
ESAIM: PS 19 (2015) 115–134 ESAIM: Probability and Statistics
DOI: 10.1051/ps/2014017 www.esaim-ps.org

SHARP VARIABLE SELECTION OF A SPARSE SUBMATRIX
IN A HIGH-DIMENSIONAL NOISY MATRIX
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Abstract. We observe a N × M matrix of independent, identically distributed Gaussian random
variables which are centered except for elements of some submatrix of size n × m where the mean is
larger than some a > 0. The submatrix is sparse in the sense that n/N and m/M tend to 0, whereas
n, m, N and M tend to infinity. We consider the problem of selecting the random variables with
significantly large mean values, as was also considered by [M. Kolar, S. Balakrishnan, A. Rinaldo and
A. Singh, NIPS (2011)]. We give sufficient conditions on a as a function of n, m, N and M and construct
a uniformly consistent procedure in order to do sharp variable selection. We also prove the minimax
lower bounds under necessary conditions which are complementary to the previous conditions. The
critical values a∗ separating the necessary and sufficient conditions are sharp (we show exact constants),
whereas [M. Kolar, S. Balakrishnan, A. Rinaldo and A. Singh, NIPS (2011)] only prove rate optimality
and focus on suboptimal computationally feasible selectors. Note that rate optimality in this problem
leaves out a large set of possible parameters, where we do not know whether consistent selection is
possible.
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1. Introduction

Large data sets of random variables appear nowadays in many applied fields such as signal processing, biology
and, in particular, genomics, finance etc. In genomic studies of cancer we may require to detect sample-variable
associations see [30]. Our problem further addresses the question: if such an association is detected can we
estimate the sample components and the particular variables involved in this association? This problem is also
known as biclustering and has recently received a lot of attention.

We observe random variables that form an N ×M matrix Y = {Yij}i=1,...,N,j=1,...,M :

Yij = sij + ξij , i = 1, . . . , N, j = 1, . . . ,M, (1.1)

where {ξij} are i.i.d. random variables and sij ∈ R, for all i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}. The error terms ξij
are assumed to be distributed as standard Gaussian N (0, 1) random variables.
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selection.

1 Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, 77454, Marne-la-Vallée, France.
2 CREST, Timbre J340 3, av. Pierre Larousse, 92240 Malakoff Cedex, France. cristina.butucea@u-pem.fr
3 St. Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverkskiy pr.,
197101 St. Petersburg, Russia.
† deceased.

Article published by EDP Sciences c© EDP Sciences, SMAI 2015

http://dx.doi.org/10.1051/ps/2014017
http://www.esaim-ps.org
http://www.edpsciences.org


116 C. BUTUCEA ET AL.

We assume that our data have zero mean, except for the elements of a submatrix, identified by a sparse
collection of n rows and m columns, where the mean is significantly positive. More precisely, denote by

Cnm = {C = A×B ⊂ {1, . . . , N} × {1, . . . ,M}, Card(A) = n, Card(B) = m} , (1.2)

the collection of subsets of n rows and m columns out of a matrix of size N ×M . Our assumption means that
our data have mean sij = 0 except for elements in a submatrix of size n×m, indexed by a set C0 in Cnm, where
sij ≥ a, for some a > 0.

The model is that, for some a > 0 which may depend on n, m, N and M ,

there exists C0 ∈ Cnm such that sij = 0, if (i, j) /∈ C0, and sij ≥ a, if (i, j) ∈ C0. (1.3)

Let Snm,a be the collection of all matrices S = SC , C ∈ Cnm that satisfy (1.3). Our model implies also that
there exists some C0 in Cnm such that S = SC0 belongs to Snm,a.

We discuss here only significantly positive means of our random variables. The problem of selecting the
variables with significantly negative means can be treated in the same way, by replacing variables Yij with −Yij .

Denote by PC the probability measure that corresponds to observations (1.1) with matrix S = SC =
{sij}i=1,...,N, j=1,...,M , sij = 0 if (i, j) �∈ C, sij ≥ a > 0 if (i, j) ∈ C. We also denote P0 = PC0 and E0

the expected value with respect to the measure P0.
For simplicity, we denote YC =

∑
(i,j)∈C Yij , ξC =

∑
(i,j)∈C ξij and so on.

Our goal is to propose a consistent estimator of C0, that is to select the variables in the large matrix of size
N ×M where the mean values are significantly positive. Our approach is to find the boundary values of a > 0,
as function of n, m, N and M , where consistent selection is possible and separate them from the cases where
consistent selection is not possible anymore.

We are interested here in sparse matrices, i.e. the case when n is much smaller than N and m is much smaller
than M .

We study here the variable selection problem in a matrix from a minimax point of view. A selector is any
measurable function of the observations, Ĉ = Ĉ({Yij}) taking values in Cnm. For such a selector Ĉ = Ĉ(Y ), Y =
{Yij} we denote the maximal risk by

Rnm,a(Ĉ) = sup
SC0∈Snm, a

PC0(Ĉ(Y ) �= C0).

We define the minimax risk as
Rnm,a = inf

Ĉ
Rnm,a(Ĉ).

From now on, we assume in the asymptotics that N → ∞, M → ∞ and n = nNM → ∞, n � N, m =
mNM → ∞, m�M . Other assumptions will be given later.

We say that a selector is consistent in the minimax sense, if Rnm,a(Ĉ) → 0.
For sequences of real numbers {un}n≥1 and real positive numbers {vn}n≥1, we say that they are asymptotically

equivalent, un ∼ vn, if limn→∞ un/vn = 1. Moreover, we say that the sequences are asymptotically of the
same order, un 
 vn, if there exist two constants 0 < c ≤ C < ∞ such that c ≤ lim infn→∞ un/vn and
lim supn→∞ un/vn ≤ C.

We suppose that a > 0 is unknown. The aim of this paper is to give asymptotically sharp boundaries for the
minimax risk for selecting the submatrix. It means that, first, we are interested in the conditions on a = aNM
which guarantee the possibility of selection i.e., the fact that Rnm,a → 0. We construct the selecting procedure

Ĉ�(Y ) = arg max
C∈Cnm

YC , (1.4)

where we recall that YC =
∑

(i,j)∈C Yij . We investigate the upper bounds of the minimax selection risk of this
procedure. Second, we describe conditions on a for which we have the impossibility of selection, i.e., the maximal
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risk Rnm,a → 1. These results are called the lower bounds. The two sets of conditions are complementary in a
sense that violation of the upper bound conditions imply either impossibility of selection or even that of testing
(as we compare later on to the sharp minimax rates for testing in [9]).

Kolar et al. [24] considered the same problem. They give upper bounds of convergence for the same scan
procedure and they show lower bounds which are rate optimal but not sharp. The authors also propose three
other procedures of rows and columns selection and they prove suboptimal upper bounds for these selectors.
The authors implement and show how the suboptimal procedures behave numerically.

Let us stress out the fact that having rate optimality in this problem means that a large set of values a are
not covered neither by the upper nor by the lower bounds. That means that for such values of a we do not know
whether consistent selection is possible or not.

