(x)Kz(x)dx. (5.7)

Lemma 5.3. There exists a subsequence and a constant μ2
z ∈ C such that, as N goes to +∞ along this

subsequence:

E

[
L2,z
N (f)

]
→ μ2

z

∫ 1

0

f(x)dx. (5.8)

Proof. It is easy to see that the GN (z)kk, k = N + 1, . . . , 2N , are identically distributed. In particular, these
variables have the same mean μ2

z(N). One has, for all N ,

|μ2
z(N)| � 1

|	(z)| . (5.9)

So there exists a subsequence and a complex number μ2
z such that, as N goes to +∞ along this subsequence,

μ2
z(N) → μ2

z. One thus obtains, as N goes to +∞ along this subsequence:

E

[
L2,z
N (f)

]
→ μ2

z

∫ 1

0

f(x)dx. (5.10)

�

Following the classical method as in [3,4,10], we will show in the following that the limit point μ2
z and Kz(x)

are defined uniquely and do not depend on the subsequence. We will first recall some preliminary results on
resolvents.

5.2. Preliminary results on resolvents

We first recall the following standard and general result on resolvent matrices.

Lemma 5.4. Let A be a symmetric real valued matrix of size N . For z ∈ C \ R, let us denote by G(z) the
matrix

G(z) = (z −A)−1. (5.11)

For z ∈ C \ R and k ∈ {1, . . . , N}, we have

	(z)	(G(z)kk) < 0 and |G(z)kk| � 1
|	(z)| . (5.12)
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In particular, if F ⊂ {1, . . . , N} is a finite set and (ai)i∈F a finite sequence of positive number, then:

	
(
z −∑

i∈F aiG(z)ii
)

	(z)
� 1. (5.13)

and we also have:
1∣∣z −∑

i∈F aiG(z)ii
∣∣ � 1

|	(z)| . (5.14)

The next lemmas of this section are also standard but are applied to our particular case. For i = 1, . . . , N , let
X

(i)
N = (XN (kl))k,l �=i be the matrix obtained from XN by taking off the i-th row. Define, also for i = 1, . . . , 2N

the (2N−1)×(2N−1) matrix A(i)
N (z) obtained from AN (z) by taking off the i-th column and row. In particular,

for i = 1, . . . , N ,

A
(N+i)
N (z) =

(
zIN −tX(i)

N

−X(i)
N zIN−1

)
,

For i = 1, . . . , 2N , set:
G

(i)
N (z) = (A(i)

N (z))−1. (5.15)

Let now X̂
(i)
N denote the matrix XN with the i-th row set to 0 and Â

(i)
N (z) denote the matrix AN (z) with the

i-th column and row set to 0 excepted the diagonal term. Again we have, for i = 1, . . . , N :

Â
(N+i)
N (z) =

(
zIN −tX̂(i)

N

−X̂(i)
N zIN

)
,

For i = 1, . . . , 2N , set:
Ĝ

(i)
N (z) =

(
Â

(i)
N (z)

)−1

. (5.16)

In the paper, we will also use the terms A(k,i)
N (z), G(k,i)

N (z), Â(k,i)
N (z), Â(k,i)

N (z). The double superscript just means
that you make the operations described above to the rows and columns i and k.
Lemma 5.5. For all k ∈ {1, . . . , N} and all t 
= N + k, one has:

E

[∣∣∣GN (z)tt − Ĝ
(N+k)
N (z)tt

∣∣∣] � 1√
N |	(z)|2 . (5.17)

Proof. Multiply the identity:
Â

(N+k)
N (z) −AN (z) = Â

(N+k)
N (0) −AN (0) (5.18)

to the left by GN (z) and to the right by Ĝ(N+k)
N (z) to obtain

GN (z) − Ĝ
(N+k)
N (z) = GN (z)

(
Â

(N+k)
N (0) −AN (0)

)
Ĝ

(N+k)
N (z). (5.19)

Then one has:

GN (z)tt − Ĝ
(N+k)
N (z)tt =

(
GN (z)

(
Â

(N+k)
N (0) −AN (0)

)
Ĝ

(N+k)
N (z)

)
tt

(5.20)

= Ĝ
(N+k)
N (z)N+k,t

N∑
i=1

GN (z)tirk(i) (5.21)

+GN (z)t,N+k

N∑
j=1

rk(j)Ĝ
(N+k)
N (z)jt (5.22)

= GN (z)t,N+k

N∑
j=1

rk(j)Ĝ
(N+k)
N (z)jt (5.23)

where we have noticed that, for all t 
= N + k, Ĝ
(N+k)
N (z)N+k,t = 0.



MULTIFRACTAL MARCHENKO-PASTUR THEOREM 341

Therefore, we find that:

E

[∣∣∣GN (z)tt − Ĝ
(N+k)
N (z)tt

∣∣∣] � E

[
|GN (z)t,N+k|2

]1/2
E

⎡⎢⎣
∣∣∣∣∣∣
N∑
j=1

rk(j)Ĝ
(N+k)
N (z)jt

∣∣∣∣∣∣
2
⎤⎥⎦

1/2

(5.24)

by Cauchy–Schwartz’s inequality. Using then the independence of rk(j) and Ĝ(N+k)
N (z) and Lemma A.1, we get:

E

[∣∣∣GN (z)tt − Ĝ
(N+k)
N (z)tt

∣∣∣] � E

[
|GN (z)t,N+k|2

]1/2
E
[
rk(1)2

]1/2
E

⎡⎣ N∑
j=1

∣∣∣Ĝ(N+k)
N (z)jt

∣∣∣2
⎤⎦1/2

� 1√
N |	(z)|2 .

The proof is complete. �

Lemma 5.6. There exists a constant C > 0 such that, for all k ∈ {1, . . . , N} and all t 
= k:

E

[∣∣∣GN (z)tt − Ĝ
(k)
N (z)tt

∣∣∣] � C

|	(z)|2
1

N
1−γ2

4

. (5.25)

Proof. Again, we start from the relation:

GN (z) − Ĝ
(k)
N (z) = GN (z)

(
Â

(k)
N (0) −AN (0)

)
Ĝ

(k)
N (z).

Thus we have

GN (z)tt − Ĝ
(k)
N (z)tt =

(
GN (z)

(
Â

(k)
N (0) −AN (0)

)
Ĝ

(k)
N (z)

)
tt

(5.26)

= Ĝ
(k)
N (z)k,t

N∑
i=N+1

GN (z)tiri(k) (5.27)

+GN (z)t,k
N+1∑
j=1

rj(k)Ĝ
(k)
N (z)jt (5.28)

= GN (z)t,k
N+1∑
j=1

rj(k)Ĝ
(k)
N (z)jt (5.29)

where we have noticed that, for all t 
= k, Ĝ
(k)
N (z)k,t = 0.

Therefore, we find that:

E

[∣∣∣GN (z)tt − Ĝ
(k)
N (z)tt

∣∣∣] � E

[
|GN (z)t,k|2

]1/2
E

⎡⎢⎣
∣∣∣∣∣∣
N∑
j=1

rj(k)Ĝ
(k)
N (z)jt

∣∣∣∣∣∣
2
⎤⎥⎦

1/2

(5.30)

by Cauchy–Schwartz’s inequality. We want to expand the square in the above expression. To that purpose, we
first observe that, conditionally to the M i, the variables (rj(k))j are independent from Ĝ

(k)
N (z) and centered.

