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A COMPARISON OF METHODS FOR SELECTING VALUES OF SIMULATION
INPUT VARIABLES
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Abstract. Refined descriptive sampling (RDS) is a method of sampling that can be used to produce
input values for estimation of expectation of functions of output variables. This paper gives a gen-
eralization of RDS method for K input variables. An estimator of RDS is defined and shown to be
unbiased and efficient compared to simple random sampling with respect to variance criterion for a
class of estimators. The efficiency of RDS algorithm is discussed at the end of the paper.
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1. Introduction

Suppose we have some device, the behavior of which depends on a random vector X = (X1, X2, . . . , XK) of
fixed length K with known probability density function f (x) and known cumulative function F (x) for x ∈ R

K .
A mathematical model for the device is developed from which we can simulate the behavior of the device on a
computer. So experiments are carried out on the model built and unknown parameter θ of the output random
variable Y of interest denoted as the unknown but observable univariate transformation of X given by the
function Y = h(X) is estimated. Thus, we have the problem of approximating θ. Since h(X) may be difficult
to compute for each new value of X, it is important to pick a sampling scheme that allows us to estimate h(X)
well while keeping N , the number of replication, to a minimum. There exist several procedures for choosing
X1,X2, . . . ,XN . The simplest is simple random sampling (SRS) also known as Monte Carlo (MC) method which
is due to Metropolis and Uhlam, first published in 1947, but was developed in Los Alamos during the World
War II. MC is used to generate N independent identically distributed random vectors with the distribution
of X but this method presents sampling errors [14], the set and sequence effect. In the literature, we can find
several efficient Monte Carlo algorithms for generating random numbers, for instance, super-convergent MC and
Adaptive MC algorithms [1] for practical computations which are developed using variance reduction techniques
(VRT)s but the obtained simulation results are still of modest accuracy [3]. Because of the limits of MC methods,
a new paradigm emerged: it is not always necessary to resort to randomness. Then, new sampling methods for
generating X1,X2, . . . ,XN without using VRTs are developed, for instance, Quasi Monte Carlo (QMC) [4, 8],
latin hypercube sampling (LHS) [6, 7], descriptive sampling (DS) [13] as well as refined descriptive sampling
(RDS) [18]. DS method avoids the set effect and keeps the sequence effect but it is not without drawbacks. It is
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known to have two problems. First, it can be biased, and second, more practically, its strict operation requires a
prior knowledge of the required sample size [11]. Based on DS, RDS was proposed to make DS safe, efficient and
convenient. It is safe by reducing substantially the risk of sampling bias, efficient by producing estimates with
lower variances and convenient by removing the need to determine in advance the sample size. The efficiency of
RDS over DS and SRS is proved by several comparisons, for instance, on a flow shop system and a production
system [16,17]. In [9], there is a discussion deducing that RDS outperforms DS, SRS, LHS and QMC methods
and it is capable of substantially reducing the cost of running simulation experiments, if properly applied.

Let TSRS and TRDS be the estimators of θ obtained using respectively a simple random sample and a refined
descriptive sample of size N . In Section 2, we consider a class of estimators used for the comparison between
SRS and RDS. In Section 3, we describe DS while in Section 4 RDS is described for one dimension and in
Section 5, we give an example of how to use DS and RDS. Section 6 proposes the generalization of RDS for K
input random variables. In Section 7, the estimator TRDS is shown to be unbiased and efficient by studying its
variance which is proved to be less than that of TSRS with respect to a class of estimators. A discussion about
the efficiency of RDS algorithm is finally given in Section 8.

2. Estimators

Monte Carlo methods [2, 15] are usually used for high-dimensional problems. That is, N values of the input
random vector, X1,X2, . . . ,XN are generated in some manner such that the parameter θ = E(g(Y )) can be
estimated by

TSRS = T(Y1, Y2, . . . , YN ) =
1
N

N∑
i=1

g(Yi)

where E design the mathematical expectation, the arguments Y1, Y2, . . . , YN constitute a random sample of Y
and g (.) is an arbitrary known function.

The mean and variance of TSRS are denoted by θ and σ2

N where σ2 is the variance of g(Y ) obtained using
simple random sampling. In this paper, RDS is examined and compared to SRS with respect to this class of
estimators.