Therefore, we devote our efforts here to providing sharp minimax rates, that should be used as a benchmark
for the behaviour of any computationally feasible selector.

Different sparsity assumptions for matrices were imagined. In a regression setup, matrix completion can
be seen as reconstruction of a matrix S from few observed linear functionals of the matrix. More generally,
the trace regression problem considers estimation of the matrix S from observations (Xi, Yi) in the model
Yi = tr(X�

i S) + ξi. In particular, matrix completion is obtained when Xi has one element 1 and all others are
null.

In the setting without noise (ξi = 0 for all i) and under the incoherence property saying that the singular
vectors of the matrix are sufficiently spread on the unit sphere, [13, 18, 27] studied exact recovery. The same
problem, in a noisy setting was studied by [12,23] with the Frobenius norm. The more general trace regression
problem was studied by [28] with Schatten-p norms and by [25] with nuclear norm penalization.

Our problem is highly connected to the detection problem (or testing) which was considered in this setting
by Butucea and Ingster [9]. A more general setup, where each observation is replaced by a smooth signal was
considered by Butucea and Gayraud [10]. We can apply our results to their setup in order to select the signals
with significant energy (norm larger than a). Related testing problems were considered by [2, 4].

When comparing the critical values for submatrix selection and for testing we note a gap between these
two values. Indeed, there are values of the thresholding value a∗ where consistent detection is possible, but no
consistent submatrix selector can be found. This phenomenon was long known, see e.g. [21].

The problem of choosing a submatrix in a Gaussian random matrix has been previously studied by Sun and
Nobel [29], who are interested in the largest square submatrix in Y under the null hypothesis such that its average
is larger than some fixed threshold. An algorithm of choosing such submatrices was previously introduced in
Shabalin et al. [30]. It was successfully implemented for the detection problem in [9] and an interesting open
problem would be to prove consistency and convergence rates of this heuristic algorithm, which is beyond our
scope here.

The plan of the paper is as follows. In Section 2 we state the main results of this paper: the upper bounds
for the selection procedure Ĉ� under conditions on a, as well as inconsistency property of this procedure under
complementary conditions on a, and, finally, lower bounds for variable selection. We compare these results
with the results for detection in [9]. We give results for the vector case (m = M = 1). In Section 3 we prove
the upper bounds for the selection of variables, that is a bound from below on a, in which Rnm,a(Ĉ�) =
supSC0

PC0(Ĉ� �= C0) → 0. In Section 4 we prove lower bounds for variable selection, that is, a bound from
above on the parameter a which imply that the minimax estimation risk Rnm,a tends to 1. Two techniques
provide the sharp lower bounds. One method is classical for nonparametric estimation, while the other makes
a generalization of a well-known result to testing L ≥ 2 hypotheses: the minimax risk is larger than the risk of
the maximum likelihood estimator. Finally, Section 5 gives leads for extensions of present results.

2. Main results

Let
N → ∞, n→ ∞, p = n/N → 0; M → ∞, m→ ∞, q = m/M → 0. (2.1)
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We suppose that a > 0 is unknown. The aim of this paper is to give asymptotically sharp boundaries for
variable selection in a sparse high-dimensional matrix. Our approach is to give, on the one hand, sufficient
asymptotic conditions on a such that the probability of wrongly selecting the variables in C0 tends to 0 and, on
the other hand, conditions under which no consistent selection is possible.

First, we are interested in the conditions on a = anmNM which guarantee consistent variable selection, i.e.,
the fact that we construct the selector Ĉ� in (1.4) and prove that Rnm,a(Ĉ�) → 0. The selector Ĉ� is scanning
the large N ×M matrix and maximizes the sum of the inputs over all n×m submatrices.

The key quantities appearing in next theorems are

B = Bn,m,N,M = min{A1, A2, A}, where A = a
√
nm√

2(n log(p−1)+m log(q−1))
,

A1 = a
√
m√

2(
√

log(n)+
√

log(N−n))
, A2 = a

√
n√

2(
√

log(m)+
√

log(M−m))
.

(2.2)

We shall distinguish the case when B = A that we shall call of severe sparsity, from the case when B = A1

or B = A2 that we call of moderate sparsity, see the examples we discuss later on in order to justify this change
of behaviour.

2.1. Sharp variable selection

The following Theorem gives sufficient conditions for the boundary a = an,m,N,M such that selection is
consistent uniformly over the class Snm,a. The selector which attains these bounds is Ĉ�(Y ) defined by (1.4).

Note that PC0(Ĉ�(Y ) �= C0) does not depend on C0 = C0(N,M, n,m, a). Therefore, for any C0 we have

Rnm,a(Ĉ�) = max
SC0∈Snm, a

PC0(Ĉ
�(Y ) �= C0) = PC0(Ĉ

�(Y ) �= C0).

Theorem 2.1 (Upper bounds). Assume (2.1) and assume B = Bn,m,N,M defined by (2.2) is such that

lim inf Bn,m,N,M > 1, (2.3)

then the selector Ĉ� given by (1.4) is consistent, that is

Rnm,a(Ĉ�) = PC0(Ĉ
� �= C0) → 0.

Proof is given in Section 3.
Condition (2.3) is equivalent to saying that

lim inf A > 1 and lim inf A1 > 1 and lim inf A2 > 1.

The following proposition says that lim inf A1 > 1 and lim inf A2 > 1 are necessary conditions for the consistency
(in the minimax sense) of the selector Ĉ� of C0.

Proposition 2.2. Assume (2.1) and let the selector Ĉ� be the selector given by (1.4). If

lim supA1 < 1 or lim supA2 < 1

then, for any C0 such that SC0 ∈ Snm,a,
PC0(Ĉ

� �= C0) → 1.

Proof is given in Section 4.2.
Let us note that conditions on terms like A1 and A2 did not appear for the detection problem. Indeed, for

variable selection, if we can select the columns but not the rows or the other way around, we cannot select the
submatrix. Hence, additional and unavoidable terms A1 and A2.

In the following theorem we give a sufficient condition on a under which consistent selection of C0 is impossible
uniformly over the set Snm,a. These are the minimax lower bounds for variable selection.
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Theorem 2.3. Assume (2.1). If, moreover, B = Bn,m,N,M defined by (2.2) is such that

lim supBn,m,N,M < 1, (2.4)

then there is no consistent selection of C0 uniformly over Snm,a, that is

inf
Ĉ

sup
SC0∈Snm, a

PC0(Ĉ(Y ) �= C0) → 1,

asymptotically, where the infimum is taken over all measurable functions Ĉ = Ĉ(Y ).

Proof of this theorem is given in Sections 4.1 and 4.2.
Theorems 2.1 and 2.3 imply that the critical value for a is

a∗ ∼ max

{√
2 log(n) +

√
2 log(N − n)√
m

,

√
2 log(m) +

√
2 log(M −m)√
n

,

√
2(n log(N/n) +m log(M/m))√

nm

}
·

(2.5)
By critical value we mean in the sense that, for a such that lim inf a/a� > 1, there is an estimator which is
uniformly consistent, while, for a such that lim sup a/a� < 1, no uniformly consistent estimator exists.

