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MODEL SELECTION FOR POISSON PROCESSES WITH COVARIATES

Mathieu Sart1

Abstract. We observe n inhomogeneous Poisson’s processes with covariates and aim at estimating
their intensities. We assume that the intensity of each Poisson’s process is of the form s(·, x) where x
is a covariate and where s is an unknown function. We propose a model selection approach where the
models are used to approximate the multivariate function s. We show that our estimator satisfies an
oracle-type inequality under very weak assumptions both on the intensities and the models. By using
an Hellinger-type loss, we establish non-asymptotic risk bounds and specify them under several kind of
assumptions on the target function s such as being smooth or a product function. Besides, we show that
our estimation procedure is robust with respect to these assumptions. This procedure is of theoretical
nature but yields results that cannot currently be obtained by more practical ones.
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1. Introduction

We consider n independent Poisson point processes Ni for i = 1, . . . , n indexed by a measurable space (T,T ).
For each i, we assume that Ni admits an intensity si with respect to some reference measure μ on (T,T ) such
that ∫

T

si(t) dμ(t) < +∞.

We suppose that these processes are related as follows: there exist a deterministic element xi of some measurable
set (X,X ) and a non-negative function s on T×X such that si(·) = s(·, xi). Our aim is then to estimate s from
the observations of the pairs (Ni, xi)1≤i≤n.

It is worth mentioning that estimating s merely amounts to estimating the n-tuple (s1, . . . , sn) when X =
{1, . . . , n} and xi = i. Nevertheless, we do not restrict to X = {1, . . . , n} and xi = i and we also deal with more
general sets X. Typically, we have in mind the situation where the Poisson processes model the times of failure
of n repairable systems whose reliability depends on external factors measured by some covariates x1, . . . , xn.
In this case, T corresponds to an interval of time, say [0, 1], and X to some compact subset of Rk, say [0, 1]k.

In the literature, much attention has been paid to the problem of estimating the intensity of a single Poisson’s
process. Concerning estimation by model selection, Reynaud-Bouret [17] dealt with the L2-loss, and provided a
model selection theorem for a family of linear spaces. Baraud and Birgé [4] dealt with the Hellinger’s distance
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and considered the case where the models consist of piecewise constants functions on a partition of T. The
models considered in [8] are more general and are sets with finite metric dimensions (in a suitable sense).

Our statistical setting includes that of Poisson’s regression: if one observes n independent random variables
Y1, . . . , Yn, such that Yi obeys to a Poisson’s law with parameter f(xi), one can estimate f by setting T = {0},
Ni({0}) = Yi. In this case, s(0, ·) = f(·) and estimating s amounts to estimating f . This last issue has been
studied in [1–3, 15] among other references. For the particular cases of Poisson regression and estimating the
intensity of a single Poisson’s process, our results recover those of [3].

If we except these cases, statistical procedures that can estimate s from n independent Poisson’s processes
with covariates are rather scarce. The only risk bounds we are aware of are due to [10] who considered the
L2-loss and penalized projection estimators on linear spaces. Their approach requires that the intensity s be
bounded from above by a quantity that needs to be either known or suitably estimated. Besides, they impose
some restrictions on the family of linear spaces in order that their estimator possesses minimax properties over
classes of functions which are smooth enough.

Our approach is based on robust testing. We propose a test inspired from a variational formula in [3] and
then apply the general methodology for model selection developed in [7]. This yields a general model selection
theorem we present below.

Let L1
+(T × X,M) be the cone of integrable and non-negative functions on (T × X,T ⊗ X ) equipped with

the product measure M = μ⊗ νn where νn = n−1
∑n

i=1 δxi . In order to evaluate the risks of the estimators, we
endow L1

+(T × X,M) with the Hellinger-type distance H defined for f, g ∈ L1
+(T × X,M) by

H2(f, g) =
1
2

∫
T×X

(√
f(t, x) −

√
g(t, x)

)2

dM(t, x)

=
1
2n

n∑
i=1

∫
T

(√
f(t, xi) −

√
g(t, xi)

)2

dμ(t).

Let now (L2(T × X,M), d2) be the metric space of square integrable functions f on T × X with respect to the
measure M . Given a suitable collection V of models (i.e. subsets of L2(T × X,M) which are not necessarily
linear spaces) and a non-negative mapping Δ on V satisfying∑

V ∈V

e−Δ(V ) ≤ 1,

we build an estimator ŝ whose risk E
[
H2(s, ŝ)

]
satisfies

CE
[
H2(s, ŝ)

] ≤ inf
V ∈V

{
d2
2

(√
s, V

)
+ η2

V +
Δ(V )
n

}
, (1.1)

where C is a positive number, d2 (
√
s, V ) is the L2-distance between

√
s and V and nη2

V is the metric dimension
(in a suitable sense) of V .

This inequality, which is a bridge between statistics and approximation theory, allows to establish new risk
bounds under various kinds of assumptions on the target function s. For instance, a suitable choice of (V, Δ)
leads to an adaptive estimator ŝ achieving the expected rates of convergence over a (very) large range of Hölder
spaces including irregular ones.

We shall also consider functions s defined on a subset T × X of a linear space with large dimension, say
T = [0, 1] and X = [0, 1]k with a large value of k. It is well known that in such a situation, the minimax
approach based on smoothness assumptions only may lead to very slow rates of convergence. This phenomenon
is known as the curse of dimensionality. In this case, an alternative approach is to assume that s belongs to
classes F of functions satisfying structural assumptions (such as the multiple index model, the generalized
additive model, the multiplicative model, . . . ) and for which faster rates of convergence can be achieved. Very
recently, this approach was developed by [14] (for the Gaussian white noise model) and by [5] (in more general
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settings). Unlike [14] we shall not assume that s belongs to F but rather consider F as an approximating class
for s.

In the present paper, our point of view is closer to that developed in [5]. We shall use our new model
selection theorem in conjunction with suitable families V of models in order to design an estimator ŝ possessing
good statistical properties with respect to many classes of functions F of interest. For instance, a natural
situation is the one where s(t, x) is a product of two unknown non-negative functions s(t, x) = u(t)v(x) with∫

T
u(t) dμ(t) = 1. In the context of reliability, this means that v(xi) is the averaged number of failures of

system i and the times of failure are, conditionally to the number of failures Ni(T), distributed accordingly to
the density u and independently of xi. When s(t, x) is a product function where u and v are assumed to be
smooth, we shall prove that our estimator is fully adaptive with respect to the regularities of both u and v. We
shall also consider structural assumptions on the functions u and v as well as parametric ones when t and x
lie in a large dimensional space. A second natural situation is the one where the intensity si of each Poisson
process belongs to a parametric class of functions FΘ = {fθ, θ ∈ Θ} indexed by a subset Θ ⊂ Rk. This means
that there exists some element fθ(xi) ∈ FΘ such that s(t, xi) = fθ(xi)(t). We shall then prove risk bounds under
assumptions on the map x �→ θ(x).

All these results ensue from (1.1) and highlight the theoretical interest of such a general model selection
theorem. The counterpart of the nice properties of our estimators is that they are very difficult to construct in
practice. They should be thus considered as benchmarks for what theoretical feasible. This drawback arises in
all general procedures based on robust tests (see for instance [7–9]). Recently, efforts have been made to find
more practical estimation procedures based on tests. However, as far as we know, none of them can build, in
a reasonable amount of time, an estimator ŝ satisfying (1.1) for the general collections V considered in this
paper. We are not aware of more practical estimation strategies (based on tests or not) that could yield results
as general as ours.

This paper is organized as follows. The general model selection theorem can be found in Section 2. In
Section 3, we study the case where F is a class of smooth functions, and in Section 4 the case where F is a
class of product functions. The problem of estimating s when the intensity of each Poisson process Ni belongs
to the same parametric model is dealt in Section 5. Section 6 is devoted to the proofs.

Let us introduce some notations that will be used all along the paper. We set N� = N \ {0}, R� = R \ {0}.
The components of a vector θ ∈ Rk are denoted by θ = (θ1, . . . , θk). The numbers x ∧ y and x ∨ y stand for
min(x, y) and max(x, y) respectively. For (E, d) a metric space, x ∈ E and A ⊂ E, the distance between x and
A is denoted by d(x,A) = infa∈A d(x, a). The cardinality of a finite set A is denoted by |A|. We use F as a
generic notation for a family of functions of L2(T × X,M) of special interest. The notations C,C′,C′′. . . are for
constants. The constants C,C′,C′′. . . may change from line to line.

2. A general model selection theorem

Throughout this paper, a model V is a subset of L2(T ×X,M) with bounded metric dimension, in the sense
of Definition 6 of [7]. We recall this definition below.

Definition 2.1. Let V be a subset of L2(T×X,M) andDV a right-continuous map from (0,+∞) into [1/2,+∞)
such that DV (η) = O

(
η2
)

when η → +∞. We say that V has a metric dimension bounded by DV if for all
η > 0, there exists an at most countable subset SV (η) of L2(T × X,M) such that:

– for all f ∈ L2(T × X,M), there exists g ∈ SV (η) such that d2(f, g) ≤ η.
– for all ϕ ∈ L2(T × X,M) and r ≥ 2,

|SV (η) ∩ B(ϕ, rη)| ≤ exp
(
DV (η) r2

)
where B(ϕ, rη) stands for the closed ball centered at ϕ with radius rη of L2(T × X,M).

Moreover, if one can choose DV as a constant, we say that V has a finite metric dimension bounded by DV .
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This notion is more general than the dimension for linear spaces since a linear space V with finite dimension (in
the usual sense) has a finite metric dimension. Besides, if V is not reduced to {0} one can choose DV = dimV ,
what we shall do along this paper. The link with the classical definition of metric entropy may be found in
Section 6.4.3 of [7]. Other models of interest with bounded metric dimension will appear later in the paper.

Given a collection of such subsets, our approach is based on model selection. We propose a selection rule
based on robust testing in the spirit of the papers [3,7]. The test and the selection rule which are mainly abstract
are postponed to Section 6. The main result is the following.

Theorem 2.2. Let V be an at most countable family of models V with bounded metric dimension DV (·) and
Δ be a non-negative mapping on V such that ∑

V ∈V

e−Δ(V ) ≤ 1.

There exists an estimator ŝ ∈ L1
+(T × X,M) such that, for all ξ > 0,

P

[
CH2(s, ŝ) ≥ inf

V ∈V

{
d2
2

(√
s, V

)
+ η2

V +
Δ(V )
n

}
+ ξ

]
≤ e−nξ,

where C is a universal positive constant and where

ηV = inf
{
η > 0,

DV (η)
η2

≤ n

}
.

In particular, by integrating the above inequality,

C′
E
[
H2(s, ŝ)

] ≤ inf
V ∈V

{
d2
2

(√
s, V

)
+ η2

V +
Δ(V )
n

}
, (2.1)

where C′ is a universal positive constant.

The condition
∑

V ∈V
e−Δ(V ) ≤ 1 can be interpreted as a (sub)probability on the collection V. This a priori

choice of Δ has a Bayesian flavour as well as an information-theoretic interpretation (see [6]). Note that the more
complex the family V, the larger the weights Δ(V ). When V consists of linear spaces V of finite dimensions DV

one can take η2
V = DV /n and hence (2.1) leads to

C′
E
[
H2(s, ŝ)

] ≤ inf
V ∈V

{
d2
2

(√
s, V

)
+
DV +Δ(V )

n

}
.

When one can choose Δ(V ) of order DV , which means that the family V of models does not contain too many
models per dimension, the estimator ŝ achieves the best trade-off (up to a constant) between the approximation
and the variance terms.

