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SMALL STOCHASTIC PERTURBATIONS IN A GENERAL FRACTIONAL
KINETIC EQUATION ∗

David Márquez-Carreras
1

Abstract. In this paper we study some properties of the density for the law of the solution to a
generalized multidimensional fractional kinetic equation driven by a Gaussian noise, white in time and
correlated in space. The diffusion operator is the composition between the Bessel and Riesz potentials
with any fractional parameters. We also establish Varadhan’s estimates for the solution to the equation
obtained by perturbing the noise.
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1. Introduction

We deal with the following kind of stochastic partial differential equations

∂tu
ε(t, x) + (I −Δ)

α
2 (−Δ)

β
2 uε(t, x) = ε θ(uε(t, x))Ẇ (t, x), ε > 0, (1.1)

where t ∈ IR+, x ∈ IRd, d ∈ N, α ≥ 0 and β > 0. Initially we assume that θ : IR → IR is a Lipschitz continuous
function and the process Ẇ is a Gaussian noise, white in time and correlated in space. We will specify later the
required conditions on the function θ and the process Ẇ . The initial conditions are null for the sake of simplicity.
Moreover, I and Δ are the identity and Laplacian operators on IRd, respectively. Then, the integral operators
(−Δ)β/2 and (I−Δ)α/2 have to interpreted as the inverse of the Riesz and Bessel potentials, respectively. These
types of operators are widely studied in Samko et al. [35], Stein [37] and Angulo et al. [3].

This kind of generalized fractional kinetic equation was introduced to model some physical phenomena such as
diffusion in porous media with fractal geometry, kinematics in viscoelastic media, relaxation processes in complex
systems, propagation of seismic waves, anomalous diffusion, turbulence, neurophysiology, ecology, hydrology,
image analysis, air pollution, economics and finance, etc. For more information and details on these modelings
we refer the reader to Anh and Leonenko [4] and Angulo et al. [2] and the references therein. Moreover, this
sort of stochastic partial differential equations is a generalization of a lot of classical and well-known equations
as, for exemple, the stochastic heat equation or higher-order parabolic equations.

Keywords and phrases. Stochastic fractional kinetic and heat equation, Bessel and Riesz potentials, small perturbations, density
estimates, Malliavin calculus.
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Recently, several authors have studied this kind of stochastic equations and similar others from a mathematical
point of view. In Angulo et al. [2] the authors have linked this type of equation to the Eulerian theory of
turbulent dispersion. Indeed, the concentration field u(t, x) is commonly assumed to satisfy the advection-
diffussion equation

∂tu+ ∇·(vu) = κΔu, t ∈ IR+, x ∈ IRd,

where ∇ is the gradient vector, v(t, x) is the velocity vector field and κ is the molecular diffusivity. The as-
sumptions of this model are equivalent to supposing that the particle trajectories x(t) satisfy the Itô stochastic
differential equation

ds = u(t, x)dt+ (2κ)
1
2 dB,

where the components of dB are the increments of independent Brownian motions. The long-range dependence
is a basic issue in modelling observed data in a large number of fields given just before. An important example is
the fractional Brownian motion with Hurst index H ∈ (1

2 , 1) (see, for instance, Mandelbrot and Van Ness [23]).
Anh and Leonenko [5] have studied (1.1) with θ = 0 and a measurable random field as an initial condition.

They have presented a renormalization and homogenization theory for this sort of equation. In [34], an expo-
nential function of the fractional Riesz–Bessel motion was considered as the initial condition. We also mention
the papers [2, 4] where the authors deal with a more general type of operators:

∂η

∂tη
+ μ

[
(I −Δ)

α
2 (−Δ)

β
2

]
, μ > 0, η ∈ (0, 1], α ≥ 0, β > 0.

If the reader is interested in this subject we give a long list of references about it: [1–5,7–9,13,16,19–22,25,29].
Using the ideas giving by Dalang and Frangos ([10,11]), we will understand a solution of (1.1) to be a jointly

measurable adapted process satisfying the integral form

uε(t, x) = ε

∫ t

0

∫
IRd

Kt−s(x− y) θ(uε(s, y)) W (ds, dy), (1.2)

where K is the fundamental solution of (1.1), this means that it is the solution of

∂tKt(x) + (I −Δ)α/2 (−Δ)β/2Kt(x) = 0,

and {Wt(A), t ∈ IR+, A ∈ Bb(IRd)} is a worthy martingale measure builded from the initial Gaussian process.
Bb(IRd) are the bounded Borel subsets of IRd. This solution (1.2) is proved assuming a square-integrability
condition on the Fourier transform of the fundamental solution K. All these aspects will be given in more detail
in the following section. There are many papers related to this formulation, as for example [10, 11, 26, 30, 33],
etc.

In Márquez-Carreras [25], assuming some more general hypothesis on θ, we have proved that the law of uε(t, x)
is absolutely continuous with respect to Lebesgue’s measure on IR and its density is infinitely differentiable.
Denote by pε

t,x(t, x) the density for the law of the process uε(t, x), solution to (1.1). In this paper we will show
that this density is Hölder continuous in time and in space. More specifically, following the ideas giving in [27],
we will check that the density satisfies:

|pε(t, x) − pε(s, x)| ≤ C|t− s|σ1 ,

|pε(t, x) − pε(t, z)| ≤ C|x− z|σ2 ,

for t, s > 0, x, z ∈ IRd and some σ1 > 0 and some σ2 > 0.
On the other hand, as ε converges to zero, the solution to (1.2) also tends to zero. So, we should expect the

density pε
t,x(t, x) to converge to a degenerate density. In this paper we will study the rate of this convergence.

In particular, we will deal with the behavior of

lim
ε↓0

ε2 log pε
t,x(t, x). (1.3)
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We will use the formulation of the papers of Ben Arous, Leandre and Russo and summarized by Nualart [31]
for general Wiener functionals.

All these results can also be obtained if we consider the following more general kind of stochastic partial
differential equations

∂tu
ε(t, x) + (I −Δ)

α
2 (−Δ)

β
2 uε(t, x) = ε θ1(uε(t, x))Ẇ (t, x) + θ2(uε(t, x)), ε > 0,

with θ1, θ2 : IR → IR. In this paper we have dealt with (1.1) for the sake of simplicity.
The paper is organized as follows. In Section 2 we will introduce the Gaussian noise and describe what we

mean by a solution of (1.1). We will also present the statements of the theorems that will be proved in this paper
and some results related to the calculus of this work. In Section 3 we will establish the Hölder continuity in time
and in space for the density of the law of the solution. Finally, Section 4 is devoted to prove the behavior (1.3).
As usually, all constants will be denoted by C, independently of its value.