Example 2.4. Let us consider the particular case where the matrix and the submatrix are square (N = M
and n = m) and, moreover, such that

log(n)
log(N)

=
log(m)
log(M)

→ 0.

Then, log(n(N − n)) ∼ log(N − n) ∼ log(N) and log(m(M −m)) ∼ log(M −m) ∼ log(M) which imply that
A1 = A2 ≥ A and, therefore, B = A. Therefore, the case B = A is more generally associated to the setup of
severe sparsity.

Example 2.5. If we consider the particular case where n = NP and m = MQ grow polynomially, for some
fixed P, Q in (0, 1), the critical value becomes

(a∗)2 ∼ max

{
2(1 +

√
P )2 log(N)
m

,
2(1 +

√
Q)2 log(M)
n

,
2(1 − P ) log(N)

m
+

2(1 −Q) log(M)
n

}
·

If, moreover, n = m and N = M , we get (a∗)2 ∼ max{2(1 +
√
P )2, 4(1 − P )}log(N)/n. So, the amount of

sparsity depends on whether P is larger or smaller than 1/9. In this particular example, we have moderate
sparsity, B = A1 = A2 ≤ A, as soon as P ≥ 1/9.

Let us stress the fact that our results are doubly sharp: first, the sets of values a are complementary in our
upper and lower bounds, and second, the limit of the estimation risk is either 0 in the upper bounds or 1 in
the lower bounds. Kolar et al. [24] give only rates up to constants. This implies that for some values of a, their
result do not allow to conclude about the behaviour of the procedure, while our results leave no gaps.

Remark 2.6. We have investigated the upper limits of the selector Ĉ� under the assumption that sij =
a, (i, j) ∈ C0. It follows that, when sij ≥ a, (i, j) ∈ C0, statements of upper bounds stated in this section are
valid.

Indeed, the random part of the expansion YC − YC0 is independent of sij . The absolute value of the deter-
ministic part (the difference of expectations) attains its minimum when sij = a.
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2.2. Variable selection vs. detection

Let us compare the result in Theorems 2.1 and 2.3 with the upper bounds and the lower bounds for detection
of a set C0 where our observations have significant means, i.e. above threshold a. The testing problem for our
model can be stated as

H0 : sij = 0 for all (i, j)

and we call P0 the likelihood in this case, against the alternative

H1 : there exists C0 ∈ Cnm such that S = SC0 ∈ Snm,a.
Let us recall the following theorems.

Theorem 2.7 (Upper bounds for detection, see [9]). Assume (2.1) and let a be such that at least one of the
following conditions hold

a2nmpq =
(anm)2

NM
→ ∞ or lim inf A > 1.

Then distinguishability is possible, i.e.

inf
ψ(Y )

(
P0(ψ(Y ) = 1) + sup

SC0∈Snm,a

PC0(ψ(Y ) = 0)

)
→ 0,

where the infimum is taken over all measurable functions ψ taking values in {0, 1}.
It was also shown in [9], that the asymptotically optimal test procedure ψ∗ combines the scan statistic based

on our Ĉ� with a linear statistic which sums all observations Y = {Yij}i,j. The test procedure ψ∗ rejects the
null hypothesis as soon as either the linear or the scan test rejects.

Theorem 2.8 (Lower bounds for detection, see [9]). Assume (2.1) and

n log(p−1) 
 m log(q−1),
log log(p−1)

log(q−1)
→ 0,

log log(q−1)
log(p−1)

→ 0. (2.6)

Moreover, assume that

a2nmpq =
(anm)2

NM
→ 0 and lim supA < 1.

Then, consistent detection is impossible, that is

inf
ψ(Y )

(
P0(ψ(Y ) = 1) + sup

SC0∈Snm,a

PC0(ψ(Y ) = 0)

)
→ 1,

where the infimum is taken over all measurable functions ψ taking values in {0, 1}.
We deduce that there is a gap between least conditions for testing that C0 exists and selection of the actual

variables (i, j) ∈ C0 (estimation of C0). In Table 1 we summarize possible cases were consistent selection and/or
consistent testing is possible or not. It is understood that the linear statistic will detect a submatrix with small
entries if the size of the submatrix is large enough. If the linear statistic detects, our results basically mean that
we cannot select the submatrix in that case.

We prove the following lemma.

Lemma 2.9. Assume (2.1). If a is such that

lim supA < 1 and lim inf A1 > 1 and lim inf A2 > 1

then a2nmpq → 0.
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Table 1. Conditions for minimax variable selection and/or minimax testing.

Selection \ Test Yes No
Yes lim inf B > 1 –

1) lim supA < 1 Under (2.6) for the test:
and a2nmpq → ∞ lim supA < 1

No. and a2nmpq → 0
2) lim inf A > 1 and
(lim sup A1 < 1 or lim supA2 < 1)

This lemma is useful for futher discusson of the conditions when no variable selection is possible, as given
in Table 1. Indeed, the lower bounds for variable selection in Theorem 2.3 say that no consistent selection is
possible as soon as lim supB < 1.

This set implies, on the one hand, that lim supA < 1 and in this case testing is possible if a2nmpq → ∞,
testing is impossible under (2.6) if a2nmpq → 0.

On the other hand, it might happen that lim inf A > 1 which is sufficient for testing and that either
lim supA1 < 1 or lim supA2 < 1.

Moreover, the conditions of Lemma 2.9 are included in the set of conditions where no selection and no testing
can be performed, while the case 1) in Table 1 is included in the set

lim supA < 1 and, either lim supA1 < 1 or lim supA2 < 1.

Example 2.10. Let us consider an example of setup where consistent detection is possible, but no consistent
selection can be done. Take N = n2, M = log(n), m = log log(n) (and, for instance, a2 = log(n)/ log log(n)).
For all a such that a2  log(n)/(log log(n))2 as n → ∞, we have a2nmpq = a2(log log(n))2/ log(n) → ∞.
Therefore, on the one hand, distinguishability holds, see Theorem (2.7), i.e. we can construct a particular test
procedure ψ� such that

P0(ψ�(Y ) = 1) + sup
SC0∈Snm,a

PC0(ψ
�(Y ) = 0) → 0.

On the other hand,

a2m

2(
√

log(n) +
√

log(N − n))2
=

a2 log log(n)
(2 +

√
2)2 log(n)

(1 + o(1)) < 1,

for all a such that a2 < (1 − δ)(2 +
√

2)2 log(n)/ log log(n), δ > 0. By Theorem 2.3, no consistent selection is
possible in this case.