Hence we have for j 
= j′,

E

[
rj(k)rj′ (k)Ĝ

(k)
N (z)jtĜ

(k)
N (z)j′t

]
= 0.
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Thus we get:

E

[∣∣∣GN (z)tt − Ĝ
(k)
N (z)tt

∣∣∣] � E

[
|GN (z)t,k|2

]1/2⎛⎝N+1∑
j=1

E

[
rj(k)2

∣∣∣Ĝ(k)
N (z)jt

∣∣∣2]
⎞⎠1/2

� E

[
|GN (z)t,k|2

]1/2⎛⎝N+1∑
j=1

E
[
rj(k)4

]1/2
E

[∣∣∣Ĝ(k)
N (z)jt

∣∣∣4]1/2
⎞⎠1/2

� E[r1(k)4]1/4

|	(z)|

⎛⎝N+1∑
j=1

E

[∣∣∣Ĝ(k)
N (z)jt

∣∣∣4]1/2
⎞⎠1/2

� E[r1(k)4]1/4

|	(z)| (N + 1)1/4

⎛⎝N+1∑
j=1

E

[∣∣∣Ĝ(k)
N (z)jt

∣∣∣4]
⎞⎠1/4

Now we use equation (2.5) for the moments of the MRM M to obtain

E
[
rj(k)4

]
= 3 E

[
M [0;

1
N

]2
]

= 3 E
[
M [0; 1]2

] 1
N ζ(2)

.

Furthermore, by using Lemma A.1 which assures that, almost surely:

N+1∑
j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣2 � 1
|	(z)|2 (5.31)

and the fact that:
N+1∑
j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣4 �

⎛⎝N+1∑
j=1

∣∣∣Ĝ(k)
N (z)jt

∣∣∣2
⎞⎠2

, (5.32)

we finally obtain

E

[∣∣∣GN (z)tt − Ĝ
(k)
N (z)tt

∣∣∣] � C

|	(z)|2
(

1
N

) ζ(2)−1
4

.

It just remains to check that ζ(2) = 2 − γ2. �

Lemma 5.7. For each k ∈ {1, . . . , 2N}, if t 
= k, then

G
(k)
N (z)tt = Ĝ

(k)
N (z)tt, (5.33)

and if t = k, then Ĝ
(k)
N (z)kk = z−1.

Proof. Bloc inversion for the two matrices (A(k)
N (z))−1 and (Â(k)

N (z))−1 gives the result. �

As a consequence of Lemma 5.4, we get the following estimate on Kz.

Lemma 5.8. For all z ∈ C and Lebesgue almost every point x ∈ [0, 1], we have

	(z)	(Kz(x)) � 0 (5.34)

and
|	(Kz(x))| � 1

	(z)
(5.35)
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5.3. Concentration inequalities

This lemma is adapted to our case from Lemma 5.4 in [4].

Lemma 5.9. Let f : [0, 1] → R be a bounded measurable function. For each i ∈ {1, 2}, we have the following
concentration results:

E

[∣∣∣Li,zN (f) − E

[
Li,zN (f)

]∣∣∣2] � 8
N

|| f ||2∞
| 	z |4 . (5.36)

Proof. Define two functions F 1
N and F 2

N such that:

F 1
N

((
X

(N)
ij

)
1 � j � N+1

, 1 � i � N

)
=

1
N

N∑
k=1

f

(
k

N

)
GN (z)kk (5.37)

F 2
N

((
X

(N)
ij

)
1 � j � N+1

, 1 � i � N

)
=

1
N

N+1∑
k=1

f

(
k

N + 1

)
GN (z)k+N,k+N (5.38)

We will prove the Lemma for L1,z
N ; the proof for L2,z

N is a straightforward adaptation.
Let, for k ∈ {1, . . . , N + 1},

Fk = σ

((
X

(N)
ij

)
1 � j � N

, 1 � i � k

)
(5.39)

Denote by P the law of the vector
(
X

(N)
1j

)
1 � j � N

. With the same proof as in ([4], Lem. 5.4), we obtain

E
[| F 1

N − E[F 1
N ] |2] �

N∑
i=0

sup
R(N+1)2

|| ∇xi+1FN ||2
∫

|| x− y ||2 dP⊗2(x, y).

The quantity ∇xi+1F
1
N refers to the gradient of F 1

N in the direction of the vector xi+1.
If we consider a couple of processes (B̃1, M̃1) independent from (B1,M1) with the same law, it is easy to see

that: ∫
|| x− y ||2 dP ⊗ dP (x, y) =

N∑
j=1

E

[(
B1
M1(0, j

N ) −B1
M1(0, j−1

N ) − B̃1
M̃1(0, j

N ) + B̃1
M̃1(0, j−1

N )

)2
]
.

= 2 − 2
N∑
j=1

E

[(
B1
M1(0, j

N ) −B1
M1(0, j−1

N )

)(
B̃1
M̃1(0, j

N )B̃
1
M̃1(0, j−1

N )

)]
= 2.

In our case, we have, for i ∈ {1, . . . , N + 1}, j ∈ {1, . . . , N}:
∂GN (z)kk
∂Xij

= GN (z)k,jGN (z)N+i,k +GN (z)k,N+iGN (z)j,k (5.40)

Thus,

∇xi+1FN =
1
N

N∑
k=1

f

(
k

N

)
∇xi+1GN (z)kk (5.41)

It is now plain to compute:

|| ∇xi+1FN ||2 =
1
N2

N∑
j=1

∣∣∣(GN (z)D1(f)GN (z)
)
N+i+1,j

+
(
GN (z)D1(f)GN (z)

)
j,N+i+1

∣∣∣2
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where D1(f) is the (2N)-dimensional diagonal matrix of entries:

D1(f)kk = f

(
k

N

)
1{1 � k � N}.

One thus has:

|| ∇xi+1F
1
N ||2 =

4
N2

N∑
j=1

∣∣∣(GN (z)D1(f)GN (z)
)
N+i+1,j

∣∣∣2
� 4
N2

2N∑
j=1

∣∣∣(GN (z)D1(f)GN (z)
)
N+i+1,j

∣∣∣2
� 4
N2

|| f ||2∞
| 	z |4 .

where, in the last line, we used Lemma A.1 and the fact that the matrix GN (z)D1(f)GN (z) has a spectral
radius smaller than || f ||∞ / | 	z |2.

Finally,

E

[∣∣F 1
N − E[F 1

N ]
∣∣2] � 8

N

|| f ||2∞
| 	z |4 . (5.42)

�

We also prove the following lemma:

Lemma 5.10. For all α > 1 such that ζ(2α) > 1, we have

E

[∣∣∣∣∣
N∑
t=1

rk(t)2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ(N+k)

N (z)tt]
)∣∣∣∣∣
]

� C(lnN)2

N
ζ(2α)−1

α |	(z)|4
(5.43)

for some positive constant C independent from N, z, k.

Proof. Notice that (rk(t))t and Ĝ(N+k)
N (z) are independent. Hence, by conditioning with respect to the process

(rk(t))t, we can argue along the same lines as in the previous lemma with rk(t) instead of 1
N f( tN ) and we get

the formula:

E

⎡⎣∣∣∣∣∣
N∑
t=1

rk(t)2
(
Ĝ

(N+k)
N (z)tt − E[Ĝ(N+k)

N (z)tt]
)∣∣∣∣∣

2
⎤⎦ � 8

|	(z)|4 E

[
sup
t
rk(t)4

]
.

