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CENTRAL LIMIT THEOREMS FOR STOCHASTIC APPROXIMATION
WITH CONTROLLED MARKOV CHAIN DYNAMICS

GERSENDE FoORT!

Abstract. This paper provides a Central Limit Theorem (CLT) for a process {6,,n > 0} satisfying
a stochastic approximation (SA) equation of the form 6,4+1 = 0, + VYnt1H (0n, Xnt+1); a CLT for the
associated average sequence is also established. The originality of this paper is to address the case of
controlled Markov chain dynamics {X,,n > 0} and the case of multiple targets. The framework also
accomodates (randomly) truncated SA algorithms. Sufficient conditions for CLT’s hold are provided as
well as comments on how these conditions extend previous works (such as independent and identically
distributed dynamics, the Robbins—Monro dynamic or the single target case). The paper gives a special
emphasis on how these conditions hold for SA with controlled Markov chain dynamics and multiple
targets; it is proved that this paper improves on existing works.
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1. INTRODUCTION

Stochastic Approximation (SA) algorithms were introduced for finding roots of an unknown function h (for
recent surveys on SA, see e.g. [6,9,20,22,28]). SA defines iteratively a sequence {6,,,n > 0} by the update rule

9n+1 =0, + 7n+15n+1a (1'1)

where {v,,n > 1} is a sequence of deterministic step-size and =,,;1 is a random variable (r.v.) standing for a
noisy measurement of the unknown quantity h(6,,).

Our aim is to establish the rate of convergence of the sequence {f,,n > 0} to a limiting point 6, in the
following framework.

Let © C R% the sequence {6,,n > 0} is a O-valued random sequence defined on the filtered probability
space (2, A,P,{F,,n > 0}) and given by

0n+1 - en + Yn+1 (h(en) + En+1 + TnJrl) 5 00 € 97

where h : © — R? is a measurable function, {e,,n > 1} is a F,-adapted P-martingale increment sequence and
{rn,n > 1} is a vanishing F,-adapted random sequence. Such a general description covers many SA algorithms:
as discussed below (see Sect. 2.1), it covers the case when =), 11 is of the form H(6,,, X,,41) where {X,,,n > 1}
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are independent and identically distributed (i.i.d.) r.v. such that (s.t.) E[H (0, X)] = h(0); and the more general
case when {X,,,n > 1} is an adapted (non stationary) Markov chain with transition kernel driven by the current
value of the SA sequence {6,,n > 0}. It also covers the case of fixed truncated and randomly truncated SA
algorithms i.e. situations when given a (possibly random) sequence of subsets {K,,n > 0} of ©, the update
rule is given by

0 _ en + 7n+15n+1 ) if en + ’YnJrlEnJrl S ]Cn+1~ (1 2)
ntl 0o otherwise. ’

Such a truncated algorithm is used for example to solve optimization problem on a constraint set @ (in this case,
K, = © for any n), or to ensure stability of the random sequence {6,,,n > 0} in situations where the location
of the sought-for root is unknown (in this case, I, is an increasing sequence of sets, see [9,10], Chap. 2).

Our second aim is to extend the previous results to the case of multiple targets: we provide asymptotic
convergence rates of {6,,n > 0} to a point 6, given the event {lim, 6, = 6,} for some 0, in the interior of 6.
Note that this paper is devoted to convergence rates so that sufficient conditions for the convergence is out of
the scope of the paper; for convergence, the interested reader can refer to [2-4,6,9,13].

The originality of this paper consists in deriving rates of convergence in a new framework characterized by
(i) general assumptions on the noisy measurement =, 41 of h(6,,) which weaken the conditions in the literature
and (ii) the multiple targets problem. In Section 2.2, our framework will be carefully compared to the literature.

We derive sufficient conditions on the step-size sequence {~,,n > 1}, on the random sequences {e,, r,,n > 1}
and on the limiting point 6, so that v, 1 2(9n — 0,) converges in distribution under the conditional probability
P(-|limg 0, = 0,). The limiting distribution is a (mixture of) centered Gaussian distribution(s) and this distri-
bution is explicitly characterized. We also address the rate of convergence of the associated averaged process
{0,,,n > 0} defined by

~ def 1 -
0, < T > bk (1.3)
k=0

We prove that this averaged sequence reaches the optimal rate and the optimal variance (in a sense discussed
below); such a result was already established in the literature in a more restrictive framework.

The paper is organized as follows. Section 2 (resp. Sect. 3) is devoted to the SA sequence {6,,,n > 0} (resp.
the averaged SA sequence {f,,n > 0}). We successively introduce the assumptions, comment these conditions,
compare our framework to the literature and state a Central Limit Theorem (CLT). In Section 4, our results
are applied to a randomly truncated SA algorithm with controlled Markov chain dynamics; since our conditions
are quite weak, we are able to obtain better convergence rates than the rates obtained in Delyon [11]. All the
proofs are postponed in Section 5.

2. A CENTRAL LIMIT THEOREM FOR STOCHASTIC APPROXIMATION

2.1. Assumptions

Let © C R%. We consider the R%valued sequence satisfying for n > 0,

9n+1 - gn + 'YnJrlh(gn) + Yn+1€n+1 + Yn+1Tn+1 » 90 S 8; (21)

and we establish a Central Limit Theorem along sequences {6,,,n > 0} converging to some point 8, € @ which
is a root of the function h. We assume the following conditions on the attractive target 6,.

C1 (a) 6. is in the interior of © and h(6,) = 0.
(b) The mean field i : © — R? is measurable and twice continuously differentiable in a neighborhood of 6.
(¢) The gradient Vh(6,) is a Hurwitz matrix. Denote by —L, L > 0, the largest real part of its eigenvalues.
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Let {e,,n > 1} be a Re-valued random variables defined on the filtered space (£2, A, P, {F,,n > 0}). We will
denote by | - | the Euclidean norm on R?; and by z the transpose of a matrix z. By convention, vectors are
column-vectors. For a set A, 14 is the indicator function. It is assumed

C2(a) {en, n>1}is a Fy-adapted P-martingale-increment sequence i.e. E[e,|F,—_1] = 0 P-almost surely.
(b) For any m > 1, there exists a sequence of measurable sets { Ay, r, k > 0} such that A, , € F), and there
exists 7 > 0 such that

supE Uek+1|2+71,4m7k] < 00.
k>0

In addition, for any m > 1, limg T4, him,0,=0, = 14, Liim,0,=0, and the limiting set satisfies
lim,,, P(A,,|lim, 0, = 0,) = 1.
(¢c) E [ek+1€{+1 \Fk] =U, + D,gl) + D,(f) where U, is a symmetric positive definite matrix and

(1) as. imy 0y =
{ D! 250, on the set {lim, 0, = 6.} (2.2)

limy o B [| Sy D | Tiim, 0,20, 1, = 0;

the sequence {A,,, m > 1} is defined in C2b.
We will show (see Rem. 5.3 in Sect. 5) that the condition on the r.v. {D,(f), k > 1} can be replaced with:
D(2) — D(zﬂ) +D(2ab)

k= Yk k

+

Z D}(€2,a) L, La,
k=1

zn: D](f,b)

lim~, E [
" k=1

]lAmllimq gq—g*‘| =0, Vm>1, (2.3)

where {Ag,k > 1} is any Fp-adapted sequence of sets satisfying limy, 14, = Liim, 6,=6,; and A, is
given by C2b.