2. The framework

Let D(IRd+1) be the space of Schwartz test functions (see, for instance, Schwartz [36] for more information).
Then, the noise W =

{
W (φ), φ ∈ D(IRd+1)

}
is an L2(Ω,F , P )- valued centered Gaussian process on some

probability space (Ω,F , P ), with covariance functional

J(φ, ψ) =
∫

IR+

ds
∫

IRd

Γ (ds)
[
φ(s, •) ∗ ψ̃(s, •)

]
(x),

where ψ̃(s, x) = ψ(s,−x) and Γ is a non-negative and non-negative definite tempered measure, therefore
symmetric. If we denote by μ the spectral measure of Γ , then,

J(φ, ψ) =
∫

IR+

ds
∫

IRd

μ(dξ)Fφ(s, •)(ξ)Fψ(s, •)(ξ),

where F denotes the Fourier transform and z̄ is the complex conjugate of z. Since the spectral measure μ is a
non-trivial and non-negative tempered measure, we can ensure that there exist positive constants c1, c2, k such
that

c1 <

∫
{|ξ|≤k}

μ(dξ) < c2. (2.1)

For more details on this topic, the reader is referred, for example, to the paper [7].
The Gaussian process W can be extended to a worthy martingale measure, in the sense given by Walsh [38],

W = {Wt(A), t ∈ IR+, A ∈ Bb(IRd)}, where we use the same notation by the Gaussian process and its
extended worthy martingale measure. In Dalang and Frangos [10] and Dalang [11], they presented an extension
of Walsh’s stochastic integral that requires the following integrability condition in terms of the Fourier transform
of Γ and K: ∫ T

0

dt
∫

IRd

μ(dξ) |FKt(•)(ξ)|2 <∞, (2.2)

where K is the fundamental solution of (1.1). Provided that (2.2) is satisfied and assuming that θ is a Lipschitz
function, we can prove that (1.2) has a solution in the sense given then and where the stochastic integral in (1.2)
is defined with respect to the Ft-martingale measure Wt.

On the other hand, following the ideas given in [4] or [12], the equation satisfied by the fundamental solution
of (1.1) is equivalent to

∂tFKt(•)(ξ) + |ξ|α (1 + |ξ|2) β
2 FKt(•)(ξ) = 0,
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which has a unique solution given by

FKt(•)(ξ) = exp
{
−t|ξ|α (1 + |ξ|2)β

2

}
.

So, this fundamental solution can be written as

Kt(x) =
1

(2π)n

∫
IRd

ei〈x, ξ〉 exp
{
−t|ξ|α (1 + |ξ|2)β

2

}
dξ.

In Márquez-Carreras [25], we have proved that the hypothesis on the spectral measure μ∫
IRd

μ(dξ)

(1 + |ξ|2)α+β
2

<∞ (2.3)

implies that (2.2) is satisfied. Moreover, assuming also (2.3) and that θ is globally Lipschitz, we can prove
that (1.2) has a unique adapted solution and, for any T > 0 and p ∈ [1,+∞),

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×IRd

E (|uε(t, x)|p) <∞,

and this unique solution is mean-square continuous.
The following theorem we will be the first important result of this paper. It will be proved in the next section.

Theorem 2.1. Suppose that the coefficient satisfies:

(H1) The function θ is C∞ with bounded derivatives of any order.
(H2) There exists θ0 > 0 such that |θ(z)| > θ0 for any z ∈ IR.

Assume also that the spectral mesure μ associated to W satisfies∫
IRd

μ(dξ)

(1 + |ξ|2) q(α+β)
2

<∞, (2.4)

for some q ∈ (0, 1
2

)
. Then, the law of u(t, x), solution to (1.2) for ε = 1, is absolutely continuous with respecte

to Lebesgue’s measure on IR and its density pt,x(t, x) is infinitely differentiable. Moreover, for every s, t ∈ [0, T ],
T > 0, x, z ∈ IRd, ρ1 ∈ (0, 1−q

2 ) and ρ2 ∈ (0, 1 − q), we have that

|pt,x(y) − ps,x(y)| ≤ C |t− s|ρ1 , (2.5)

|pt,x(y) − pt,z(y)| ≤
{
C |z − x|ρ2 , if α+ β ≥ 2,

C |z − x|
ρ2(α+β)

2 , if α+ β < 2.
(2.6)

Remark 2.2. In the stochastic heat equation, a more particular case, the authors considered the same assump-
tions on the coefficients, (H1) and (H2).

Let E be the space of measurables functions φ : IRd → IRd such that∫
IRd

Γ (ds)
[
φ(•) ∗ ψ̃(•)

]
(x) <∞.

This space E is endowed with a natural inner product 〈φ, ψ〉E . Let H be the completation of E and HT =
L2([0, T ],H). HT is a real separable Hilbert space such that, if φ, ψ ∈ D([0, T ]× IRd),

E [W (φ)W (ψ)] = 〈φ, ψ〉HT .
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For x = (x1, . . . , xn) ∈ IRd and a ∈ IR, we denote by R(x) the minimum rectangle containing 0 and x and
by sgn(a) the sign of a. The space H will be the set of functions h̄ such that, for any (t, x) ∈ IR+ × IRd and
h ∈ HT , we have that

h̄(t, x) = sgn(x1 × · · · × xn)〈 l1 [0,T ]×R(x), h〉HT ,

with the scalar product 〈h̄, k̄〉H = 〈h, k〉HT . H is a Hilbert space isomorphic to HT .
For any h̄ ∈ H , we consider the deterministic evolution equation

Ψ h̄(t, x) = 〈Kt−·(x− •) θ(Ψ h̄(·, •)), h〉HT , ∀ (t, x) ∈ IR+ × IRd.

Finally, we will be able to state the second main result that will be proved in Section 4.

Theorem 2.3. Assume the hypothesis on the coefficient (H1) and (H2) and the assumption on the spectral
measure (2.4) for some q ∈ (0, 1

2

)
. Then, the density of the law of uε(t, x) has the following behavior

lim
ε↓0

ε2 log pε
t,x(t, x) = −d2

t (x, y),

with

d2
t (x, y) = inf

{
1
2
||h̄||2H , Ψ h̄(t, x) = y

}
.

3. The existence of a smooth density

The main but of this section is to prove Theorem 2.1. We first introduce some notations and quote notions
that will be used throughout this section and the paper.

The centered Gaussian noise W can be identified with a Gaussian process {B(h), h ∈ HT } as follows. Let
{ej ; j ≥ 0} ⊂ E be a CONS of the Hilbert space H, then

Bj(t) =
∫ t

0

∫
IRd

ej(x)W (ds, dx), j ∈ N, t ∈ [0, T ],

is a sequence of independent standard Brownion motions such that

W (φ) =
∞∑

j=0

∫ T

0

〈φ(s, •), ej(•)〉HdBj(s), φ ∈ D([0, T ]× IRd).

For h ∈ HT , we set

B(h) =
∞∑

j=0

∫ T

0

〈h(s), ej〉HdBj(s).

Then, we can use the framework of the Malliavin calculus developed in Nualart [31] (see also Nualart [32]). The
Sobolev spaces D

l,p are defined by means of iterations of the derivative operator D. For a random variable X ,
DlX defines a H⊗l

T -valued random variable if it exists. For h ∈ HT , set DhX = 〈DX,h〉HT and for r ∈ [0, T ],
DrX defines an element of H, which is denoted by Dr,•X . Then, for any h ∈ HT ,

DhX =
∫ T

0

〈Dr,•X,h(r)〉Hdr.