We conclude with Proposition B.1 in the appendix. �

In the following, we fix α > 1 such that ζ(2α) > 1 (because of the expression of ζ and the inequality γ2 < 1/3,
it is clear that such a number exists).

5.4. The system verified by the limit point µ2
z and Kz(x): first equation

From the Schur complement formula (see e.g. Lem. 4.2 in [4] for a reminder), one has for k ∈ {1, . . . , N}:

GN (z)N+k,N+k =

[
z −

N∑
s,t=1

rk(s)rk(t)G
(N+k)
N (z)st

]−1

(5.44)
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Using Lemma A.2, one can write:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)2G
(N+k)
N (z)tt + ε1N,k(z)

]−1

(5.45)

where ε1N,k(z) is a complex valued random variable for which there exists C > 0 such that for all N ∈ N and
1 � k � N ,

E
[|ε1N,k(z)|2] < C

N1−γ2 . (5.46)

By using Lemma 5.7, we can write:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)2Ĝ
(N+k)
N (z)tt + ε1N,k(z)

]−1

. (5.47)

Lemma 5.10 applied to α > 1 such that ζ(2α) > 1 yields:

E

⎡⎣∣∣∣∣∣
N∑
t=1

rk(t)2
(
Ĝ

(N+k)
N (z)tt − E

[
Ĝ

(N+k)
N (z)tt

])∣∣∣∣∣
2
⎤⎦ � C(lnN)2

N
ζ(2α)−1

α |	(z)|4
. (5.48)

Thus, one can write:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)2E

[
Ĝ

(N+k)
N (z)tt

]
+ ε1N,k(z) + ε2N,k(z)

]−1

(5.49)

where ε2N,k(z) is a complex valued random variable such that for all N ∈ N and 1 � k � N + 1,

E

[∣∣ε2N,k(z)∣∣2] < C(lnN)2

N
ζ(2α)−1

α |	(z)|4
. (5.50)

In addition, using Lemma 5.5, we can show:

E

[∣∣∣∣∣
N∑
t=1

rk(t)2
(

E

[
Ĝ

(N+k)
N (z)tt −GN (z)tt

])∣∣∣∣∣
]

(5.51)

�
N∑
t=1

E[rk(t)2]E
[∣∣∣Ĝ(N+k)

N (z)tt −GN (z)tt
∣∣∣] (5.52)

� 1
|	(z)|2√N . (5.53)

It follows:

GN (z)N+k,N+k =

[
z −

N∑
t=1

rk(t)2E [GN (z)tt] + ε1N,k(z) + ε2N,k(z) + ε3N,k(z)

]−1

(5.54)

where ε3N,k(z) is a complex valued random variable such that for all N ∈ N and 1 � k � N + 1,

E
[|ε3N,k(z)|] < 1

|	(z)|2√N . (5.55)
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Let us denote by ItN the interval [ t−1
N , tN ]. Then we have:

Lemma 5.11. The following inequality holds:

E

⎡⎣∣∣∣∣∣
N∑
t=1

(
rk(t)2 −Mk(ItN )

)
E [GN (z)tt]

∣∣∣∣∣
2
⎤⎦ � C

N1−γ2 |	(z)|2

for some positive constant C.

Proof. We expand the square and, because rk(t) and rk(t′) are independent for t 
= t′ conditionally to Mk, we
have:

E

⎡⎣∣∣∣∣∣
N∑
t=1

(
rk(t)2 −Mk(ItN )

)
E [GN (z)tt]

∣∣∣∣∣
2
⎤⎦ = 2

N∑
t=1

E

[(
Mk

(
ItN
))2]

E [GN (z)tt]
2

� 2C
N

N ζ(2)|	(z)|2 . �

We can thus write

GN (z)N+k,N+k =

[
z −

N∑
t=1

Mk(ItN )E [GN (z)tt] (5.56)

+ ε1N,k(z) + ε2N,k(z) + ε3N,k(z) + ε4N,k(z)

]−1

(5.57)

where ε4N,k(z) is a complex valued random variable such that for all N ∈ N and 1 � k � N + 1,

E
[|ε4N,k(z)|2] � C

N ζ(2)−1|	(z)|2 . (5.58)

Set εN,k(z) = ε1N,k(z) + ε2N,k(z) + ε3N,k(z) + ε4N,k(z) and rewrite:

GN (z)N+k,N+k =

[
z −

N∑
t=1

Mk(ItN )E [GN (z)tt] + εN,k(z)

]−1

(5.59)

We now need to introduce the truncated Radon measure Mk
ε (dx) with Lebesgue density eω

k
ε (x) which con-

verges almost surely as ε goes to 0, in the sense of weak convergence in the space of Radon measures, to the
measure Mk (see Sect. 2.1).

Lemma 5.12. For ε > 0, the following uniform bound holds:

sup
N

E
[| N∑
t=1

Mk(ItN )E [GN (z)tt] −
N∑
t=1

Mk
ε (ItN )E [GN (z)tt] |2

]
� Cε1−γ

2

|	(z)|2 .

Proof. We expand the square. Note that the covariance function ρε of the process ωε increases as ε decreases
to 0 and uniformly converges as ε→ 0 towards ln+

τ
|x| over the complement of any ball centered at 0. Thus we
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have:

sup
N

E

[∣∣∣∣∣
N∑
t=1

Mk
(
ItN
)

E [GN (z)tt] −
N∑
t=1

Mk
ε

(
ItN
)

E [GN (z)tt]

∣∣∣∣∣
2
⎤⎦

= sup
N

N∑
t,t′=1

E

[(
Mk(ItN ) −Mk

ε

(
ItN
)) (

Mk
(
It

′
N

)
−Mk

ε

(
It

′
N

))]
E [GN (z)tt] E [GN (z)t′t′ ]

= sup
N

N∑
t,t′=1

E

[(
Mk

(
ItN
)−Mk

ε

(
ItN
)) (

Mk
(
It

′
N

)
−Mk

ε

(
It

′
N

))]
E [GN (z)tt] E [GN (z)t′t′ ]

= sup
N

N∑
t,t′=1

(
E

[
Mk

(
ItN
)
Mk

(
It

′
N

)]
− E

[
Mk
ε

(
ItN
)
Mk
ε

(
It

′
N

)])
E [GN (z)tt] E [GN (z)t′t′ ]

= sup
N

N∑
t,t′=1

E [GN (z)tt] E [GN (z)t′t′ ]
∫
It

N

∫
It′

N

(
eψ(2) ln+

τ
|r−u| − eψ(2)ρε(r−u)

)
drdu

� 1
|	(z)|2

∫ 1

0

∫ 1

0

(
eψ(2) ln+

τ
|r−u| − eψ(2)ρε(r−u)

)
drdu.

where, in the fourth line, we used the fact that, if Fεis the sigma field generated by the random variables
μ(A), A ∈ B({(t, y) : y � ε}), then E[Mk(A)|Fε] = Mk

ε (A) for all borelian set A. A straightforward computation
leads to the relation

ρε(t) =

⎧⎨⎩ ln τ
ε + 1 − |t|

ε if |t| � ε
ln τ

|t| if ε � |t| � τ

0 if τ < |t|
(5.60)

By using the expression of ρε, it is then plain to obtain the desired bound. �

We can thus write

GN (z)N+k,N+k =

[
z −

N∑
t=1

Mk
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

]−1

, (5.61)

where
sup
N

E[|δ(ε,N, z)|2] → 0 as ε→ 0, (5.62)

and also:

E [GN (z)N+k,N+k] = E

⎡⎣[z − N∑
t=1

Mk
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

]−1
⎤⎦ . (5.63)

The next step is to study the convergence of the above quantity. Hence we prove (see the proof in the appendix).