In the remaining part of this paper, we shall consider subsets F ⊂ L2(T × X,M) corresponding to various
assumptions on

√
s (smoothness, structural, parametric assumptions, . . . ). For such an F , we associate a

collection VF and deduce from Theorem 2.2 a risk bound for the estimator ŝ whenever
√
s belongs or is close

to F . This bound takes the form

C′′
E
[
H2(s, ŝ)

] ≤ inf
f∈F

{
d2
2(
√
s, f) + εF (f)

}
(2.2)

where

εF (f) = inf
V ∈VF

{
d2
2(f, V ) + η2

V +
Δ(V )
n

}
,
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and we shall bound the term εF (f) from above. This upper bound will mainly depend on some properties
of f , for example smoothness ones. In this case, this result says that if

√
s is irregular but sufficiently close

to a smooth function f , the bound we get essentially corresponds to the one we would get for f . This can be
interpreted as a robustness property.

Sometimes, several assumptions on
√
s are plausible, and one does not know what class F should be taken.

A solution is to consider F a collection of such classes F and to use the proposition below to get an estimator
whose risk satisfies (up to a remaining term) relation (2.2) simultaneously for all classes F ∈ F.

Proposition 2.3. Let F be an at most countable collection of subsets of L2(T×X,M) and Δ̄ be a non-negative
map on F such that

∑
F∈F e

−Δ̄(F) ≤ 1. For all F ∈ F, let VF be a collection of models and ΔF be a mapping
such that the assumptions of Theorem 2.2 hold.

There exists an estimator ŝ such that, for all F ∈ F,

CE
[
H2(s, ŝ)

] ≤ inf
f∈F

{
d2
2(
√
s, f) + εF (f)

}
+
Δ̄(F )
n

,

where

εF (f) = inf
V ∈VF

{
d2
2(f, V ) + η2

V +
ΔF (V )

n

}
,

and where C is a universal positive constant.

3. Smoothness assumptions

Let I =
∏k

j=1 Ij where the Ij are intervals of R and α = β + p ∈ (0,+∞)k with p ∈ Nk and β ∈ (0, 1]k. A
function f belongs to the Hölder class Hα(I), if there exists L(f) ∈ [0,+∞) such that for all (x1, . . . , xk) ∈ I and
all j ∈ {1, . . . , k}, the functions fj(x) = f(x1, . . . , xj−1, x, xj+1, . . . , xk) admit a derivative of order pj satisfying∣∣∣f (pj)

j (x) − f
(pj)
j (y)

∣∣∣ ≤ L(f)|x− y|βj ∀x, y ∈ Ij .

The class Hα(I) is said to be isotropic when the αj are all equal, and anisotropic otherwise, in which case ᾱ

given by ᾱ−1 = k−1
∑k

j=1 α
−1
j corresponds to the average smoothness of a function f in Hα(I). We define the

class of Hölderian functions on I by
H (I) =

⋃
α∈(0,+∞)k

Hα (I) .

Assuming that
√
s is Hölderian corresponds thus to the choice F = H (T × X). Anisotropic classes of smoothness

are of particular interest in our context since the function s depends on variables t and x that may play very
different roles.

Families of linear spaces possessing good approximation properties with respect to the elements of F can be
found in the literature. We refer to the results of [11]. We may use these linear spaces (models) to approximate
the elements of F , and deduce from Theorem 2.2 the following result.

Corollary 3.1. Let us assume that T × X = [0, 1]k and that μ is the Lebesgue measure. There exists an
estimator ŝ such that for all f ∈ H ([0, 1]k

)
,

CE
[
H2(s, ŝ)

] ≤ d2
2(
√
s, f) + L (f)

2k
2ᾱ+k n− 2ᾱ

2ᾱ+k + n−1 (3.1)

where α ∈ (0,+∞)k is such that f ∈ Hα([0, 1]k) and where C > 0 depends only on k and max1≤j≤k αj.

Remark that the risk bound given by inequality (3.1) holds without any restriction on α. Such a generality
can be obtained since our model selection theorem is valid for any collection V of finite dimensional linear
spaces. Some restrictions on the dimensionality of the linear spaces V ∈ V (as in [10]) would prevent us to get
this rate of convergence for the Hölder classes Hα

(
[0, 1]k

)
when min1≤j≤k αj is too small.

The preceding risk bound is quite satisfactory if k is small but becomes worse when k increases. We shall
therefore consider other types of classes in the next section in order to avoid this curse of dimensionality.
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4. Families F of product functions

A common way of modelling the influence of the covariates on the number of failures of n systems is to assume
that, for each i ∈ {1, . . . , n}, the intensity of Ni, is of the form s(t, xi) = u(t)v(xi) where u is an unknown density
function on T, and v some unknown non-negative function on X. This means, that in average, the number of
failures of system i, E[Ni(T)] = v(xi), depends on xi through v only, and conditionally to Ni(T) = ki > 0, the
times of failure are distributed along T independently of xi, but accordingly to the density u.

Let (L2(T, μ), ‖ · ‖t) (respectively (L2(X, νn), ‖ · ‖x)) be the normed space of square integrable functions on T

(respectively X) with respect to μ (respectively νn). We denote by dt and dx the distances associated to the
norms ‖ · ‖t and ‖ · ‖x, respectively. We shall consider the class F defined by

F =
{
κv1v2, κ ≥ 0, (v1, v2) ∈ L

2(T, μ) × L
2(X, νn), ‖v1‖t = ‖v2‖x = 1

}
, (4.1)

which amounts to assuming that s is of the form (or close to) a product function u(t)v(x) with u = v2
1 and

v = κ2v2
2 .

In this section, we introduce collections of models V1 and V2 in order to approximate the components v1
and v2 separately. Given V1 ∈ V1 to approximate v1 and V2 ∈ V2 to approximate v2, we approximate v1v2 by
the model V1 ⊗ V2 defined by

V1 ⊗ V2 = {v′1v′2, (v′1, v
′
2) ∈ V1 × V2} . (4.2)

The metric dimension of V1 ⊗ V2 is controlled as follows.

Lemma 4.1. Let V1 and V2 be a finite dimensional linear space of L2(T, μ) and L2(X, νn) respectively. The set
V1 ⊗ V2 defined by (4.2) has a finite metric dimension bounded by

DV1⊗V2 = 1.4 (dimV1 + dim V2 + 1) .

By using Theorem 2.2, we prove the following result.

Proposition 4.2. Let V1 (respectively V2) be an at most countable collection of finite dimensional linear spaces
of L2(T, μ) (respectively L2(X, νn)). Let, for all i ∈ {1, 2}, Δi be a non-negative mapping on Vi such that

∑
Vi∈V

i

e−Δi(Vi) ≤ 1.

There exists an estimator ŝ such that, for all κv1v2 ∈ F , where F is defined by (4.1),

CE
[
H2(s, ŝ)

] ≤ d2
2(
√
s, κv1v2) + inf

V1∈V1

{
κ2d2

t(v1, V1) +
dimV1 ∨ 1 +Δ1(V1)

n

}

+ inf
V2∈V2

{
κ2d2

x(v2, V2) +
dimV2 ∨ 1 +Δ2(V2)

n

}

where C is a universal positive contant. Furthermore,
√
ŝ belongs to F .

Apart for the term d2
2(
√
s, κv1v2) which corresponds to some robustness with respect to the assumption√

s ∈ F , the risk bound we get corresponds to the one we would get if we could apply a model selection
theorem on the components v1 and v2 separately.
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4.1. Smoothness assumptions on v1 and v2.

We illustrate this proposition by setting T = [0, 1]k1, X = [0, 1]k2 , μ the Lebesgue measure and

F =
{
κv1v2, κ ≥ 0, v1 ∈ H([0, 1]k1), ‖v1‖t = 1, v2 ∈ H([0, 1]k2), ‖v2‖x = 1

}
. (4.3)

We apply Proposition 4.2 with families V1 and V2 of linear spaces possessing good approximation properties
with respect to the functions of H([0, 1]k1) and H([0, 1]k2), respectively. This leads to the following corollary.

Corollary 4.3. There exists an estimator ŝ such that, for all κv1v2 ∈ F , where F is defined by (4.3),

CE
[
H2(s, ŝ)

] ≤ d2
2(
√
s, κv1v2) + κ

2k1
2ᾱ+k1 L (v1)

2k1
2ᾱ+k1 n− 2ᾱ

2ᾱ+k1

+ κ
2k2

2β̄+k2 L (v2)
2k2

2β̄+k2 n
− 2β̄

2β̄+k2 + n−1

where α ∈ (0,+∞)k1 , is such that v1 ∈ Hα([0, 1]k1), where β ∈ (0,+∞)k2 is such that v2 ∈ Hβ([0, 1]k2), and
where C > 0 depends only on k1, k2, max1≤j≤k1 αi, and max1≤j≤k2 βi.

In particular, if s is a product function of the form
√
s = κv1v2 where v1 ∈ Hα([0, 1]k1), and v2 ∈ Hβ([0, 1]k2),√

s is Hölderian with regularity (α,β) on [0, 1]k1+k2 . However, the rate given by the corollary above is always
faster than the one we would get by Corollary 3.1 under smoothness assumption only.

4.2. Mixing smoothness and structural assumptions

When k2 is large, we may consider structural assumptions on v2 instead of smoothness ones to improve the
risk bound. Proposition 4.2 allows to consider a wide variety of situations thanks to the approximation results
of [5] on composite functions. We do not present all of them for the sake of concisely. We just consider the
example in which the class F is

F =
{
κv1v2, κ ≥ 0, v1 ∈ H([0, 1]k1), θ1, . . . ,θl ∈ B(0, 1), g ∈ H( [−1, 1]l

)
, (4.4)

∀x ∈ X, v2(x) = g (〈θ1,x〉, . . . , 〈θl,x〉) , ‖v1‖t = ‖v2‖x = 1
}

where T = [0, 1]k1, μ the Lebesgue measure and

X =

⎧⎨
⎩x ∈ R

k2 ,

k2∑
j=1

x2
j ≤ 1

⎫⎬
⎭

stands for the unit ball of Rk2 . The following corollary ensues from Proposition 4.2 and Corollary 2 of [5].

Corollary 4.4. There exists an estimator ŝ such that, for all κv1v2 ∈ F , where F is defined by (4.4),

CE
[
H2 (s, ŝ)

] ≤ d2
2(
√
s, κv1v2) + κ

2k1
2ᾱ+k1 L(v1)

2k1
2ᾱ+k1 n− 2ᾱ

2ᾱ+k1

+ κ
2l

2β̄+lL(g)
2l

2β̄+l n
− 2β̄

2β̄+l +
ln
(
κ2‖g‖2

βk
−1
2

) ∨ lnn ∨ 1
n

k2

where α ∈ (0,+∞)k1 , β ∈ (0,+∞)l are such that v1 ∈ Hα([0, 1]k1), g ∈ Hβ([−1, 1]l) with v2(x) =
g (〈θ1,x〉, . . . , 〈θl,x〉) and where C > 0 depends only on k1, l, α and β. In the above inequality, ‖g‖β

stands for any positive real number such that for all (x1, . . . , xl) ∈ [−1, 1]l and all j ∈ {1, . . . , l}, the func-
tion gj(x) = g(x1, . . . , xj−1, x, xj+1, . . . , xl) satisfies

|gj(x) − gj(y)| ≤ ‖g‖β|x− y|βj∧1 ∀x, y ∈ [−1, 1].