3. Descriptive sampling

DS proposed by [13] is based on a fully deterministic selection of the input sample values and their random
permutation. Either a discrete or a continuous or even a mixed distribution can be represented, provided that
the respective inverse of the distribution function is available. This inverse function is always defined, although,
in most cases, a numerical approximation may be necessary, as in the case of a normal distribution [12]. Formally,
in descriptive sampling when the sample size N is known, set values are first computed for the input random
variable X using the inverse transform method, as follows

xi = F−1
1 (ri) for i = 1, 2, . . . , N (3.1)

and then a random sequence {x′
i, i = 1, . . . , N} is drawn without replacement from {xi, i = 1, . . . , N}.

• F−1
1 is the inverse cumulative input distribution.

• The stream of regular numbers {ri = i−0.5
N , i = 1, 2, . . . , N} belongs to [0, 1[.

A descriptive sample {x′
i, i = 1, . . . , N} is then defined as a set of input values xi taken in a random sequence.

Using DS, sample values are generated in advance and stored in memory to be used by the simulation.
The use of DS procedure leads to the following estimates of the parameter θ

TDS =
1
N

N∑
i=1

g(h(x′
i)).
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4. Refined descriptive sampling

In a simulation run, RDS is based on a block that distributes descriptive subsets of sizes, randomly generated
prime numbers as required by the simulation. We stop the process when the simulation terminates, say when
m prime numbers pj , have been used which derives m sub-runs, where j stands for the sub-run. In [18], the
procedure was described for one input real-valued random variable X having a cumulative function F1 where
its values are given by

xj
i = F−1

1

(
Rj

i

)
for i = 1, 2, . . . , pj and j = 1, 2, . . . , m

where each subset {Rj
i , i = 1, . . . , pj} is randomly selected without replacement from the following subset of

regular numbers {
rj
i = p−1

j (i − 0.5) i = 1, 2, . . . , pj

}
such as rj

i is the midpoint of the pj subintervals in which the interval [0, 1[ is subdivided.
The primes pj are randomly generated over [7, RANDMAX ] where RANDMAX is a given value fixed by

the user that the generated prime number does not exceed while 7 is the minimum value of generated primes
chosen to avoid a possible sampling bias. Note that any prime below 7 has too many multiples and therefore if
the underlying frequency is periodic, it could be a multiple of these particular primes [18].

The use of RDS generating
∑m

j=1 pj values of the input random variable X leads to the following m estimates
of the parameter θ in each sub-run

θ̂j =
1
pj

pj∑
i=1

g
(
h
(
F−1

1

(
Rj

i

)))
j = 1, . . . , m.

Therefore, in a given run, the use of refined descriptive sample of size N =
∑m

j=1 pj leads to the following
sampling estimate of θ defined by the average of those estimates observed on different sub-runs

θ̂RDS = TRDS =
1
N

m∑
j=1

pj∑
i=1

g
(
h
(
F−1

1

(
Rj

i

)))
5. An example of how to use DS and RDS

Let us suppose a variable X following an exponential distribution with mean θ = 1 and variance θ′ = 1.
To estimate θ, we take g(xi) = xi and to estimate θ′ we take g(xi) = (xi − X)2. The sample values are

obtained by xi = −ln(1 − ri), respectively for i = 1, . . . , 31 using DS and for i = 1, . . . pj and j = 1, 2, 3 for
RDS.

Using DS, the estimates θ̂ and θ̂′ of E(X) and Var(X) are computed as sample mean and sample variance
of descriptive sample of size N . The estimates are given in Table 1 and the sample values can be found in the
appendix (see Tab. A.3).

Table 1. The observed mean and variance of a negative exponential distribution using a
descriptive sample of size 31.

θ̂ = TDS(mean) 0.98886

θ̂′ = TDS(var) 0.89652

Using RDS and taking p1 = 7, p2 = 11 and p3 = 13, we first computes the estimates θ̂j and θ̂′j of E(X)
and Var(X) in each sub-run as sample mean and sample variance of different descriptive samples of size pj .
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The estimates θ̂ and θ̂′ of E(X) and var(X) are computed as the mean of the samples means and the mean of
the samples variances as follows.