Lemma 5.13. The random variable
∑N

t=1M
k
ε (ItN )E [GN (z)tt] converges in probability as N → +∞ towards∫ 1

0 Kz(x)Mk
ε (dx).

We fix ε > 0. For that ε, the family of random variables (δ(ε,N, z))N is bounded in L2 so that it is tight. Even
if it means extracting again a subsequence we assume that the couple (

∑N
t=1M

k
ε (ItN )E [GN (z)tt] , δ(ε,N, z))N

converges in law towards the couple (
∫ 1

0
Kz(x)Mk

ε (dx), Yε). We remind the reader of (5.44) which implies that∣∣∣∣∣∣
(
z −

N∑
t=1

Mk
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

)−1
∣∣∣∣∣∣ � 1

|	(z)| .
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The quantity
(
z −∑N

t=1M
k
ε (ItN )E [GN (z)tt] + εN,k(z) + δ(ε,N, z)

)−1

is therefore bounded uniformly with re-
spect to N, ε and converges in law towards(

z −
∫ 1

0

Kz(x)Mk
ε (dx) + Yε

)−1

.

We deduce that the expectation of the former quantity converges as ε→ 0 towards the expectation of the latter
quantity. From (5.63), we deduce that

μ2
z = E

[(
z −

∫ 1

0

Kz(x)Mk
ε (dx) + Yε

)−1
]
. (5.64)

Clearly, standard arguments prove that
∫ 1

0 Kz(x)Mk
ε (dx) converges almost surely towards

∫ 1

0 Kz(x)Mk(dx) as
ε→ 0 (Kz is deterministic (see Lem. 5.9), measurable and bounded) and, because of (5.62), Yε converges almost

surely towards 0 as ε → 0. Again, because the quantity
(
z − ∫ 1

0 Kz(x)Mk
ε (dx) + Yε

)−1

is bounded uniformly
with respect to ε, we deduce that:

μ2
z = E

[(
z −

∫ 1

0

Kz(x)Mk(dx)
)−1

]
. (5.65)

5.5. Second equation

Now we turn our attention to the terms GN (z)kk for k ∈ {1, . . . , N}. Again, by using the Schur complement
formula, we can write, for k ∈ {1, . . . , N}:

GN (z)kk =

⎡⎣z − N∑
i,j=1

ri(k)rj(k)G
(k)
N (z)N+i,N+j

⎤⎦−1

(5.66)

=

[
z −

N∑
i=1

ri(k)2G
(k)
N (z)N+i,N+i + η1

N,k(z)

]−1

(5.67)

where, using Lemma A.3, η1
N,k(z) is a complex valued random variable for which there exists c > 0 such that

for all N ∈ N and 1 � k � N,E[|η1
N,k(z)|2] < c/N .

With a further use of the Schur complement formula for the term G
(k)
N (z)N+i,N+i, we obtain:

GN (z)kk =

⎡⎢⎣z − N∑
i=1

ri(k)2

⎡⎣z − N∑
s,t�=k

ri(s)ri(t)G
(k,N+i)
N (z)st

⎤⎦−1

+ η1
N,k(z)

⎤⎥⎦
−1

(5.68)

where G(k,N+i)
N (z) = A

(k,N+i)
N (z)−1. Note that G(k,N+i)

N (z) is independent of (ri(t))t=1,...,N . Using the same
arguments as in the derivation of the first equation (in particular Lems. A.2, 5.7, 5.10, B.1, 5.6 and 5.5), one
can show that:

GN (z)kk =

[
z −

N∑
i=1

ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt] + δN,k,i(z)
+ η1

N,k(z)

]−1

(5.69)

where (δN,k,i(z))1 � i � N are complex random variable such that

E[|δN,k,i(z)|] � C

Nmin( 1−γ2
4 , ζ(2α)−1

α )
(5.70)

for some positive constant C that does not depend on i, N and for α > 1 such that ζ(2α) > 1.
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Lemma 5.14. One can write:

GN (z)kk =

[
z −

N∑
i=1

ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]
+ η1

N,k(z) + η2
N,k(z)

]−1

(5.71)

where η2
N,k(z) is a random variable that tends to 0 in probability as N goes to ∞.

Proof. By using Lemma 5.4, we deduce that:

N∑
i=1

∣∣∣ ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt] + δN,k,i(z)
− ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]

∣∣∣
� 1

|	(z)|2
N∑
i=1

ri(k)2 min(|δN,k,i(z)|, 2). (5.72)

We stress that the lemma is proved as soon as we can prove that the left-hand side in (5.72) converges in
probability to 0. Hence it is enough to prove that

E

[
N∑
i=1

ri(k)2 min(|δN,k,i(z)|, 2)

]

converges to 0 as N tends to ∞. By noticing that:

δN,k,i(z) =
N∑

s,t�=k
ri(s)ri(t)G

(k,N+i)
N (z)st −

N∑
t=1

M i(ItN )E [GN (z)tt] , (5.73)

it is straightforward to see that the variables
(
ri(k)2 min(|δN,k,i(z)|, 2)

)
1 � i � N+1

are identically distributed.

Thus we have

E
[ N∑
i=1

ri(k)2 min(|δN,k,i(z)|, 2)
]

= NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
.

Then for all A > 1 and α > 0, we have

NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
= NE

[
r1(k)2 min(|δN,k,1(z)|, 2)�{Nr1(k)2 � A}

]
+NE

[
r1(k)2 min(|δN,k,1(z)|, 2)�{Nr1(k)2>A}

]
� AE [|δN,k,1(z)|] + 2E

[
Nr1(k)2�{Nr1(k)2>A}

]
� AC

N
ζ(2)−1

4

+
2
Aα

E

[
N1+αr1(k)2(α+1)

]
=

AC

N
ζ(2)−1

4

+
2N1+α

Aα
E

[
M1(0,

1
N

)α+1

]
By using the scale invariance property of the measure M1, we have:

E
[
M1(0, 1/N)α+1

]
=

1
N ζ(1+α)

E
[
M1(0, 1)α+1

]
,

in such a way that

NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
� AC

N
ζ(2)−1

4

+ 2E
[
M1(0, 1)α+1

] Nψ(1+α)

Aα
. (5.74)
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Since ζ(2) > 5 − 4ζ′(1), we can choose p > 0 such that

ζ(2) − 1
4

> p > 1 − ζ′(1) = ψ′(1). (5.75)

The mapping α ∈]0,+∞[�→ pα− ψ(1 +α) reduces to 0 for α = 0 and, because p > ψ′(1), is strictly positive for
α > 0 small enough. So we choose α < 1 such that pα− ψ(1 + α) > 0 and we set A = Np. We obtain:

NE
[
r1(k)2 min(|δN,k,1(z)|, 2)

]
� C

N
ζ(2)−1

4 −p
+ 22+α

E
[
M1(0, T )α+1

] 1
Nαp−ψ(1+α)

.