We write Dr,φX = 〈Dr,•X,φ〉H for φ ∈ H.
It is no difficult to prove the following result.
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Proposition 3.1. Assume (H1) and (2.3). Then, for any t ≥ 0, x ∈ IRd, ε > 0, we have that the solution
uε(t, x) to (1.2) belongs to ID∞ = ∩p≥1 ∩l≥1 IDl,p(IR). Moreover, for any l ≥ 1, p ∈ [1,∞)

sup
ε∈(0,1]

‖uε(t, x)‖l,p <∞. (3.1)

Proof. See Theorem 2.1 in [26]. �

Moreover, the derivative satisfies, for any φ ∈ H.

Dr,φu
ε(t, x) = ε〈Kt−r(x − •) θ(uε(r, •), φ〉H

+ε
∫ t

r

∫
IRd

Kt−s(x− y) Dr,φu
ε(s, y) θ′(uε(s, y)) W (ds, dy),

if r ∈ [0, t], and Dr,φu
ε(t, x) = 0 if r > t.

To deal with the greater order Malliavin derivatives we would borrow the notations of Millet and Sanz-
Solé [30].

We will need the following lemma proved by induction (see, for instance, [24]). It follows from the duality
between the Malliavin derivative and the Skorohod integral operator δ.

Lemma 3.2. Let X,Z ∈ ID∞ satisfying 〈DZ,DZ〉−1
HT

∈ ∩p≥1L
p(Ω). Define H0(X,Z) = X and

Hn+1(X,Z) = δ

(
Hn(X,Z),

DZ

〈DZ,DZ〉HT

)
, n ≥ 0.

Then, for any integers n, l ≥ 1 and p ∈ [1,∞),

||Hn(X,Z)||l,p ≤ C||X ||l+n,4np,

where C is a constant depending on the following norms:

||Z||l+2,4np and E
[〈DZ,DZ〉−1

HT

]l(n)
with l(n) ∈ IN.

We now have all the requirements to prove Theorem 2.1.

Proof of Theorem 2.1. In Theorem 4.1 of Márquez-Carreras [25] we established that the law of u(t, x) is absolutely
continuous with respect to Lebesgue’s measure on IR and its density is infinitely differentiable.

Now we prove the second result. Let f be a smooth real function. Denote by F its primitive. We next check,
for any τ > 0 such that t, t+ τ ∈ [0, T ], and x, η ∈ IRd,

|E [f(u(t+ τ, x)) − f(u(t, x))]| ≤ C||F ||∞|τ |ρ1 , (3.2)

|E [f(u(t, x+ η)) − f(u(t, x))]| ≤
{
C||F ||∞|η|ρ2 , , if α+ β ≥ 2,

C||F ||∞|η| ρ2(α+β)
2 , if α+ β < 2.

(3.3)

The case τ < 0 is analogous. We first show (3.2). Consider the Taylor expansion up to second order

E [f(u(t+ τ, x)) − f(u(t, x))] = Mt,x(τ) +Nt,x(τ),

with

Mt,x(τ) = E [f ′(u(t, x))(u(t+ τ, x) − u(t, x))] ,

Nt,x(τ) = E
[
(u(t+ τ, x) − u(t, x))2

∫ 1

0

(1 − λ)f ′′(Λt,x(τ, λ))dλ
]
,
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and
Λt,x(τ, λ) = u(t, x) + λ(u(t+ τ, x) − u(t, x)).

We can decompose M into two terms as follows:

Mt,x(τ) = M1
t,x(τ) +M2

t,x(τ),

with

M1
t,x(τ) = E

[
f ′(u(t, x))

∫ t

0

∫
IRd

(Kt+τ−s(x − y) −Kt−s(x− y)) θ(u(s, y))W (ds, dy)
]
,

M2
t,x(τ) = E

[
f ′(u(t, x))

∫ t+τ

t

∫
IRd

Kt+τ−s(x − y)θ(u(s, y))W (ds, dy)
]
.

Let

M̃1
t,x(τ) =

∫ t

0

∫
IRd

(Kt+τ−s(x− y) −Kt−s(x− y)) θ(u(s, y))W (ds, dy).

Applying repeatedly the integration by parts formula and Lemma 3.2 we obtain∣∣M1
t,x(τ)

∣∣ =
∣∣∣E [F (u(t, x))H2

(
M̃1

t,x(τ), u(t, x)
)]∣∣∣

≤ ||F ||∞E
[∣∣∣H2

(
M̃1

t,x(τ), u(t, x)
)∣∣∣]

≤ C||F ||∞
∥∥∥M̃1

t,x(τ)
∥∥∥

2,16

= C||F ||∞
(

E
[∣∣∣M̃1

t,x(τ)
∣∣∣16]+

2∑
i=1

E
[∥∥∥DiM̃1

t,x(τ)
∥∥∥16

H⊗i
T

]) 1
16

.

First, Burkholder’s inequality, the assumption on θ and relation between Γ and μ imply that

E
[∣∣∣M̃1

t,x(τ)
∣∣∣16] ≤

[∫ t

0

∫
IRd

μ(dξ) (FKt+τ−s(•)(ξ) −FKt−s(•)(ξ))2
]8

= M1,1
t,x (τ) +M1,2

t,x (τ), (3.4)

with

M1,1
t,x (τ) =

[∫ t

0

∫
{|ξ|<k}

μ(dξ)e−2(t−s)|ξ|α(1+|ξ|2) β
2

(
1 − e−τ |ξ|α(1+|ξ|2) β

2

)2
]8

,

M1,2
t,x (τ) =

[∫ t

0

ds
∫
{|ξ|≥k}

μ(dξ) e−2(t−s)|ξ|α(1+|ξ|2) β
2

(
1 − e−τ |ξ|α(1+|ξ|2) β

2

)2
]8

.

Let ρ1 ∈ (0, (1 − q)/2). Fubini’s theorem, the facts that 1 − e−x ≤ 1 and 1 − e−x ≤ x, ∀x > 0, and the
estimate (2.4) yield that

M1,2
t,x (τ) ≤ C

⎡
⎣∫

{|ξ|≥k}

1 − exp
{
−2τ |ξ|α(1 + |ξ|2)β

2

}
|ξ|α(1 + |ξ|2)β

2

μ(dξ)

⎤
⎦

8

≤ C

⎡
⎢⎣∫

{|ξ|≥k}

[
1 − exp

{
−2τ |ξ|α(1 + |ξ|2)β

2

}]2ρ1

|ξ|α(1 + |ξ|2)β
2

μ(dξ)

⎤
⎥⎦

8

≤ C|τ |16ρ1

[∫
{|ξ|≥k}

μ(dξ)

(1 + |ξ|2) (1−2ρ1)(α+β)
2

]8

≤ C|τ |16ρ1 .
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By means of (2.1) we can easily get the following bound:

M1,1
t,x (τ) ≤ C|τ |p.

We also have to study the first and the second Malliavin derivatives of M̃1
t,x(τ). We deal with the first one

E
[∥∥∥DM̃1

t,x(τ)
∥∥∥16

HT

]
≤ C

(
E
[
‖(Kt+τ−·(x− •) −Kt−·(x− •)) θ(u(·, •))‖16

HT

]
+E

[∥∥∥∥
∫ t

0

∫
IRd

(Kt+τ−s(x− y) −Kt−s(x− y)) θ′(u(s, y))Du(s, y)W (ds, dy)
∥∥∥∥

16

HT

])
.