For a sequence of Re-valued r.v. {Z,,n > 0}, we write Z, = Oy ,.1.(1) if sup,, |Z,| < oo w.p.1; and
Zy = or»(1) if lim, E[|Z,|P] = 0. Let {r,,n > 1} be a R%-valued random variables defined on the filtered
space (2, A, P, {F,,n > 0}).

C3 r, is F,-adapted. r, = TS) + rg) with, for any m > 1,
77?1/2T'£11) llimq 0,=0. ]lAm = Ow.p.1(1)0L1 (1)7
n 2
VI 2 k=1 7";(c ) Liim, 6,=6, 1 4,, = Ow.p.1(1)or1(1).
The sequence {A,,, m > 1} is defined in C2b. The last assumption is on the step-size sequence.

C4 One of the following conditions is satisfied:

(a) Xop 7k =+00, 24 74 < 00 and log(ve—1/7k) = o(7k)-
(b) Y.k = +00, >, vE < oo and there exists v, > 1/(2L) such that log(ve—1/Vk) ~ Yk /Vs-

2.2. Comments on the assumptions

The framework described by (2.1) and the conditions C1 to C4 is general enough to cover many scenarios
studied in the literature and to address new ones.

For SA algorithms (1.1) with =41 = H(0,, Xnt1), {Xn,n > 1} i.i.d. r.v. (and independent of ) such that
h(0) = E[H(6, X)], equation (2.1) is satisfied with

En+1 = H(ena Xn+1) - h(gn)a Tn+l1 = 07

and E[en41]|F,] = 0. Our framework also addresses the case when {X,,n > 1} is a F,-adapted controlled
Markov chain i.e. when there exists a family of transition kernels {Qg, 0 € @} such that

P(Xn+1 S |~7:n) = an (Xna ')a
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each kernel possessing an invariant probability distribution 7y and h(f) = [ H(6, ) mp(dz) — hereafter, these

algorithms will be called “S/{X with controlled Markov chain dynamics”. Introduce the solution Hyg of the Poisson
equation H(0,-) — h() = Hyp — QoHyp (see e.g. [18], Chap. 8 or [24], Chap. 17), and set

ens1 = Ho,(Xp11) — Qo Ho, (X)), Tns1 = Qo, Hy, (X)) — Qo, Hp, (Xn11);

then E [e),41]|F»] = 0 P-almost surely. We will provide in Section 4 sufficient conditions on the transition kernels
Qo so that these sequences {e,,r,,n > 1} exist and satisfy the conditions C2 and C3. Note that the i.i.d. case
is a special case of the controlled Markov chain framework (set Qy = 79 = 7 for any 6); and the so-called
Robbins—Monro case corresponds to Qg = 7y for any 6.

Truncated SA algorithms (1.2) can be written as

Ont1=0n + Vnt1Zn+1 + (60 — On — Ynt150+1) Loyt s S s @hCn g

in most (if not any) proof of convergence of this sequence to limiting points in the interior of ©, the first step
consists in proving that P-almost-surely, the number of truncations is finite (see e.g. Andrieu et al. [2], Thm. 1).
Therefore, the term (6 — 0, — Vn+1=5n+1) L9, 4yps1Zni1¢kny, is null for any large n on the set {lim, 0, = 0.}
thus showing that it is part of ’yn+1r7(ll_~)_1 in the expansion (2.1).

The condition C1 considers a limiting target 6, which is assumed to be stable and such that the linear term
in the Taylor’s expansion of h at 6, does not vanish (see condition Clc). Results for the case of vanishing linear
term can be found in Chen ([9], Sect. 3.2). When & is a gradient function so that the SA algorithm is a stochastic
gradient procedure, the condition Cla assumes that 6, is a root of the gradient. Therefore, our assumptions do
not cover the case of constrained optimization problem with solutions on the boundaries of the constraint set
©. For rates of convergence for these constrained SA algorithms, see e.g. Buche and Kushner [8].

The conditions C2 and C3 are designed to address the case of multiple targets, a framework which improves
on many published results. It is usually assumed in the literature that there is an unique limiting target (see e.g.
Fabian [14], Kushner and Huang [21], Bouton [7], Buche and Kushner [8], Chen [9] Chap. 3, and Lelong [23]).
While we are interested in proving a Central Limit Theorem given the tail event {lim, 6, = 6, }, it is assumed in
C2a that the r.v. e,,11 in the expansion (2.1) is a martingale increment with respect to (w.r.t.) the probability P.
As discussed above, such an expansion is easily verified. Note that since the event {lim, , = 6, } is in the tail o-
field o(\/,, Fn), it is not true that {e,,n > 1} are martingale-increments w.r.t. the probability P(-|lim, 6, = 6.).
Therefore, our framework is not a special case of the single target framework.

The main use of C2 is to prove that the sequence {e,,n > 1} satisfies a CLT under the conditional distribution
P(-|lim, 6, = 6,). We could weaken some of the assumptions, for example by relaxing the 2+7-moment condition
C2b which is a way to easily check the Lindeberg condition for martingale difference array. Nevertheless, our
goal is not only to state a theorem with weaker assumptions but also to provide easy-to-check conditions.

When there exists 7 > 0 such that sup,s E [|ex]|*T7] < oo, O2b is satisfied with A, = Ay, = 2. When
there exist 7,9 > 0 such that

ngS]E [lent11* g, —0,<s] < oo, (2.4)

then C2b is satisfied with Apm ;= (<< {10; —0x| < 6} and A =05, {|0; — 0« < 6}. In most contributions,
rates of convergence are derived under the condition (2.4) (see e.g. the recent works by Pelletier [25] and
Lelong [23]). This framework is too restrictive to address the case of SA with controlled Markov chain dynamics
when the ergodic properties of the transition kernels {Qg, 0 € @} are not uniform in 6. Our assumption C2b is
designed to address this framework as it will be shown in Section 4.

C2c is an assumption on the conditional variance of the martingale-increment term e,,, which is more general
than what is usually assumed. In Zhu [29], Pelletier [25], Chen [9] and Lelong [23] (resp. in Delyon [11]), a CLT
is proved under the assumption that | [ek+1e£+1‘.7'-k] =U, + D,(Cl) (resp. E [ek+1e£+1|fk] =U, + D,(CZ)) where

D,(Cl), D,(f) satisfy (2.2) and U, is a deterministic symmetric positive definite matrix. The improvement is in the
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combination D,(cl) + D,(f). The introduction of the term D,(f) is a strong improvement since it covers the case
of SA with controlled Markov chain dynamic: observe indeed that in this case E [ek+1e{+1|fk] is a function of
(Xk,0k) and it is really unlikely that this term converges almost-surely to a (random) variable along the set
{lim, §, = 0. }. Allowing an additional term D,(f) such that the sum ), _, D,(f) converges in some sense to zero
introduces more flexibility (see Sect. 4 for more details). We will also show in Section 4 how our framework
improves on Delyon [11]. Examples of SA algorithm where C2c¢ holds with resp. Robbins—Monro and controlled
Markov chain dynamics can be found resp. in Bianchi et al. [5] and Fort et al. [15].

Kushner and Huang [21] establish a CLT (as a consequence of some weak convergence of a suitable continuous
interpolation of the sequence (6, — 0,)/\/7x) for the algorithm (1.1) when =, is of the form H(0,, X,41).
Their proof relies on a linearization of the algorithm (1.1) but with no explicit introduction of a martingale-
increment noise term; nevertheless, their conditions require that some remainder terms vanish almost-surely, as
well as some kind of stationary assumption on the sequence (X,,), (see [21], Assumption A.2 which is really
restrictive).