θ̂ = TRDS(mean) =
1
31

3∑
j=1

pj × θ̂j

and

θ̂′ = TRDS(var) =
1
31

3∑
j=1

pj × θ̂′j .

The estimates are given in Table 2 and the sample values can be found in the appendix (see Tabs. A4−A6).

Table 2. The observed mean and variance of a negative exponential distribution using a refined
descriptive sample of size 31.

j 1 2 3 TRDS

pj 7 11 13

θ̂j 0.95134 0.96884 0.97359 θ̂ = 0.966

θ̂′
j 0.60025 0.77260 0.79889 θ̂′ = 0.744

6. The proposed generalization of RDS

6.1. Sample space

Let the sample space Ω of X be partitioned into m disjoint finite sets Aj associated to the prime number pj

of vectors of size K, such as,

Aj =
{

rj
i =

(
rj
i1

, . . . , rj
iK

)
, i = (i1, . . . , iK) ∈ {1, . . . , pj}K

}
where card (Aj) = pK

j .
Then, Aj is partitioned into pK

j disjoint K dimensional hypercubes labeled by Sj
i . The center of each hyper-

cube Sj
i is defined by a K dimensional vector rj

i of regular numbers.
The sample space Ω of X can be written by

Ω = ∪m
j=1Aj = ∪m

j=1 ∪i Sj
i .

6.2. Sample values generation

Let Xj
i be the ith simulated vector of the jth sub-run situated in Sj

i with a probability density function given
in Section 6.5. Let Rj

i be the ith vector of the jth sub-run, where each component is randomly selected without
replacement from the following K identically subsets of regular numbers:{

rj
1, . . . , r

j
i , . . . , r

j
pj

}K

. (6.1)

A refined descriptive sample of size N =
∑m

j=1 pj is defined for the input random vector X using the inverse
transform method as successive m descriptive samples of size pj , j = 1, 2, . . . , m where the ith vector of the
jth descriptive sample is defined by

Xj
i = F−1

(
Rj

i

)
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6.3. Bernoulli random variables

To have the appropriate form of the estimator TRDS and try to calculate its variance, we introduce pK
j

Bernoulli independent random variables of parameter α = pj

pK
j

= 1

pK−1
j

on the jth sub-run given by:

wj
i : Sj

i → {0, 1}

such as

wj
i =

{
1 if Sj

i is in the descriptive sample of size pj

0 otherwise

where each random variable having the following properties which are immediate:

(1) P (wj
i = 1) = E(wj

i ) = E((wj
i )

2) = 1
pK−1

j

(2) Var(wj
i ) =

(
1

pK−1
j

)(
1 − 1

pK−1
j

)

3. E
(
wj

i × wj
t

)
= E

(
wj

i × wj
t /wj

t = 0
)

P
(
wj

t = 0
)

+ E
(
wj

i × wj
t /wj

t = 1
)

P
(
wj

t = 1
)

=
1

pK−1
j (pj − 1)K−1

if i �= t

since E
(
wj

i /wj
t = 1

)
=

1
(pj − 1)K−1

when i �= t

6.4. The estimator of RDS

In the jth sub-run, using RDS the parameter θ = E(g(Y )) of the output variable Y is estimated as follows

θ̂j = T
(
Y1, Y2, . . . , Ypj

)
=

1
pj

∑
i

wj
i × g

(
yj

i

)
(6.2)

and in the simulation experiment defined by m sub-runs, by the following TRDS estimator defined by the
average of the sub-runs estimates

TRDS = T
(
θ̂1, θ̂2, .., θ̂m

)
=

1
N

m∑
j=1

pj × θ̂j (6.3)

=
1
N

m∑
j=1

∑
i

wj
i × g

(
yj

i

)
, (6.4)

where the arguments Yj = {Y j
i , i = 1, . . . , pj} constitute the jth descriptive sample of size pj of Y and the

arguments {Yj , j = 1, . . . , m} constitute a refined descriptive sample of size N of Y observed through simulation.