(3.5)

The first term of the right side of inequality is bounded as in (3.4). In order to study the second one we have
to take into account that, for any γ ∈ [0, t],

Zγ =
∫ γ

0

∫
IRd

(Kt+τ−s(x − y) −Kt−s(x− y)) θ′(u(s, y))Du(s, y)W (ds, dy)

is a continuous HT -valued Fγ-martingale and that one can check that

〈Z〉γ =
∑
j≥0

∥∥ l1[0,γ] (Kt+τ−·(x − •) −Kt−·(x− •)) θ′(u(·, •))Deju(·, •)∥∥2

HT

is the unique predictable increasing process such that 〈Z〉0 = 0 and ‖Zγ‖2
HT

− 〈Z〉γ is a real Fγ-martingale
and {ej, j ≥ 0} is a CONS of the Hilbert space H. Then, Burkholder’s inequality for a HT -valued martingale,
Parseval’s identity and Schwartz’s inequality applied to the scalar product in HT yield that the second term in
the right side of (3.5) is bounded by

CE

∣∣∣∣∣∑
j≥0

∫ t

0

ds
∫

IRd

Γ (dy)
∫

IRd

dy′ [Kt+τ−s(x− y + y′) −Kt−s(x − y + y′)] θ′(u(s, y − y′))

×Deju(s, y − y′) [Kt+τ−s(x+ y′) −Kt−s(x+ y′)] θ′(u(s, y′))Deju(s, y′)

∣∣∣∣∣
8

≤ CE

∣∣∣∣∣
∫ t

0

ds
∫

IRd

Γ (dy)
∫

IRd

dy′ [Kt+τ−s(x− y + y′) −Kt−s(x− y + y′)] θ′(u(s, y − y′))

×〈Du(s, y − y′), Du(s, y′)〉HT [Kt+τ−s(x+ y′) −Kt−s(x+ y′)] θ′(u(s, y′))

∣∣∣∣∣
8

.

Now, Hölder’s inequality, the bounded condition on θ′ and an argument similar to (3.4) give the desired result.
Not very different calculus allow to work with the second Malliavin derivative of M̃1

t,x(τ). It would finish the
study of M1

t,x(τ).
We now analize M2

t,x(τ). The variable f ′(u(t, x)) is Ft-measurable and∫ γ

0

∫
IRd

Kt+τ−s(x− y)θ(u(s, y))W (ds, dy)

is an L2-bounded Fγ-martingale. Then, by independence it is clear that M2
t,x(τ) = 0. It concludes the study

of M .
In order to prove (3.2) it only remains to deal with N . By means of Lemma 3.2 we have that

|Nt,x(τ)| ≤ C ‖F‖∞
∥∥(u(t+ τ, x) − u(t, x))2

∥∥
3,64

.
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It is not difficult to check that ∥∥(u(t+ τ, x) − u(t, x))2
∥∥

n,p
≤ C|τ |ρ1 .

The case n = 0 is as in Proposition 4.1 of [25]. For n ≥ 1, this inequality can be proved as before taking into
account that u(t, x) ∈ ID∞ for any (t, x) ∈ [0, T ]× IRd and that the difference in the last norm is to square.

So, we have that
|E [f(u(t+ τ, x)) − f(u(t, x))]| ≤ C||F ||∞|τ |ρ1 .

Fix y ∈ IR and consider the Dirac delta function δ{y}. Let {fn, n ≥ 1} be a sequence of smooth functions
converging to δ{y}. By passing to the limit the term of the left side in the last inequality for n → ∞, we
obtain (2.5) in Theorem 2.1.

The proof of the Hölder continuity with respect to the space is analogous. We will only give some important
steps of this proof. First of all, the Taylor expansion up to second order implies that

E [f(u(t, x+ η)) − f(u(t, x))] = Ot,x(η) + Rt,x(η),

with
Ot,x(η) = E [f ′(u(t, x))(u(t, x + η) − u(t, x))] ,

and Rt,x(η) defined in a similar way to the previous case Nt,x(τ).
So, by integration by parts formula we have

Ot,x(η) = E
[
f ′(u(t, x))Õt,x(η)

]
= E

[
F (u(t, x))H2(Õt,x(η), u(t, x))

]
,

with

Õt,x(η) =
∫ t

0

∫
IRd

[Kt−s(x+ η − y) −Kt−s(x− y)] θ(u(s, y))W (ds, dy).

Then, Lemma 3.2 ensures that

|Ot,x(η)| ≤ C ‖F‖∞
∥∥∥Õt,x(η)

∥∥∥
2,16

.

We bound the expectation of Õt,x(η) in order to ilustrate the reader as we deal with this case. Burkholder’s
inequality yields

E

[∣∣∣∣
∫ t

0

∫
IRd

[Kt−s(x + η − y) −Kt−s(x− y)] θ(u(s, y))W (ds, dy)
∣∣∣∣
16
]

≤ C

[∫ t

0

ds
∫

IRd

μ(dξ) |FKt−s(x+ η − •)(ξ) −FKt−s(x− •)(ξ)|2
]8

≤ C
[
O1

t,x(η) +O2
t,x(η)

]
,

with

O1
t,x(η) =

[∫ t

0

ds
∫
{|ξ|≤k}

μ(dξ) |FKt−s(x+ η − •)(ξ) −FKt−s(x− •)(ξ)|2
]8

,

O2
t,x(η) =

[∫ t

0

ds
∫
{|ξ|>k}

μ(dξ) |FKt−s(x+ η − •)(ξ) −FKt−s(x− •)(ξ)|2
]8

.
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It is easy to deal with O1
t,x(η). The bound will not depend on the value of α and β. The fact that the Fourier

transform of K is bounded by 1, the mean value theorem and the property (2.1) imply that

O1
t,x(η) =

[∫ t

0

ds
∫
{|ξ|≤k}

μ(dξ)
∣∣∣e−i〈x+η,ξ〉 − e−i〈x,ξ〉

∣∣∣2 |FKt−s(•)(ξ)|2
]8

≤ C

[∫ t

0

ds
∫
{|ξ|≤k}

μ(dξ) |〈η, ξ〉|2
]8

≤ C |η|16 .

We analyze the other term. Recall that ρ2 ∈ (0, 1 − q). Here we will distinguish two cases depending on the
value of α and β. We first consider the case α + β ≥ 2. Using the mean value theorem, Fubini’s theorem, the
fact that 1 − e−x ≤ 1 for all x > 0, and (2.4), we obtain

O2
t,x(η) = 4

[∫ t

0

ds
∫
{|ξ|>k}

μ(dξ)
∣∣∣∣e−i〈x+η,ξ〉 − e−i〈x,ξ〉

2

∣∣∣∣
2

|FKt−s(•)(ξ)|2
]8

≤ 4

[∫ t

0

ds
∫
{|ξ|>k}

μ(dξ)
∣∣∣∣e−i〈x+η,ξ〉 − e−i〈x,ξ〉

2

∣∣∣∣
2ρ2

|FKt−s(•)(ξ)|2
]8

≤ C

[∫ t

0

ds
∫
{|ξ|>k}

μ(dξ) |η|2ρ2 |ξ|2ρ2 exp
{
−2(t− s)|ξ|α(1 + |ξ|2)β

2

}]8

≤ C|η|16ρ2

[∫
{|ξ|>k}

μ(dξ)
|ξ|2ρ2

|ξ|α(1 + |ξ|2)β
2

]8

≤ C|η|16ρ2

[∫
{|ξ|>k}

μ(dξ)
1

(1 + |ξ|2) (1−ρ2)(α+β)
2

]8

≤ C|η|16ρ2 .