Examples of sequences satisfying the condition C4 are the polynomial ones. The step size 7, ~ v.n~® for
a € (1/2,1) satisfies C4a. The step size v, ~ 7. /n satisfies C4b; note that the condition on (s, L) is well known
in the literature (see e.g. Chen [9], assumption A3.1.4).

2.3. Main result

Theorem 2.1. Choose 0y € © and consider the sequence {0,,n > 0} given by (2.1). Assume C1, C2, C3 and
C4. Let V be the positive definite matriz satisfying

VVh(0,)T + Vh(0,)V = -U, , in case Cfa,

V(Id + 27 Vh(0,)T) + (Id 4+ 27, Vh(0:))V = —27,.U, , in case C4b.
Under the conditional probability P (-|lim, 0, = 6.), {7;1/2 (6, — 0,),n > 1} converges in distribution to a
centered multidimensional Gaussian distribution with covariance matriz V.

Given matrices A, E, existence of a solution to the equation VA+ATV = —FE  is solved by the Lyapunov
theorem (see e.g. Horn and Johnson [19], Thm. 2.2.1). When A is a (negative) stable real matrix and E
is positive definite, then there exists an unique positive definite matrix V satisfying the Lyapunov equation
VA+ ATV = —E  (see e.g. Horn and Johnson [19], Thm. 2.2.3.).

Sketch of the proof of Theorem 2.1. The proof of Theorem 2.1 is detailed in Section 5. The key ingredient is the
Central Limit Theorem for martingale arrays. As commented in Section 2.2, e, is not a martingale-increment
w.r.t. the conditional probability P(-|lim, 6, = 6,). To overcome this technical difficulty, we use that

ent1 = ent1la, +enp1(1—14,) (2.5)

where {A,,,n > 1} is a F,,-adapted sequence of sets converging to {lim, 6, = 6.} (such a sequence always exists,
see Lem. 5.6). Along the event {lim, 6, = 6.}, the second term in the right hand side (rhs) of (2.5) is null for
any n larger than some almost-surely finite random time.

We write 6,, — 0, = p,, + pn, where p,, satisfies the equation

pnt1 = (Id + 7041 VR(04)) fin + Ynt1€n41; po = 0.

Id denotes the d x d identity matrix. Roughly speaking, the sequence {u,,n > 0} captures the linear approxi-
mation of h(6,) and the martingale-increment noise sequence {e,,n > 1}.
We prove that 7{1/2 Pnllim, 0,0, converges to zero in probability so that {fin,n > 0} is the leading term.

We then establish that for any ¢ € R,

1
T E |Lim, 0,0, exp (92 7n )| = E {nnmq 0,=0. €XD (—itTVtﬂ :
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3. A CENTRAL LIMIT THEOREM FOR ITERATE AVERAGING

Theorem 2.1 shows that the rate of convergence of the sequence {6,,,n > 0} to 6, is O(n®/?) when ~,, ~ v, /n®
for some a € (1/2,1]. The maximal rate is reached by choosing v,, ~ 7, /n, for some =, satisfying the conditions
C4b. The main drawback with such a choice of the step-size sequence {v,,n > 1} is that in practice, —L i.e.
the largest real part of the eigenvalues of VA(6,) is unknown so that the condition C4b is difficult to check.

The second comment is on the limiting covariance matrix when the rate is maximal (i.e. in the case 7, ~
~+/n). For any non-singular matrix I", we could define the algorithm

Oni1 = O + Vs 1 TR(00) + Yns1leni1 + Yni1 Drnsr 0o € 6.

This equation is of the form (2.1) with a mean field h = I'h and noises {e,,7n,n > 1} replaced with
{len, 'rp,n > 1}. Then, Theorem 2.1 gives sufficient conditions so that a CLT for the sequence {0p,n > 0}
holds: the matrix V' is replaced with V' = V(I") satisfying

V(Id + 27, Vh(0,)TTT) + (Id + 27, VRh(0,) )V = —2~, U IT.

A natural question is the “optimal” choice of the gain matrix I', defined as the matrix Iy such that for any
A € RYNTV(I)A > M'V(I,)\. Following the same lines as in Benveniste et al. ([4], Prop. 4, Chap. 3, Part I),
it can be proved that I, = —y;1Vh(6,)~! and in this case,

V(I) =~ 'Vh(0,) U VR(6,) T,

Theorem 3.2 below shows that by considering the averaged sequence {f,,,n > 0}, the optimal rate of convergence
(i.e. the rate /n) and the optimal asymptotic covariance matrix (optimal in the sense discussed above) can be
reached whatever the sequence {~,,n > 1} satisfying C4a used in the basic SA sequence (2.1). Therefore, such
an optimality can be obtained even when Vh(6,) is unknown. Note also that on a practical point of view, slow
decreasing step-size 7, are better (see e.g. Spall [28], Sect. 4.4.) and this simple averaging procedure improves
the rate of convergence of the estimate of 6,.

These properties of the averaged sequence were simultaneously established by Ruppert [27] and Polyak and
Juditsky [26] under more restrictive conditions than those stated below.

3.1. Assumptions

AVER1
(a) {en, n >1} is a Fp-adapted P-martingale-increment sequence.
(b) There exists a sequence {A,,, m > 1} such that lim,, P(A,,|lim, 0, = 6,) = 1, and for any m > 1,
supE [|ex|*La ] < oo,
k

m,k—1

where A, -1 € Fr—1 and limg 1 4,, , = 14, almost-surely on the set {limg 6, = 6, }.
(c) Let

1 n
Enil = Chtl-
+1 \/n——l—l ’CEZ;) k+1

There exists a positive definite deterministic matrix U, such that for any ¢t € RY,

1
lim [E []llimq 0,=0, eXp(itT5n+1)] =E |:llimq 0,=0, exp(—§ tTU*t) .
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We prove in Lemma 5.5 that when lim, nvy, > 0, assumption C2 implies AVERI1. Note also that since
lim,, P(A,|lim, 6, = 0,) = 1, AVERIc is equivalent to the condition: for any m > 1,

. . 1
1171;11]]3 []llimq 0,=0, exp(thé’nH)]lAm] =E | Liim, 6,=0. exp(—§ tTU )1 4,,

For a sequence of R-valued r.v. {Z,,,n > 0}, we write Z,, = Or»(1) if sup,, E[|Z,|?] < oo.

AVER2 r, is F,-adapted. r,, = 7"7(11) + 7"7(12) with for any m > 1,

() v "2 i) i, 0,20, 14, = Ouwp1(1)0p2(1).
n 2
(b) Vv In Zk::l T](C )I]-limq 0q,=0. ]]-.Am = Ow.p.l(]-)OL2 (1) :
(¢) n=Y23 0o mht1Liim, 0,—6. 0.
The sequence {A,, m > 1} is defined in AVER1b.

Note that AVER2c is equivalent to n~-1/2 ZZ:O Tkt 1 Llim, 0,=0, 1 .4,, _E, 0 for any m > 1.

AVERS3 lim, nvy, = 400 and

n

1
= 0 1. e == 0.
) lin n E Vi

k=1

—1/2

15
hrrln%kz::l'yk

1— Ok
Ye+1

The step size v, ~ 1n~® for a € (1/2,1) satisfies AVER3 but the step size ,, ~ ~/n does not. Observe that
if the sequence {7y,,n > 0} is non-increasing (or ultimately non-increasing) then (see e.g. Delyon [11], proof of
Thm. 26)

1 - -
lim ny, = +00 = limT Z’yk 1/2
k=1

1— Ok
Vk+1

=0.