6.5. The density function of the arguments Yj

Firstly, we notice that

P
(

Xj
i ∈ Sj

i

)
=

1
pK

j

(6.5)
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and the conditional density function of

Xj
i given

{
Xj

i ∈ Sj
i

}
is pK

j f(x) (6.6)

it follows that,

P (yj
i ≤ y) =

∑
Aj

P
(
yj

i ≤ y/Xj
i ∈ Sj

i

)
× P

(
Xj

i ∈ Sj
i

)
=
∑

i

∫
Sj

i /h(x)≤y

pK
j f(x)dx × 1

pK
j

=
∫

Aj/h(x)≤y

f(x)dx.

Then, distributions of Yj , j = 1, . . . , m are all the same as the distribution of X.

7. Properties of the estimator TRDS

Propriety 1. TRDS is asymptotically unbiased estimator.

Proof. It has been shown in [18] that Bias(TRDS) is insignificant if the underlying frequency fw of the output

random variable Y is different from M ×
m∏

j=1

pj where M ∈ N∗. This condition is usually verified because the

simulation will certainly terminates before the product of all prime numbers used in a run or a multiple of it

can be equal to the underlying frequency as this product M ×
m∏

j=1

pj has a very high frequency.

We can deduce that if the sample size N → +∞ then
m∏

j=1

pj → +∞ faster and M×
m∏

j=1

pj tends to infinity

even faster and since fw is a finite frequency, then fw �= M ×
m∏

j=1

pj . As a consequence, limN→+∞Bias(TRDS) = 0

then, TRDS is asymptotically unbiased estimate. �

Propriety 2. TRDS is an unbiased estimator of θ.

Proof. Let μj
i and (σj

i )
2 be respectively the mean and variance of g(yj

i ) in the K dimensional hypercubes.
Let μj and σ2

j be respectively the mean and variance of g(Yj) in the sub-runs defined by

μj =
1

pK
j

∑
i

μj
i . (7.1)

1) Let us calculate first the mathematical expected value of θ̂j .
Considering the formulae (6.2), we have,

E
(
θ̂j

)
= E

⎛⎝ 1
pj

∑
i

wj
i × g

(
yj

i

)⎞⎠ =
1
pj

∑
i

E
(
wj

i × g
(
yj

i

))
given the independence of wj

i and g(yj
i ) then,

E
(
θ̂j

)
=

1
pj

∑
i

E
(
wj

i

)
× E

(
g
(
yj

i

))
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according to the 1st property of wj
i , it follows,

E
(
θ̂j

)
=

1
pj

∑
i

1
pK−1

j

E
(
g
(
yj

i

))
=

1
pK

j

∑
i

μj
i

using the formulae (7.1), we write
E(θ̂j) = μj . (7.2)

2) Let us calculate now the mathematical expected value of TRDS.
Considering the 4th formulae, we obtain,

E(TRDS) =
1
N

m∑
j=1

pjE
(
θ̂j

)
and using (7.2), we have

E(TRDS) =
1
N

m∑
j=1

pjμj = E (g(Y )) = θ. (7.3)

We deduce then, that TRDS is an unbiased estimator of θ. �

Propriety 3. ∀ i �= t we have

Var(TRDS) = Var(TSRS) +
1

N2

m∑
j=1

pj(pj − 1)Cov
(
μj

i , μ
j
t

)
.

Proof. Given that the distribution of Yj is f(x) as shown in Section 5.5, then

σ2
j = Var(g(Yj))

= E
(
g
(
yj

i

)
− μj

)2

(7.4)

=
∫
Aj

(
g
(
yj

i

)
− μj

)2

f(x)dx

=
∑

i

∫
Sj

i

(
g
(
yj

i

)
− μj

)2

f(x)dx where j = 1, . . . , m. (7.5)

In refined descriptive sampling method, the variance of g(Y ) is defined by

σ2 = Var(g(Y )) =
1
N

m∑
j=1

pjσ
2
j . (7.6)

Applying the independence of the sub-runs and using the 6.4th formulae, the variance of the general form of
TRDS is written by

Var (TRDS) =
1

N2

m∑
j=1

∑
i

Var
(
wj

i × g
(
yj

i

))
+

1
N2

m∑
j=1

∑
i

∑
t,i�=t

Cov
(
wj

i × g
(
yj

i

)
, wj

t × g
(
yj

t

))
(7.7)
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1) Let us calculate the first part of the right hand side of the last equality.
We first notice that,

Var
(
wj

i × g
(
yj

i

))
= E

((
wj

i

)2
)

Var(g
(
yj

i

)
+ E2

(
g
(
yj

i

))
× Var

(
wj

i

)
.