2.3. Vector case

Sparsity assumptions were introduced for vectors. There is a huge amount of literature for estimating, testing
and variable selection for (sparse or not sparse) vectors, since the pioneering work by Donoho et al. [16]. See
also [1,6] in the context of false discovery rate for multiple testing, [3,8,11] and references therein, for estimation
and testing issues. Note that in the vector case, variable selection was studied for the regression model, see
e.g. [5, 7, 14, 26, 32] and references therein. Sharp minimax rates for testing can be summed up following the
works by Donoho and Jin [15], Ingster [19] and Ingster and Suslina [22].

From our results concerning variable selection can also be proven for the vector case, that is for the gaussian
independent, observations

Xi = si + ξi, i = 1, . . . , N,

where si ≥ a for all i in a set A0 of n elements and si = 0 otherwise. We suppose n, N → ∞ such that n/N → 0.
Similarly, we can show the following result.
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Theorem 2.11 (Upper bounds). In the previous model, if

lim inf
a√

2 log(N) +
√

2 log(n)
> 1,

then the estimator Â� = arg maxA
∑

i∈AXi is such that

sup
A0

PA0(Â
� �= A0) → 0.

Lower bounds. If

lim sup
a√

2 log(N) +
√

2 log(n)
< 1,

then

inf
Â

sup
A0

PA0(Â �= A0) → 1.

The critical value is a� =
√

2 logN +
√

2 log(n). It is equivalent to
√

2 logN if log(n)/ log(N) → 0 and a� =√
2(1+

√
1 − β)

√
logN if N = nβ for some β ∈ (0, 1). This result agrees with sharp results in [20] (see Sect. 3.1,

Rem. 2 and references therein).
Let us stress the fact that the particular case we study here is fundamentally different from the vector

setup. Indeed, an additional regime is observed according to the sparsity structure of the submatrix (severe or
moderate) and it cannot be obtained from previous results for vectors by, say, vectorizing the matrix.

3. Upper bounds

Proof of Theorem 2.1. Note that

PC0(Ĉ
� �= C0) = PC0( max

C∈Cnm

YC − YC0 > 0).

We shall split the sets C according to the size of their common elements with the true underlying C0 = A0×B0.
Let us denote by Cnm,kl the collection of sets C = A×B such that k be the number of elements in A ∩A0 and
l the number of elements in B ∩B0. Then,

PC0(Ĉ
� �= C0) = PC0

(
max

k=0,...,n
max

l=0,...,m
max

C∈Cnm,kl

YC − YC0 > 0
)

≤ PC0

(
max

k=0,...,n
max

l=0,...,m
max

C∈Cnm,kl

(ξC\C0 − ξC0\C − a(nm− kl)) > 0
)
.

From now, we fix 0 < δ < 1 and separate two cases: when kl < (1 − δ)nm and when kl ≥ (1 − δ)nm. As δ will
be chosen small, it means that we treat differently the cases where the matrix C overlaps C0 but weakly (or
not at all) and where the matrices overlap almost entirely. We write and deal successively with each term in

PC0(Ĉ
� �= C0) ≤ PC0

(
max
k,l

max
kl<(1−δ)nm

max
C∈Cnm,kl

(ξC\C0 − ξC0\C − a(nm− kl)) > 0
)

(3.1)

+PC0

(
max
k,l

max
kl≥(1−δ)nm

max
C∈Cnm,kl

(ξC\C0 − ξC0\C − a(nm− kl)) > 0
)
. (3.2)
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3.1. Weak intersection

Let us fix k and l such that kl < (1 − δ)nm for some 0 < δ < 1. Equivalently, we have nm − kl > δnm. In
this case, we shall bound the probability in (3.1) as follows

PC0

(
max
k, l

max
kl<(1−δ)nm

max
C∈Cnm,kl

(ξC\C0 − ξC0\C − a(nm− kl)) > 0
)

≤
n∑
k=0

m∑
l=0

Ikl<(1−δ)nmPC0

(
max

C∈Cnm,kl

ξC\C0 + max
C∈Cnm,kl

ξC∩C0 − ξC0 ≥ a(nm− kl)
)

≤
n∑
k=0

m∑
l=0

Ikl<(1−δ)nm (T1,kl + T2,kl + T3,kl) ,

where we denote by Ikl<(1−δ)nm the indicator function of the set where kl < (1 − δ)nm and by

T1,kl = PC0

(
max

C∈Cnm,kl

ξC\C0 > (1 − δ1)a(nm− kl)
)

T2,kl = PC0

(
max

C∈Cnm,kl

ξC∩C0 >
δ1
2
a(nm− kl)

)
T3,kl = PC0

(
−ξC0 >

δ1
2
a(nm− kl)

)
,

for some 0 < δ1 < 1.
Before continuing the proof, recall that, if n, N tend to infinity, such that n/N → 0, we have

log
((

N − n

n− k

))
∼ (n− k) log

(
N − n

n− k

)
+ (N − 2n+ k) log

(
N − n

N − 2n+ k

)
∼ (n− k) log

(
N − n

n− k

)
(1 + o(1)) (3.3)

and

log
((

n

k

))
≤ min

{
(n− k) log

(
ne

n− k

)
, k log

(ne
k

)}
,

for all k = 1, . . . , n− 1 and log(
(
n
n

)
) = 0.

In order to give an upper bound for T1,kl, we shall distinguish the case where k < (1 − δ)n and l = m (the
case k = n and l < (1 − δ)m is treated similarly) from the case kl < (1 − δ)nm, k < n and l < m. On the one
hand, if k < (1 − δ)n and l = m, we write, for a generic standard gaussian random variable Z (which might
change later on):

T1,km ≤ PC0

(
max
A∈Cn,k

ξ(A\A0)×B0 > (1 − δ1)a(n− k)m
)

≤
(
N − n

n− k

)
P (Z > (1 − δ1)a

√
(n− k)m)

≤ exp

(
− (1 − δ1)

2

2
a2(n− k)m+ log

((
N − n

n− k

)))
,

where we use repeatedly that P (Z > u) ≤ exp(−u2/2), for all u ≥ 0. Now, use (3.3) to get

T1,km ≤ exp
(
−(n− k)

(
(1 − δ1)2

2
a2m− log

(
N − n

n− k

)
(1 + o(1))

))
.
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By assumption (2.3) we can say that

min
{

a2nm

2(n log(p−1) +m log(q−1))
,

a2m

2(
√

log(N − n) +
√

log(n))2
,

a2n

2(
√

log(M −m) +
√

log(m))2

}
≥ 1 + α, (3.4)

for some fixed small α > 0. Therefore, if δ1 > 0 is small enough, we have some α1 > 0 such that

(1 − δ1)2

2
a2m ≥ (1 + α1) (log ((N − n)n)) > log

(
N − n

n− k

)
(1 + o(1)) + log(n), (3.5)

asymptotically. Indeed, it is sufficient that (1 − δ1)2(1 + α) ≥ 1 + α1.
We get

T1,km ≤ exp(−(n− k) log(n)).

We conclude that ∑
k:(n−k)>δn

T1,km ≤ n max
k:(n−k)>δn

{exp(−(n− k) log(n)} < n−δn+1 = o(1).

