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THICK OBSTACLE PROBLEMS WITH DYNAMIC ADHESIVE CONTACT

Jeongho Ahn
1

Abstract. In this work, we consider dynamic frictionless contact with adhesion between a viscoelas-
tic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini’s contact
conditions. Including the adhesion processes modeled by the bonding field, a new version of energy
function is defined. We use the energy function to derive a new form of energy balance which is sup-
ported by numerical results. Employing the time-discretization, we establish a numerical formulation
and investigate the convergence of numerical trajectories. The fully discrete approximation which sat-
isfies the complementarity conditions is computed by using the nonsmooth Newton’s method with the
Kanzow-Kleinmichel function. Numerical simulations of a viscoelastic beam clamped at two ends are
presented.
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1. Introduction

The quasi-static or dynamic adhesive contact between a purely elastic (or viscoelastic) body and a per-
fectly rigid (or deformable foundation with normal compliance) has been considered in many papers (see, for
example, [6,7,10,11,18,19,25] and reference therein). Most papers [6,10,11,18,19] regarding frictionless contact
show only the existence of solution and uniqueness, using the variational inequalities and Banach fixed point
arguments. In the paper [25], Raous et al. considered quasistatic contact with Coulomb friction and adhesion,
based on Frémond’s work [15].

In frictionless contact problems, one of the important issues is to investigate conservation of energy or energy
balance, while the papers listed above do not deal with that issue. The study regarding conservation of energy
or energy balance has been done in [1,5,22,23,26,29–31]; especially, Petrov and Schatzman [23] and Stewart [29–
31] have obtained results of energy conservation or energy balance via convolution complementarity problems.
The most recent results on the energy balance can be found in [5,31], where it has been shown that energy loss
can be regarded as only viscosity and external body forces (not included in [5]). However, those papers have
considered the energy balance without the adhesive energy.

In this paper, by adding the adhesive energy a new form of energy balance is formulated and evidence of
the energy balance is provided by numerical experiments. Unlike the numerical results presented in most of
works (for example, the quasi-static problem [6,10] and even the dynamic problem [13]) we perform numerical
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experiments describing the comparison of the magnitude of contact forces, in which we are able to see whether
the effect of adhesion has influence on the contact forces or not. Consequently, the adhesion process makes
contact forces NC neither more nor less regular, while viscosity affects the contact forces less regularly as
theoretically shown in [23] and numerically shown in [5].

The most similar system has been studied in the paper [6]. It requires a quasi-static second order partial
differential equation without viscosity, while we consider dynamic adhesive contact problems with viscosity
expressed by the dynamic fourth order partial differential equation. Readers who are interested in adhesive
contact may refer to monographs [27,28] which include several different adhesive contact problems.

Basically, the contact problems that we consider are included in a class of thick obstacle problems. The
meaning of “thick” is that for time t ≥ 0 and an open domain Ω ⊂ Rd with some d > 0 the obstacles (or
constraints) are applied over a subset Ωc ⊂ Ωc ⊂ Ω, while the meaning of “thin” is that the obstacles are
applied over a subset of the boundary ∂Ω. The approach studied in [3] is applicable to some examples of thick
obstacle problems without viscosity; particularly, one of the examples is an Euler-Bernoulli beam equation which
has been studied in [2] numerically and in [4] by the penalty method, and another example is a vibrating string
problem studied in [1] theoretically and numerically. Those works have focused on conservation of energy. One
example of thin obstacle problems with viscosity is considered in [5].

In this work, the contact is adhesive. Following Frémond’s original approach [14,15], the process of adhesion
is assumed to be irreversible. In contrast to this work, reversible processes are assumed in the paper [7] and the
papers [13,19] deal with history dependent processes. Those adhesive processes will be taken into consideration
in a future work.

This paper is organized as follows. In Section 2 our dynamic adhesive contact problem is described and
formulated in detail. Section 3 provides a mathematical background and explains some notations. In Section 4,
the results of existence are stated. In Section 5 energy balance is investigated, introducing the total energy
function for the adhesive contact. In Section 6, we prove that the numerical trajectories are convergent to
solutions of the thick obstacle problem with adhesive contact. In Section 7, we set up the fully discrete numerical
formulation of a viscoelastic beam clamped at two ends, employing the time-discretization and the finite element
method. We also introduce the nonsmooth Newton’s method which solves the complementarity problems at each
time step. In Section 8, numerical simulations are shown and discussed. The numerical results are presented
that demonstrate the energy balance and compare the magnitude of contact forces for several cases. Finally we
present the conclusion in Section 9.