The result follows by letting N → ∞ since min((ζ(2) − 1)/4 − p, αp− ψ(1 + α)) > 0. �
Lemma 5.15. There exists a constant c > 0, which does not depend on N , such that for each N ∈ N:

E

[∣∣∣∣ N∑
i=1

(
ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]
− E

[
ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]

])∣∣∣∣2
]

� c

N1−γ2 .

Proof. The proof is straightforward using the fact that for i ∈ {1, . . . , N}, the random variables

ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]
(5.76)

are i.i.d. random variables and Lemma 5.4. �

Therefore we can write

GN (z)kk =

[
z −

N∑
i=1

ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]
+ η1

N,k(z) + η2
N,k(z) + η3

N,k(z)

]−1

(5.77)

with E[(η3
N,k(z))

2] � c
N1−γ2 .

Now we can take the expectation in (5.77) to obtain

E

[
L1,z
N (f)

]
=

1
N

N∑
k=1

f(k/N)E[GN (z)kk]

=
1
N

N∑
k=1

f(k/N)E

⎡⎣(z − E

[
N∑
i=1

ri(k)2

z −∑N
t=1M

i(ItN )E [GN (z)tt]

]
+ ηN,k(z)

)−1
⎤⎦

=
1
N

N∑
k=1

f(k/N)E

⎡⎣(z −NE

[
M
[
k−1
N ; kN

]
z −∑N

t=1M(ItN )E [GN (z)tt]

]
+ ηN,k(z)

)−1
⎤⎦

with ηN,k(z) = η1
N,k(z) + η2

N (z) + η3
N,k(z). Then, by introducing the truncated measure Mε and by using the

Girsanov formula, we can approximate (uniformly in N) this last expression by:

1
N

N∑
k=1

f(k/N)E

⎡⎣(z −NE

[
Mε

[
k−1
N ; kN

]
z −∑N

t=1Mε(ItN )E [GN (z)tt]

])−1

+ δ̂(N, k, z, ε)

⎤⎦ (5.78)

with supN,k E[|δ̂(N, k, z, ε)|2] going to 0 when ε is going to 0. Along some appropriate subsequence, this latter
quantity converges as N → +∞ to:∫ 1

0

f(x)E

⎡⎣(z − E

[
eωε(x)

z − ∫ 1

0
Kz(r)Mε(dr)

])−1

+ Y ε

⎤⎦ dx (5.79)
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where Y ε is such that E[(Y ε)2] converges to 0 when ε is going to 0. And, we thus obtain gathering the above
arguments that:

∫ 1

0

f(x)Kz(x) dx =
∫ 1

0

f(x)E

⎡⎣(z − E

[
eωε(x)

z − ∫ 1

0 Kz(r)Mε(dr)

])−1

+ Y ε

⎤⎦ dx. (5.80)

It remains to pass to the limit as ε → 0 in that expression. This job is carried out with the help of a Girsanov
type transform in Appendix 5.7. �

5.6. Uniqueness of the solution to the system of equations

Let X be the space of bounded measurable functions [0, 1] → C endowed with the uniform norm defined for
f ∈ X by:

||f ||∞ = sup
x∈[0,1]

|f(x)|. (5.81)

Define the operator T : X → X by setting, for g ∈ X and for all x ∈ [0, 1]:

Tg(x) =
1

z − qE

[(
z − ∫ 1

0

(
τ

|t−x|
)γ2

+
g(t)M(dt)

)−1
] (5.82)

For g, h ∈ X and for all x ∈ [0, 1], we have:

|Tg(x) − Th(x)| � q

|	(z)|4 E

[∫ 1

0

(
τ

|t− x|
)γ2

+

|g(t) − h(t)|M(dt)

]

� q

|	(z)|4 E

[∫ 1

0

(
τ

|t− x|
)γ2

+

M(dt)

]
||g − h||∞

� q

|	(z)|4
∫ 1

0

(
τ

|t− x|
)γ2

+

dt||g − h||∞.

Recall that γ2 < 1/3, and thus it is easy to see that:

sup
x∈[0,1]

∫ 1

0

(
τ

|t− x|
)γ2

+

dt < +∞ (5.83)

And we can deduce that there exists a positive constant C such that:

sup
x∈[0,1]

|Tg(x) − Th(x)| � C

|	(z)|4 ||g − h||∞. (5.84)

If z is such that C/|	(z)|4 < 1, the operator T is contracting and thus has a unique fixed point g in the
Banach space X . We conclude that, for each z with |	(z)| large enough, there exists a unique bounded function
Kz : [0, 1] → C such that for all x ∈ [0, 1]:

Kz(x) =
1

z − qE

[(
z − ∫ 1

0

(
τ

|t−x|
)γ2

+
Kz(t)M(dt)

)−1
] · (5.85)
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Using the first equation, it is now plain to see that, for z such that C/|	(z)|4 < 1, the constant μ2
z is uniquely

defined by the system of equations (by the first equation, it is a function of the function Kz, which is uniquely
defined for such z).

Now it remains to show that the limit point μ2
z is uniquely defined for all z ∈ C\R. It will be easy to see using

analyticity arguments. Indeed, from the Montel theorem, every limit point μ2
z is holomorphic on the set C \ R

since it is the pointwise limit of a subsequence of the sequence of holomorphic functions L1,z
N ([0, 1]) that are

uniformly bounded on each compact set of C \R (see Lem. 5.4). Thus, μ2
z is uniquely defined for each z ∈ C \R

by analytic extension (we have just seen that μ2
z is uniquely defined for a set of z with accumulation points).

The same argument holds for the unicity of the integral
∫ 1

0 Kz(x)dx. Indeed, every limit point
∫ 1

0 Kz(x)dx is
a holomorphic function on C \ R that has some prescribed value on the set {z ∈ C \ R : C/|	(z)|4 < 1}, which
has accumulation points.

5.7. Proof of Theorems 3.2, 3.3 and 3.4

Let us gather the above arguments to prove the main theorems.

Proof of theorem 3.4: it is a direct consequence of Sections 5.4–5.6.

Proof of theorem 3.3 (i): The limit points Kz(x)dx and μ2
zdx of the two complex measures E[L1,z

N ] and E[L2,z
N ]

are uniquely defined because μ2
z and Kz(x) satisfy a fixed point system of equations (we have just seen this in

Thm. 3.4).

Proof of theorem 3.3 (iii): We need to prove that μ2
z is the Stieltjes transform of a probability measure υ. From [9],

it suffices to prove that μ2
z is holomorphic over C \ R, maps {z ∈ C \ R;	(z) < 0} to {z ∈ C \ R;	(z) > 0}

and that limy→∞ iyμ2
iy = 1 (y ∈ R). Let us check those properties. We have already seen in Section 5.6 that

μ2
z is holomorphic. From Lemma 5.4, μ2 maps {z ∈ C \ R;	(z) < 0} to {z ∈ C \ R;	(z) > 0}. Finally, from

Theorem 3.4, we have

zμ2
z = E

[
1

1 − z−1
∫ 1

0 Kz(x)M(dx)

]
.