The case α+ β < 2 is bounded in a similar way as follows:

O2
t,x(η) ≤ 4

[∫ t

0

ds
∫
{|ξ|>k}

μ(dξ)
∣∣∣∣e−i〈x+η,ξ〉 − e−i〈x,ξ〉

2

∣∣∣∣
ρ2(α+β)

|FKt−s(•)(ξ)|2
]8

≤ C|η|8ρ2(α+β)

[∫
{|ξ|>k}

μ(dξ)
|ξ|ρ2(α+β)

|ξ|α(1 + |ξ|2)β
2

]8

≤ C|η|8ρ2(α+β)

[∫
{|ξ|>k}

μ(dξ)
1

(1 + |ξ|2) (1−ρ2)(α+β)
2

]8

≤ C|η|8ρ2(α+β).

The other bounds of Õt,x(η) (the first and second Malliavin derivatives) and the study of Rt,x(η) can be obtained
following similar steps to the Hölder continuity with respect to the time. It would imply (3.3). Then, using the
same argument as before, we would obtain (2.6), concluding the Proof of Theorem 2.1. �



SMALL STOCHASTIC PERTURBATIONS IN A GENERAL FRACTIONAL KINETIC EQUATION 91

4. The study of small perturbations

The purpose of this section is to prove Theorem 2.3. In order to obtain it we will use the formulation of
the method presented by Ben Arous, Leandre and Russo and summarized by Nualart [31] for general Wiener
functionals.

We will need the following ingredients. A random vector X : Ω → IRd is said to be non-degenerate if X ∈ ID∞

and the Malliavin derivative γX = 〈DX,DX〉 satisfies that det γ−1
X ∈ ∩p≥1L

p(Ω).

Proposition 4.1 (Prop. 4.4.2 of [31]). Let {Xε, ε ∈ (0, 1]} be a family of non-degenerate random variables
satisfying

(i) sup
ε∈(0,1]

‖Xε‖l,p <∞, for each integer l ≥ 1, p ∈ [1,∞).

(ii) For any p ∈ [1,∞), there exists N(p) ∈ [1,∞) such that ‖γ−1
Xε‖p ≤ ε−N(p).

(iii) {Xε, ε ∈ (0, 1]} obeys a large deviation principle on IR with rate function L(y), y ∈ IR.

Then, if pε denotes the density of Xε,

lim sup
ε↓0

ε2 log pε(y) ≤ −L(y).

Proposition 4.2 (Prop. 4.4.1 of [31]). Let {Xε, ε ∈ (0, 1]} be a family of non-degenerate random variables. Let
Λ ∈ C1(H ; IR) such that for each h̄ ∈ H

lim
ε↓0

Xε(ω + h̄
ε ) − Λ(h̄)
ε

= Z(h̄),

in the topology D
∞, where Z(h̄), is a random variable belonging to the first Wiener Chaos with variance γΛ(h̄)

(γΛ the deterministic Malliavin matrix). Define

d2
R(y) = inf

{
‖h̄‖2

H , Λ(h̄) = y, γΛ(h̄) > 0
}
.

Then, if pε denotes the density of Xε,

lim inf
ε↓0

2ε2 log pε(y) ≥ −d2
R(y).

In next lemmas we will prove all the assumptions of these two propositions for the solution of our stochastic
partial differential equation.

Lemma 4.3. Assume (H1) and (2.3). For any integer l ≥ 0 and p ∈ [1,+∞), we have that

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×IRd

‖uε(t, x)‖l,p <∞. (4.1)

Proof. The case l = 0 can be proved by the standard argument based on Picard’s iterations:

uε
0(t, x) = 0,

uε
n(t, x) = ε

∫ t

0

∫
IRd

Kt−s(x− y) θ(uε
n−1(s, y)) W (ds, dy), n ≥ 1.

We easily prove that uε
n(t, x) is well-defined and then, using Burkholder’s inequality, we can check that, for any

n ≥ 0,
sup

ε∈(0,1]

sup
(t,x)∈[0,T ]×IRd

E
[|uε

n(t, x)|2] <∞,
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and by means of Gronwall’s Lemma that

sup
n≥0

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×IRd

E
[|uε

n(t, x)|2] <∞.

The same kind of arguments allows us to show these two bounds changing the power 2 for p > 2. Morover, we
can also prove that {uε

n(t, x), n ≥ 0} converges uniformly in Lp, denoting by uε(t, x) this limit. Then, we can
check that this limit is unique and

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×IRd

E [|uε(t, x)|p] <∞.

We have (4.1) for l = 0. For l ≥ 1, it can be shown following exactly the same arguments as in Proposition 2.4
of [26]. �

Lemma 4.4. Assume (H1), (H2) and (2.4) for some q ∈ (0, 1
2

)
. Then, fixed t > 0 and x ∈ IRd, for any p ≥ 1,

there exists a positive constant Cp such that∥∥∥〈Duε(t, x), Duε(t, x)〉−1
HT

∥∥∥
p
≤ Cp ε

−2, ∀ ε ∈ (0, 1].

Proof. We only need to check that, for any p ≥ 2, there exists ρ0(p) > 0 such that

Qε(ρ) : = sup
0<ε≤1

P
(
ε−2 ‖Duε(t, x)‖2

HT
≤ ρ

)
≤ Cp ρ

p, ∀ ρ ∈ (0, ρ0(p)). (4.2)

For any ρ, σ > 0 such that ρσ < t, we have that∫ t

0

∥∥ε−1Ds,•uε(t, x)
∥∥2

H ds ≥
∫ t

t−ρσ

∥∥ε−1Ds,•uε(t, x)
∥∥2

H ds

≥ 1
2

∫ t

t−ρσ

‖Kt−s(x − •)θ(uε(t, x))‖2
H ds

−
∫ t

t−ρσ

∥∥ε−1Ds,•uε(t, x) −Kt−s(x − •)θ(uε(t, x))
∥∥2

H ds.

So,
Qε(ρ) ≤ Qε,1(ρ) +Qε,2(ρ),

with

Qε,1(ρ) = P

(∫ t

t−ρσ

∥∥ε−1Ds,•uε(t, x) −Kt−s(x− •)θ(uε(t, x))
∥∥2

H ds ≥ ρ

)
,

Qε,2(ρ) = P

(∫ t

t−ρσ

‖Kt−s(x− •)θ(uε(t, x))‖2
H ds ≤ 4ρ

)
.