3

3.2. Main results

We show that the above conditions allow a control of the L2-moment of the errors {0, — 0,,n > 0}. This
result is a cornerstone for the proof of Theorem 3.2. The proof is given in Section 5.

Proposition 3.1. Assume C1, C4, AVER1a-b and AVER2a-b. Then, for any m > 1
'77:1 (607 — 0*”2 llimq 0,="0, 14, = Ow.p.l(l) Or:(1).

Theorem 3.2. Choose 0y € © and consider the averaged sequence given by (1.3). Assume C1, Cda, AVERI,
AVER2 and AVER3. Then for any t € R?,

UM E [Liim, 0,0, exp (ivn t* (6, —6,))] =P (lim 0, = 9*) exp (—%tTVh(G*)_l U. (Vh(e*)_l)Tt> .
n q

Sketch of the proof of Theorem 3.2. The proof is detailed in Section 5. Since lim,, P(A,|lim, 0, = 0,) = 1, we
only have to prove that for any m > 1 and ¢t € R¢,

117IIHE [Ltim, 0,=0.14,, exp (ivnt" (0, —6.))] =E |:I]-limq 0,=0,14,, €xp (—%tTVh(Q*)_l U. (Vh(e*)_l)Ttﬂ .

We write
a Vh(6,)

71 n
0, -0, = ———— L.
1 kz:;)ekﬂ-F

We show that \/nZ,liim, 6,0, L.4,, converges to zero in probability for any m > 1; for this step, the main tool
is Proposition 3.1. The proof is then concluded by AVERIc.
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4. APPLICATION TO SA WITH CONTROLLED MARKOV CHAIN DYNAMICS

Let {/C,,,n > 0} be a sequence of compact subsets of © C R< such that
ICn C ICTL+17 U lCn =0.
n>0

Let {Qg, 0 € O} be a family of Markov transition kernels onto (X, X'). We consider the following SA algorithm
with truncation at randomly varying bounds: 6y € Ky, 09 = 0 and for n > 0,

set 9n+1/2 =0n+ 'YnJrlH(gna Xn+1)~
update

_ S Ong1y2,00), i Ong1/2 € Ko,
(Ont1,0n11) = { (0o, 0n +1) otherwise,

where {X,,,n > 0} is a controlled Markov chain on ({2, A, P) with conditional distribution given by
P(Xn+1 e A‘]:n) - QOW,(X'IM A)7 fn = 0(907X07 e 7X7l) (41)

The random sequence {o,,n > 0} is a non-negative integer-valued sequence counting the number of trun-
cations. Such a truncated SA was introduced by Chen et al. [10] (see also Chen [9], Chap. 2) to address the
boundedness problem of the SA sequence {6,,,n > 0}. A more general truncated SA algorithm with controlled
Markov chain dynamics is introduced in Andrieu et al. [2]: when truncation occurs, both the parameter 6,1 /o
and the draw X,, used to obtain the next point X,, 11 are modified.

The key point of the proof of convergence of this algorithm is to show that the number of truncations is
finite with probability one, so that after some random time, the sequence {6,,n > 0} is almost-surely bounded
and obeys the update rule 6,11 = 6, + Yn+1H (05, X,+1). Conditions implying almost-sure boundedness and
almost-sure convergence of the sequence {6,,n > 0} when {X,,,n > 0} is a controlled Markov chain can be
found in Andrieu et al. ([2], Sect. 3). We assume

A1l For any 0 € O, there exists a probability distribution 7y on (X, X) such that mpQg = mg.

For simplicity, we consider the case when H is bounded and the step-size sequence is polynomially decreasing.
Extensions to the case H is unbounded can be done along the same lines as in Andrieu et al. [2].

A2 (a) for any compact set I C O, supgey sup,ex |[H (6, x)| < 0. Set

ho) = / H(0,z) mo(da). (4.2)

(b) There exists a € (1/2,1] such that 7, = v,./n*. When a = 1, 7, satisfies the condition C4b.

Since in this paper we are interested in CLT’s, the stability and the convergence of the algorithm is also assumed:

A3 the number of truncations is finite with probability one: P(limsup,, 0, < o0) = 1; and there exists 0, € ©
satisfying C1 such that P(lim,, 8, = 6,) > 0.

For a function W : X — [1, 00), define the W-norm of a measurable function f : X — R by || f|lw = supx | f|/W.
We assume that the transition kernels {Q, 0 € ©} satisty

A4 (a) For any 0 € O, there exists a measurable function Hy : (X, X) — (R, B(RY)) such that
H(0,2) — h(0) = Hy(z) — QoHy(z). (4.3)

There exists a function V; : X — [1, 00) such that for any compact subset K C O,

sup (I1fsllvs + Qo fslv; ) < oo. (4.4)
e
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(b) For any 6 € O, there exists a measurable function Uy : (X, X) — (]Rd2, B(Rd2)) such that
Fula) = [ Fifa) mo(da) = Vo) ~ QuUi(a), (4.5)

. ~ ~ . T
where Fy(z) = [Qo(z,dy) Ho(y)Ho(y)" — QoHp(x) (QgH@(l’)) . There exists a function V5 : X —
[1,00) such that for any compact subset I C O,

sup ([|Usl[v, + 1QoUsl|v») < oo (4.6)
veK
(¢) There exist ,7 > 0 and 7 > 1/a — 1 such that for any m > 1,

sup E (VBT (K1) + V3T (X)) Iy, o018y | < o0

E [‘/'12+T(Xm) + ‘/'21+7‘(Xm):| < 0.

(d) For any compact subset K C O, there exist C' > 0 and b > (1/a — 1) V (1/2) such that

HQeﬁe — Qo Hy.

L U = Ually, <Clo— 0",
1

Furthermore, almost-surely

lim ( / Fi. (2) 7o, (dz) — / P, () 0. (dx)) Lim, 0,6, = 0.

Conditions implying the existence of 7y and solutions to the Poisson equations (4.3) and (4.5) can be found
e.g. in Hernandez—Lerma and Lasserre ([18], Chap. 8) or in Meyn and Tweedie ([24], Chap. 17). When the
transition kernel @y is uniformly ergodic, then V; = V5 and is equal to the constant function 1. When the kernel
is V-geometrically ergodic, we can choose V; = V1/P, Vy = V2/P for any p > 2. Sufficient conditions for (4.4)
and (4.6) based on Lyapunov drift inequalities when the chain is geometrically ergodic (resp. subgeometrically
ergodic) are given by Fort et al. ([16], Lem. 2.3) (resp. Andrieu et al. [1]). Andrieu et al. ([2], Prop. 6.1). gives
sufficient conditions to check Adc (compare this assumption with the condition A3(ii) of Andrieu et al.) when
the kernels are V-geometrically ergodic: in this case, for any p > 2 we can choose Vi = VY/? V, = V2/P and 7
such that 2(14+7)/p = 1. The first set of conditions in A4d is an assumption on the regularity-in-6 of the solution
to the Poisson equation. Andrieu et al. ([2], Prop. 6.1). give sufficient conditions in terms of the regularity-in-6 of
the transition kernels QQg. When 7y = 7 for any 6, the second set of conditions can be established by combining
smoothness-in-0 properties of the function Fp and the dominated convergence theorem. When my depends on 6,
Fort et al. ([16], Thm. 2.11 and Prop. 4.3) give sufficient conditions for this condition to hold.
The following proposition provides a set of conditions implying A1l and A4. Its proof is in Section 5.7.

Proposition 4.1. Assume that

(i)  for any 0 € O, Qg is phi-irreducible and aperiodic.