On the other hand, if kl < (1 − δ)nm, k < n and l < m, note first that the maximum is taken over all
C in Cnm,kl, but only the rows and columns outside C0 actually play a role over the sum ξC\C0 . There are(
N−n
n−k

) · (M−m
m−l

) · (nk) · (ml ) different values of this sum. We write:

T1,kl ≤
(
N − n

n− k

)
·
(
M −m

m− l

)
·
(
n

k

)
·
(
m

l

)
P
(
Z > (1 − δ1)a

√
nm− kl

)
≤
(
N − n

n− k

)
·
(
M −m

m− l

)
·
(
n

k

)
·
(
m

l

)
exp

(
− (1 − δ1)2

2
a2(nm− kl)

)
≤ exp

(
− (1 − δ1)2

2
a2(nm− kl) + log

((
N − n

n− k

)(
M −m

m− l

)(
n

k

)(
m

l

)))
. (3.6)

As we have n, m, N, M tend to infinity, then

log
((

N − n

n− k

)
·
(
M −m

m− l

)
·
(
n

k

)
·
(
m

l

))
≤
(

(n− k) log
(
N − n

n− k

)
+ (m− l) log

(
M −m

m− l

))
(1 + o(1))

+ (n− k) log
(

ne

n− k

)
+ (m− l) log

(
me

m− l

)
≤
(

(n− k) log
(
N − n

n

)
+ (m− l) log

(
M −m

m

))
(1 + o(1))

+
(

(n− k) log
(

n

n− k

)
+ (m− l) log

(
m

m− l

))
(1 + o(1))

+ (n− k) log
(

ne

n− k

)
+ (m− l) log

(
me

m− l

)
.

Let us see that (N − n)/n = N/n(1 + o(1)) and that

(n− k) log
(

n2e

(n− k)2

)
= n

(
1 − k

n

)(
1 − 2 log

(
1 − k

n

))
≤ 2√

e
n,

as x(1 − 2 log(x)) ≤ 2/
√
e for all x in [0, 1].
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Let us denote X := n log(p−1) and Y := m log(q−1). We have

log(
(
N − n

n− k

)
·
(
M −m

m− l

)
·
(
n

k

)
·
(
m

l

)
) ≤

((
1 − k

n

)
X +

(
1 − l

m

)
Y +

2√
e
(n+m)

)
(1 + o(1)).

Analogously to (3.5) we have

(1 − δ1)2

2
a2nm ≥ (1 + α1) (X + Y) ,

asymptotically.
Finally, we get, for large enough n, m, N, M

− (1 − δ1)2a2

2
(nm− kl) + log

((
N − n

n− k

)
·
(
M −m

m− l

)
·
(
n

k

)
·
(
m

l

))
≤ −α1

(
1 − kl

nm

)
(X + Y)

−
(

1 − kl

nm

)
(X + Y) +

((
1 − k

n

)
X +

(
1 − l

m

)
Y +

2√
e
(n+m)

)
(1 + o(1))

≤ −α1

2

(
1 − kl

nm

)
(X + Y) +

k

n

(
l

m
− 1
)
X +

l

m

(
k

n
− 1
)
Y +

2√
e
(n+m)(1 + o(1))

≤ −α1

2
δ(X + Y) +

2√
e
(n+m)(1 + o(1)).

Therefore, we replace this bound in (3.6) and get
n∑
k=0

m∑
l=0

Ikl<(1−δ)nmT1,kl ≤ 2 exp
(
−α1

2
δ(n log(p−1) +m log(q−1)) +

2√
e
(n+m)(1 + o(1)) + log(nm)

)
= o(1).

For T2,kl, only the common elements of C and C0 play a role on the random variable ξC∩C0 and there are(
n
k

) · (ml ) such choices. Note that we cannot have here neither k = 0 nor l = 0, as T2,kl = 0 in this cases.
Therefore,

n∑
k=1

m∑
l=1

Ikl<(1−δ)nmT2,kl ≤
n∑
k=1

m∑
l=1

(
n

k

)
·
(
m

l

)
P

(
Z >

δ1a(nm− kl)
2
√
kl

)

≤
n∑
k=1

m∑
l=1

(
n

k

)
·
(
m

l

)
P

(
Z >

δ1δanm

2
√

(1 − δ)nm

)

≤
n∑
k=1

m∑
l=1

exp
(
−δ

2
1δ

2a2nm

8(1 − δ)
+ k log

(ne
k

)
+ l log

(me
l

))
≤ exp

(
−δ

2
1δ

2a2nm

8(1 − δ)
+ n+m+ log(nm)

)
= o(1).

Here, we have used the fact that x log(x−1) is bounded from above by e−1 for all x ∈ [0, 1] and used it for
x = k/(ne) and for x = l/(me), respectively. Use (3.4) in order to conclude.

Finally, for T3,kl, we write that −ξC0/
√
nm behaves like some standard Gaussian random variable Z and get

n∑
k=0

m∑
l=0

T3,kl ≤
n∑
k=0

m∑
l=0

exp
(
−δ

2
1a

2(nm− kl)2

8nm

)
≤ exp

(
−δ

2
1δ

2a2

8
nm+ log(nm)

)
= o(1),

as a2nm tends to infinity faster than log(nm) due to (3.4) in our setup.
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In conclusion, the probability in (3.1) tends to 0:

PC0

(
max
k, l

max
kl<(1−δ)nm

max
C∈Cnm,kl

(ξC\C0 − ξC0\C − a(nm− kl)) > 0
)

= o(1). (3.7)

3.2. Large intersection

Let us fix k and l such that kl ≥ (1 − δ)nm, or, equivalently, nm − kl ≤ δnm. Note that it implies both
k ≥ (1 − δ1)n and l ≥ (1 − δ1)m for some δ1 depending on δ small as δ → 0. The case n = k and m = l gives
an event with 0 probability.

We decompose as follows

ξC\C0 − ξC0\C =
(
ξ(A\A0)×B0 − ξ(A0\A)×B0

)
+
(
ξA0×(B\B0) − ξA0×(B0\B)

)
+
(
ξ(A\A0)×(B\B0) − ξ(A\A0)×(B0\B) + ξ(A0\A)×(B0\B) − ξ(A0\A)×(B\B0)

)
= S1 + S2 + S3, say.