Arguing as in (3.5) together with Gronwall’s lemma allow to prove that, for any p ≥ 2, there exists a positive
constant cp such that

sup
(τ,x)∈[t−ρσ,t]×IRd

E

[∣∣∣∣
∫ t

t−ρσ

‖Ds,•uε(τ, x)‖2
H ds

∣∣∣∣
p
]
≤ cp

[∫ ρσ

0

ds
∫

IRd

μ(dξ) |FKs(•)(ξ)|2
]p

.
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Chebychev’s and Burkholder’s inequalities, Parseval’s identity, Schwartz’s and Hölder’s inequalities, the condi-
tion on θ′ and this last estimate yield, for λ ∈ [1,∞),

Qε,1(ρ) ≤ Cρ−λE

[∫ t

t−ρσ

∥∥∥∥
∫ t

r

∫
IRd

Kt−s(x − y)Dr,•uε(s, y)θ′(uε(s, y))W (ds, dy)
∥∥∥∥

2

H
dr

]2λ

≤ Cρ−λ

[∫ ρσ

0

ds
∫

IRd

μ(dξ) |FKs(•)(ξ)|2
]2λ

= Cρ−λ

[ ∫ ρσ

0

ds
∫
{|ξ|≤k}

μ(dξ) exp
{
−2s|ξ|α (1 + |ξ|2)β

2

}

+
∫ ρσ

0

ds
∫
{|ξ|>k}

μ(dξ) exp
{
−2s|ξ|α (1 + |ξ|2)β

2

}]2λ

.

Then, since ex ≤ 1, 1 − e−x ≤ 1 and 1 − e−x ≤ x, for all x ≥ 0, using (2.1) and (2.4), we get, for q̂ = 1 − q,

Qε,1(ρ) ≤ Cρ−λ

[
ρσ + ρq̂σ

∫
{|ξ|>k}

μ(dξ)

(1 + |ξ|2)(1−q̂) α+β
2

]2λ

≤ Cρ−λ+2λσq̂ = Cρλ(2σq̂−1).

On the other hand, the properties of the Fourier transform, the fact that 1
x (1 − e−x) ≥ 1

1+x , for all x > 0,
and (2.1), imply∫ t

t−ρσ

‖Kt−s(x− •)θ(uε(t, x))‖2
H ds ≥ θ20

∫ ρσ

0

ds
∫

IRd

μ(dξ)|FKs(•)(ξ)|2

= θ20

∫ ρσ

0

ds
∫

IRd

μ(dξ) exp
{
−2s|ξ|α (1 + |ξ|2)β

2

}
≥ θ20

∫
IRd

1 − e−2ρσ |ξ|α (1+|ξ|2) β
2

2|ξ|α (1 + |ξ|2)β
2

μ(dξ)

≥ θ20ρ
σ

∫
{|ξ|≤k}

1

1 + 2ρσ|ξ|α (1 + |ξ|2)β
2

μ(dξ) ≥ θ20ρ
σ

1 + 2tkα (1 + k2)
β
2

∫
{|ξ|≤k}

μ(dξ)

≥ Cθ20ρ
σ.

(4.3)

Choosing σ ∈ (0, 1), there exists ρ0 > 0 such that, for any ρ ∈ (0, ρ0), Qε,2(ρ) = 0. Moreover, recalling that

q̂ = 1 − q and q ∈ (0, 1
2

)
, if σ ∈

(
1
2q̂ , 1

)
, the inequality (4.2) is satisfied. �

Set

W̃ (t, x) = sgn(x1 × · · · × xn)
∫ t

0

∫
R(x)

W (ds, dx), (t, x) ∈ [0, T ]× IRd.

Classical results on Gaussian processes (see, for instance, Thm. 3.4.12 in [15]) show that, for ν ∈ [
0, 1

2

)
, the

family {εW̃ , ε > 0} satisfies a large deviation principle on Cν,ν([0, T ]× IRd; IR) with rate function

Ī(h̄) =

⎧⎨
⎩

1
2
‖h̄‖2

H , if h̄ ∈ H,

+∞, otherwise.

Remark that, if IT (h) = 1
2‖h‖2

HT
for h ∈ HT , then Ī(h̄) = IT (h) for h̄ ∈ H .

Proposition 4.5. Assume (H1) and (2.4) for some q ∈ (
0, 1

2

)
. Then, the law of the solution uε(t, x) obeys a

large deviation principle with rate function

I(y) = inf
{

1
2
‖h̄‖2

H , Ψ
h̄(t, x) = y

}
.
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Proof. This result can be proved in a very similar way to [28]. The details of the proof of this proposition may
be checked in a forthcoming paper. However, we give a sketch of the proof in the Appendix (see Sect. 4). �

Lemma 4.6. Assume (H1) and (2.3). Then, the application h̄ ∈ {Ī ≤ a} �−→ Ψ h̄ is infinitely differentiable.

Proof. We give some initial ideas of the proof. The assumptions on the coefficients, Hölder’s inequality and
Gronwall’s lemma imply, for h̄, k̄ ∈ H ,

sup
(t,x)∈[0,T ]×IRd

∣∣∣Ψ h̄(t, x)
∣∣∣ ≤ C and sup

(t,x)∈[0,T ]×IRd

∣∣∣Ψ h̄+k̄(t, x) − Ψ h̄(t, x)
∣∣∣ ≤ C‖k̄‖H .

The Fréchet derivative is given by DΨ h̄(t, x)(k̄) = 〈Ξ h̄
·,•(t, x), k〉HT with

〈Ξ h̄
r,•(t, x), ζ〉H = Ξ h̄

r,ζ(t, x)

= 〈Kt−r(x− •)θ(Ψ h̄(r, •)), ζ〉H + 〈Kt−·(x − •)θ′(Ψ h̄(·, •))Ξ h̄
r,ζ(·, •), h〉HT ,

ζ ∈ H. So, Fubini’s theorem implies

DΨ h̄(t, x)(k̄) = 〈Kt−·(x − •)θ(Ψ h̄(·, •)), k〉HT + 〈Kt−·(x− •)θ′(Ψ h̄(·, •))DΨ h̄(·, •)(k̄), h〉HT .

Now, it is easy but tedious to check, using the assumptions on θ, the properties of K, Hölder’s inequality and
Gronwall’s lemma, that the application h̄ ∈ {Ī ≤ a} �−→ Ψ h̄ is Fréchet differentiable and DΨ h̄(t, x) its Fréchet
derivative. The proof that it is infinitely Fréchet differentiable is a classical generalization. �

Set

ûε
h̄(t, x) := uε(t, x)

(
ω +

h̄

ε

)
= u1(t, x)

(
εω + h̄

)
, h̄ ∈ H.

This process satisfies the following stochastic partial differential equation

ûε
h̄(t, x) = ε

∫ t

0

∫
IRd

Kt−s(x− y)θ(ûε
h̄(s, y))W (ds, dy) + 〈Kt−·(x − •)θ(ûε

h̄(·, •)), h〉HT .