When
√
s belongs to the class F , the risk bound of the above inequality corresponds to the one we would get

if we could estimate the functions v1 and g separately. This risk bound is then better than the one we would
get under smoothness assumptions on v2 when l < k2.
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4.3. Examples of parametric assumptions

Theorem 2.2 also allows to deal with parametric assumptions. Hereafter, we consider a class F of the form

F =
{
aubvθ, a ≥ 0, b ∈ I, θ ∈ R

k2
}
,

where I is an interval of R, (ub)b∈I is a family of functions and vθ is defined by vθ(x) = exp (〈x,θ〉) for
x ∈ X = {x ∈ Rk2 ,

∑k2
j=1 x

2
j ≤ 1}, the unit ball of Rk2 . For each i ∈ {1, . . . n}, the intensity of Ni is thus assumed

to be proportional to an element of (or an element close to) some reference parametric model {u2
b, b ∈ I}. Let

us give 3 examples of such models.
The Power Law Processes are Poisson’s processes whose intensities are proportional to ub(t) = tb for all

t ∈ T = (0, 1] and some b ∈ (−1/2,+∞). Proposed first in [12], this model is popular in reliability. Indeed,
although the intensity is simple, different situations can be modelled by this model. For example, if b = 0 eachNi

obeys to an homogeneous Poisson’s process, whereas if b > 0 (respectively b < 0) the reliability of each system
reduces (respectively improves) with time. In software reliability, we can cite the Goel–Okumoto’s model of [13]
and the S-Shaped’s model of [18]. The former considers intensities proportional to ub(t) = e−bt whereas the
latter corresponds to ub(t) =

√
te−bt where b ∈ [0,+∞) and t ∈ T = [0,+∞).

We consider the following assumption on the family {ub, b ∈ I}.
Assumption 4.5. The family (ub)b∈I is a family of non vanishing functions of L2(T, μ) indexed by an interval I
of the form (b0,+∞). Moreover, there exist two positive non-increasing functions ρ, ρ̄ on I, such that for all
b, b′ ∈ I,

ρ (b ∨ b′) |b − b′| ≤
∥∥∥∥ ub

‖ub‖t − ub′

‖ub′‖t

∥∥∥∥
t

≤ ρ̄ (b ∧ b′) |b− b′|.
The purpose of the lemmas below is to show that the above assumption holds for the Duane, Goel–Okumoto
and S-Shaped’s models.

Lemma 4.6. Let I = (−1/2,+∞), T = (0, 1], μ the Lebesgue’s measure, and for b ∈ I, ub(t) = tb. Assump-
tion 4.5 is satisfied with

ρ(u) = ρ̄(u) =
1

1 + 2u
for all u > −1/2.

Lemma 4.7. Let I = (0,+∞), T = [0,+∞) , μ the Lebesgue’s measure, k ∈ N, and for b ∈ I, ub(t) = tk/2e−bt.
Assumption 4.5 is satisfied with

ρ(u) =
1
2u

and ρ̄(u) =
√
k + 1
2u

for all u > 0.

All along this section, ‖ · ‖ denotes the standard Euclidean norm of Rk2

∀x ∈ R
k2 , ‖x‖2 =

k2∑
j=1

x2
j

and d the distance induced by this norm.

Proposition 4.8. Let (ub)b∈I be a family such that Assumption 4.5 holds. There exist â ≥ 0, b̂ ∈ I and
θ̂ ∈ Rk2 , such that the estimator ŝ = (âub̂vθ̂)2 satisfies, for all a ≥ 0, b ∈ I, θ ∈ Rk2 , and f ∈ F of the form
f(t,x) = aub(t)vθ(x),

CE
[
H2(s, ŝ)

] ≤ d2
2

(√
s, f

)
+
k2 (1 ∨ ‖θ‖)

n
+
C′

n
(4.5)

where C is a universal positive constant and where C′ depends only on ρ, ρ̄, b0 and b. More precisely,

C′ = log
[
1 ∨ ρ̄

(
b0 +

b− b0
b− b0 + 1

)]
+
∣∣log

(
1 ∧ ρ(1 + b)

)∣∣+ |log(b− b0)| .
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Under parametric assumptions on s, this result says that the rate of convergence of ŝ is of order n−1, which is
quite satisfying when n is large, but may be inadequate in a non-asymptotic point of view. Indeed, the second
term of the right-hand side of inequality (4.5) may be large especially when k2 is large, says larger than n. This
difficulty can be overcome by considering that θ is sparse, which means that θ is close to some (unknown) linear
subspace W of R

k2 with dimW small. Below, we generalize Proposition 4.8 to take account of this situation.

Proposition 4.9. Let (ub)b∈I be a family such that Assumption 4.5 holds. Let W be an at most countable family
of linear subspaces of Rk2 and let Δ be a non-negative map on W such that

∑
W∈W

e−Δ(W ) ≤ 1.
There exist â ≥ 0, b̂ ∈ I and θ̂ ∈ Rk2 , such that the estimator ŝ = (âub̂vθ̂)2 satisfies, for all a ≥ 0, b ∈ I,

θ ∈ R
k2 , and f ∈ F of the form f(t,x) = aub(t)vθ(x),

CE
[
H2(s, ŝ)

] ≤ d2
2(
√
s, f) +

C′

n

+ inf
W∈W

{
a2‖ub‖2

te
2‖θ‖d2(θ,W ) +

(1 ∨ dimW )(1 ∨ ‖θ‖) +Δ(W )
n

}

where C is a universal positive constant and where C′ is given by Proposition 4.8.

For illustration purpose, let us make explicit the constant C′ for the Duane’s model, and let us therefore
assume that there exist some unknown parameters a, b,θ such that s is of the form

√
s(t,x) = atb exp (〈θ,x〉).

We derive from Proposition 4.8 an estimator whose risk satisfies

CE
[
H2(s, ŝ)

] ≤ (1 ∨ ‖θ‖) k2 + | log(2b+ 1)|
n

(4.6)

where C is a universal positive constant. However, if for instance k2 is large and if most of the components of θ
are small or null, the preceding proposition can be used to improve substantially the risk of our estimators. For
simplicity, assume that

k� = |{j ∈ {1, . . . , k2}, θj �= 0}|
is small. We then define the set M of all subsets of {1, . . . , k2}, and for each m ∈ M, the set

Wm = {(y1, . . . , yk2), ∀j �∈ m, yj = 0} ⊂ R
k2 .

We apply Proposition 4.9 with

W = {Wm, m ∈ M} and ∀m ∈ M, Δ(Wm) = 1 + |m| + log
(
k2

|m|
)
.

This leads to an estimator ŝ such that

C′′
E
[
H2(s, ŝ)

] ≤ (1 ∨ log k2 ∨ ‖θ‖)(1 ∨ k�) + | log(2b+ 1)|
n

,

which improves inequality (4.6) when k� is small and k2 large.

5. Parametric models

In this section, we consider the natural situation where the intensity of each process Ni belongs (or is close)
to a same parametric model. Throughout this section, n ≥ 2.

We consider a closed rectangle Θ of Rk, that is a subset of Rk for which there exist m1, . . . ,mk ∈ R∪ {−∞}
and M1, . . . ,Mk ∈ R∪{∞} such that Θ = R

k∩∏k
i=1[mi,Mi]. We denote by F = {fθ, θ ∈ Θ} a class of functions

of L2(T, μ). Our aim is then to estimate s when, for each i ∈ {1, . . . n}, the square root of the intensity of the
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Poisson’s process Ni,
√
s(·, xi), is (or is close to) an element of F . We introduce thus the class of functions F

defined by

F =
{
(t, x) �→ fu(x)(t), where u is a map from X into Θ

}
.

For instance, if F corresponds to the Duane’s model (see Sect. 4.3), Θ is a closed rectangle included in R ×
(−1/2,+∞) and

F =
{
atb, (a, b) ∈ Θ

}
.

The class F is then the set of all functions f of the form f(t, x) = a(x)tb(x) where a and b are two functions
on X such that (a(x), b(x)) ∈ Θ for all x ∈ X.

We consider the following assumption to deal with more general classes F .

Assumption 5.1. The set Θ is a closed rectangle of Rk. There exist α = (αj)1≤j≤k ∈ (0, 1]k and R =
(Rj)1≤j≤k ∈ (0,+∞)k such that

∀θ,θ′ ∈ Θ, ‖fθ − fθ′‖t ≤
k∑

j=1

Rj |θj − θ′j |αj . (5.1)

The aim of the lemmas below is to prove that this assumption is satisfied for the Duane, Goel–Okumoto and
S-Shaped’s models.

Lemma 5.2. Let μ be the Lebesgue’s measure, and for all θ ∈ R × [−1/2,+∞),

fθ(t) = θ1t
θ2 for all t ∈ T = (0, 1].

Then, for all positive numbers r1, r2, and all θ,θ′ ∈ [−r1, r1] × [−1/2 + 1/r2,+∞),

‖fθ − fθ′‖t ≤ r
1/2
2 |θ1 − θ′1| +

√
2r1r

3/2
2 |θ2 − θ′2|.

Lemma 5.3. Let μ be the Lebesgue’s measure, and for all k ∈ {0, 1}, θ = (θ1, θ2) ∈ R × (0,+∞),

fθ(t) = θ1t
k/2e−θ2t for all t ∈ T = (0,+∞).

Let r1, r2 be two positive numbers and let us set

C1(0) = (r2/2)1/2
C2(0) = r1r

3/2
2 /2 C1(1) = r2/2 and C2(1) = (3/8)1/2

r1r
2
2 .

For all θ,θ′ ∈ [−r1, r1] × [1/r2,+∞),

‖fθ − fθ′‖t ≤ C1(k)|θ1 − θ′1| + C2(k)|θ2 − θ′2|.
Remark 5.4. For the Duane’s model, Lemma 5.2 shows that Assumption 5.1 is fulfilled for Θ = [−r1, r1] ×
[−1/2 + 1/r2,+∞). This will allow to obtain a risk bound when

√
s is close to the class

Fr1,r2 =
{
(t, x) �→ a(x)tb(x),where a maps X into [−r1, r1] and

b maps X into [−1/2 + 1/r2,+∞)} .
By using Proposition 2.3 with F = {Fr1,r2 , r1, r2 ∈ N�}, we can also derive a risk bound for the class

F =
⋃

r1,r2∈N�

Fr1,r2

=
{
(t, x) �→ a(x)tb(x),where a maps X into a compact subset of R,

and b maps X into a closed interval included in (−1/2,+∞)
}
.
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5.1. A model selection theorem

The main theorem of Section 5 is the following.

Theorem 5.5. Suppose that Assumption 5.1 holds. Let W1, . . . ,Wk be k families of finite dimensional lin-
ear subspaces of L2(X, νn). Let for each j ∈ {1, . . . , k}, Δj be a non-negative mapping on Wj such that∑

Wj∈Wj
e−Δj(Wj) ≤ 1.

There exists an estimator ŝ such that for all map u = (u1, . . . , uk) from X with values into Θ, and f ∈ F of
the form f(t, x) = fu(x)(t),

CE
[
H2(s, ŝ)

] ≤ d2
2(
√
s, f) +

k∑
j=1

εj(uj)

where εj(uj) is defined by

εj(uj) = inf
Wj∈Wj

{
R2

j (dx (uj ,Wj))
2αj +

(dim(Wj) ∨ 1) τu,j(n) +Δj(Wj)
n

}
,

where
τu,j(n) = logn+ log(1 ∨Rj) + log (1 ∨ ‖uj‖x) ,

and where C > 0 depends only on k and α1, . . . , αk.

Roughly speaking, this result says that the risk bound we get when
√
s is of the form

√
s(t, x) = fu(x)(t),

corresponds to the one we would get if we could apply a model selection theorem on the components u1, . . . , uk

separately. Each term εj(uj) can be controlled under structural or smoothness assumptions on uj. For instance,
if X = [0, 1]k2 and if uj is assumed to belong to the class Fj = H([0, 1]k2), a suitable choice of (Wj , Δj) leads to

Cjεj(uj) ≤ (RjL(uj)αj )
2k2

k2+2αj β̄j

(
τu,j(n)
n

) 2αj β̄j

2αj β̄j+k2
+
τu,j(n)
n

where βj is such that uj ∈ Hβj ([0, 1]k2) and where Cj > 0 depends only on k2 and βj . In particular, if αj = 1
and if n is large, εj(uj) is of order (logn/n)2β̄j/(2β̄j+k2). Apart from the logarithmic factor, this corresponds to
the estimation rate of an Hölderian function on [0, 1]k2 .

The corollary below illustrates this result for the Duane’s model.