As |Kz(x)| � |	(z)|−1, the term
∫ 1

0
Kz(x)M(dx)/z converges pointwise towards 0 when z = iy and y → ∞. Fur-

thermore, from Lemma 5.8, we have 	(z)	(Kz(x) � 0 in such a way that
∣∣∣z − ∫ 1

0 Kz(x)M(dx)
∣∣∣−1

� |	(z)|−1.
Therefore ∣∣∣∣∣ z

z − ∫ 1

0
Kz(x)M(dx)

∣∣∣∣∣ � 1

when z takes on the form z = iy (y ∈ R). The dominated convergence theorem then implies that limy→∞ iyμ2
iy =

1 and we can conclude μ2 is indeed the Stieltjes transform of a (unique) probability measure υ.

Proof of theorem 3.2 (i) and 3.3 (ii): We observe that, for z ∈ C \ R:

AN (z)
(
zIT 0
XN zIN

)
=
(
z2IT − tXNXN −ztXN

0 z2IN

)
. (5.86)

Let us rewrite the matrix GN (z) = AN (z)−1 under the form:

GN (z) =
(
G1(z) tG1,2(z)
G1,2(z) G2(z)

)
, (5.87)

where G1(z), G1,2(z), G2(z) are respectively of size T × T , N × T , N ×N .
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By taking the inverse in the relation (5.86), we obtain:(
IT /z 0

−XN/z
2 IN/z

)(
G1(z) tG1,2(z)
G1,2(z) G2(z)

)
=
(

(z2IT − tXNXN )−1 B
0 IN/z

2

)
(5.88)

where B = (z2IT − tXNXN)−1tXN/z.
It can be rewritten, using the fact that −XNG1(z) + zG1,2(z) = 0 and −XN

tG1,2(z) + zG2(z) = IN , as:(
G1(z)/z tG1,2(z)/z

0 IN/z
2

)
=
(

(z2IT − tXNXN )−1 B
0 IN/z

2

)
. (5.89)

Therefore, taking the trace we get:

1
Tz

T∑
k=1

GN (z)kk =
1
T

tr(z2IT − tXNXN )−1, (5.90)

and, by using the fact that the eigenvalues of tXNXN are those of XN
tXN augmented with T −N zeros:

1
Tz

T∑
k=1

GN (z)kk =
1
T

tr
(
z2IN −XN

tXN

)−1
+
T −N

Tz2
· (5.91)

Now, taking expectation and using Theorem 3.3, we deduce:∫ 1

0

Kz(x)dx = qz lim
N→∞

1
N

E

[
tr
(
z2IN −XN

tXN

)−1
]

+
1 − q

z
· (5.92)

Using the fact that (by (2.7)) the spectrum of BN contains 2N eigenvalues which are the positive and negative
square-roots of the spectrum ofRN = tXNXN plus T−N zero eigenvalues and the fact that 1/(z−λ)+1/(z+λ) =
2z/(z2 − λ2), we can see that:

1
N + T

N+T∑
k=1

GN (z)kk =
2z

N + T
tr
(
z2IN −XN

tXN

)−1
+
T −N

T +N

1
z

(5.93)

Using the relation 2.14 and Theorem 3.3, it is easy to see that:

lim
N→+∞

1
N + T

N+T∑
k=1

E[GN (z)kk] =
1

1 + q

(
qμ2

z +
∫ 1

0

Kz(x)dx
)

(5.94)

Taking expectation in 5.93 and using (5.94), we get:

1
1 + q

(
qμ2

z +
∫ 1

0

Kz(x)dx
)

=
2qz

1 + q
lim
N→∞

1
N

E
[
tr(z2IN −XN

tXN )−1
]

(5.95)

+
1 − q

1 + q

1
z
. (5.96)

From equations (5.92) and (5.95), we get the following relation:∫ 1

0

Kz(x)dx = qμ2
z +

1 − q

z
. (5.97)

and Theorem 3.3 (ii). is proved.
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With (5.97), (5.94) becomes:

lim
N→+∞

1
N + T

N+T∑
k=1

E[GN (z)kk] =
1

1 + q

(
2qμ2

z +
1 − q

z

)
(5.98)

and, we note that the right hand side of (5.98) is the Stieltjes transform of the measure 2q/(1 + q)υ(dx) + (1 −
q)/(1 + q)δ0(dx). Thus, the mean spectral measure E[μBN ] converges weakly to the measure 2q/(1 + q)υ(dx) +
(1 − q)/(1 + q)δ0(dx).

We have also:

lim
N→∞

1
N

E
[
tr(z2IN −XN

tXN)−1
]

=
μ2
z

z
(5.99)

Again using the fact that, for all x ∈ R, 1/(z2 − x2) = (1/(z− x) + 1/(z+ x))/(2z) and the fact that υ(dx) is
a symmetric measure on R (υ(dx) is the weak limit of E [μBN ], which is symmetric since the spectrum of BN
is symmetric with respect to 0 almost surely), we see that:

lim
N→∞

1
N

E
[
tr(z2IN −XN

tXN)−1
]

=
1
z

∫
R

υ(dx)
z − x

(5.100)

=
∫

R

υ ◦ (x2)−1(dx)
z2 − x

. (5.101)

This implies that, for each z ∈ C \ R,

lim
N→∞

1
N

E
[
tr(zIN −XN

tXN )−1
]

=
∫

R

υ ◦ (x2)−1(dx)
z − x

. (5.102)

and thus, the probability measure E[μRN ] converges weakly to the measure υ ◦ (x2)−1(dx).

Proof of theorem 3.2 (ii): using relation (2.14) and Lemma 5.9, it is plain to check that
∫

R
(z − x)−1μBN (dx)

converges in probability to the Stieltjes transform of the probability measure 2q/(1 + q)υ(dx) + (1 − q)/(1 +
q)δ0(dx). This convergence holds for finite dimensional vectors (

∫
R
(zi − x)−1μBN (dx)), i = 1, . . . , d) as well.

Using the fact that the set of functions {(z − x)−1, z ∈ C \R} is dense in the set C0(R) of continuous functions
on R going to 0 at infinity, we can show, for each f ∈ C0(R), that

∫
f(x)μBN (dx) converges in probability to∫

f(x)(2q/(1+q)υ(dx)+(1−q)/(1+q)δ0(dx)). But, since μBN (R) = 2q/(1+q)υ(R)+(1−q)/(1+q)δ0(R) = 1, this
vague convergence can be strengthened in a weak convergence. With the relations μB2

N
= 2N/(N + T )μRN +

(T − N)/(T + N)δ0 and the fact that
∫
f(x)μB2

N
(dx) =

∫
f(x2)μBN (dx), it is plain to conclude that μRN

converges weakly in probability to υ ◦ (x2)−1(dx).

Proof of Theorem 3.2 (iii): again using relation (2.14) and lemma 5.9 together with Borel–Cantelli’s lemma, one
can show that the two spectral measures μBNk

converges weakly almost surely to 2q/(1+ q)υ(dx)+ (1− q)/(1+
q)δ0(dx). It is then easy to deduce as before that μRNk

converges weakly almost surely to υ ◦ (x2)−1(dx).