We shall bound from above as follows

PC0

(
max

k≥(1−δ1)n
max

l≥(1−δ1)m
max

C∈Cnm,kl

(
ξC\C0 − ξC0\C − a(nm− kl)

)
> 0
)

≤ PC0

(
max

k≥(1−δ1)n
max

l≥(1−δ1)m
max
A∈Cn,k

(
S1 − (1 − δ̃)a(n− k)

m+ l

2

)
> 0
)

+PC0

(
max

k≥(1−δ1)n
max

l≥(1−δ1)m
max
B∈Cm,l

(
S2 − (1 − δ̃)a(m− l)

n+ k

2

)
> 0
)

+PC0

(
max

k≥(1−δ1)n
max

l≥(1−δ1)m
max

C∈Cnm,kl

(
S3 − δ̃a(nm− kl)

)
> 0
)
,

where Cn,k is the set of n rows in 1, . . . , N having k values in common with A0 and similarly for Cm,l set of
m columns in 1, . . . ,M having l values in common with B0. Moreover, the previous sum can be bounded from
above by

∑
k≥(1−δ1)n

PC0

(
max
A∈Cn,k

S1 > (1 − δ̃)a(n− k)m(1 − δ1/2)
)

+
∑

l≥(1−δ1)m
PC0

(
max
B∈Cm,l

S2 > (1 − δ̃)a(m− l)n(1 − δ1/2)
)

+
∑

k≥(1−δ1)n

∑
l≥(1−δ1)m

PC0

(
max

C∈Cnm,kl

S3 > δ̃a(nm− kl)
)

=
∑

k≥(1−δ1)n

U1,k +
∑

l≥(1−δ1)m
U2,l +

∑
k≥(1−δ1)n

∑
l≥(1−δ1)m

U3,kl say,

Let us now deal with U1,kl. Note, first, that the case k = n gives probability 0. For (1 − δ1/2)n ≤ k ≤ n− 1,
we put pn,N =

√
log(N − n)/(

√
log(N − n) +

√
log(n)) and qn,N = 1 − pn,N ,

U1,k ≤ PC0

(
max
A∈Cn,k

ξ(A\A0)×B0 > (1 − δ)(1 − δ1/2)a(n− k)mpn,N

)
+PC0

(
max
A∈Cn,k

(−ξ(A0\A)×B0) > (1 − δ)(1 − δ1/2)a(n− k)mqn,N

)
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and, for some independent standard gaussian r.v. Z1 and Z2, using l ≥ (1 − δ1)m

U1,k ≤
(
N − n

n− k

)
P (Z1 > (1 − δ)(1 − δ1/2)pn,Na

√
(n− k)m)

+
(
n

k

)
P (Z2 > (1 − δ)(1 − δ1/2)qn,Na

√
(n− k)m)

≤ exp

⎛⎜⎝− (1 − δ̃)2

2
a2m(n− k) log(N − n)(√
log(N − n) +

√
log(n)

)2 + log
((

N − n

n− k

))⎞⎟⎠
+ exp

⎛⎜⎝− (1 − δ̃)2

2
a2m(n− k) log(n)(√

log(N − n) +
√

log(n)
)2 + log(Ckn)

⎞⎟⎠ ,

with 1 − δ̃ = (1 − δ)(1 − δ1/2). Note that log(
(
N−n
n−k

)
) ≤ (n − k) log(N − n)(1 + o(1)) and that log(Ckn) ≤

(n− k) log(n)(1 + o(1)). We obtain

U1,k ≤ exp

(
−(n− k) log(N − n)

(
(1 − δ̃)2

2
a2m

(
√

log(N − n) +
√

log(n))2
− (1 + o(1))

))

+ exp

(
−(n− k) log(n)

(
(1 − δ̃)2

2
a2m

(
√

log(N − n) +
√

log(n))2
− (1 + o(1))

))
.

We use (3.4), for small enough δ

(1 − δ̃)2a2m ≥ (1 + 2α2)2(
√

log(n) +
√

log(N − n))2,

for some α2 > 0 and this means

(1 − δ̃)2

2
a2m

(
√

log(N − n) +
√

log(n))2
− (1 + o(1)) ≥ 2α2 − o(1) ≥ α2.

Finally,

∑
(1−δ1)n≤k<n

U1,k ≤
∑

(1−δ1)n≤k<n
(e−α2 log(N−n)(n−k) + e−α2 log(n)(n−k))

≤
∑

1≤j≤δ1n

(
e−α2 log(N−n)j + e−α2 log(n)j

)
=
(
e−α2 log(N−n) + e−α2 log(n))(1 + o(1)

)
= o(1).

The term U2,l is similar.
As for the last term, U3,kl, we compare each sum in S3 to δ̃a(nm − kl)/4. The most difficult (the largest)

upper bound is for the first sum, as it gives the largest number of choices
(
N−n
n−k

)(
M−m
m−l

)
. Note that this term
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is 0 if k = n or l = m. Therefore, we only explain this term, for k ≤ n− 1 and l ≤ m− 1,

U31,kl = PC0

(
max

C∈Cnm,kl

ξ(A\A0)×(B\B0) >
δ̃

4
a(nm− kl)

)

≤
(
N − n

n− k

)(
M −m

m− l

)
exp

(
− (δ̃/4)2

2
a2(nm− kl)2

(n− k)(m− l)

)

≤ exp

(
− (δ̃/4)2a2(n(m− l)Pk,n + (n− k)mPl,m)2

2(n− k)(m− l)
+ (n− k) log(N − n) + (m− l) log(M −m)

)
,

where Pk,n = 1 − (n − k)/(2n) and Pl,m = 1 − (m − l)/(2m). Recall that n − k ≤ δ1n and that m− l ≤ δ1m.
We get

U31,kl ≤ exp

(
− (δ̃/4)2a2

2
(H + 2nmPk,nPl,m) + δ1(n log(N − n) +m log(M −m))

)
,

where

H =
n2

n− k
(m− l)P 2

k,n + (n− k)
m2

m− l
P 2
l,n ≥ 1

δ1

(
nP 2

k,n +mP 2
l,n

)
.

Recall that Pk,n ≥ 1 − δ1/2 and Pl,m ≥ 1 − δ1/2. We get for (δ̃/4)2 = δ1:

U31,kl ≤ exp
(
−a

2

2
(
nP 2

k,n +mP 2
l,n

)− δ1(a2nmPk,nPl,m − (n log(N − n) +m log(M −m))
)
,

with

a2nmPk,nPl,m ≥ (1 − δ1/2)2
(

1
2
a2nm+

1
2
a2nm

)
≥ (1 − δ1/2)2(1 + α) (n log(n(N − n)) +m log(m(M −m))) ,

by (3.4). By taking δ1 small enough, we may find δ2 > 0 such that (1 − δ1/2)2(1 + α) ≥ 1 + δ2. This is enough
to conclude that

a2nmPk,nPl,m − (n log(N − n) +m log(M −m)) > 0

and that

U31,kl ≤ exp
(
−a

2

2
(n+m)(1 − δ1/2)2

)
≤ exp

(−(1 − δ1/2)2(1 + α)(log(m(M −m)) + log(n(N − n)))
)

≤ exp (−(1 + δ2)(log(m(M −m)) + log(n(N − n)))) .

In conclusion,∑
(1−δ1)n≤k<n

∑
(1−δ1)m≤l<m

U31,kl ≤ exp (−(1 + δ2) log((M −m)(N − n)) − δ2 log(nm)) = o(1).