Corollary 5.6. There exists an estimator ŝ such that, for all α ∈ (0,+∞)k2 , β ∈ (0,+∞)k2 , for all a ∈
Hα([0, 1]k2), b ∈ Hβ([0, 1]k2) satisfying b > −1/2, and for all function f of the form f(t, x) = a(x)tb(x),

CE
[
H2(s, ŝ)

] ≤ d2
2

(√
s, f

)

+

(
1

1 ∧ infx∈[0,1]k2 (2b(x) + 1)

) k2
2ᾱ+k2

L(a)
2k2

2ᾱ+k2

(
logn
n

) 2ᾱ
2ᾱ+k2

+

(
1 ∨ ‖a‖2

∞
1 ∧ infx∈[0,1]k2 (2b(x) + 1)3

) k2
2β̄+k2

L(b)
2k2

2β̄+k2

(
logn
n

) 2β̄

2β̄+k2

+ C′ logn
n

where C > 0 depends on k2, max1≤j≤k αj, max1≤j≤k βj, and where C′ depends on L(a), L(b), ᾱ, β̄, ‖a‖∞,
‖b‖∞ and infx∈[0,1]k2 (2b(x) + 1).
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5.2. Change point detection

In the case where the intensity si of each Ni is of the form
√
si(t) = fθi

(t), a natural way to control the
risk of our estimator ŝ is to consider some assumptions on the map i �→ θi. This problem amounts to choosing
suitable collections W1, . . . ,Wk to approximate functions on X = {1, . . . , n}.

In this section, we focus on the case where the map i �→ θi is piecewise constant with a small number of
jumps. Let P be the set of partitions of {1, . . . , n} into intervals. We aim at estimating s when there exists a
partition P0 ∈ P such that s is of the form

∀I ∈ P0, ∃θI ∈ Θ, ∀i ∈ I,
√
si(t) = fθI (t) for all t ∈ T. (5.2)

We define for each partition P ∈ P , the linear space of piecewise constant functions

WP =

{∑
I∈P

aI�I , aI ∈ R

}

and apply Theorem 5.5 with the collections and maps defined by

∀j ∈ {1, . . . , k}, Wj = {WP , P ∈ P} and Δj(WP ) = |P | + log
(
n− 1
|P | − 1

)
.

This leads to the result below.

Corollary 5.7. Assume that Assumption 5.1 and relation (5.2) hold. There exists an estimator ŝ such that

CE
[
H2(s, ŝ)

] ≤ |P0| logn+ C′

n
,

where C > 0 depends only on k and α1, . . . , αk, where C′ is given by

C′ = sup
1≤j≤k

(log (1 +Rj)) + sup
I∈P

(log (1 + ‖θI‖∞)) ,

and where ‖θI‖∞ = sup1≤j≤k |(θI)j |.

For illustration purpose, in the context of the Duane’s model, there exist a1 . . . , an ∈ (0,+∞), and b1, . . . , bn ∈
(−1/2,+∞) such that

√
si(t) = ait

bi for all t ∈ (0, 1]. By combining the preceding corollary with Proposition 2.3,
we build an estimator ŝ such that

CE
[
H2(s, ŝ)

] ≤ (1 + r1 + r2)
logn+ C′

n

where r1 and r2 are the numbers of jumps of the maps i �→ ai and i �→ bi respectively, where C is a universal
positive constant, and where C′ depends on sup1≤i≤n ai, sup1≤i≤n |bi| and inf1≤i≤n(2bi + 1).

6. Proofs

6.1. Proof of Theorem 2.2

Throughout the proof, we set N = (N1, . . . , Nn) and x = (x1, . . . , xn).
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6.1.1. About the T -estimators

We begin to briefly recall the general strategy introduced in [7] to build estimators from tests.
Given two distinct functions f, f ′ of L1

+(T×X,M), a test function ψf,f ′(N,x) is a measurable function with
values in {f, f ′}. The convention is that ψf,f ′(N,x) = f means accepting f whereas ψf,f ′(N,x) = f ′ means
accepting f ′. In what follows, we need tests with the following properties. We shall build them in Section 6.1.2.

Assumption 6.1. There exist a > 0, κ > 0 such that for all distinct functions f, f ′ ∈ L
1
+(T × X,M) and all

z ∈ R, there exists a test ψ(z)
f,f ′(N,x) satisfying

sup
f∈L

1
+(T×X,M),

κH(s,f)≤H(f,f ′)

P

[
ψ

(z)
f,f ′(N,x) = f ′

]
≤ exp

[−an (H2(f, f ′) + z
)]

(6.1)

sup
f∈L

1
+(T×X,M),

κH(s,f ′)≤H(f,f ′)

P

[
ψ

(z)
f,f ′(N,x) = f

]
≤ exp

[−an (H2(f, f ′) − z
)]
. (6.2)

We now consider an at most countable collection S of subsets of L1
+(T × X,M). We shall assume that the sets

S ∈ S are D-models. We recall the definition below.

Definition 6.2. An at most countable subset S of L1
+(T ×X,M) is called a D-model with parameters η̄S , D̄S

and 1 if
|S ∩ B(f, rη̄S)| ≤ exp

[
D̄Sr

2
]

for all r ≥ 2 and f ∈ L
1
+(T × X,M),

where B(f, rη̄S) is the closed ball centered at f with radius rη̄S of the metric space (L1
+(T × X,M), H).

The tests allow to select among the functions of ∪S∈SS. Precisely, the selection rule is the following.
Given a collection S of D-models, we set for all f ∈ ∪S∈SS,

η̄(f) = inf {η̄S , S ∈ S, S � f}
and for all f ′ ∈ ∪S∈SS, f ′ �= f , zf,f ′ = η̄(f ′)2 − η̄(f)2. We define for all f ∈ ∪S∈SS,

R(f) =
{
f ′ ∈ ∪S∈SS, ψ

(zf,f′ )
f,f ′ (N,x) = f ′

}
and consider

γ(f) =

{
sup {H(f, f ′), f ′ ∈ R(f)} if R(f) �= ∅,
0 if R(f) = ∅.

Given ε > 0, a Tε-estimator is a measurable function ŝ = ŝ(N,x) with values in ∪S∈SS such that

γ(ŝ) ∨ εη̄(ŝ) = inf
f∈∪S∈SS

[γ(f) ∨ εη̄(f)] .

Theorem 5 of [7] shows that such a minimizer exists almost surely and they all possess similar theoretical
properties. In our framework, we can rewrite it as follows.

Theorem 6.3. Suppose that Assumption 6.1 holds. Let S be an at most countable collection of D-models such
that D̄S ≥ 1/2 for all S ∈ S,∑

S∈S

exp
(
−anη̄

2
S

21

)
≤ 1 and anη̄2

S ≥ 21D̄S

5
for all S ∈ S.

For all ε ∈ (0, 4], there exists almost surely a Tε-estimator ŝ ∈ L
1
+(T × X,M). Moreover, any of them satisfies

P

[
CH2(s, ŝ) ≥ inf

S∈S

{
H2 (s, S) + η̄2

S

}
+ ξ

]
≤ e−nξ for all ξ > 0,

where C > 0 depends only on a, κ.

It remains thus to construct the tests and the collection S to prove Theorem 2.2.
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6.1.2. Definition of the tests

Our tests are inspired from the variational formula in [3]. Let, for all functions f, f ′ of L1
+(T × X,M),

Tf,f ′(N,x) be the functional

Tf,f ′(N,x) =
1
2n

n∑
i=1

∫
T

√
f(t, xi) + f ′(t, xi)

2

(√
f ′(t, xi) −

√
f(t, xi)

)
dμ(t)

+
1√
2n

n∑
i=1

∫
T

√
f ′(t, xi) −

√
f(t, xi)√

f(t, xi) + f ′(t, xi)
dNi(t)

− 1
2n

n∑
i=1

∫
T

(f ′(t, xi) − f(t, xi)) dμ(t)

where the convention 0/0 is in use. We prove the following.

Lemma 6.4. There exist positive numbers a, b such that for all z ∈ R and all f, f ′ ∈ L
1
+(T × X,M) satisfying

4H(s, f) ≤ H(f, f ′),
P [Tf,f ′(N,x) ≥ bz] ≤ exp

[−na (H2(f, f ′) + z
)]
.

The proof of this lemma is deferred to Section 6.1.6 and we refer to the proof for the exact values of a and b.
This lemma says that the functional Tf,f ′(N,x) can be used to construct the tests. Precisely, we set for all

z ∈ R, f, f ′ ∈ L1
+(T × X,M), f �= f ′,

ψ
(z)
f,f ′(N,x) =

{
f ′ if Tf,f ′(N,x) > bz

f if Tf,f ′(N,x) < bz,

and ψ(z)
f,f ′(N,x) is defined arbitrarily in case of equality. Thanks to the above lemma, (6.1) holds. Note that (6.2)

also holds since Tf,f ′(N,x) = −Tf ′,f (N,x).

6.1.3. Construction of S

The collection S is derived from V. We shall show in Section 6.1.6 the following lemma.

Lemma 6.5. For all η > 0 and V ∈ V there exists a D-model S̄V (η) with parameters η, 63DV (η/2) and 1.
Moreover,

H(s, S̄V (η)) ≤ 2
√

2
(
d2

(√
s, V

)
+ η

)
(6.3)

and for all f ∈ S̄V (η), there exists g ∈ V such that
√
f = g ∨ 0.

Please note that we can assume (for the sake of simplicity and with no loss of generality), that DV is non-
increasing. We then set for all V ∈ V,

η̄S̄V
=

(
21

√
3
5a
ηV

)
∨
√

21Δ(V )
na

and S̄V = S̄V (η̄S̄V
)

where a is given by Lemma 6.4. Actually a is very small (smaller than 1), which implies that η̄S̄V
/2 ≥ ηV and

thus
63DV (η̄S̄V

/2) ≤ 63DV (ηV ).

Consequently, the set S̄V is a D-model with parameters η̄S̄V
, D̄S̄V

= 63DV (ηV ) and 1. The collection S is then
defined by S =

{
S̄V , V ∈ V

}
.
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6.1.4. Proof of Theorem 2.2

The assumptions of Theorem 6.3 are fulfilled:

anη̄2
S̄V

≥ 212 × 3
5

nη2
V ≥ 212 × 3

5
DV (ηV ) ≥ 21D̄S̄V

5
and ∑

V ∈V

exp
(
−anη̄

2
SV

21

)
≤
∑
V ∈V

exp (−Δ(V )) ≤ 1.

The selection rule described in Section 6.1.1 provides thus an estimator ŝ ∈ ∪V ∈VS̄V such that, for all ξ > 0,

P

[
CH2(s, ŝ) ≥ inf

V ∈V

{
H2

(
s, S̄V

)
+ η̄2

S̄V

}
+ ξ

]
≤ e−nξ

where C > 0 is universal. By using inequality (6.3),

H2
(
s, S̄V

) ≤ 16
[
d2
2(
√
s, V ) + η̄2

S̄V

]
and hence

inf
V ∈V

{
H2

(
s, S̄V

)
+ η̄2

S̄V

}
≤ C′ inf

V ∈V

{
d2
2

(√
s, V

)
+ η2

V +
Δ(V )
n

}
for some universal constant C′ > 0. Finally,

P

[
C′′H2(s, ŝ) ≥ inf

V ∈V

{
d2
2

(√
s, V

)
+ η2

V +
Δ(V )
n

}
+ ξ

]
≤ e−nξ

where C′′ = C/(C′ ∨ 1). �
6.1.5. Proof of Lemma 6.4

We start with the following Bennett-type’s inequality which generalizes Proposition 7 of [17].

Lemma 6.6. Let f1, . . . , fn be n bounded measurable functions. Let ρ, υ be positive numbers such that ρ ≥
max1≤i≤n ‖fi‖∞ and

1
n

n∑
i=1

∫
T

f2
i (t)si(t) dμ(t) ≤ υ.