Appendix A. Auxiliary lemmas

Lemma A.1. Let A be a n× n complex matrix such that the Hermitian matrix M = AĀT has spectral radius
λmax. Then, for all i, we have:

n∑
j=1

| Aij |2 � λmax. (A.1)

Proof. It is straightforward to see that all the entries of M are, in modulus, smaller than λmax. On the other
hand, we have:

Mii =
n∑
j=1

| Aij |2 .
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and, thus:
n∑
j=1

| Aij |2 � λmax. (A.2)

�

Lemma A.2. There exists C > 0 such that for each N ∈ N and k ∈ {1, . . . , N}:

E

⎡⎢⎣
∣∣∣∣∣∣
N∑
s�=t

rk(s)rk(t)G
(N+k)
N (z)st

∣∣∣∣∣∣
2
⎤⎥⎦ � C

N1−γ2 .

Similarly, for each N ∈ N and k ∈ {1, . . . , N}, i ∈ {1, . . . , N}, we have the following inequality concerning the
conditional expectation with respect to M i:

E

⎡⎢⎣
∣∣∣∣∣∣

N∑
s,t�=k,s�=t

ri(s)ri(t)G
(k,N+i)
N (z)st

∣∣∣∣∣∣
2

|M i

⎤⎥⎦ � C

N1−γ2 .

Proof. We first expand the square and use the independence of (rk(s))s from G
(N+k)
N (z):

E

⎡⎢⎣
∣∣∣∣∣∣
N∑
s�=t

rk(s)rk(t)G
(N+k)
N (z)st

∣∣∣∣∣∣
2
⎤⎥⎦ = 2

N∑
s�=t

E
[
rk(s)2rk(t)2

]
E

[∣∣∣G(N+k)
N (z)st

∣∣∣2]

Now we compute

E
[
rk(s)2rk(t)2

]
= E

[
Mk

(
s− 1
N

,
s

N

)
Mk

(
t− 1
N

,
t

N

)]
=
∫ s

N

s−1
N

∫ t
N

t−1
N

max
(

1,
τ

|r − u|
)ψ(2)

drdu

�
∫ 1

N

0

∫ 2
N

1
N

max
(

1,
τ

|r − u|
)ψ(2)

drdu

We consider N large enough so as to make 2/N � τ . The above integral is then plain to compute and we get

E
[
rk(s)2rk(t)2

]
� τψ(2)(22−ψ(2) − 2)

(1 − ψ(2))(2 − ψ(2))
1

N2−ψ(2)
. (A.3)

Thus we have for some positive constant C

E

⎡⎢⎣
∣∣∣∣∣∣
N∑
s�=t

rk(s)rk(t)G
(N+k)
N (z)st

∣∣∣∣∣∣
2
⎤⎥⎦ � C

N2−ψ(2)

N∑
s�=t

E

[∣∣∣G(N+k)
N (z)st

∣∣∣2]

� C

N1−ψ(2)

1
|	(z)|2 ,

where we have used the fact that almost surely:

1
2N − 1

2N∑
s,t�=N+k

∣∣∣G(N+k)
N (z)st

∣∣∣2 � 1
|	(z)|2 .
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It just remains to see that ψ(2) = γ2. To prove the second relation, we follow the same argument by noticing
that (ri(t))t and G(k,N+i)

N (z) are independent conditionally to M i. �
Lemma A.3. There exists some constant c > 0 such that for each N ∈ N and k ∈ {1, . . . , N}:

E

⎡⎢⎣
∣∣∣∣∣∣
N∑
i�=j

ri(k)rj(k)G
(k)
N (z)N+i,N+j

∣∣∣∣∣∣
2
⎤⎥⎦ � c

N
.

Proof. Again we expand the square and we use the fact that, conditionally to the (M i)i, the quantities
ri(k), rj(k), G

(k)
N (z)N+i,N+j are independent and ri(k), rj(k) are centered. Indeed, conditionally to the (M i)i,

the variables ri(k), rj(k), G
(k)
N (z)N+i,N+j involve different increments of the Brownian motion. Thus we have

E

⎡⎢⎣
∣∣∣∣∣∣
N∑
i�=j

ri(k)rj(k)G
(k)
N (z)N+i,N+j

∣∣∣∣∣∣
2
⎤⎥⎦ =

N∑
i�=j

E
[
ri(k)2rj(k)2

]
E

[∣∣∣G(k)
N (z)N+i,N+j

∣∣∣2]

�
N∑
i�=j

E[ri(k)2]E[rj(k)2]E
[∣∣∣G(k)

N (z)N+i,N+j

∣∣∣2]

= N−2
N∑
i�=j

E

[∣∣∣G(k)
N (z)N+i,N+j

∣∣∣2]
� c

N
,

where we have used the fact that almost surely:

1
2N − 1

2N∑
i,j �=k

∣∣∣G(k)
N (z)i,j

∣∣∣2 � 1
|	(z)|2 . �

Proof of Lemma 5.13. We define the function fk,εN on the interval [0, 1] by

fk,εN (x) = NMk,ε(ItN ) if x ∈ ItN .

Notice the relation:
N∑
t=1

Mk
ε

(
ItN
)

E [GN (z)tt] =
∫ 1

0

fk,εN (r) dE
[
L1,z
N

]
(dr).

Then, by stationarity, we have:

E

[∣∣∣∣∫ 1

0

fk,εN (r) dE
[
L1,z
N

]
(dr) −

∫ 1

0

eω
k
ε (r) dE

[
L1,z
N

]
(dr)

∣∣∣∣]
�

N∑
t=1

E

[∣∣∣∣∣
∫
It

N

(
fk,εN (r) − eω

k
ε (r)

)
dE

[
L1,z
N

]
(dr)

∣∣∣∣∣
]

� N

|	(z)| sup
r∈I1N

E

[∣∣∣∣∣
∫
I1N

(
eω

k
ε (u) − eω

k
ε (r)

)
du

∣∣∣∣∣
]

� N

|	(z)| sup
r∈I1N

∫
I1N

E

[∣∣∣eωk
ε (u) − eω

k
ε (r))

∣∣∣2]1/2

du

� N

|	(z)| sup
r∈I1N

∫
I1N

(
2eψ(2)ρε(0) − 2eψ(2)ρε(r−u)

)1/2

du.
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Because of the continuity of the function ρε over [0, 1], we have

E

[∣∣∣∣∫ 1

0

fk,εN (r) dE[L1,z
N ](dr) −

∫ 1

0

eω
k
ε (r) dE

[
L1,z
N

]
(dr)

∣∣∣∣]→ 0 as N → ∞. (A.4)

In a quite similar way, we can prove that

E

[∣∣∣∣∫ 1

0

eω
k
ε ∗ φp(r) dE[L1,z

N ](dr) −
∫ 1

0

eω
k
ε (r) dE

[
L1,z
N

]
(dr)

∣∣∣∣]→ 0 as p→ ∞ uniformly w.r.t. N (A.5)

and

E

[∣∣∣∣∫ 1

0

eω
k
ε ∗ φp(r)Kz(r) dr −

∫ 1

0

eω
k
ε (r)Kz(r) dr

∣∣∣∣]→ 0 as p→ ∞ uniformly w.r.t. N (A.6)

where (φp)p∈N is a regularizing sequence and ∗ stands for the convolution. Furthermore, for each fixed p and
because of the weak convergence of E[L1,z

N ] towards Kz(x)dx, we have almost surely∫ 1

0

eω
k
ε ∗ φp(r) dE

[
L1,z
N

]
(dr) →

∫ 1

0

eω
k
ε ∗ φp(r)Kz(r) dr as N → ∞. (A.7)

We prove the result by gathering (A.4)–(A.7). �

Appendix B. Sup of MRW

Here we prove

Proposition B.1. We have for all k = 1, . . . , N + 1

E

[
sup

t=1,...,N
rk(t)4

]
� C

(lnN)2

N
ζ(2α)−1

α

.

for some positive constant C.