(ii) there exists a measurable function V :— [1,00) and for any 0 € O, there exist constants \g € (0,1) and
by € [1,00) such that QoV < AgV + bg.

(iil) there exists o € (0,1/2) and for any 6 € O, there exist §p € (0,1) and a probability measure vy on (X, X)
such that Qg(z,-) > dgvg for any x € {V* < 2bg/(1 — Ay) — 1}.

(iv) for any compact set K C O, supgeic (bo V (1 —A§)"LV 6, ") < oo.
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(v) there exists f € (1/2,1] and for any compact set K C O there exists a constant C such that for any
0,6 € K,
supsup |H (0, )| < oo,
ek xeX
H(0,2) — H(O',2)] < Clo — o),
sup |Qof — Qo fllya +  sup [|Qof = Qo fllyse <C10 07
Lllfllve <1 Lllflly2a <1

Fix 6y € ©. Then the conditions Al and A4 hold provided ~,, ~ ~v«/n® for a > 2aV 1/(1+ ().

Let us now prove how the assumptions Al to A4 imply the conditions C1 to C4. Under A3, the condition C1
holds; note also that the conditional probability P(-|lim, 6, = 6,) is well defined. By using (4.2) and (4.3), we
write the truncated SA algorithm on the form (2.1) by setting
= Ho, (Xn+1) = Qo Ho, (Xa),
= Qo Ho, (Xn) = Qo, Ho, (Xns1) + (0

Let us prove that the condition C2 holds. Since 6,, € F,,, equation (4.1) implies C2a. Fix § such that B(6,,d) =
{# e R |0 —0,| <35} CO. Set

€n+1

Tnt1 Ons1/2)10, 1 0¢K,, -

if k< m,

U
Am g = {nm<j<k{|9j — 0, <6,0; = 93‘71/2} otherwise.

Then for any k,m, Apr € Fi; limp Ay = A where A, = ﬂ >m{\9 — 0 < 6,05 = 0,_1/2}; and
lim,, P(A,|lim, 6, = 6,) = 1 by A3. Fix m > 1; by (4.4) applied with IC B(0.,9), there exists a constant C
such that for any k > m

E[lext1/* 1, ] < CE (VP (Xk) + V71 (Xpt1)) La,,] -

Adc concludes the proof of C2b. Observe that E [ertiel, [Fi] = Fp, (Xi). By using (4.5), we write

E [exrrel | Fi] = Us + D + D + DY with

U, = / Fy. () mo, (d2),
D = [ Fo(o) mayd) = [ o (@) 7o, (do),

Uek (Xk+1) Qek U9k, (Xk)7
= Uy, (Xx) — Upy, (Xp+1)-

Dk2 ,a)
p&b

By A4d, D(l) 22, 0 on the set {lim, 0, = 0,}. By (4.1), E {D \fk 1
inequality (see e.g. Hall and Heyde [17], Thm. 2.10), it holds for any A; € Fj, such that lim;, Ay = {lim, 0, = 0.}

= 0; by application of the Burkholder

1+7

]lAk ]lA'm,k

n
Z D](CQ,a)

k=1

Z D](CQ,a)

“[2

k=1

]lAk lA”L,k] <|E

The constant C' is finite since under (4.6) and A4c, sup, E [\D,(€2’a)|1+f1,4

n n

Z D(2 b) _ (

k=m k=m+1

1/(147)
< O /(P2

mk] < oo. Furthermore,

Xm) = Up, (Xng1) + Y (U (X) = Up,_, (X))
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so that by Adc-d, there exists a constant C' such that

L4, Liim, oq—e*] <C (1 + ) 72) .

k=m+1

n

Z D](f’b)

k=1

E

The above discussion shows that C2c is verified since 7 > 1/a —1 and b > 1/a — 1.

Finally, let us study r,. We write r,+1 = 7"7(11_3_1 + 7"7(3)_1 with

7“%)1 = (00 = Ont12) Lo,y mgx,, + Qoo Ho,y (Xns1) — Qo, Ho, (Xpi1)-

By A3 and A4d, 7;1/27"7(11)]111mq 0,=0,14,, = 0wp.1(1) +opi(1) for any fixed m > 1. In addition, by (4.4), there
exists a constant C such that

n

3

k=1

CE[

ﬂAM] SEW(X)]+E[Vi(Xnt1)14,];

it follows by A4c that the condition C3 is verified.
The above discussion is summarized in the following proposition

Proposition 4.2. Assume Al, A2, A3 and A4. Then, the conditions C1 to C4 are satisfied and
~ ~ T ~ ~ T
U, = [ mo.(a0) (B, 0 B, (@0 = Qo. . 2) (@0 0. )" ).

By application of Theorem 2.1, we obtain a CLT for randomly truncated SA with controlled Markov chain
dynamics.

Our result improves on Delyon ([11], Thm. 25). Under stronger conditions (for example, it is assumed that
V1 and V4 are bounded functions; there is a single target 6, and b = 1 in the regularity-in-6 assumption Chd),
Delyon [11] establishes a CLT in the case 7, = 7./n® with the condition a € (2/3,1]. Note that if V1,V are
bounded then A4c holds with any 7 > 0 and if b = 1 then b > (1/2) V (1/a — 1); hence, our approach only
requires a € (1/2, 1] which is the usual range of values for SA algorithms.

Our result also improves on Bouton ([7], Cor. of Thm. 2): our assumptions only require Holder-continuity
of some quantities with respect to 6, and the Lipschitz-continuity of 6 +— mg(Fp) is not required as in Bouton
(see [7], assumption (H.7)) which is a strong improvement especially in situations when we do not have an
explicit expression of 7.

Using similar tools, the conditions of Theorem 3.2 can be verified; details are left to the interested reader.

5. PrROOF

5.1. Definitions and notations

Let {Ay,n > 0} be a sequence of sets such that
An c .7:", llern ]lAn = ]llimq 0,=0, W.p.l. (51)
Such a sequence exists by Lemma 5.6. Define recursively two sequences

Hn+1 = (Id + 7"+1Vh(9*))ﬂn + Yn+1€n+1, to = 0; (5'2)
Prt1 = Onp1 — O — finya, po = 0y — 0,



CENTRAL LIMIT THEOREMS FOR STOCHASTIC APPROXIMATION 71

and the matrices ¥, (n, k) for 1 <k <n,

ﬁ Id + 7; VA(6,)). (5.4)

By convention, 1, (n,n+1) = Id. Under Cla—b, there exist a set of random dxd symmetric matrices {RE"), 1 <d}
such that the entry i of the column vector {h(6,) — Vh(0,)(0, —0+)} is equal to (6, — 9*)TR§n)(9n —0,). More
precisely,

1 2
(n) I P B
R,V (k, 1) _/0 2(1 t) 96,00, (0, + (6, — 0,)) dt. (5.5)
Let R ) be the tensor such that

B(0n) = V(0.) (0 — 0.) + (B — 0.) R (0 — 6.). (5.6)

Finally, for 1 < k < n, define the d x d matrices
H (Id +7 { h(0.) + 2”}“71R£j71) + pgﬂflejil)}) ) (5.7)

with the convention that ¥(n,n + 1) = Id.

5.2. Preliminary results on the sequence {py,,n > 0}
By iterating (5.2), we have by definition of ¥, (see (5.4))

n+1

Hnyl = Z%%(n +1,k+ 1es. (5.8)
k=1

Proposition 5.1. Assume Clb—, C2a-b and C4. Then
(1) nliim, 0,—0. —> 0 when n — cc.
(i) for any m > 1, v, pkl? Liim, 0,—0.1a,, = Op1(1) + 0wp.a(1).