Then, for all r ≥ 0,

P

(
1
n

n∑
i=1

[∫
T

fi(t) dNi(t) − E

(∫
T

fi(t) dNi(t)
)]

≥ r

)
≤ exp

(
−n υ

b2
h
(ρr
υ

))

≤ exp

(
−n r2

2
(
υ + ρr

3

)
)

where h is the function defined for u ∈ (−1,+∞) by h(u) = (1 + u) log(1 + u) − u.

Proof. By homogeneity we can assume that ρ = 1. We assume moreover that for each i ∈ {1, . . . , n}, fi is a
piecewise constant function (with a finite number of pieces). There exist thus k1, . . . , kn ∈ N� and a family
(ai,j) 1≤i≤n

1≤j≤ki

of elements of [−1, 1] such that

∀t ∈ T, fi(t) =
ki∑

j=1

ai,j�Ai,j (t)

where the Ai,j are measurable sets of T such that Ai,j ∩Ai,j′ = ∅ for all j �= j′.
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Now, for all ξ > 0,

log E

(
eξ
∑n

i=1[
∫

T
fi dNi−E(

∫
T

fi dNi)]
)

=
n∑

i=1

log E

(
eξ[

∫
T

fi dNi−E(
∫

T
fi dNi)]

)

=
n∑

i=1

ki∑
j=1

log E

(
eξai,j [Ni(Ai,j)−E(Ni(Ai,j))]

)

=
n∑

i=1

ki∑
j=1

E (Ni(Ai,j)) (eξai,j − ξai,j − 1).

By using the monotony of the function x �→ (ex − x− 1)/x2,

log E

(
eξ
∑n

i=1[
∫

T
fi dNi−E(

∫
T

fi dNi)]
)
≤

n∑
i=1

ki∑
j=1

E
(
a2

i,jNi(Ai,j)
) (
eξ − ξ − 1

)
≤ nυ

(
eξ − ξ − 1

)
.

This inequality still holds when the fi are not piecewise constant since a measurable function can be approxi-
mated by piecewise constant functions. Indeed, there exists a sequence (f (k)

i )k≥1 of piecewise constant functions
(with a finite number of jumps) such that f (k)

i → fi when k → +∞ in the space L2(T, si dμ) and such that
‖f (k)

i ‖∞ ≤ 1 whatever k, i. By using Fatou’s lemma,

log E

(
lim inf
k→+∞

e
ξ
∑n

i=1

[∫
T

f
(k)
i dNi−

∫
T

f
(k)
i si dμi

])
≤ nυ

(
eξ − ξ − 1

)
.

Since,

E

[∣∣∣∣
∫

T

f
(k)
i dNi −

∫
T

fi dNi

∣∣∣∣
]
≤
∫

T

∣∣∣f (k)
i − fi

∣∣∣ si dμ→ 0

one can assume (up to considering a subsequence) that
∫

T
f

(k)
i dNi −

∫
T
fi dNi → 0 almost surely (for all

i ∈ {1, . . . n}). We then have

log E

(
eξ
∑n

i=1[
∫

T
fi dNi−

∫
T

fisi dμi]
)
≤ nυ(eξ − ξ − 1)

as wished. The exponential inequality is then deduced from the Cramér–Chernoff’s method, see
Chapter 2 of [16]. �

Let us return to the proof of Lemma 6.4. We define the function ζ on [0,+∞)2 by

ζ(x, y) =
1√
2

(√
y

x+ y
−
√

x

x+ y

)
for all x, y ∈ [0,+∞),

where we use the convention 0/0 = 0. Let then

Zf,f ′(N,x) = Tf,f ′(N,x) − E [Tf,f ′(N,x)]

=
∫

T×X

ζ(f, f ′) dM − E

(∫
T×X

ζ(f, f ′) dM
)
.

We use the claim below whose proof ensues from the proofs of Propositions 2 and 3 of [3].
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Claim 6.7.

E [Tf,f ′(N,x)] ≤
(

1 +
1√
2

)
H2(s, f) −

(
1 − 1√

2

)
H2(s, f ′)

and
1
n

n∑
i=1

∫
T

ζ2 (f(t, xi), f ′(t, xi)) s(t, xi) dμ(t) ≤ H2(s, f) +H2(s, f ′) +H2(f, f ′).

We derive from the first point of the claim that

P [Tf,f ′(N,x) ≥ z] = P [Zf,f ′(N,x) ≥ z − E [Tf,f ′(N,x)]]

≤ P

[
Zf,f ′(N,x) ≥ z −

(
1 +

1√
2

)
H2(s, f) +

(
1 − 1√

2

)
H2(s, f ′)

]
.

Note that the random variable Z(f, f ′) can be written as

Zf,f ′(N,x) =
1
n

n∑
i=1

[∫
T

ζ (f(·, xi), f ′(·, xi)) dNi − E

(∫
T

ζ (f(·, xi), f ′(·, xi)) dNi

)]
.

When

r = z −
(

1 +
1√
2

)
H2(s, f) +

(
1 − 1√

2

)
H2(s, f ′)

is non-negative, we apply Lemma 6.6 with fi(·) = ζ (f(·, xi), f ′(·, xi)), ρ = 1/
√

2 and

υ = H2(s, f) +H2(s, f ′) +H2(f, f ′)

to obtain

P [Tf,f ′(N,x) ≥ z] ≤ exp

(
− nr2

2υ + r
√

2
3

)
.

We now bound from above the right-hand side of this inequality.
For this, we begin to bound υ from above. We deduce from the triangular inequality and from 4H(s, f) ≤

H(f, f ′) that

υ ≤ 3H2(s, f) + 3H2(f, f ′)
≤ 3(1 + 1/16)H2(f, f ′).

Now, we bound r from below. Note that

H(f, f ′) ≤ H(s, f) +H(s, f ′) ≤ 1
4
H(f, f ′) +H(s, f ′)

and thus H(s, f ′) ≥ 3/4H(f, f ′). This leads to

r ≥ z −
(

1 +
1√
2

)
1
16
H2(f, f ′) +

(
1 − 1√

2

)
9
16
H2(f, f ′)

≥ z + CH2(f, f ′)

where C = (8 − 5
√

2)/16 > 0. There are two types of cases involved.
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• If z + CH2(f, f ′) > 0, r is non-negative and thus

P [Tf,f ′(N,x) ≥ z] ≤ exp

(
− n

(
z + CH2(f, f ′)

)2
6(1 + 1/16)H2(f, f ′) +

√
2

3 (z + CH2(f, f ′))

)
.

Set C′ = 9
√

2(1 + 1/16) + C. Then,

P [Tf,f ′(N,x) ≥ z] ≤ exp

(
− 3n√

2

(
z + CH2(f, f ′)

)2
z + C′H2(f, f ′)

)
.

One can then verify that

(z + CH2(f, f ′))2

z + C′H2(f, f ′)
=
C2

C′ H
2(f, f ′) +

(2C′ − C)C
C′2 z +

(C − C′)2z2

C′2(z + C′H2(f, f ′))

≥ C2

C′ H
2(f, f ′) +

(2C′ − C)C
C′2 z

which implies that

P [Tf,f ′(N,x) ≥ z] ≤ exp
(
− 3n√

2

(
C2

C′ H
2(f, f ′) +

(2C′ − C)C
C′2 z

))
. (6.4)

• If now z + CH2(f, f ′) ≤ 0,

C2

C′ H
2(f, f ′) +

(2C′ − C)C
C′2 z ≤

(
C2

C′ −
(2C′ − C)C2

C′2

)
H2(f, f ′)

≤ 0.

Consequently, (6.4) also holds.

We thus have proved that

P [Tf,f ′(N,x) ≥ bz] ≤ exp
[−na (H2(f, f ′) + z

)]
where

a =
3C2

√
2C′ � 4.5 × 10−4

b =
CC′

2C′ − C
� 0.029.

This ends the proof. �

6.1.6. Proof of Lemma 6.5.

By using Proposition 7 of [7], we derive from SV (η) a set S′
V (η) ⊂ V such that

∀ϕ ∈ L
2(T × X,M), ∀r ≥ 2, |S′

V (η) ∩ B(ϕ, rη)| ≤ exp
(
7DV (η/2)r2

)
where B(ϕ, rη) is the ball centered at ϕ with radius rη of the metric space (L2(T × X,M), d2), and such that

∀f ∈ V, d2(f, S′
V (η)) ≤ η.
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Proposition 12 of [7] (applied with T = S′
V (η), the cone M0 of non-negative functions of L2(T × X,M), M ′ =

L2(T × X,M) and π̄ defined by π̄(f) = f ∨ 0) provides a subset S′′
V (η) such that the functions f ∈ S′′

V (η) are
non negative, such that

∀f ∈ L
2(T × X,M), ∀r ≥ 2, |S′′

V (η) ∩ B(f, rη)| ≤ exp
(
63DV (η) r2

)
and such that

for all non-negative function f ∈ L
2(T × X,M), d2(f, S′′

V (η)) ≤ 4d2(f, S′
V (η)).

The lemma holds with S̄V (η) = {√f, f ∈ S′′
V (η)}. �

6.2. Proof of Lemma 4.1

The proof of this proposition requires the following elementary lemma.

Lemma 6.8. Let f, f ′ ∈ L
2(T, μ) and g, g′ ∈ L

2(X, νn) such that ‖f‖t = ‖f ′‖t = 1 and ‖g‖x = ‖g′‖x = 1. Let
κ, κ′ ∈ R. Then,

d2
2 (κfg, κ′f ′g′) = (κ− κ′)2 + κκ′

(
d2
t(f, f

′) + d2
x(g, g

′) − 1/2 d2
t(f, f

′)d2
x(g, g

′)
)
.

Let η > 0. In this proof, we say that a set S(η) is a η-net of a set V in a metric space (E, d) if, for all y ∈ V ,
there exists x ∈ S(η) such that d(x, y) ≤ η.

Let us denote by S1 (respectively S2) the unit sphere of V1 (respectively V2). Let S1(η) ⊂ S1 (respectively
S2(η) ⊂ S2) be a η-net of S1 (respectively S2) such that

∀f ∈ V1, ∀r ≥ 0, |S1(η) ∩ Bt(f, rη)| ≤ (2r + 1)dim V1 (6.5)
∀g ∈ V2, ∀r ≥ 0, |S2(η) ∩ Bx(g, rη)| ≤ (2r + 1)dim V2 (6.6)

where Bt(f, rη) and Bx(g, rη) are the closed balls centered at f and g with radius rη of the metric spaces
(L2(T, μ), dt) and (L2(X, νn), dx) respectively. We refer to Lemma 4 of [7] for the existence of these nets. Let
now

S(η) =
⋃

k∈N�

{
kη√

2
fg, (f, g) ∈ S1

(
1√
2k

)
× S2

(
1√
2k

)}
.

First of all, S(η) is a η-net of V . Indeed, let ϕ ∈ V . We can write ϕ(t, x) = κf(t)g(x) where κ ≥ 0, f ∈ S1 and
g ∈ S2. Let us define

k = inf
{
i ∈ N

�, i ≥
√

2κ/η
}

and let (f ′, g′) ∈ S1(1/(
√

2k)) × S2(1/(
√

2k)) such that

dt(f, f ′) ≤ 1√
2k

and dx(g, g′) ≤ 1√
2k

·

By using Lemma 6.8, the mapping ϕ′(t, x) = kη√
2
f ′(t)g′(x) is such that

d2 (ϕ,ϕ′) ≤ η,

which proves that S(η) is a η-net of V .
According to Definition 2.1, we now consider ϕ ∈ L2(T × X,M) and r ≥ 2 and aim at bounding from above

the cardinality of the set S(η) ∩ B (ϕ, rη) (where we recall that B (ϕ, rη) is the closed ball centered at ϕ with
radius rη of the metric space (L2(T × X,M), d2)).
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For this purpose, we begin to assume that ϕ belongs to S(η), which implies that the function can be written
as ϕ(t, x) = κf(t)g(x). We introduce

K =
{
kη√

2
, k ∈ N

�,

∣∣∣∣ kη√2
− κ

∣∣∣∣ ≤ rη

}

and for all κ′ ∈ K,

C(κ′) =
(
S1

( η

2κ′
)
∩ Bt

(
f, 6r2

η

2κ′
))

×
(
S2

( η

2κ′
)
∩ Bx

(
g, 6r2

η

2κ′
))

.