2. Problem statement and formulation

In this section we state the thick obstacle problems for a clamped boundary with dynamic adhesive contact.
The solution u = u(t,x) for our problem represents the displacement of viscoelastic bodies at (t, x) ∈ [0, T ]×Ω,
where T > 0 is given and Ω ⊂ Rd is an open bounded domain with Lipschitz boundary ∂Ω. The continuous
function ϕ(x) represents a stationary rigid obstacle whose surface is glued. One of the examples is a thin
viscoelastic plate which moves vertically and whose boundary is clamped horizontally, i.e., the plate is fixed
and flat at its boundary. The simple model is illustrated in Figure 1.

Now we describe the dynamic adhesive contact. According to Frémond’s works [14,15], we introduce the
bonding field β = β(t, x), called the adhesion intensity, which measures the active microscopic bonds between
the viscoelastic body and the rigid obstacle. β = 1 implies that all bonds are perfectly active and β = 0 that
adhesion does not apply to the body, and 0 < β < 1 that there is a partial bonding. The adhesive restoring
forces prevent the body from bouncing away from the rigid obstacle and thus its direction is downward. Since
the adhesive forces are proportional to the gap between the viscoelastic body and the rigid obstacle and to β2,
they are represented by −κ (u−ϕ)β2, where the constant κ > 0 is the interface stiffness or the bonding coefficient
and κβ2 the spring constant of the bonding field. The more detailed explanation about the adhesion processes
can be found in articles (e.g., [6,18,25]).
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Figure 1. Viscoelastic plate with dynamic adhesive contact.

Since the viscoelastic body of the Kelvin-Voigt type is not allowed to penetrate a perfectly rigid obstacle, it
is placed above the obstacle;

u(t, x) ≥ ϕ(x) in (0, T ]× Ω.

When the viscoelastic body touches the rigid obstacle, there are occurring contact forces; if u(t, x) = ϕ(x),
the magnitude of contact forces NC(t, x) ≥ 0 in [0, T ] × Ω and thus their direction is upward. Otherwise
(u(t,x) ≥ ϕ(x)), the contact forces do not take place, i.e., NC(t,x) = 0. Those situations lead to the Signorini’s
contact conditions.

Let v = u̇ be the velocity and α > 0 a viscosity constant and f a body force. Throughout this paper the
notation “(˙)” is used for the derivative with respect to time t. If the frictionless Signorini’s contact conditions
with adhesion are imposed over the viscoelastic body, the dynamic motion of the body is expressed by:

v̇ = −Δ2u− αΔ2v + f(t, x) +NC − κ (u− ϕ)β2 in (0, T ]× Ω, (2.1)

where NC(t,x) satisfies the complementarity condition

0 ≤ u(t, x) − ϕ(x) ⊥ NC(t, x) ≥ 0 in (0, T ]× Ω. (2.2)

We notice that the Signorini’s contact conditions may be interpreted as the complementarity conditions (2.2).
In general, the complementarity condition 0 ≤ a ⊥ b ≥ 0 means that a, b ≥ 0 component-wise and aT · b = 0,
where a and b are vectors. The vectors and matrices will be denoted by bold characters. In the scalar case,
0 ≤ a ⊥ b ≥ 0 means that both are nonnegative and either a or b is zero.

Let N = NC−κ (u−ϕ)β2 be the contact force and adhesive force of the body. Then it is easy to see from (2.2)
that both forces do not happen simultaneously. Thus if u − ϕ > 0, N = −κ (u − ϕ)β2 ≤ 0, which implies that
when the body does not hit the rigid obstacle, only adhesive forces are applied to the body. In addition, we can
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see that (2.1) and (2.2) are equivalent to

v̇ = −Δ2u− αΔ2v + f(t, x) +N(t,x) in (0, T ] × Ω,
0 ≤ u(t, x) − ϕ(x) ⊥ N + κ (u− ϕ)β2 ≥ 0 in (0, T ] × Ω.

Since the adhesive processes are irreversible, we assume that the evolution of adhesion is formulated by the
first order ordinary differential equation (see [16,17,25]):

β̇ = −κ
a

(u− ϕ)2β, (2.3)

where the constant a > 0 is the adhesion rate. We notice from (2.3) that once debonding occurs, there is no
rebonding because β̇ ≤ 0.