Here, we have proven that

PC0

(
max
k, l

max
kl≥(1−δ)nm

max
C∈Cnm,kl

(ξC\C0 − ξC0\C − a(nm− kl)) > 0
)

= o(1). (3.8)

From (3.8) and (3.7) we deduce that the probability PC0(Ĉ� �= C0) tends to 0 and this concludes the proof of
the upper bounds. �
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4. Lower bounds

Let (2.1) and (2.4). We shall call the case when B = A the case of severe sparsity, while the case where either
B = A1 or B = A2 will be designated by moderately sparse cases. Let us first consider a set Θ of matrices
having size N ×M and containing SC , for all C ∈ Cnm, such that [SC ]ij = a · I((i, j) ∈ C). This set is on the
border of Snm,a, as we replace [SC ]ij ≥ a with equality, for all (i, j) ∈ C. The set Θ has L =

(
N
n

) · (Mm) elements.
Let P0 denote the likelihood of N ×M standard gaussian observations and, as previously, PC the likelihood of
our observations under parameter SC . The minimax risk is bounded from below by the minimax risk over Θ:

inf
Ĉ

sup
SC∈Snm,a

PC(Ĉ(Y ) �= C) ≥ inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) �= C).

4.1. Severe sparsity

Proof of Theorem 2.3 for severely sparse case. In this case, we shall apply Theorem 2.4 in [31]: if there exists
τ > 0 and 0 < α < 1 such that

1
L

∑
SC∈Θ

PC

(
dP0

dPC
≥ τ

)
≥ 1 − α,

then
inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) �= C) ≥ τL

1 + τL
(1 − α).

In our model, the likelihood ratio is

dP0

dPC
= exp

(
−aYC +

a2nm

2

)
· (4.1)

This implies that

PC

(
dP0

dPC
≥ τ

)
= PC

(
−aYC +

a2nm

2
≥ log(τ)

)
= P0

(
− 1√

nm
ξC − a

√
nm

2
≥ log(τ)
a
√
nm

)
= P

(
Z ≥ log(τ)

a
√
nm

+
a
√
nm

2

)
,

where Z is standard gaussian. Let z1−α be the quantile of probability 1−α of a standard gaussian distribution,
such that P (Z ≥ −z1−α) = 1 − α. In order to check (4.1), we need log(τ) ≤ −a2nm/2 − z1−αa

√
nm.

On the one hand, if a
√
nm = O(1) we take τ as solution of the equation log(τ) = −a2nm/2 − z1−αa

√
nm.

Therefore, we have τ 
 1 and then

τL

1 + τL
(1 − α) ≥ (1 − α)2 > 0, as L→ ∞.

On the other hand, if a
√
nm → ∞, we take τ−1 = L/ log(L), with L =

(
N
n

)(
M
m

)
, which gives τL → ∞ and

log(τ−1) ∼ log(L). We can prove that

log(τ−1) ≥ a2nm

2
+ z1−αa

√
nm =

a2nm

2

(
1 +

2z1−α
a
√
nm

)
·

Indeed, we known that log(L) ∼ n log(p−1) +m log(q−1) and, by assumption (2.4),

a2nm

2(n log(p−1) +m log(q−1))
≤ 1 − δ,
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asymptotically, for some δ > 0. It implies that

a2nm

2 log(τ−1)
≤
(

1 +
2z1−α
a
√
nm

)−1

,

asymptotically. This gives the lower bound

τL

1 + τL
(1 − α) ≥ (1 − α)2 > 0.

As α > 0 can be chosen arbitrarly small, we obtain the result

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) �= C) → 1. �

4.2. Moderate sparsity

Lemma 4.1. If η1, . . . , ηJ are i.i.d. random variables with standard gaussian law, then

if t < 1, P ( max
j=1,...,J

ηj ≥ t
√

2 log(J)) → 1, as J → ∞,

and
if t > 1, P ( max

j=1,...,J
ηj ≥ t

√
2 log(J)) → 0, as J → ∞.

Proof. This Lemma is an obvious consequence of the limit behaviour of the normalized maximum of i.i.d.
Gaussian random variables as follows:

VJ := max
j=1,...,J

ηj
√

2 log(J) − 2 log(J) +
1
2

log(log(J)) +
1
4

log(4π) →d U,

where U has the Gumbel law with distribution function P (U ≤ x) = exp(− exp(−x)) for all real number x,
see [17]. Therefore, if t < 1,

P

(
max

j=1,...,J
ηj ≥ t

√
2 log(J)

)
= P

(
VJ ≥ (t− 1)2 log(J) +

1
2

log(log(J)) +
1
4

log(4π)
)
,

which tends to 1 when J → ∞. The other limit is obtained by a similar argument. �

Proof of Proposition 2.2. Let us assume that lim supA1 < 1 and treat the other case similarly This means that
A1 ≤ 1 − α, for some fixed 0 < α < 1. Equivalently, a

√
m ≤ (1 − α)(

√
2 log(n) +

√
2 log(N − n)).

In this case we shall reduce the set of matrices C to those matrices having the same columns as C0 and n− 1
rows in common with C0. Then we sum up each line over these columns and reduce the problem to the vector
case. Thus,

PC0(Ĉ
� �= C0) = PC0

(
max
C∈Cnm

YC − YC0 > 0
)

≥ PC0

(
max

C=A×B0
YC − YC0 > 0

)
≥ PC0

(
max
A

∑
A

Yi· −
∑
A0

Yi· > 0

)
,

where the maximum over A is taken over all sets of n rows having n− 1 rows in common with A0 and

Yi· :=
∑
j∈B0

Yij = amI(i ∈ A0) +
∑
j∈B0

ξij .
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Denote by ηi = m−1/2
∑
j∈B0

ξij for i = 1, . . . , N , which are i.i.d. random variables of standard gaussian law.
Therefore, we get

PC0(Ĉ
� �= C0) ≥ PC0(max

i�∈A0
ηi + max

k∈A0
(−(ηk + a

√
m)) > 0)

≥ PC0(max
i�∈A0

ηi + max
k∈A0

(−ηk) > (1 − α)(
√

2 log(N − n) +
√

2 log(n)))

= 1 − PC0(max
i�∈A0

ηi + max
k∈A0

(−ηk) ≤ (1 − α)(
√

2 log(N − n) +
√

2 log(n))),

by the assumption on A1. Moreover

PC0(max
i�∈A0

ηi + max
k∈A0

(−ηk) ≤ (1 − α)(
√

2 log(N − n) +
√

2 log(n)))

≤ PC0(max
i�∈A0

ηi ≤ (1 − α)
√

2 log(N − n)) + PC0(max
k∈A0

(−ηk) ≤ (1 − α)
√

2 log(n)),

which tends to 0, by Lemma 4.1. �

Proof of Theorem 2.3 for moderately sparse case. In this case we check that the minimax risk is bounded from
below by the risk of the maximum likelihood estimator Ĉ� and that its risk tends to 1 under our assumptions
by Proposition 2.2. Let us see that

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) �= C) ≥ inf
Ĉ

1
L

L∑
k=1

PCk
(Ĉ(Y ) �= Ck)