Let
T (η) = {κ′f ′g′, κ′ ∈ K, (f ′, g′) ∈ C(κ′)} .

We shall prove that

S(η) ∩ B (κfg, rη) ⊂ T (η). (6.7)

We then upper-bound the cardinality of S(η) ∩ B (κfg, rη) by bounding from above the cardinality of T (η).
Let ϕ′ ∈ S(η) ∩ B (κfg, rη). There exist κ′, f ′ and g′ such that ϕ′ = κ′f ′g′ and we derive from Lemma 6.8

that
(κ− κ′)2 ≤ d2

2 (ϕ,ϕ′) ≤ r2η2,

which implies that κ′ ∈ K. We now distinguish several cases.

• Suppose that (∫
T

f(t)f ′(t) dμ(t)
)(∫

X

g(x)g′(x) dνn(x)
)
< 0.

We then have d2
2(ϕ,ϕ′) ≥ κ2 + κ′2. Since κ ≥ η/

√
2, κ′ ≤ κ+ rη and r ≥ 2,

κ′

κ
≤ 1 +

√
2r ≤ 3

2
r.

Thus, d2
2(ϕ,ϕ

′) ≥ 4κ′2/(9r2). Since f, f ′ ∈ S1 and g, g′ ∈ S2,

‖f − f ′‖2
t ≤ 4 and ‖g − g′‖2

x ≤ 4

and thus

‖f − f ′‖2
t ≤ 9r2

κ′2
d2
2(ϕ,ϕ

′) ≤ 9r4

κ′2
η2

‖g − g′‖2
x ≤ 9r2

κ′2
d2
2(ϕ,ϕ

′) ≤ 9r4

κ′2
η2.

We then have

f ′ ∈ S1

( η

2κ′
)
∩ Bt

(
f, 6r2

η

2κ′
)

and g′ ∈ S2

( η

2κ′
)
∩ Bx

(
g, 6r2

η

2κ′
)

that is (f ′, g′) ∈ C(κ′) and thus ϕ′ ∈ T (η).
• If now, ∫

T

f(t)f ′(t) dμ(t) > 0 and
∫

X

g(x)g′(x) dνn(x) > 0,

then d2
t(f, f ′) ≤ 2 and d2

x(g, g′) ≤ 2. We then derive from Lemma 6.8 and from the elementary inequality

1
2
(y1 + y2) ≤ y1 + y2 − 1

2
y1y2 for all y1, y2 ∈ [0, 2],
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that

(κ− κ′)2 +
κκ′

2
(
d2
t(f, f

′) + d2
x(g, g

′)
) ≤ d2

2 (ϕ,ϕ′) ≤ r2η2.

Hence,

d2
t(f, f

′) + d2
x(g, g

′) ≤ 2r2η2

κκ′
·

By using the inequality κ′/κ ≤ 3/2r proved in the first point, we deduce

f ′ ∈ S1

( η

2κ′
)
∩ Bt

(
f, 2

√
3r3/2 η

2κ′
)

and g′ ∈ S2

( η

2κ′
)
∩ Bx

(
g, 2

√
3r3/2 η

2κ′
)
·

Since 2
√

3r3/2 ≤ 6r2 (because r ≥ 2), we have (f ′, g′) ∈ C(κ′) and thus ϕ′ ∈ T (η).
• Finally, assume that ∫

T

f(t)f ′(t) dμ(t) < 0 and
∫

X

g(x)g′(x) dνn(x) < 0.

Note that the function ϕ′ can also be written as ϕ′ = κ′(−f ′)(−g′). We then deduce from the second point
that

−f ′ ∈ S1

( η

2κ′
)
∩ Bt

(
f, 2

√
3r3/2 η

2κ′
)

and − g′ ∈ S2

( η

2κ′
)
∩ Bx

(
g, 2

√
3r3/2 η

2κ′
)

and thus (−f ′,−g′) ∈ C(κ′). Hence, ϕ′ ∈ T (η) as wished.

We thus have proved (6.7) and therefore

|S(η) ∩ B (κfg, rη)| ≤
∑
κ′∈K

|C(κ′)| .

Now, note that |K| ≤ 2
√

2r + 1. By using (6.5) and (6.6), for all κ′,

|C(κ′)| ≤ (
12r2 + 1

)dim V1+dim V2
.

Consequently, we have proved

∀ϕ ∈ S(η), ∀r ≥ 2, |S(η) ∩ B (ϕ, rη)| ≤ (
2
√

2r + 1
) (

12r2 + 1
)dim V1+dim V2

.

Let us recall that we must to upper bound the cardinality of S(η)∩B (ϕ, rη) for all ϕ ∈ L2(T×X,M). For this,
if ϕ ∈ L2(T × X,M), may be |S(η) ∩ B (ϕ, rη)| = 0. If not, there exists ϕ′ ∈ S(η) ∩ B (ϕ, rη) and thus

|S(η) ∩ B (ϕ, rη)| ≤ |S(η) ∩ B (ϕ′, 2rη)| .

Therefore, for all ϕ ∈ L2(T × X,M),

∀r ≥ 2, |S(η) ∩ B (ϕ, rη)| ≤ (
4
√

2r + 1
) (

48r2 + 1
)dim V1+dim V2

.

The conclusion follows from the elementary inequalities

∀r ≥ 2, 4
√

2r + 1 ≤ e1.4r2
and 48r2 + 1 ≤ e1.4r2

. �
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6.3. Proof of Proposition 4.2

For all pair (V1, V2) ∈ V1 × V2, we define the set V by relation (4.2). Let then V be the collection of all V
when (V1, V2) varies among V1 × V2. Let Δ̄ be the mapping on V defined by

Δ̄ (V ) = Δ1(V1) +Δ2(V2)

when V corresponds to (V1, V2). We apply Theorem 2.2 with V and Δ̄ to derive an estimator ŝ such that

CE
[
H2(s, ŝ)

] ≤ inf
V ∈V

{
d2
2

(√
s, V

)
+

dimV1 + dimV2 + 1 +Δ1(V1) +Δ2(V2)
n

}
·

Let κv1v2 ∈ F , and let (v′1, v
′
2) ∈ V1 × V2 such that ‖v′1‖t = ‖v′2‖x = 1. The preceding inequality implies

C′
E
[
H2(s, ŝ)

] ≤ d2
2

(√
s, κv1v2

)
+ κ2d2

2 (v1v2, v′1v
′
2)

+
dimV1 ∨ 1 + dimV2 ∨ 1 +Δ1(V1) +Δ2(V2)

n

where C′ = C/2. By using Lemma 6.8 (Sect. 6.2),

d2
2 (v1v2, v′1v

′
2) ≤ d2

t (v1, v′1) + d2
x (v2, v′2) .

By taking the infimum over all v′1 and v′2,

C′
E
[
H2(s, ŝ)

] ≤ d2
2

(√
s, κv1v2

)
+ κ2d2

t (v1, S1) +
dimV1 ∨ 1 +Δ1(V1)

n

+ κ2d2
x (v2, S2) +

dim V2 ∨ 1 +Δ2(V2)
n

where S1 and S2 are the unit spheres of V1 and V2, respectively.
Now, remark that

dt(v1, S1) ≤ 2dt(v1, V1) and dx(v2, S2) ≤ 2dx(v2, V2).

Indeed, if w1 is the projection of v1 on V1, then

dt(v1, S1) ≤
∥∥∥∥v1 − w1

‖w1‖t

∥∥∥∥
t

≤ ‖v1 − w1‖t +
∥∥∥∥w1 − w1

‖w1‖t

∥∥∥∥
t

.

Now, ∥∥∥∥w1 − w1

‖w1‖t

∥∥∥∥
t

=
∣∣∣∣1 − 1

‖w1‖t

∣∣∣∣ ‖w1‖t = |‖w1‖t − 1| .

Since ‖v1‖t = 1, ∥∥∥∥w1 − w1

‖w1‖t

∥∥∥∥
t

= |‖w1‖t − ‖v1‖t| ≤ ‖v1 − w1‖t .

Since ‖v1 − w1‖t = dt(v1, V1), we have dt(v1, S1) ≤ 2dt(v1, V1). The proof of the inequality dx(v2, S2) ≤
2dx(v2, V2) is similar.

The conclusion follows. �
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6.4. Proof of Lemma 4.6

For all b, b′ ∈ (−1/2,+∞),
∫ 1

0

(√
2b+ 1tb −√

2b′ + 1tb
′)2

dt =
4 (b− b′)2

(1 + b+ b′)
(√

2b+ 1 +
√

2b′ + 1
)2

and thus

(b− b′)2

(1 + 2(b ∨ b′))2 ≤
∫ 1

0

(√
2b+ 1tb −√

2b′ + 1tb
′)2

dt ≤ (b− b′)2

(1 + 2(b ∧ b′))2

which ends the proof. �

6.5. Proof of Lemma 4.7

For b > 0, we define

gb(t) =
fb(t)
‖fb‖t =

2k/2b1/2+k/2√
k/2 k!

tk/2e−bt.

For all b, b′ > 0,

1
2

∫ ∞

0

(gb(t) − gb′(t))
2 dt = 1 −

(
2
√
bb′
)k+1

(b+ b′)k+1

=

∑k
j=0(b + b′)k−j(2

√
bb′)j

(b+ b′)k+1(
√
b+

√
b′)2

(b − b′)2

=
1

(b+ b′)(
√
b+

√
b′)2

k∑
j=0

(
2
√
bb′

b+ b′

)j

(b− b′)2 .

Consequently,

1
8(b ∨ b′)2 (b− b′)2 ≤ 1

2

∫ ∞

0

(gb(t) − gb′(t))
2 dt ≤ k + 1

8(b ∧ b′)2 (b− b′)2

which concludes the proof. �

6.6. Proof of Proposition 4.9

We generalize Lemma 4.1 for some new spaces. The proof of the following lemma is analogous to the one of
Lemma 4.1 and will not be detailed.

Lemma 6.9. Let V1 and V2 be subsets of the unit spheres of L2(T, μ) and L2(X, νn) respectively. For each
i ∈ {1, 2}, we assume that there exist positive numbers ρi, ρ̄i, a subset Wi of a finite dimensional normed linear
space (W̄i, | · |i) and a surjective map Φi from Wi onto Vi such that:

∀(x, y) ∈ W1, ρ1|x− y|1 ≤ dt(Φ1(x), Φ1(y)) ≤ ρ̄1|x− y|1 (6.8)

∀(x, y) ∈W2, ρ2|x− y|2 ≤ dx(Φ2(x), Φ2(y)) ≤ ρ̄2|x− y|2. (6.9)

The set

V = {κv1v2, (v1, v2) ∈ V1 × V2, κ ∈ [0,+∞)}
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has a finite metric dimension bounded by

DV = C

[
1 + log

(
1 +

ρ̄1

ρ1

)
dim W̄1 + log

(
1 +

ρ̄2

ρ2

)
dim W̄2

]

where C is a universal constant.

Lemma 6.10. Let for all r,R ∈ (b0,+∞), such that R > r, Vt(r,R) be the set defined by

Vt(r,R) =
{

ub

‖ub‖t , b ∈ [r,R]
}
.

Condition (6.8) holds with dim W̄1 = 1, ρ1 = ρ(R) and ρ̄1 = ρ̄(r).

Lemma 6.11. For all positive number ρ and W ∈ W, let

V2(W,ρ) =
{

vθ

‖vθ‖x , θ ∈W, ‖θ‖ ≤ ρ

}
.