Thus we are led to the following PDE system:

v̇ = −Δ2u− αΔ2v + f(t, x) +N(t, x) in (0, T ]× Ω, (2.4)
0 ≤ NC(t, x) ⊥ u(t, x) − ϕ(x) ≥ 0 in (0, T ] × Ω, (2.5)

β̇ = −κ
a
(u− ϕ)2β in (0, T ]× Ω, (2.6)

u(t, x) = ∇u · n = 0 on (0, T ] × ∂Ω, (2.7)
u(0, x) = u0 in Ω, (2.8)
v(0, x) = v0 in Ω, (2.9)
β(0, x) = β0 and 0 < β0 ≤ 1 in Ω, (2.10)

where u0 is the initial displacement and v0 the initial velocity, and β0 the initial bonding field. The boundary
∂Ω is fixed and flat and so we have the essential boundary conditions (2.7) in which n is the outer normal
vector.

3. Notations and preliminaries

The spaces that we are mostly dealing with are based on Gelfand triple (see [34], Sect. 17.1):

V ⊂ H ⊂ V ′,

where all spaces are separable Hilbert spaces and ⊂ means compactly and densely embedding. Note that “ ′ ”
is denoted for a dual space. In this work, those spaces shall be Sobolev spaces of functions defined on the
domain Ω. Let X be a Banach space. Then the duality pairing between X ′ and X is denoted by 〈·, ·〉X′×X .
When a duality pairing is defined on the well-known space, 〈·, ·〉 is used. Similarly, inner product (·, ·)H is
employed instead of (·, ·)H×H . We note that for any x ∈ H , y ∈ V 〈x, y〉V ′×V = (x, y)H×V = (x, y)H in
Gelfand triple.

In our problems, let the pivot space H = L2(Ω) and V = H2
0 (Ω), where H2

0 = {u ∈ H2(Ω) | u = ∇u · n = 0
on ∂Ω}. From the essential boundary conditions, Au = Δ2u and Bv = αΔ2v are elliptic self-adjoint operators

from V to V ′. In addition, for the fixed β ∈ L∞(Ω) a self-adjoint operator B(β, ·) from V to H is needed to
show the existence of solutions. Then the operators A, B and B(β, ·) are defined as follows:

〈Au, w〉 =
∫

Ω

ΔuΔw dx, (3.1)

〈Bv, w〉 = α

∫
Ω

ΔvΔw dx, (3.2)

(B(β, u), w)H =
∫

Ω

β2uw dx. (3.3)
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We notice that 〈B(β, u), w〉V ′×V = (B(β, u), w)H×V = (B(β, u), w)H by the continuous extension in Gelfand
triple.

In order to show convergence of our numerical trajectories, we need scales of interpolation spaces Vθ for
any θ ∈ R. See, for example, Bramble and Zhang [8], Appendix B, or Taylor [32], Section 5.12, for the
interpolation theory. Taking A = B = Δ2, those spaces Vθ can be defined as

Vθ =
{
u ∈ H | 〈Aθu, u

〉
<∞},

which is a Hilbert space with (u, w)Vθ
=
〈
Aθu, w

〉
. In our problem, Vθ is taken asH2θ

0 (Ω) and thus Vθ = H2θ
0 (Ω)

with 0 ≤ θ ≤ 1. In particular, V = V1, H = V0, V ′ = V−1, and (Vθ)
′ = V−θ. We also note that Vθ is compactly

embedded in Vθ−ε for ε > 0.
The space Cp (0, T ;Vθ) consists of Hölder continuous functions from [0, T ] to Vθ with exponent 0 < p ≤ 1.

If u ∈ Cp (0, T ;Vθ), its norm is defined as

‖u‖Cp(0,T ;Vθ) = ‖u‖C(0,T ;Vθ) + sup
s�=t

‖u(t) − u(s)‖Vθ

|t− s|p ·

Moreover, the following inequality will be used to prove that the solution u is in the Hölder space Cp (0, T ;Vθ):
for u ∈ V

‖u‖Vθ
≤ Cθ ‖u‖1−θ

H ‖u‖θ
V , (3.4)

where 0 ≤ θ ≤ 1. This inequality can be found in Bramble and Xu [8], Appendix A, Theorems A.1 and A.2,
and Kuttler [21], Section 22.6, equation (62), and Triebel [33], Theorem 1.3.3(g).