The proof is on the same lines as the proof of ([12], Lem. 6) and is omitted here; a detailed proof is given in the
supplementary material.

5.3. Preliminary results on the sequence {p,,n > 0}
By (5.3) and (5.6),
prtr = (1d + 041 VAO.))pu + Ynaus + Yas1 (6 — 0.)T RSV (6, — 6.)
m+%ﬂww»m+%ﬂmﬂ+me+%FﬂWM+m>
(Id+vn+1Vh (62) + 2741 HE RS + Y1l R )
+

Yn+1Tn+1 + Ynt1ly, R( ),un
By induction, this yields

pr = (n, 1)po + ZVW n,k+1) (Tk +pp R Dm«—l) : (5.9)
k=1

where ¥ (n, k) is given by (5.7).



72 G. FORT

Proposition 5.2. Assume C1, C2a-b and Cj4. Let 0y € ©. Then, for any m > 1,

n
{pn — Z’ykw(n, k + 1)Tk} llimq 04=0. 14, = '771/\(1/2+H) Ow.p.l(l)OLl(l),

k=1

with Kk =1/2 under C4a and x € (0, Ly, — 1/2) under C4b.
Assume in addition C3. Then, for any m > 1,

> wto(n,k + Driliim, 0,—0, 14, = 75/% Owpa(L)opi(1).
k=1

The proof is on the same lines as the proof of ([12], Lem. 6) and is omitted here; a detailed proof is given in the
supplementary material.

5.4. Proof of Theorem 2.1

By (5.3), 7;1/2 (0n, —0,) = 7;1/2,un + 77?1/2,0”. We first prove that on {lim, 8, = 6.}, the second term tends
to zero in probability. By C2b, for any ¢ > 0 there exists m > 1 such that P(A,,|lim, 8, = 6,) > 1—e¢. Therefore,

it is sufficient to prove that for any m > 1, %?1/2%]1“47” Thim, 0,=0. . 0 when n — co. This property holds by
Proposition 5.2.

We now prove a CLT for the sequence {7;1/2,un, n > 0}. It is readily seen that

_1/2tTﬂn)llimq 9q=9*j| =E [exp(_0~5tTVt)]llimq eqzo*]

n

ImE {exp(i’y
n

if and only if
limE {exp(W;l/QtTﬂnllimq eqze*)} =E [exp(—0.5¢t" VtLyim, 0,-0.)]

Furthermore, by C4 and Lemma 5.7, for any fixed ¢ > 1, lim,, 7;1/2|1/)* (n,€)| = 0 (where v, is given by (5.4));
this property, together with (5.8) and (5.1) imply that

exp (itT Z Xn+1,k1Ak_1>]

k=1

IimE {exp(i’ygl/QtT,unILhmq 0,=0, )} =1limE

where Xy 41, = vgi{zvkw*(n + 1, k+ 1)ex. By C2a and (5.1), E [XnJrLk;:ﬂ.Ak_l‘fkfl] = 0 and the limit in
distribution is obtained by standard results on CLT for martingale-arrays (see e.g. Hall and Heyde [17], Cor. 3.1).

Lindeberg condition. We have to prove that for any € > 0,

n

p
ZE [|Xn+1,k|2]1|xn+1,k\ze |Fi—1] La,_, — 0.
=1

Following the same lines as above, it can be proved that equivalently, we have to prove for any m > 1,
- P
14, Liim, 0,26, O B [[Xng1 kP Tix, 0 e [Foo1] — 0.
k=1
_ v 2 ;
Let m > 1 be fixed and set X, 11, = X, [, . + X7, with

1 2
X’Elﬁ‘zl,k = XTL+1,/{I]1A,,,LJ€,17 X’Elﬁ‘zl,k = Xn+17k (1 - ]lA'm,k—l) N
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We can assume without loss of generality that 7 given by C2b is small enough so that (2+7)L~, > 14 7. Then,
n+1 21 n+1 241
1
> b ||x ] =X E| }
k=1 k=1
n+1

T —1-7/2 T T
SsipﬂzUekILA,,,,,C_llzJr ] Yt 2 A T e (0 1k 12T
k=1

TPt (n + 1,k + Dexla,, , ,

Under Clb—c, C2b and C4, Lemmas 5.7 and 5.8 imply

n+1
lim sup 7;_5?7) Z YTk (n + 1,k 4+ 12T < 400
" k=1

since (24 7)Lv, > 1+ 7, Lemma 5.8 applies even in the case C4b). Hence,

ntl 241

1 T
>k [|x ] = ot
k=1

Consider now Xr(izl,k. Since there exists a random variable K such that 14, (1 — ]lAm,kfl)]llimq 0,=0, = 0 for

any k > K, it holds for any n > K,

n 2
Liim, 6,=6, 1 4,, Z]E UX,(LZJBM‘ Lix, 0 ]>e fk1]
k=1

K
= tim, 0,20, L4, DB [ X1 6P T1x, 00 e [Fea] (1= 1a,,,_,)
k=1
K

< Liim, 0,0, 14,7, Zvﬁlw*(n +1,k+1)E [|lex? [Fr-1] (1 =14, ,,)-
k=1

Under C4, this term is 0,.p.1(1). Therefore, the first condition of ([17], Cor. 3.1). is satisfied.
Limiting variance. We prove the second condition of ([17], Cor. 3.1). Set

VD S 2y (n, k4 DU (n, &+ 1) i, 0,20,
k=1

n
—(2 _
VO A S 2 (n, k+ 1) (EBlered | Fiar)la,_, — Usliimg o,-6.) (. k+1)7T;
k=1

We prove that Vn(l) £, V1iim, 6,=6, and VS) L. 0. Tt holds on {lim, 6, = 6.},

VO =y U, + j"l (Id + Y1 VA(0,)) VD (1d + 741 VR(6,)"
n+

= VY + 4, (Uy + VR(0,)V,D + VIOVRO,)T) + %vp
n+1

+ ('Yn—i—l - 'Yn)U* + ’Yn’Yn-HVh(e*)Vn(l)Vh(e*)T
and by Lemma 5.9, lim,, Vn(l) = Vliim, ¢,=6, almost-surely. Following the same lines as above, it can be proved

that VS) and Vn(2) given by

ViD= i, 0,=0. 7' D ity k+1) (E [exed |Fior] = Us) vuln, k+1)7
k=1
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have the same limit in probability. By C2c, we write Vn(z) = (Vn(z’a) + Véz’b)) Lim, 6,=6, With

VD =4S 20, (n, k+ D)D) u(n, k+1)T
k=1

n
VD =4S 2 (n, b+ )DP (s k+ 1T
k=1

We have Vn(z’a)
{lim, 0, = 6.}

<A AR s (n, k4 1)) |D,(617)1\ By Lemma 5.8, there exists a constant C' such that on

lim sup ‘Vn@’a)
n

<C limsup‘D,gl) ,
k
where we used (5.1). The rhs tends to zero w.p.1. by C2c. We now consider Véz’b). Since lim,,, P(A,|lim, 8, =

0,) =1, it is sufficient to prove that for any m > 1, V752’b)]lhmq 9,=6. 14 2,0 when n — co. Let m > 1. Set

m

n
— def 2
Zn = ZDJ( )llimq 0q="0. ]lAm-

j=0
By the Abel transform, we have
n—1
b = - =
Vi T4 Limg 0,20, =mt15n + Wty 3_{0R1¥e(n+ 1k +2)Zptpu(n + 1,k +2)T
k=0

~Vipate(n+ Lk +3) St (n + 1,k +3)"}
Under C2c, v, =, 2. 0. For the second term, following the same lines as in Delyon ([11], Proof of Thm. 24,
Chap. 4), it can be proved that the expectation of the second term is upper bounded by

n—1

Conty Yok lu(n+ 1k +2) (E[Z).
k=0

Since limy v, E [|Zk|] = 0, Lemma 5.8 implies that Vn(Q’b)]lAm Ltim, 0,=0. L, 0. This concludes the proof.