There exists a finite dimensional normed linear space (W̄2, | · |2) and a map Φ2 from W̄2 onto V2(W,ρ) such that
condition (6.9) holds with dim W̄2 ≤ dimW , ρ2 = e−6ρ and ρ̄2 = e6ρ.

Proof of Lemma 6.11. For any integers i, j ∈ N�, let us denote by ϕi,j the linear form on Rk2 defined
by ϕi,j(θ) = 〈xi − xj ,θ〉 where 〈·, ·〉 is the standard scalar product on Rk2 . Let W1 = ∩i=jKerϕi,j and let
W2 such that W = W1 ⊕W2 and such that 〈u, v〉 = 0 for all (u, v) ∈W1 ×W2. Since the functions of L2(X, νn)
are defined νn-almost everywhere, the set V2(W,ρ) can be written as

V2(W,ρ) = Φ2 ({θ ∈ W2, ‖θ‖ ≤ ρ}) where Φ2(θ) =
vθ

‖vθ‖x ·

Indeed, let θ ∈W written as θ = θ1 + θ2 where θ1 ∈ W1 and θ2 ∈W2. Then, for all j ∈ {1, . . . , n},
vθ(xj)
‖vθ‖x =

exp (〈xj ,θ〉)√
1
n

∑n
i=1 exp (2〈xi,θ〉)

=
exp (〈xj ,θ1〉 + 〈xj ,θ2〉)√

1
n

∑n
i=1 exp (2〈xi,θ1〉 + 2〈xj ,θ2〉)

=
vθ1(xj)
‖vθ1‖x

and thus Φ2(θ) = Φ2(θ1), νn-almost everywhere.
For all x ∈ X, let Ψx be the function defined from X into R by Ψx(θ) = Φ2(θ)(x) = vθ(x)/‖vθ‖x. We derive

from some calculus that the differential of Ψx at the point θ ∈ W2, denoted by dΨx(θ), is

∀h ∈ R
k2 , dΨx(θ) · h =

1
n

∑n
i=1 exp (2〈θ, xi〉 + 〈θ, x〉) (〈x− xi, h〉)(

1
n

∑n
i=1 exp (2〈θ, xi〉)

)3/2
·

In particular, we have

∀h ∈ R
k2 ,

e−6ρ

n

n∑
i=1

|〈x − xi, h〉| ≤ |dΨx(θ) · h| ≤ e6ρ

n

n∑
i=1

|〈x− xi, h〉|.
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If we endow W2 with the norm | · |2 defined by

∀θ ∈ W2, |θ|2 =

√√√√√ 1
n

n∑
i=1

⎛
⎝ 1
n

n∑
j=1

|〈xi − xj ,θ〉|
⎞
⎠

2

,

the mean value theorem leads to

∀(θ1,θ2) ∈ W2, e−6ρ|θ1 − θ2|2 ≤ dx (Φ2(θ1), Φ2(θ2)) ≤ e6ρ|θ1 − θ2|2,
which concludes the proof. �

We now prove Proposition 4.9. We derive from Lemma 6.9 that for all � ≥ 1, all r,R > b0 and all W ∈ W,
the set

V (r,R,W, �) =
{
aubvθ, a ∈ [0,+∞), b ∈ [r,R], θ′ ∈W, ‖θ′‖ ≤ �

}
has a metric dimension bounded by

CDV (r,R,W,) = 1 + � dimW + log
(

1 +
ρ̄(r)
ρ(R)

)

for some universal positive constant C.
Let us define the collection V by

V = {V (b0 + 1/r, b0 +R,W, �) , W ∈ W, r, R, � ∈ N
�}

and the map Δ̄ on V by

Δ̄ (V (r,R,W, �)) = Δ(W ) + log
(
2R2

)
+ log

(
2r2
)

+ log
(
2�2
)
.

We apply Theorem 2.2 with (V, Δ̄) to build an estimator ŝ. For all W ∈ W, �, r, R ∈ N
�, θ′ ∈ W such that

‖θ′‖ ≤ �, a ∈ [0,+∞), b ∈ [b0 + 1/r, b0 +R], this estimator satisfies

C′
E
[
H2(s, ŝ)

] ≤ d2
2(
√
s, aubvθ′)

+
1 + � dimW + log

(
1 + ρ̄(b0+1/r)

ρ(b0+R)

)
+Δ(W ) + log r + logR + log �

n

where C′ is another universal positive constant.
We may roughly upper-bound the right-hand side of this inequality to get

C′′
E
[
H2(s, ŝ)

] ≤ d2
2(
√
s, aubvθ′)

+
1 + � dimW + log (1 ∨ ρ̄ (b0 + 1/r)) +

∣∣log
(
1 ∧ ρ(b0 +R)

)∣∣+Δ(W )
n

+
log r + logR+ log �

n

for some universal positive constant C′′.
In particular, for all W ∈ W, θ′ ∈ W , a ∈ [0,+∞) and b ∈ I, we may use this inequality with R = inf{i ∈

N�, i ≥ b− b0}, r = inf{i ∈ N�, i ≥ 1/(b− b0)}, � = inf{i ∈ N�, i ≥ ‖θ′‖} to derive

C′′′
E
[
H2(s, ŝ)

] ≤ d2
2(
√
s, aubvθ′) +

(1 ∨ ‖θ′‖)(1 ∨ dimW ) +Δ(W )
n

+
1
n

{
log
[
1 ∨ ρ̄

(
b0 +

b − b0
b− b0 + 1

)]
+
∣∣log

(
1 ∧ ρ(1 + b)

)∣∣+ |log(b − b0)|
}

where C′′′ is a universal positive constant.
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Now, by using the triangular inequality, we have for all θ ∈ Rk2 ,

d2
2(
√
s, aubvθ′) ≤ 2

(
d2
2(
√
s, aubvθ) + d2

2(aubvθ, aubvθ′
)

≤ 2
(
d2
2(
√
s, aubvθ) + a2‖ub‖2

td
2
x(vθ, vθ′)

)
.

Some calculus shows that dx(vθ, vθ′) ≤ e‖θ‖∨‖θ′‖‖θ − θ′‖.
Consequently, for all a ∈ [0,+∞), b ∈ I, θ ∈ Rk, W ∈ W, we obtain (by taking θ′ the projection of θ on W ),

C′′′′
E
[
H2(s, ŝ)

] ≤ d2
2(
√
s, aubvθ) + a2‖ub‖2

te
2‖θ‖d2(θ,W ) +

(1 ∨ dimW )(1 ∨ ‖θ‖) +Δ(W )
n

+
1
n

{
log
[
1 ∨ ρ̄

(
b0 +

b− b0
b− b0 + 1

)]
+
∣∣log

(
1 ∧ ρ(1 + b)

)∣∣+ |log(b− b0)|
}

where C′′′′ is a universal positive constant. We conclude by taking the infimum over all W ∈ W. �

6.7. Proofs of Lemmas 5.2 and 5.3

Proof of Lemma 5.2. We derive from some calculus that for all θ2, θ′2 ∈ [−1/2 + 1/r2,+∞),

∫ 1

0

(tθ2 − tθ
′
2)2 dt =

2(θ2 − θ′2)
2

(1 + 2θ2)(1 + θ2 + θ′2)(1 + 2θ′2)
≤ 2r32(θ2 − θ′2)

2.

Hence, for all (θ1, θ2), (θ′1, θ
′
2) ∈ [−r1, r1] × [−1/2 + 1/r2,+∞),

√∫ 1

0

(θ1tθ2 − θ′1tθ
′
2)2 dt ≤

√∫ 1

0

(θ1 − θ′1)2t2θ′
2 dt+

√∫ 1

0

θ21(tθ2 − tθ
′
2)2 dt

≤ |θ1 − θ′1|√
2θ′2 + 1

+
√

2|θ1||θ2 − θ′2|√
(1 + 2θ2)(1 + θ2 + θ′2)(1 + 2θ′2)

≤ r
1/2
2 |θ1 − θ′1| +

√
2r1r

3/2
2 |θ2 − θ′2|.

This ends the proof. �

Proof of Lemma 5.3. We derive from some calculus that for all θ2, θ′2 ≥ 1/r2,

∫ ∞

0

(
tk/2e−θ2t − tk/2e−θ′

2t
)2

dt =
k!

2k+1

(
1
θk
2

+
1
θ′k2

− 22+k

(θ2 + θ′2)
k

)
·

If k = 0,

∫ ∞

0

(
tk/2e−θ2t − tk/2e−θ′

2t
)2

dt =
(θ′2 − θ2)2

2θ′22 θ2 + 2θ′2θ
2
2

≤ r32
4

(θ′2 − θ2)2

while if k = 1,

∫ ∞

0

(
tk/2e−θ2t − tk/2e−θ′

2t
)2

dt =
θ′22 + 4θ′2θ2 + θ22
4θ′22 θ22(θ′2 + θ2)2

(θ′2 − θ2)2

≤ 3r42
8

(θ′2 − θ2)2.
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Hence, for all (θ1, θ2), (θ′1, θ′2) ∈ [−r1, r1] × [1/r2,+∞),√∫ ∞

0

(
θ1tk/2e−θ2t − θ′1tk/2e−θ′

2t
)2 dt ≤

√∫ ∞

0

(θ1 − θ′1)2tke−2θ′
2t dt

+ |θ1|
√∫ ∞

0

(
tk/2e−θ2t − tk/2e−θ′

2t
)2 dt.

Now, √∫ ∞

0

(θ1 − θ′1)2tke−2θ′
2t dt =

√
k!|θ1 − θ′1|

2(k+1)/2θ
′(k+1)/2
2

,

which ends the proof. �

6.8. Proof of Theorem 5.5

We start with the following proposition.

Proposition 6.12. Suppose that Assumption 5.1 holds. Let for all j ∈ {1, . . . , k}, Wj be a linear subspace of
L

2(X, νn) with finite dimension and Zj be a bounded subset of Wj . Let then ρ ∈ [0,+∞)k such that for all
j ∈ {1, . . . , k}, Zj ⊂ Bx(0, ρj) = {g ∈ L2(X, νn), ‖g‖x ≤ ρj}. Let m1, . . . ,mk ∈ R ∪ {−∞} and M1, . . . ,Mk ∈
R ∪ {∞} be such that Θ = Rk ∩∏k

i=1[mi,Mi] and let π be the map defined on Rk by

π(x) =
(
(x1 ∨m1) ∧M1, . . . , (xk ∨mk) ∧Mk

)
for all x = (x1, . . . , xk) ∈ R

k.

Let for all u ∈∏k
j=1 Zj, gu be the function defined by

gu(x)(t) = fπ(u(x))(t) for all (t, x) ∈ T × X.

Then, the set V defined by

V =

⎧⎨
⎩gu, u ∈

k∏
j=1

Zj

⎫⎬
⎭

has a metric dimension bounded by

DV (η) =
1
2
∨ 1

4

k∑
j=1

log

(
1 + 2

(
kRj

η

)1/αj

ρj

)
dim(Wj).

Proof of Proposition 6.12. As in the proof of Lemma 4.1, we say that a set S(η) is a η-net of a set V in a metric
space (E, d) if, for all y ∈ V , there exists x ∈ S(η) such that d(x, y) ≤ η.

Let η > 0 and for j ∈ {1, . . . , k},
ηj =

(
η

kRj

)1/αj

.