Let K ⊂ X be a closed convex cone and K ′ ⊂ X ′ its dual cone, where the dual cone K ′ is defined by

K ′ = {μ | 〈μ, y〉 ≥ 0 for all y ∈ K}. (3.5)

Extending the definition (3.5) to our dynamic problem, the following Lemma 3.1 (see [30], Lem. 4.3, for the
proof) is presented which is useful to derive the energy balance formula. The application of Lemma 3.1 will be
seen in Section 5.

Lemma 3.1. Suppose that X and X ′ both have the Radon-Nikodym Property (see [9]). (This is true, for
example, if X is reflexive). Then suppose that K is a closed convex cone and that X ⊃ K  y(t) ⊥ μ(t) ∈
K ′ ⊂ X ′ for Lebesgue almost all t with y ∈ W 1,q(0, T ;X) and μ ∈ Lp(0, T ;X ′) with 1/p+ 1/q = 1. Then we
have 〈μ(t), ẏ(t)〉 = 0 for almost all t.

4. Existence results

We want to find a solution u : [0, T ] → V and β : [0, T ] → L∞(Ω) such that

v̇ = −Au−Bv + f(t) +N(t) in (0, T ] × Ω, (4.1)
0 ≤ NC(t) ⊥ u(t) − ϕ ≥ 0 in (0, T ]× Ω, (4.2)

β̇ = −κ
a
(u − ϕ)2β in (0, T ] × Ω, (4.3)

u(0, x) = u0 in Ω, (4.4)
v(0, x) = v0 in Ω, (4.5)
β(0, x) = β0 and 0 < β0 ≤ 1 in Ω, (4.6)

where the equation (4.1) needs to be considered in the sense of distributions.
Now we impose an important condition which is necessary to prove the boundedness of the contact forces

in a suitable space. Our physical situation requires that contact forces do not occur near the boundary,



1026 J. AHN

as the body is moving up and down. So we assume that for ε > 0 there is a subdomain Ωδ ⊂ Ωδ ⊂ Ω ⊂ R
d

with δ > 0 such that u(t,x) − ϕ(x) > ε for all (t,x) ∈ [0, T ] × Ω\Ωδ, where Ωδ = {x ∈ Ω | dist(x, ∂Ω) >δ}.
This implies that there is always a gap between the body and the rigid obstacle near the boundary ∂Ω. Indeed,
this condition causes the motivation to define the strong pointedness from the abstract point of view. The
definition of the strong pointedness is presented in [3].

In order to prove that the solutions satisfy the complementarity conditions in the weak sense, we require
that the contact forces NC are nonnegative Borel measures on [0, T ]× Ω and u(t, x) − ϕ(x) ≥ 0 for almost all
(t, x) ∈ [0, T ]× Ω.

Finally our main result is presented in the following theorem.

Theorem 4.1. Assume that the initial datum u0 ∈ V , v0 ∈ H, β0 ∈ L∞(Ω), f ∈ L∞(0, T ;H), and ϕ ∈ C(Ω).
Then there exist the solutions u to (4.1)–(4.6) such that u is in L∞(0, T ;Vθ) ∩ C([0, T ] × Ω) ∩ C1/2(0, T ;V ),
where d/4 < θ < 1. Moreover, v is in L∞(0, T ;H)∩ L2(0, T ;V ) and β is in W, where W =

{
ζ | 0 ≤ ζ ≤ 1 and

ζ ∈W 1,∞ (0, T ;H)
}
.

We notice from Theorem 4.1 that the thick obstacle problems that we consider work for only d = 1, 2, 3. The
proof of this result will be shown in Section 6.

5. Energy balance

Before we prove the existence of solutions, we investigate the energy balance in this section. The total energy
function E for the adhesive contact is defined to be

E(t) := E[u(t), v(t), β(t)] =
1
2

(
‖v‖2

H + 〈Au, u〉 + κ ‖β (u− ϕ)‖2
H

)
, (5.1)

where the first term is called the kinetic energy and the second term the elastic energy and the last term the
adhesion energy which is obtained from the free surface energy with the Dupré adhesion energy (see [17]). As
we shall see in the next section, the energy function plays an important role in showing the boundedness of
numerical trajectories.