By virtue of the 1st and 2nd probability properties of wj
i , we have,∑

i

Var
(
wj

i × g
(
yj

i

))
=
∑

i

1
pK−1

j

Var
(
g
(
yj

i

))

+
∑

i

(
μj

i

)2
(

1
pK−1

j

)(
1 − 1

pK−1
j

)
. (7.8)

By adding and reducing μj in the expectation of (σj
i )

2 given by

Var
(
g
(
yj

i

))
= E

(
g
(
yj

i

))
−
(
μj

i

)2

(7.9)

we obtain

Var
(
g
(
yj

i

)
= E

(
g
(
yj

i

)
− μj

)2

−
(
μj

i − μj

)2

=
∫
Sj

i

(
g
(
yj

i

)
− μj

)2

pK
j f(x)dx −

(
μj

i − μj

)2

. (7.10)

Substituting the expression (7.10) in the relation (7.8), we write

∑
i

var
(
wj

i × g
(
yj

i

))
=

1
pK−1

j

⎛⎜⎜⎝∑
i

∫
Sj

i

(
g
(
yj

i

)
− μj

)2

pK
j f(x)dx

⎞⎟⎟⎠
−p−K+1

j

∑
i

(
μj

i − μj

)2

+
(
p−K+1

j − p−2K+2
j

)∑
i

(
μj

i

)2

.

Considering (7.5) we have then,

1
N2

m∑
j=1

∑
i

Var
(
wj

i × g
(
yj

i

))
=

1
N2

m∑
j=1

pjσ
2
j − 1

N2

m∑
j=1

[
p−K+1

j

∑
i

(
μj

i − μj

)2

+
(
p−K+1

j − p−2K+2
j

)∑
i

(
μj

i

)2
]

(7.11)

and finally taking into account the formula (7.6), we get

1
N2

m∑
j=1

∑
i

Var(wj
i × g(yj

i )) =
σ2

N
− 1

N2

m∑
j=1

⎡⎣p−K+1
j

∑
i

(μj
i − μj)2 +

(
p−K+1

j − p−2K+2
j

)∑
i

(
μj

i

)2

⎤⎦ (7.12)

2) We calculate now the second part of the right hand side of the equality (7.7).
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According to the covariance properties and the 1st properties of wj
i , it follows that,

∑
i

∑
t,i�=t

Cov
(
wj

i × g
(
yj

i

)
, wj

t × g
(
yj

t

))
=
∑

i

∑
t,i�=t

μj
i × μj

t × E
(
wj

i × wj
t

)
− 1

p2K−2
j

∑
i

∑
t,i�=t

μj
i × μj

t

By virtue of the 3rd probability properties of wj
i , we have

1

N2

m∑
j=1

∑
i

∑
t,i�=t

Cov(wj
i ×g(yj

i ), w
j
t ×g(yj

t )) =
1

N2

m∑
j=1

[
(pj −1)−K+1p−K+1

j

∑
i

∑
t,i�=t

μj
i μ

j
t −p−2K+2

j

∑
i

∑
t,i�=t

μj
iμ

j
t

]
(7.13)

Substituting (7.12) and (7.13) in (7.7), we write,

Var(TRDS) = Var(TSRS) +
1

N2

m∑
j=1

[
(pj − 1)−K+1p−K+1

j

∑
Z

∑
μj

iμ
j
t − p−K+1

j

∑
i

(
μj

i − μj

)2

+
(
p−K+1

j − p−2K+2
j

)∑
i

(
μj

i

)2

− p−2K+2
j

∑∑
Z

μj
iμ

j
t

]
. (7.14)

Where Z means the restricted space of pK
j (pj −1)K pairs (μj

i , μ
j
t ) corresponding to the hypercubes Sj

i having
no hypercube coordinates in common. After some algebra and using (7.1), we demonstrate that∑

i

(
μj

i − μj

)2

=
∑

i

(
μj

i

)2

− μ2
jp

K
j (7.15)

and

−p−K+1
j

∑
i

(
μj

i − μj

)2

+ (p−K+1
j − p−2K+2

j )
∑

i

(
μj

i

)2

− p−2K+2
j

∑∑
Z

μj
iμ

j
t

= μ2
jpj − p−2K+2

j

⎛⎝∑∑
Z

μj
iμ

j
t +

∑
i

(
μj

i

)2

⎞⎠
= μ2

jpj − p2
jp

−2K
j

⎛⎝∑
i

μj
i

⎞⎠⎛⎝∑
t

μj
t

⎞⎠
= μ2

jpj − p2
jμ

2
j . (7.16)