By uniqueness of solution we have that û0
h̄
(t, x) = Ψ h̄(t, x) and ûε

0(t, x) = uε(t, x). As in (3.4) of Theorem 2.1,
we can prove that

sup
ε∈(0,1]

sup
(t,x)∈[0,T ]×IRd

E
[∣∣ûε

h̄(t, x)
∣∣p] <∞, ∀ p ∈ [1,+∞).

Gronwall’s lemma and this last fact allow to check that

lim
ε↓0

E
[∣∣∣ûε

h̄(t, x) − Ψ h̄(t, x)
∣∣∣p] = 0, ∀ p ∈ [1,+∞).

Now consider the following Gaussian process Gh̄(t, x) satisfying

Gh̄(t, x) =
∫ t

0

∫
IRd

Kt−s(x− y)θ(Ψ h̄(s, y))W (ds, dy) + 〈Kt−·(x− •)θ′(Ψ h̄(·, •)), h〉HT .

If we define

Ûε
h̄(t, x) =

ûε
h̄
(t, x) − Ψ h̄(t, x)

ε
, 0 < ε ≤ 1,

we can observe that
lim
ε↓0

E
[∣∣∣Ûε

h̄(t, x) −Gh̄(t, x)
∣∣∣p] = 0, ∀ p ∈ [1,+∞),
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uniformly in [0, T ]× IRd. Since Ψ h̄ is deterministic and Gh̄ is Gaussian, it can be quickly generalized as follows

ID∞ − lim
ε↓0

[
Ûε

h̄(t, x) −Gh̄(t, x)
]

= 0.

Indeed, it can be proved using the hypothesis on θ and the spectral measure μ and by means of an argument
based on Hölder’s and Burkholder’s inequalities and Gronwall’s lemma.

Now we have all the requirements to prove Theorem 2.3.

Proof of Theorem 2.3. In order to check the upper bound we apply Lemma 4.3, Lemma 4.4 and Proposition 4.5
to Xε = uε(t, x) at a fixed point (t, x) ∈ [0, T ] × IRd. Indeed, these three results ensure that the assumptions
(i), (ii) and (iii) of Proposition 4.1 are satisfied and consequently

lim
ε↓0

ε2 log pε
t,x(t, x) ≤ −d2

t (x, y),

with

d2
t (x, y) = inf

{
1
2
||h̄||2H , Ψ h̄(t, x) = y

}
.

Now we prove the lower bound. The assumptions of Proposition 4.2 are satisfied for Xε = uε(t, x), Λ(h̄) =
Ψ h̄(t, x) and Z(h̄) = Gh̄(t, x). So, we have that

lim
ε↓0

ε2 log pε
t,x(t, x) ≥ −d̃2

t (x, y),

with

d̃2
t (x, y) = inf

{
1
2
||h̄||2H , Ψ h̄(t, x) = y, γG

t,x(h̄) > 0
}
,

where γG
t,x(h̄) = 〈DGh̄(t, x), DGh̄(t, x)〉HT . Then, if we check that, for any h̄ ∈ H , γG

t,x(h̄) > 0, for any fixed
(t, x) ∈ [0, T ]× IRd, since d2

t (x, y) = d̃2
t (x, y), we will have concluded the proof of this theorem.

By uniqueness of solution we have that DGh̄(t, x) = DΨ h̄(t, x). So,

γG
t,x(h̄) = γΨ

t,x(h̄) = 〈DΨ h̄(t, x), DΨ h̄(t, x)〉HT =
∫ t

0

∥∥∥Ξ h̄
r,•(t, x)

∥∥∥2

H
dr

≥
∫ t

t−ρ

∥∥∥Ξ h̄
r,•(t, x)

∥∥∥2

H
dr ≥ 1

2

∫ t

t−ρ

∥∥∥Kt−r(x− •)θ(Ψ h̄(r, •))
∥∥∥2

H
dr −At,x(ρ),

with

At,x(ρ) =
∫ t

t−ρ

∥∥∥Ξ h̄
r,•(t, x) −Kt−r(x − •)θ(Ψ h̄(r, •))

∥∥∥2

H
dr

=
∫ t

t−ρ

∥∥∥〈Kt−·(x− •)θ′(Ψ h̄(·, •))Ξ h̄
r,∗(·, •), h〉HT

∥∥∥2

H
dr.

The same argument as in (4.3) allows to prove that

1
2

∫ t

t−ρ

∥∥∥Kt−r(x− •)θ(Ψ h̄(r, •))
∥∥∥2

H
dr ≥ Cθ20ρ.

We now deal with At,x(ρ). Let {ej, j ≥ 0} be a CONS of H, then

At,x(ρ) = A1
t,x(ρ) +A2

t,x(ρ),
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with

A1
t,x(ρ) =

∫ t

t−ρ

∑
j≥0

∣∣∣∣∣
∫ t

r

〈Kt−s(x− •)θ′(Ψ h̄(s, •))

×〈Ks−r(• − ∗)θ(Ψ h̄(r, ∗)), ej〉H, h〉H ds

∣∣∣∣∣
2

dr,

A2
t,x(ρ) =

∫ t

t−ρ

∑
j≥0

∣∣∣∣∣
∫ t

r

〈
Kt−s(x − •)θ′(Ψ h̄(s, •))

[
Ξ h̄

r,ej
(s, •)

−〈Ks−r(• − ∗)θ(Ψ h̄(r, ∗)), ej〉H
]
, h
〉
H

ds

∣∣∣∣∣
2

dr.

Using Cauchy’s inequality, (H1), Parseval’s identity, (2.1), Fubini’s theorem and the properties ofK, and arguing
as by Qε,1(ρ) with λ = 1 in Lemma 4.4, we have that

A1
t,x(ρ) ≤ C‖h‖2

HT

∫ t

t−ρ

dr
∫ t

r

ds
∫

IRd

μ(dξ) |FKt−s(•)(ξ)|2 sup
x∈IRd

‖Ks−r(x− ∗)‖2
H

≤ C‖h‖2
HT

ρ2q̂,

with q̂ = 1 − q.
In a similar way we can obtain that

A2
t,x(ρ) ≤ C‖h‖2

HT

∫ t

t−ρ

ds
[∫

IRd

μ(dξ) |FKt−s(•)(ξ)|2
]

sup
r≤s

sup
x∈IRd

As,x(ρ).

Then, Gronwall’s lemma implies
At,x(ρ) ≤ Cρ2q̂.

So, there exists ρ0 > 0 such that for any ρ ∈ (0, ρ0),

γΨ
t,x(h̄) ≥ Cθ20ρ− Cρ2q̂ > 0.

�

Remark 4.7. In the sequel we will give some ideas in order to justify that d2
t (x, y) is finite. We could suppose

that the topological support of the probability distribution of uε(t, x) satisfies

◦︷ ︸︸ ︷
support

[
P ◦ (uε(t, x))−1

]
= {y ∈ IR; such that ∃h̄1 ∈ H with Ψ h̄1(t, x) = y}.

By [17], the set support
[
P ◦ (uε(t, x))−1

]
is a closed interval of IR. Then, assuming the same hypothesis as in

Theorem 2.3 and that θ is positive (the case θ negative is analogous), we have that

{y ∈ IR, d2
t (x, y) <∞} = IR.