Let Z ′
j(ηj) be a maximal subset of Zj such that dx(x, y) > ηj for all x �= y ∈ Z ′

j(η). This is a ηj -net of Zj such
that

|Z ′
j(ηj)| ≤

∣∣Z ′
j(ηj) ∩ Bx(0, ρj)

∣∣
and by using Lemma 4 of [7],

|Z ′
j(ηj)| ≤

(
2ρj

ηj
+ 1

)dim Wj

. (6.10)
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To prove the proposition, we begin to show that the set

S(η) =

⎧⎨
⎩gu, u ∈

k∏
j=1

Z ′
j (ηj)

⎫⎬
⎭

is a η-net of V .
Let f ∈ V be the function of the form f(t, x) = gu(x)(t) = fπ(u(x))(t) and for all j ∈ {1, . . . , k}, let vj ∈ Z ′

j

(
ηj

)
such that dx(uj , vj) ≤ ηj . We define v = (v1, . . . , vk) and g ∈ S(η) by g(t, x) = gv(x)(t) = fπ(v(x))(t). Then,

‖f − g‖2
2 =

1
n

n∑
i=1

∥∥fπ(u(xi))(·) − fπ(v(xi))(·)
∥∥2

t

≤ 1
n

n∑
i=1

⎛
⎝ k∑

j=1

Rj

∣∣uj(xi) − vj(xi)
∣∣αj

⎞
⎠

2

.

By using the Cauchy–Schwarz’s inequality,

‖f − g‖2
2 ≤ 1

n

n∑
i=1

k

⎛
⎝ k∑

j=1

R2
j

∣∣uj(xi) − vj(xi)
∣∣2αj

⎞
⎠

≤ k

k∑
j=1

R2
j

(
1
n

n∑
i=1

∣∣uj(xi) − vj(xi)
∣∣2αj

)
.

By using the concavity of the map x �→ xαj ,

‖f − g‖2
2 ≤ k

k∑
j=1

R2
j

(
1
n

n∑
i=1

∣∣uj(xi) − vj(xi)
∣∣2)αj

≤ k

k∑
j=1

R2
jd

2αj
x (uj , vj)

≤ η2

as wished.
We now consider r ≥ 2, ϕ ∈ L2(T×X,M) and aim at bounding from above the cardinality of S(η)∩B(ϕ, rη).

We have,

|S(η) ∩ B(ϕ, rη)| ≤
k∏

j=1

∣∣Z ′
j (ηj)

∣∣ .
By using (6.10),

|S(η) ∩ B(ϕ, rη)| ≤
k∏

j=1

(
2
(
kRj

η

)1/αj

ρj + 1

)dim(Wj)

≤ exp

⎛
⎝1

4

k∑
j=1

dim(Wj) log

(
2
(
kRj

η

)1/αj

ρj + 1

)
r2

⎞
⎠ .

This ends the proof. �
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Lemma 6.13. Let V be a set with metric dimension bounded by DV . Assume that there exist k ∈ N�, a, b ∈
[0,+∞)k such that max1≤j≤k aj ≥ 1, min1≤j≤k bj ≥ 1 and such that

DV (η) ≤ 1
2
∨

k∑
j=1

aj log
(

1 +
bj
η

)
for all η > 0.

Then,

ηV = inf
{
η > 0,

DV (η)
η2

≤ n

}
can be upper bounded by

Cη2
V ≤

∑k
j=1 aj log(1 + bj)

n
+

∑k
j=1 aj

n
log

(
1 +

n∑k
j=1 aj

)

where C is a universal positive constant.

Proof of Lemma 6.13. For all η > 0,

1
2
∨

k∑
j=1

aj log
(

1 +
bj
η

)
≤
⎧⎨
⎩

2
∑k

j=1 aj log(2bj) + 2
(∑k

j=1 aj

)
log
(

1
η

)
if η < 1

2
∑k

j=1 aj log(2bj) otherwise.

The larger DV , the larger ηV . Consequently, without lost of generality we can assume that

DV (η) =

⎧⎨
⎩

2
∑k

j=1 aj log(2bj) + 2
(∑k

j=1 aj

)
log
(

1
η

)
if η < 1

2
∑k

j=1 aj log(2bj) otherwise.

Remark now that for all α, β, y > 0, the equation

α+ β log x =
y

2x2

has only one positive solution x given by
x2 =

y

βL

(
e

2α
β

β y

) ,
where L is the Lambert’s function, defined as being the inverse function of t �→ tet. Consequently, by setting

α =
k∑

j=1

aj log(2bj) and β =
k∑

j=1

aj

we derive that the positive number η defined by

η2 =

⎧⎨
⎩

β
nL

(
e

2α
β

β n

)
if n > 2α

2α
n if n ≤ 2α

is such that DV (η) = nη2. In particular, ηV ≤ η. The conclusion ensues from some elementary inequalities on
the Lambert’s function. �

We derive from this lemma the following result.
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Lemma 6.14. Under the notations and assumptions of Proposition 6.12, there exists a universal positive con-
stant C such that

Cη2
V ≤ 1

n

k∑
j=1

(
dim(Wj) ∨ 1

αj

)(
log
(
1 + kRjρ

αj

j

)
+ logn

)
.

Proof. We can upper bound DV (η) as follows.

DV (η) =
1
2
∨ 1

4

k∑
j=1

log

(
1 + 2

(
kRj

η

)1/αj

ρj

)
dim(Wj)

≤ 1
2
∨ 1

4

k∑
j=1

1
αj

log
(

1 + 2αj
kRj

η
ρ

αj

j

)
dim(Wj).

We then use Lemma 6.13 with aj = α−1
j

(
1 ∨ dimWj

)
and bj = 1 ∨ (2αjkRjρ

αj

j

)
(we recall that αj ≤ 1). There

exists thus a universal constant C′ such that

C′η2
V ≤ 1

n

k∑
j=1

(
dim(Wj) ∨ 1

αj

)⎡⎣log
(
1 + 1 ∨ (2αjkRjρ

αj

j

))
+ log

⎛
⎝1 +

n∑k
i=1

(
dim(Wi)∨1

αi

)
⎞
⎠
⎤
⎦ .

We now roughly upper-bound the right-hand side of this inequality to end the proof. �

Let us return to the proof of Theorem 5.5. For all Wj ∈ Wj , ρj ∈ N�, we introduce the set Zj(Wj , ρj) =
Wj ∩Bx(0, ρj) where Bx(0, ρj) is the closed ball centered at 0 with radius ρj of the metric space (L2(X, νn), dx).
For all W = (W1, . . . ,Wk) ∈ ∏k

j=1 Wj , ρ = (ρ1, . . . , ρk) ∈ (N�)k, we define

V (W ,ρ) =

⎧⎨
⎩(t, x) �→ fπ(u(x))(t), u ∈

k∏
j=1

Zj(Wj , ρj)

⎫⎬
⎭ .

We then define

V =

⎧⎨
⎩V (W ,ρ) , W ∈

k∏
j=1

Wj , ρ ∈ (N�)k

⎫⎬
⎭

and we define the map Δ on V by

Δ (V (W ,ρ)) =
k∑

j=1

(
Δj(Wj) + log

(
2ρ2

j

))
.

We apply Theorem 2.2 with (V, Δ) to build an estimator ŝ. For all W = (W1, . . . ,Wk) ∈ ∏k
j=1 Wj , ρ =

(ρ1, . . . , ρk) ∈ (N�)k,

CE
[
H2(s, ŝ)

] ≤ d2
2

(√
s, V (W ,ρ)

)
+ η2

V (W ,ρ) +
Δ (V (W ,ρ))

n
(6.11)

where C is a universal positive constant. We then derive from Lemma 6.14 that there exists a universal positive
constant C′ such that

C′η2
V (W ,ρ) ≤

1
n

k∑
j=1

(
dim(Wj) ∨ 1

αj

)(
log
(
1 + kRjρ

αj

j

)
+ logn

)
.
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In particular, for all function f ∈ F of the form f(t, x) = fu(x)(t), for all W ∈ ∏k
j=1 Wj , for all map v =

(v1, . . . , vk) ∈ ∏k
j=1Wj , such that for all j ∈ {1, . . . , k}, ‖vj‖x ≤ ‖uj‖x, and for all function g of the form

g(t, x) = fπ(v(x))(t), inequality (6.11) used with ρj = inf{i ∈ N
�, i ≥ ‖uj‖x} leads to

C′′
E
[
H2(s, ŝ)

] ≤ d2
2

(√
s, f

)
+ d2

2 (f, g) +

∑k
j=1 (Δj(Wj) + log(1 + ‖uj‖x))

n

+
1
n

k∑
j=1

(
dim(Wj) ∨ 1

αj

)
[log (1 + kRj(1 + ‖uj‖x)αj ) + logn]

where C′′ is a universal positive constant.
By using Assumption 5.1 and the Cauchy–Schwarz’s inequality,

d2
2 (f, g) ≤ k

k∑
j=1

R2
j‖uj − vj‖2αj

x .

We then choose vj as being the projection of uj on Wj in the space L2(X, νn), and take the infimum over all
W ∈∏k

j=1 Wj to conclude.

6.9. Proof of Corollary 5.6

Let r1, r2 ∈ N�. We may apply Theorem 5.5 with collections W1,W2 provided by Proposition 1 of [5]. This
yields an estimator s̃ such that for all a ∈ Hα([0, 1]k2) with values into [−r1, r1], for all b ∈ Hβ([0, 1]k2) with
values into [−1/2 + 1/r2,+∞),

CE
[
H2(s, s̃)

] ≤ d2
2(
√
s, f) + ε1(a) + ε2(b)

where

C1ε1(a) ≤
(
r
1/2
2 L(a)

) 2k2
k2+2ᾱ

(
logn+ log(1 ∨ r1/2

2 ) + log (1 ∨ ‖a‖x)
n

) 2ᾱ
2ᾱ+k2

+
logn+ log(1 ∨ r1/2

2 ) + log (1 ∨ ‖a‖x)
n

C2ε2(b) ≤
(√

2r1r
3/2
2 L(b)

) 2k2
k2+2β̄

(
logn+ log(1 ∨√

2r1r
3/2
2 ) + log (1 ∨ ‖b‖x)
n

) 2β̄

2β̄+k2

+
logn+ log(1 ∨√

2r1r
3/2
2 ) + log (1 ∨ ‖b‖x)
n

where C > 0 is universal, where C1 > 0 depends only on k2, max1≤j≤k2 αj , and where C2 > 0 depends only on
k2, max1≤j≤k2 βj.

The above estimator depends on r1 and r2. We can then use Proposition 2.3, to derive that there exists an
estimator ŝ, such that for all r1, r2 ∈ N�, for all a ∈ Hα([0, 1]k2) with values into [−r1, r1], for all b ∈ Hβ([0, 1]k2)
with values into [−1/2 + 1/r2,+∞),

C′′
E
[
H2(s, ŝ)

] ≤ d2
2(
√
s, f) + ε1(a) + ε2(b) +

log r1 + log r2
n

where C′′ > 0 is universal.
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In particular, if we choose r1 as being the smallest integer larger than ‖a‖∞ and r2 as being the smallest
integer larger than 2/(infx∈[0,1]k2 (2b(x) + 1)), we get

C′
1ε1(a) ≤

(√
1 +

2
infx∈[0,1]k2 (2b(x) + 1)

L(a)

) 2k2
k2+2ᾱ ( logn

n

) 2ᾱ
2ᾱ+k2

+ C′′
1

logn
n

where C′
1 > 0 depends only on k2, max1≤j≤k2 αj and where C′′

1 depends only on k2, ᾱ, ‖a‖∞, L(a), ‖b‖∞ and
infx∈[0,1]k2 (2b(x) + 1). We then use

1 +
2

infx∈[0,1]k2 (2b(x) + 1)
≤ 3

1 ∧ infx∈[0,1]k2 (2b(x) + 1)

to get

C′′′
1 ε1(a) ≤

(
1

1 ∧ infx∈[0,1]k2 (2b(x) + 1)

) k2
k2+2ᾱ

L(a)
2k2

k2+2ᾱ

(
logn
n

) 2ᾱ
2ᾱ+k2

+ C′′′′
1

logn
n

·

We can bound from above ε2(b) in a similar fashion. �
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[4] Y. Baraud and L. Birgé, Estimating the intensity of a random measure by histogram type estimators. Probab. Theory Relat.
Fields 143 (2009) 239–284.
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