Therefore, substituting (7.16) in (7.14), the Var(TRDS) becomes

Var(TRDS) = Var(TSRS) +
1

N2

m∑
j=1

[
(pj − 1)−K+1p−K+1

j

∑
Z

∑
μj

iμ
j
t − μ2

jpj(pj − 1)

]

= Var(TSRS) +
1

N2

m∑
j=1

pj(pj − 1)

[
(pj − 1)−Kp−K

j

∑
Z

∑
μj

iμ
j
t − μ2

j

]
(7.17)

Given that,
Cov

(
μj

i , μ
j
t

)
= p−K

j (pj − 1)−K
∑
Z

∑
μj

iμ
j
t − μ2

j (7.18)
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and substituting (7.18) in (7.17), we have

Var(TRDS) = Var(TSRS) +
1

N2

m∑
j=1

pj(pj − 1)Cov
(
μj

i , μ
j
t

)
. �

Theorem 7.1. If Y = h(X1, . . . , XK) is monotonic in each of its arguments and if g(Y ) is monotonic function
of Y, we have then Var(TRDS) ≤ Var(TSRS)

Proof. To proof the theorem, we need to verify the conditions of Lehmann’s theorem given in appendix [7].
Let us select two hypercubes defined by their center as given in Section 6.1, say, rj

i = (rj
i1

, . . . , rj
iK

) and
rj
t = (lji1 , . . . , l

j
iK

) with no coordinates in common.

1. The pairs (rj
ik

, ljik
), k = 1, . . . , K are mutually independent by definition

2. Each pair (rj
ik

, ljik
) is negatively quadrant dependent since:

P (rj
ik

≤ x, ljik
≤ y) =

[xy − min(x, y)]
pj(pj − 1)

≤ P (rj
ik

≤ x)P
(
ljik

≤ y
)

where [.] represents the integer part function
3. Given that μj

i = E(g(yj
i )) then, μj

i = μ(rj
i1

, . . . , rj
iK

) and μj
t = μ(lji1 , . . . , l

j
iK

) are monotonic in each argument
under the assumptions of the theorem.

The conditions are verified, so, using Lehmann’s theorem, we conclude that μj
i and μj

t are negatively quadrant
dependent defined by the following inequality:

P (μj
i ≤ x, μj

t ≤ y) ≤ P (μj
i ≤ x)P (μj

t ≤ y) ∀ x and y

and finally, using Hoeffding’s equation, we have

Cov(μj
i , μ

j
t ) ≤ 0 ∀ i �= t and j = 1, . . . , m.

Then, using the 3rd propriety of the estimator TRDS, given in Section 7, the result is then obtained, that is
Var(TRDS) ≤ Var(TSRS)

�

We conclude that RDS is better than SRS for estimating E(g(Y )) when the output variable Y =
h(X1, . . . , XK) is monotonic in each of its arguments and g(Y ) is monotonic function of Y .

8. A discussion about the efficiency of RDS algorithm

TRDS is shown to be unbiased and from the point of view of the variance, the last theorem shows that the
RDS algorithm given in [18] is more accurate than the simple Monte Carlo algorithm when the output variable
Y = h(X1, . . . , XK) is monotonic in each of its arguments and g(Y ) is monotonic function of Y . Nevertheless,
the simple Monte Carlo algorithm is preferred, from the algorithmic point of view, because its computational
complexity C(P ) = t × var(TSRS) may be less than the complexity of the RDS algorithm C(RDS) = t′ ×
var(TRDS) where t and t’ are the mean time (or number of operations) required to compute one value of the
random variable using respectively SRS and RDS. This mean time t’ depends on the runtime for generating
a prime number which depends on the value of RANDMAX defined in Section 4 that is on the integer to be
tested for the primality. In addition, the computation of the set of regular numbers of size pj requires 2pj unit
of time and the randomization of the set of regular numbers requires 4pj unit of time. Then, basically, we can
say that RDS algorithm is efficient since its running time is 0(P (N)) where P (N) is a polynomial of size N.
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Moreover, a software component getRDS is designed to generate numbers using RDS method and it is fully
tested for both criteria: independence and uniformity between 0 and 1 [10] then a refined descriptive sample
can be considered as one in which observations are independent random variables and each one following the
population distribution and as a consequence, the random behavior of an input stochastic variable will be then
well represented by a refined descriptive sample, it must be then preferred.