Proof. To prove the result, we first prove

Lemma B.2. There exists a constant C such that, if (Xi)1 � i � N are iid centered Gaussian random variables
then:

E

[
max

1 � i � N
|Xi|4

]
� C max

1 � i � N
E[X2

i ]
2(lnN)2.

Proof. By homogeneity, it suffices to assume that E[X2
i ] = 1. Then we have for all δ � 0

E

[
max

1 � i � N
|Xi|4

]
� δ +N

∫ ∞

δ

P
(|X1|4 > t

)
dt

� δ + 2N
∫ ∞

δ

P

(
X1 > t1/4

)
dt

� δ +
2N√
2π

∫ ∞

δ

e−
√
tdt

� δ +
4N√
2π

∫ ∞
√
δ

e−ttdt

� δ +
4N√
2π

(√
δe−

√
δ + e−

√
δ
)
,

and this last expression can be made smaller than C(lnN)2 by choosing δ = (lnN)2. �
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We want apply the above lemma after conditioning with respect to the law of the MRM Mk:

E

[
sup

t=1,...,N
rk(t)4

]
= E

[
E

[
sup

t=1,...,N
rk(t)4|Mk

]]
.

Notice then that, conditionally to Mk(0, 1
N ) = x1, . . . ,M

k(N−1
N , 1) = xN , the vector (rk(1), . . . , rk(N) has the

same law as the increments of B: (Bx1 −B0, . . . , BxN −BxN−1). By applying Lemma B.2, we deduce that

E

[
sup

t=1,...,N
rk(t)4|Mk

]
� C (lnN)2 max

t=1,...,N
Mk

(
t− 1
N

,
t

N

)2

.

Thus we deduce

E

[
sup

t=1,...,N
rk(t)4

]
� C (lnN)2 E

[(
max

t=1,...,N
Mk

(
t− 1
N

,
t

N

))2
]
. (B.1)

Finally we have for all δ > 0 and for α > 1 such that ζ(2α) > 1:

E

[(
max

t=1,...,N
Mk

(
t− 1
N

,
t

N

))2
]

� δ +N

∫ ∞

δ

P

(
Mk

(
t− 1
N

,
t

N

)2

> x

)
dx

� δ +N

∫ ∞

δ

1
xα

E

[
Mk

(
t− 1
N

,
t

N

)2α
]

dx

� δ + Cδ1−αN1−ζ(2α)

for some constant C only depending on α, τ and γ2. Choose now δ = N
1−ζ(2α)

α so as to get

E

[
sup

t=1,...,N
rk(t)4

]
� (1 + C)

(lnN)2

N
ζ(2α)−1

α

(B.2)

�

Appendix C. Girsanov transform

Lemma C.1. If the process ωε is defined as ωε(x) = μ(Aε(x)) where μ is an independently scattered random
measure associated to (ϕ, θ) with ϕ(q) = −iqγ2/2 − q2γ2/2 and θ given by 2.1, then:

lim
ε→0

E

[
eωε(x)

z − ∫ 1

0
Kz(r)eωε(r)dr

]
= E

⎡⎣(z − ∫ 1

0

(
τ

|r − x|
)γ2

+

Kz(r)M(dr)

)−1
⎤⎦

where M is the lognormal MRM.

Proof. One can check that (ωε(x))x∈[0;1] is a stationary Gaussian process with covariance given by γ2ρε(x− y).
So, using Girsanov transform, we can write:

E

[
eωε(x)

z − ∫ 1

0
Kz(r)eωε(r)dr

]
= E

[(
z −

∫ 1

0

Kz(r)eγ
2ρε(r−x)eωε(r)dr

)−1
]
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We are interested in the limit when ε goes to 0 of this latter term, we thus approximate it with a simpler
term: ∣∣∣∣∣E

[(
z −

∫ 1

0

Kz(r)eγ
2ρε(r−x)eωε(r) dr

)−1
]

−E

⎡⎣(z − ∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

eωε(r) dr

)−1
⎤⎦∣∣∣∣∣∣

� 1
|	(z)|2 E

[∫ 1

0

|Kz(r)|eωε(r)

∣∣∣∣∣eγ2ρε(r−x) −
(

τ

|r − x|
)γ2

+

∣∣∣∣∣ dr

]

� 1
|	(z)|3

∫ 1

0

∣∣∣∣∣eγ2ρε(r−x) −
(

τ

|r − x|
)γ2

+

∣∣∣∣∣ dr (C.1)

where we have used Lemmas 5.4 and 5.8 and the normalization ψ(1) = 0.
Because γ2 < 1, the dominated convergence theorem implies that C.1 converges to 0 when ε goes to 0.
We thus look at the limit when ε goes to 0 of the term:

E

⎡⎣(z − ∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

eωε(r) dr

)−1
⎤⎦ .

The random variable ∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

M(dr)

is well-defined and is finite almost surely since:

E

[∣∣∣∣∣
∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

M(dr)

∣∣∣∣∣
]

�
∫ 1

0

|Kz(r)|
(

τ

|r − x|
)γ2

+

dr < +∞.

And thus, we can compute:∣∣∣∣∣E
⎡⎣(z − ∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

eωε(r) dr

)−1
⎤⎦

− E

⎡⎣(z − ∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

M(dr)

)−1
⎤⎦ ∣∣∣∣∣

� 1
|	(z)|2 E

[∣∣∣∣∣
∫ 1

0

Kz(r)
(

τ

|r − x|
)γ2

+

(
eωε(r)dr −M(dr)

)∣∣∣∣∣
]
,

and, for all n ∈ N, this latter term is smaller than

E

[∣∣∣∣∣
∫ 1

0

Kz(r)

[(
τ

|r − x|
)γ2

+

− min

((
τ

|r − x|
)γ2

+

, n

)]
eωε(r)dr

∣∣∣∣∣
]

(C.2)

+ E

[∣∣∣∣∣
∫ 1

0

Kz(r)min

((
τ

|r − x|
)γ2

+

, n

)(
eωε(r)dr −M(dr)

)∣∣∣∣∣
]

(C.3)

+ E

[∣∣∣∣∣
∫ 1

0

Kz(r)

[(
τ

|r − x|
)γ2

+

− min

((
τ

|r − x|
)γ2

+

, n

)]
M(dr)

∣∣∣∣∣
]
. (C.4)
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The two quantities C.2 and C.4 are smaller than∫ 1

0

|Kz(r)|
[(

τ

|r − x|
)γ2

+

− min

((
τ

|r − x|
)γ2

+

, n

)]
dr (C.5)

and thus converge to 0, uniformly in ε as n goes to infinity.
For a fixed n, the function min((τ/|r − x|)γ2

+ , n) is measurable and bounded and thus it is plain to see that,
for a fixed n, the term C.3 goes to 0 when ε goes to 0.

The lemma follows gathering the above estimates. �
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