Indeed, it is easy to see that

〈Kt−·(x− •)θ(Ψ h̄(·, •)),Kt−·(x− •)〉HT ≥ Cρθ0.

Taking τ > 0, for any y ∈ IR, we can define

h̄1,1(s, z) =
(|y| + τ)Kt−s(x− z)

Cρθ0
= −h̄1,2(s, z).
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Then,
Ψ h̄1,2(t, x) < y < Ψ h̄1,1(t, x).

As the set support
[
P ◦ (uε(t, x))−1

]
is a closed interval of IR, we have that for any y ∈ IR, there exists h̄1 ∈ H

such that Ψ h̄1(t, x) = y and, so, d2
t (x, y) is finite.

Appendix A. Large deviation principle for generalized fractional kinetic

equations

In this appendix we give some details of the proof of Proposition 4.5. It is similar to the proof given in [28].
The basic ideas are based on a classical result of Azencott [6] that allow us to beyond a large deviation principle
from our initial perturbed Gaussian process to uε.

Theorem A.1. Let (Ei, di), i = 1, 2, be two Polish spaces and Xi : Ω → Ei, ε > 0, i = 1, 2, be two families of
random variables. Suppose the following requirements:

• Step 1. {Xε
1 , ε > 0} obeys a large deviation principle with the rate function I1 : E1 → [0,∞].

• Step 2. There exists a function S : {I1 <∞} → E2 such that, for every a <∞, the function

S : {I1 ≤ a} → E2

is continuous.
• Step 3. For every R, ρ, a > 0, there exist θ > 0 and ε0 > 0 such that, for h ∈ E1 satisfying I1(h) ≤ a and
ε ≤ ε0, we have

P
{
d2(Xε

2 , S(h)) ≥ ρ, d1(Xε
1 , h) < θ

}
≤ exp

(
−R

ε2

)
· (A.1)

Then, the family {Xε
2 , ε > 0} obeys a large deviation principle with the rate function

I2(φ) = inf{I1(h) : S(h) = φ}.
We know that the family {εW̃ , ε > 0} satisfies a large deviation principle on Cν,ν([0, T ]× IRd; IR) (Step 1). So,

in order to prove that uε satisfies a large deviation principle we only need to check the existence of a function
S and (A.1) (Step 2 and 3).

First of all we introduce some basic notations. We write, for φ, φ′ : [0.T ] × R
d → R,

‖φ‖∞ = sup{|φ(t, x)|, (t, x) ∈ [0.T ] × R
d},

‖φ‖γ1,γ2 = sup
{ |φ(t, x) − φ(s, y)|
|t− s|γ1 + ‖x− y‖γ2

, (t, x) �= (s, y) ∈ [0.T ]× R
d
}
,

dγ1,γ2(φ, φ
′) = ‖φ− φ′‖∞ + ‖φ− φ′‖γ1,γ2 .

Then, we define the topology of (γ1, γ2)-Hölder convergence on [0.T ] × R
d by means of dγ1,γ2 . Let Cγ1,γ2(Dd

T )
be the set of functions φ : [0.T ]× R

d → IR such that ‖φ‖∞ + ‖φ‖γ1,γ2 <∞.

Step 2. Recall that for any h̄ ∈ H , we consider the deterministic evolution equation

Ψ h̄(t, x) = 〈Kt−·(x− •) θ(Ψ h̄(·, •)), h〉HT , ∀ (t, x) ∈ IR+ × IRd.

Similar arguments to Proposition 2.2 in [25] prove that, for any a ∈ [0,+∞), we have

sup
h̄:Ī(h̄)≤a

sup
(t,x)∈[0,T ]×Rd

|Ψ h̄(t, x)| ≤ C.
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Following the ideas given in Theorem 3.2 and Proposition 3.3 in [25] we can obtain that, for any ρ1 <
1−q
2 and

ρ2 < 1 − q, there exists a constant C such that, for any (t, x), (s, z) ∈ [0, T ]× R
d,

sup
h̄:Ī(h̄)≤a

|Ψ h̄(t, x) − Ψ h̄(s, z)| ≤
{
C(|t− s|γ1 + |x− z|γ2), if α+ β ≥ 2,
C(|t− s|γ1 + |x− z| 12 γ2(α+β)), if α+ β < 2.

Finally, as in Theorem 4.2 in [28], we can get that, for every a > 0, the map h̄→ Ψ h̄ is continuous from {Ī ≤ a}
to Cρ1,ρ2([0, T ]×R

d), for the corresponding values of (ρ1, ρ2), and where {Ī ≤ a} is endowed with the topology
of uniform convergence. We argue as in Theorem 4.2 [28] but considering first x ∈ [−N,N ]d and then tending
N to infinity.

Step 3. Here we have followed the approach of Freidlin and Wentzell [18] for diffusion process (see also Dembo
and Zeitouni [14]). In fact, the proof is easier than in Proposition 5.1 [28] since the fundamental solution in [28]
is more general.

References

[1] J.M. Angulo, V.V. Anh, R. McVinish and M.D. Ruiz-Medina, Fractional kinetic equations driven by Gaussian or infinitely
divisible noise. Adv. Appl. Prob. 37 (2005) 366–392.

[2] J.M. Angulo, M.D. Ruiz-Medina, V.V. Anh and W. Grecksch, Fractional diffusion and fractional heat equation. Adv. Appl.
Prob. 32 (2000) 1077–1099.

[3] V.V. Ahn, J.M. Angulo and M.D. Ruiz-Medina,. Possible long-range dependence in fractional randoms fields. J. Statist. Plan.
Infer. 80 (1999) 95–110

[4] V.V. Anh and N.N. Leonenko, Spectral analysis of fractional kinetic equation with random data. J. Stat. Phys. 104 (2001)
1349–1387.

[5] V.V. Anh and N.N. Leonenko, Renormalization and homogenization of fractional diffusion equations with random data.
Probab. Theory Related Fields 124 (2002) 381–408.
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[8] X. Cabré and M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the p-Laplacian. Commun.
Pure Appl. Anal. 6 (2007) 43–67.

[9] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Partial Differ. Eq. 32 (2007)
1245–1260.

[10] R.C. Dalang and N.E. Frangos, The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 (1998) 187–212.

[11] R.C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous spde’s. Electron.
J. Probab. 4 (1999) 29.

[12] R. Dautray and J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. 2. Springer, Berlin
(1995).

[13] L. Debbi and M. Dozzi, On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension.
Stochastic Processes Appl. 115 (2005) 1764–1781.

[14] A. Dembo and O. Zeitouni, Large deviations techniques and applications. Jones and Barlett Publishers, Boston (1983).

[15] J.D. Deuschel and D.W. Stroock, Large deviations. In vol. 137 of Pure Appl. Math. Academic Press, Boston (1989).

[16] E. Dibenedetto, U. Gianazza and V. Vespri, Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic
equations. Electron. Res. Announc. Amer. Math. Soc. 12 (2006) 95–99.
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[26] D. Márquez-Carreras, M. Mellouk and M. Sarrà, On stochastic partial differential equations with spatially correlated noise:
smoothness of the law. Stochastic Processes Appl. 93 (2001) 269–284.
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