Appendix A.

Lehmann’s theorem:

If 1) (X1, Y1), (X2, Y2), . . . , (XK , YK) are independent, 2) (Xi, Yi) is negatively quadrant dependent for all
i, 3) X = r(x1, . . . , xK) and Y = s(y1, . . . , yK) are monotonic in each argument, then (X, Y ) is negatively
quadrant dependent.

Hoeffding’s equation:

Cov(X, Y ) =
+∞∫
−∞

+∞∫
−∞

[P (X ≤ x, Y ≤ y) − P (X ≤ x)(P (Y ≤ y)]dxdy

Table A.3. Regular set and descriptive sample of size n = 31 for a negative exponential
distribution with mean E(X) = 1.

i ri = (i − 0, 5)/31 xi = −ln(1 − ri)
1 0.016129032 0.016260521
2 0.048387097 0.049596941
3 0.080645161 0.084083117
4 0.112903226 0.1198012
5 0.14516129 0.156842471
6 0.177419355 0.195308752
7 0.209677419 0.235314087
8 0.241935484 0.276986783
9 0.274193548 0.320471895
10 0.306451613 0.365934269
11 0.338709677 0.413562318
12 0.370967742 0.463572739
13 0.403225806 0.516216472
14 0.435483871 0.571786324
15 0.467741935 0.630626824
16 0.5 0.693147181
17 0.532258065 0.759838555
18 0.564516129 0.831297519
19 0.596774194 0.90825856
20 0.629032258 0.991640169
21 0.661290323 1.082611947
22 0.693548387 1.182695406
23 0.725806452 1.293921041
24 0.758064516 1.419084184
25 0.790322581 1.562185028
26 0.822580645 1.729239112
27 0.85483871 1.929909808
28 0.887096774 2.181224236
29 0.919354839 2.517696473
30 0.951612903 3.028522096
31 0.983870968 4.127134385
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Table A.4. Regular subsets and descriptive sample of size prime number p1 = 7 for a negative
exponential distribution with mean E(X) = 1.

i ri = (i − 0, 5)/7 xi = −ln(1 − ri)
1 0.071428571 0.074107972
2 0.214285714 0.241162057
3 0.357142857 0.441832752
4 0.5 0.693147181
5 0.642857143 1.029619417
6 0.785714286 1.540445041
7 0.928571429 2.63905733

Table A.5. Regular subsets and descriptive sample of size prime number p2 = 11 for a negative
exponential distribution with mean E(X) = 1.

i ri = (i − 0, 5)/11 xi = −ln(1 − ri)
1 0.045454545 0.046520016
2 0.136363636 0.146603474
3 0.227272727 0.257829109
4 0.318181818 0.382992252
5 0.409090909 0.526093096
6 0.5 0.693147181
7 0.590909091 0.893817876
8 0.681818182 1.145132304
9 0.772727273 1.481604541
10 0.863636364 1.992430165
11 0.954545455 3.091042453

Table A.6. Regular subsets and descriptive sample of size a prime number p3 = 13 for a
negative exponential distribution with mean E(X) = 1.

i ri = (i − 0, 5)/13 xi = −ln(1 − ri)
1 0.038461538 0.039220713
2 0.115384615 0.122602322
3 0.192307692 0.2135741
4 0.269230769 0.313657559
5 0.346153846 0.424883194
6 0.423076923 0.550046337
7 0.5 0.693147181
8 0.576923077 0.860201265
9 0.653846154 1.060871961
10 0.730769231 1.312186389
11 0.807692308 1.648658626
12 0.884615385 2.159484249
13 0.961538462 3.258096538
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