Remark 5.3. From the proof above, it can be seen that the assumption on the r.v. Dy(lz) can be relaxed in

]:o.

im V2 La, Liim, 0,=0. = limy, ' Y 32we(n, k+ 1D wu(n, k+1)"1a, o Ta, -
k=1

n
Z Dl(cz) La, LA,

lim~,E [
" k=1

Observe indeed that in probability,

5.5. Proof of Proposition 3.1

The proof is prefaced with a preliminary lemma.
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Lemma 5.4. Let {y,,n > 1} is a (deterministic) positive sequence satisfying Cda and A be a (deterministic)
d x d Hurwitz matriz. Let {x,,n > 0} be a sequence of R¥-valued r.v. satisfying

Tn+l = Tn + 'YnJrlAl'n + 7n+1<»,(11421 + '7n+1C7524217 n > Oa
where
n n+1
Z V& H (Id + ’YJ'A) C}El) ]llimq 2q=0 — \/’YnOwApAl(l)OL? (1),
j=k+1
‘47(12)‘]111mq xe=0 — |$n|2 Ow.p.L(l)-
Then

’y;l ‘xn‘zllimq zq=0 = Ow.p.l. (1)0L1 (]-)
The proof can be easily adapted from Delyon ([11], Thms. 20 and 23) and is omitted here.
Proof of Proposition 3.1. By (5.6)

Oni1 — 0, = 0n — Oy + Vg1 VA, (0n — 0.) + Yns1 (€ns1 + Fng1) + Yng1 (00 — 0T RSV (6, — 6,)

Let m > 1. We apply Lemma 5.4 with x, «— (6, — 0,)1 4, , A — Vh(0,), Cﬁgl = (ent1 + Tnt+1)la,, and
Cn+1 = (0, — 0. ) TR (0, — 0,) 1 4,,. Under Clc, A is a Hurwitz matrix and |(T(L2le|1hmq 9,=0, = Owp.1(1) |2n|?.
We write Cn+1 = (ent1la,., +€nt1 (1 —1a,.,.) +7ns1) La,,. Under C4, AVERIa-b, Lemmas 5.7 and 5.8
imply
n

Z’ykw*(n +1,k+1) exla, , . = V1mOr2(1).

k=1
Upon noting that 1 4, (1 — ]lAm,k) =0 for all k£ > K where K is a r.v. finite w.p.1.

n K
(Z v;cw*(n +1,k+ 1) €L (1 — ]]‘Am,,k,—l)> ILA,,,L = (Z’Y}ﬂ/}*(n +1,k+ 1) €L (1 — ]]‘Am,,k,—l)> ]lAm.

k=1 k=1

Therefore, by Lemma 5.8, this second term is /7,04 p.1(1). Finally, Lemma 5.8 and AVER2a-b imply that
the last term is /7, Ow.p.1(1)Or2(1) (the proof is on the same lines as the proof of Prop. 5.2 and details are
omitted).

5.6. Proof of Theorem 3.2

The proof is adapted from the proof of Delyon ([11], Thm. 26). Under Clc, Vh(0,) is invertible. By (2.1) and
Lemma 5.10 applied with zj < 0, — 6, and A — Vh(0,), we have

Vi (B, —0,) = ~Vh(0,)

where

n

- 1
T 2T g 2 (0) — V(L) 0= 6.)

1 9n+1—0* O — 0, ) - ( )
+ 0 —6,).
n+1 ( Yrn+1 71 n+lz; Ye oo Vk+1 (6 )

Vh(0,)Z, < —
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We prove that \/ﬁZnILlimq 0,=0, 2, 0; combined with AVERIc, this will conclude the proof. Since
lim,, P(A,|lim, 0, = 6,) = 1, it is sufficient to prove that for any m > 1, \/nZ,14,, Liim, 0,-0, 2.0, Let
m > 1. By AVER2c, it holds n= /257 i1 1a,, Liim, 6,—0, — 0. By (5.6),

3" (h(0x) — VA(0.) (0 — 0.)) = n#“ 0 — 0.)T R (05, — 6.),

= k=0

and by Cl1b, ng)llhmq 9,=0, = Ow.p.1(1). Therefore, by Proposition 3.1,

Vi Vi e

h(0k) — Vh(0:)(0k — 05)) La,, Liim, 0,—0, = )

S (W0 = Th0.) (0 — 0) La, i, 20, = | 575 S WiTF
k=0 k=0

where Wy, = Oy, p.1.(1) and Wy, = Op1(1). AVER3 implies that this term tends to zero in probability. Proposi-

tion 3.1 and AVER3 imply that

vn <0n+1 -0 06— 0*> _ Or1(1)Oy p.1.(1) P

+ Oq. 1(1) — 0.
n+1 Tn+1 M1 (n+1)vn+1 ?

14, Liim, 0,=6.

Finally, Proposition 3.1 and AVER3 also imply that

n
14, Liim, o,=0, O —
bt S (L LYo - (5302

Yk ’7k+1

mmﬁ)

where Wi, = Oy .p.1.(1) and Wi = Op:(1). This term tends to zero in probability.
Lemma 5.5. C2 and lim, nvy, > 0 imply AVERI1.

Proof. C2 implies trivially AVER1a-b. We only have to check AVERIc, or equivalently, prove that for any
m>1,
HmE [ exp (it" €nt1Liim, 0,0, 14,,)] = E [ exp (it" Ustliim, 9,—0,1.4,.)] -

Write En41ltim, 0,=0, 14,, = T1n + T2 with T1, = (n + 1)71/2 Zzzo ex+1la,, ,1a,. By (5.1) and C2b,
Tsn = Ow.p.1.(1). Observe that E [ekﬂ La,, . 1a, \fk] = 0 so that the convergence in distribution of 7; ,, will
be established by applying results on martingale-arrays: we check the assumptions of Hall and Heyde ([17],
Cor. 3.1). By C2b, it is easily checked that for any € > 0, there exists a constant C' such that for any n,

1< ) c
E [E kZ_O]E |:|€k+1| ]l\ek+1\26\/ﬁ|‘7:k:| ﬂA'rrz,k] < W

Hence, n=! >} _E [|ek+1|21\ek+1\25\/ﬁ|fk} 1a,,,1la, 2, 0. We now prove that

n

P
E [eri1eri1]Fr] La, 0 1a, — Usla,, Lim, 0,20, - (5.10)

k=0
As above, we claim that this is equivalent to the proof that for any m > 1,

n

1
? (E [6k+16£+1|fk] — U*) l) 0

k=0

Liim, 0,=0, 1 4,,
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C2c and the Cesaro lemma imply that w.p.1, on the set A, N{lim, 6, = 0.}, (n+1)"1 >} _, D,gl) 2% 0. Finally,

under C2c,
_ o)
o

and the rhs tends to zero since lim,, n7y, > 0. This concludes the proof of (5.10) and the proof of the Lemma.