≥ inf
Ĉ

(
1 − 1

L

L∑
k=1

PCk
(Ĉ(Y ) = Ck)

)

≥ 1 − sup
Ĉ

1
L

L∑
k=1

E0

(
I(Ĉ(Y ) = Ck)

dPCk

dP0
(Y )
)
,

where L =
(
N
n

)(
M
m

)
is the number of elements in Θ. In the previous supremum, we may replace the arbitrary

measurable function Ĉ(Y ) by a test function ψ(Y ) taking values in 1, . . . , L. The test maximising

sup
ψ(Y )

1
L

L∑
k=1

E0

(
I(ψ(Y ) = k)

dPCk

dP0
(Y )
)

will choose k such that Ck has maximal likelihood: {Y : dPCk

dP0
(Y ) ≥ dPCj

dP0
(Y ), for all j = 1, . . . , L}. Thus, we

get the risk of a maximum likelihood estimator,

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) �= C) ≥ 1 − 1
L

L∑
k=1

PCk
(Ĉ�(Y ) = Ck)

≥ 1
L

L∑
k=1

PCk
(Ĉ�(Y ) �= Ck),

which tends to 1 by Proposition 2.2. �

Proof of Lemma 2.9. We want to prove that a2nmpq → 0. We write that

a2nmpq = a2 · n
2

N
· m

2

M
= a2N2u2−1M2v2−1 ≤ a2(max{N,M})2(u2+v2−1),

where we denote u2 = log(n)/ log(N) and v2 = log(m)/ log(M). Note that u2, v2 ∈ (0, 1).
Suppose now that N,M, n,m are large enough.



132 C. BUTUCEA ET AL.

As lim supA < 1 we have that

a2 < 2
(

log(N/n)
m

+
log(M/m)

n

)
(4.2)

and that gives

a2nmpq ≤ 2 · (max{N,M})2(u2+v2−1)

(
log(N/n)

m
+

log(M/m)
n

)
→ 0

as soon as lim sup(u2 + v2) < 1.
Let us further denote by X = log(N)/m and Y = log(M)/n. Then, (4.2) writes also

a2 < 2((1 − u2)X + (1 − v2)Y ). (4.3)

On the other hand, lim inf A1 > 1 implies that we can find δ1 > 0 such

a > (1 + 2δ1)

√
2 log(N)

m

(
u+

√
1 +

log(1 − n/N)
log(N)

)

> (1 + 2δ1)
√

2X
(
u+ 1 − 1

2 log(N)
n

N
(1 + o(1))

)
> (1 + δ1)

√
2X(u+ 1).

Similarly, we get from lim inf A2 > 1 that a > (1+ δ2)
√

2Y (v+1), for some δ2 > 0. Together with (4.3), we get,
for δ = max{δ1, δ2}

2((1 − u2)X + (1 − v2)Y ) > (1 + δ)2 max{X(u+ 1)2, Y (v + 1)2}.
Assume that X(u+ 1)2 ≥ Y (v + 1)2, then we write

(1 − v2)Y > X [(1 + δ)2u(u+ 1) + δ(1 − u2)] > (1 + δ)2u(u+ 1)X,

and therefore

(1 + δ)
2u(u+ 1)

1 − v2
<
Y

X
≤ (u+ 1)2

(v + 1)2
.

This further gives (1 +Δ)(u + v) < 1, where for any u > 0, v > 0 we have

Δ =
3uv + 2δu(v + 1)

u+ v
= δ +

uv(3 + 2δ) + δ(u− v)
u+ v

>
δ

2
> 0.

Similarly if X(u+1)2 < Y (v+1)2 we have (1+Δ1)(u+v) < 1, Δ1 > δ/2, which implies lim sup(u2+v2) < 1. �

5. Final comments

Future extensions of the problem of sharp asymptotics for selection include several open problems.
First, a natural question is how to proceed when the variance of our observations is not available. Model (1.1)

becomes Yij = sij + σ ξij , i = 1, . . . , N, j = 1, . . . ,M, for σ > 0 unknown. Following [9], we suggest to use the
estimator

σ̂2 =
1

NM

∑
(i,j)∈C

Y 2
ij

of σ2, which has bias and variance given by

Eσ̂2 − σ2 = σ2Gσ, V ar(σ̂2) =
2σ4

NM
(1 + 2Gσ), where Gσ =

1
σ2NM

∑
(i,j)∈C

s2ij .
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The same selection procedure should be employed with Yij replaced by Yij/σ̂. We conjecture that, under some
conditions on Gσ, all results should hold when we replace a by a/

√
σ in the Definition 2.2 of A, A1 and A2.

Next, let us consider two-sided variable selection problem, i.e. finding C0 where the mean |sij | ≥ a, for
(i, j) ∈ C0. A natural modification of the method is to use in this case the selecting procedure

C̃�(Y ) = arg max
C∈Cnm

TC , where TC =
1

2nm

∑
(i,j)∈C

(Y 2
ij − 1).

We expect similar results to hold if we replace a by a2 in A, A1 and A2 given by (2.2).
Other extensions include considering non Gaussian observations, but having distribution in the exponential

family of distributions as well as the interesting case when the submatrix is supposed to be a block (adjacent
rows and columns). In the latter case, we expect the selection procedure to be fast and quite easy to implement.

Acknowledgements. The authors want to thank the anonymous referees who helped improve significantly the presentation
of the manuscript.
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[7] K. Bertin and G. Lecué, Selection of variables and dimension reduction in high-dimensional non-parametric regression. Electron.
J. Stat. 2 (2008) 1224–1241.

[8] P.J. Bickel, Y. Ritov and A.B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37 (2009)
1705–1732.

[9] C. Butucea and Yu.I. Ingster, Detection of a sparse submatrix of a high-dimensional noisy matrix. Bernoulli 19 (2013)
2652–2688.

[10] C. Butucea and G. Gayraud, Sharp detection of smooth signals in a high-dimensional sparse matrix with indirect observations.
Preprint arxiv:1301.4660 (2013).

[11] T. Cai, J. Jin and M. Low, Estimation and confidence sets for sparse normal mixtures. Ann. Statist. 35 (2007) 2421–2449.

[12] E.J. Candès and Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random
measurements. IEEE Trans. Inform. Theory. 57 (2011) 2342–2359

[13] E.J. Candès and B. Recht, Exact matrix completion via convex optimization. Found. Comput. Math. 9 (2009) 717–772.

[14] L. Comminges and A.S. Dalalyan, Tight conditions for consistency of variable selection in the context of high dimensionality.
Ann. Statist. 40 (2012) 2359–2763.

[15] D.L. Donoho and J. Jin, Higher criticism for detecting sparse heterogeneous mixtures. Ann. Statist. 32 (2004) 962–994.

[16] D.L. Donoho, I.M. Johnstone, C. Hoch and A. Stern, Maximum entropy and the nearly black object. With Discussion. J. Roy.
Statist. Soc., Ser. B. 54 (1992) 4181.
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