1
n+1

E

n
> D Liim, 0,-0.14,,
k=0

5.7. Proof of Proposition 4.1

Let a € (0,1/2) be given by the assumption (4.1). By the Jensen inequality, for any § € @ and v € [«, 1], it
holds
QoV7 < AGV7 + by. (5.11)
In addition, since V- > 1, {V7 <2by/(1 —A§) —1} C {V* <2bg/(1—A§)—1}. Therefore, by ([16], Lem. 2.3),
there exists an unique probability measure 7y invariant for Qg, thus implying Al.
By ([16], Lem. 2.3). again, there exist constants Cy, pg € (0,1) such that for any v € [a, 1], z € X, § € © and
any compact set IC C O,

sup  |Qpf(x) —mo(f)| < Copg V7 (x); (5.12)
{F:fllvy <1}
sup (Cg V(1-— po) LV 7r9(V)) < 0. (5.13)
e

Set ﬁg(l‘) = 50 (QyH(,)(z) — h(d)). By (5.12), upon noting that ||H(0,-)|ve < sup,cx |H (6, )| which is
finite by assumption (v)

[Ho(@)| v Qo Ho@)| < I1H©.)lve Coll = o)V (@).

Then, (5.13) and the assumptions (iv)—(v) imply that A4a holds with Vi (z) «— V().
Set Up(z) = 3,50 (Qp Fo(x) — mo(Fy)). Observe that there exists a constant Cy such that

[Eo(@)| < G5 (QoV** (@) + (QoV°(@))*)

so that by (5.11), || Fy|ly2« < co. As above, it can be proved that A4b holds with Va(z) « V2%(x).
Choose a compact K of © such that L D {# € ©:10 —0,| <d}; 7€ (0,1/a—2) and 7 = 7/2. Since V; =V
and Vo = V2< it holds by iterating the drift condition (5.11) that

sup B (VA (Xosn) + VI (X)) T,y e ] < 2B [V247(00] 4 25upbo(1 = Na) .
m T S
Under the assumption (iv), the second term in the RHS is finite. Since 6 is fixed and H(6,z) is bounded
uniformly in 6 for # in a compact set, it can be proved by a simple induction that the random variables
01, ,0m_1 are in a (non random) compact subset K’ of @. Therefore, by iterating the drift again, we prove
that E [V22F7¢(X,,)] < co. This concludes the proof of Adc.

Following the same lines as in the proof of ([2], Prop. 6.1), it can be proved by using (5.11) and the assump-
tion (v) that for any compact X C © and any 3’ < 3, there exists C such that for any 6,60’ € K,

\h(0) — h(0)| + |Hp — Hy|lve + |QoHs — QorHpr|lva < C1— 0% (5.14)

Similarly, it can be proved along the same lines as the proof of ([2], Prop. 6.1). that ||Uy — Uy ||y2e < C|6 — 6’|
provided one has
sup |0 — 0|78 ||Fy — For|ly2e < 0. (5.15)
0,0k
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Let us prove this property. Note that Fy(x) — Fy (z) is of the form py HyHY — poHo HT — (uy Hy) (1 Hy)T +
(o Ha) (2 H2)T for some probability measures pu1, 12. Writing
pHyHT — po HyHY = (pny — po) (HyHY) + poHy (Hy — Ha)" + po(Hy — Ha)Hy
(urHy) (o HY) — (o Ho ) (p2HY ) = paHy (nHy — poHz)" + (uaHy — poHo) po H

and using the assumption (v) and (5.14), the property (5.15) holds. This concludes the proof of the first statement
of Add with b= §'.

Finally, let us consider the second statement. Since supycx (V) < oo for any compact K of © (see (5.13)),
the dominated convergence theorem and (5.15) imply that with probability one,

L, 0,0, 1 [ 7. (dy) (B, (5) = Fo.(5)) = 0. (5.16)
In addition, for any £ > 1, x € X and 6 > 0,

Lo, —0.1<s < |Q5, Fo, (¢) — Q5 Fo, ()| Ljg, 0, <5 + 2V () oS 5C’eHFellv2ap’5~ (5.17)
—0.I<

|70, Fo,, — 7o, Fp,,

By assumption (v), for any 6 > 0, there exists a constant C; such that for any z,

|Qo,, Fo,, (x) — Qo, Fp,, ()| 1jg, —g,1<5 < C1 ‘ SuI\? 1 ||vza V2 (2) |05 — 0.4]%;
0—0,|<5

and by a trivial induction on k, there exists a constant C} such that for any x,

|QF, Fo, (x) — Q5, Fo, (x)| L9, ~0.1<5 < Ci o5 1Fo [ v2e V2% (2)[6n — 6.7 (5.18)

The controls (5.16) to (5.18) imply lim,, 7y, Fy, = mg, Fy, almost-surely, on the set {lim, 6, = 0, }.
5.8. Technical lemmas
Results below are classical and the proofs are omitted here; they are provided in the supplementary material.

Lemma 5.6. Let (2, A,P,{F,,n > 0}) be a filtered probability space and set Foo = o(Fp,n >1). Let B € F.
There exists a Fy,-adapted sequence {A,,n > 0} such that lim, 14, = 1p P-a.s.

Lemma 5.7. Let |-| be any matriz norm. Let { Ay, k > 0} be a sequence of square matriz such that limy, | Ay, —
Al = 0 where A is a Hurwitz matriz. Denote by —L, L > 0, the largest real part of its eigenvalues. Let {y, k > 0}
be a positive sequence such that limg v, = 0. For any 0 < L' < L, there exists a positive constant C' such that
forany k <n

n

|(1d + 7 An) - (Id 4 Y1 Aper) (1d + e Ar)| < Cexp | =LY
j=k

Lemma 5.8. Let vy, be a positive sequence such that limy v, = 0 and ), vx = o0o. Let {ex, k > 0} be a

non-negative sequence. Then

1
C(b,p)

n n
lim sup 'y;pz'yiﬂ er exp | —b Z v | <
" k=1 j=k+1

(i) with C(b,p) =b, for any b > 0,p >0 if log(Vk—1/7%) = o(Vk)-
(i1) with C(b,p) = b — p/vs, for any by, > p > 0 if there exists v, > 0 such that log(yk—1/Vk) ~ Vie/ V-

limsup e,,,
n

By convention, Z?:nﬂ v; = 0.
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Lemma 5.9. Let U, be a positive definite matriz.

(a) Assume Clb—c and Cda. Consider the equation

Un+1 = Un + 'an(vn) + %Uﬂ + ('7n+1 - 'Vn)U* + 7n7n+1Vh(0*)'Uth(0*)T,
n+

where f(v) LU, + Vh(0:)v +vVh(0,)T. Then there exists an unique positive definite matriz V' such that
f(V) =0 and lim, v, = V.
(b) Assume Clb—c and C4b. Consider the equation
Un+1 = Un + 'Ynf('Un) + ('YnJrl - 'Yn)U* + 'Yn'VnJrIVh(g*)UHVh(G*)T»

where f(v) LU, + Vh(0:)v + vVh(0,)T + v . Then there exists an unique positive definite matriz V
such that f(V) =0 and lim, v, = V.

Lemma 5.10. Define the sequence {x,,n > 0} by
Tn4+1 = Tn + ’Yn-‘rlAl‘n + ’Yn—&-lgn—i-la xo € Rdv
where {v,,n > 1} is a positive sequence, {C,,n > 1} is a R%*-valued sequence and A is a d x d matriz. Then

Aka = —ZCkH-i- (-TnJ,»I - E) +Z (i - ! )-Tk.
k=0 k=0 Tk

Tntl N 1 Ve+1
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