To see the energy balance, we assume that solutions are sufficiently smooth and there is no body force, i.e.,
f(t,x) = 0. By the extension of (·, ·)H on V ′ × V we compute

dE(t)
dt

= (v̇, v) + 〈Au, v〉 + κ

∫
Ω

(
ββ̇(u− ϕ)2 + β2(u− ϕ)v

)
dx

=
〈
NC − κ (u− ϕ)β2, v

〉− 〈Bv, v〉 + κ

∫
Ω

(
ββ̇(u− ϕ)2 + β2(u− ϕ)v

)
dx

= 〈NC, v〉 − 〈Bv, v〉 + κ

∫
Ω

ββ̇(u− ϕ)2dx.

Then using (2.3), we have
dE(t)

dt
= 〈NC, v〉 − 〈Bv, v〉 − a

∥∥∥β̇∥∥∥2
H
. (5.2)

In fact, if 〈NC, v〉 is interpreted in the ordinary sense, it is not difficult to see that 〈NC, v〉 = 0. So we are able
to derive the energy balance (5.3) directly. However, in general the velocity v cannot be differentiable in the
ordinary sense. Therefore we need more sophisticated analysis.

Lemma 5.1. Suppose that for all t ∈ [0, T ] u(t) − ϕ ∈ K ⊂ V and NC(t) ∈ K ′ ⊂ V ′ and NC ∈ L1(0, T ;V ′)
and u ∈ W 1,∞(0, T ;V ). Then we have the following form of energy balance

E(T ) = E(0) −
∫ T

0

〈Bv, v〉 dt− a

∫ T

0

∥∥∥β̇∥∥∥2
H

dt. (5.3)
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Proof. Since the Radon-Nikodym Property (RNP) holds if X is reflexive (see [30]), we can apply Lemma 3.1
into our dynamic problem. Then we see that 〈NC, d(u− ϕ)/dt〉V ′×V = 〈NC, v〉V ′×V = 0. Therefore it follows
from (5.2) that

dE(t)
dt

= −〈Bv, v〉 − a
∥∥∥β̇∥∥∥2

H
. (5.4)

Thus integrating both sides of the equation (5.4) on [0, T ], we are led to the energy balance (5.3). �

As we can see (5.3), energy dissipates due to viscosity and the evolution of adhesion under the assumption
of the sufficient regularity. The regularity β̇ ∈ L∞(0, T ;H) will be shown in the next Section 6. Therefore
possibility to conserve energy depends on viscosity coefficient α > 0 and adhesion rate a > 0: as α ↓ 0 and
a ↓ 0, energy conserves. This argument will be supported by numerical results in Section 8.

6. Time-discretization and its convergence

In this section we set up a numerical formulation of (2.4)–(2.10), using a hybrid of two numerical schemes in
time space:

• Elasticity
(
Δ2u

)
and viscosity

(
Δ2v

)
– Midpoint rule is used.

• Complementarity condition and bonding field β – Implicit Euler method is used.

The starting point is that the time interval [0, T ] will be partitioned with the time step size (ht)l = tl+1 − tl:

0 = t0 < t1 < t2 < t3 < . . . < tl−1 < tl < tl+1 < . . . < tn = T.

For simplicity we use a uniform spacing ht = tl+1 − tl and T/ht is assumed to be a positive integer n. Thus
each time step tl becomes tl = l · ht and the end time T = tn. Then the numerical solution of displacement
u (tl, x) is denoted by ul and the numerical solution of velocity v (tl, x) by vl and the numerical solution of
contact force NC (tl, x) by N l

C, and the numerical solution of bonding field β (tl, x) by βl. For a given body
force f ∈ L∞(0, T ;H) the discrete-time formulation is presented below:

vl+1 − vl

ht
= −A

(
ul+1 + ul

)
2

− B
(
vl+1 + vl

)
2

+ f l

+ N l
C − κB (βl+1, ul+1 − ϕ

)
, (6.1)

vl+1 + vl

2
=

ul+1 − ul

ht
, (6.2)

0 ≤ ul+1 − ϕ ⊥ N l
C ≥ 0, (6.3)

βl+1 − βl

ht
= −κ

a

(
ul − ϕ

)2 (
βl+1

)
, (6.4)

where (6.1) is defined in the distributional sense. We note that the body force f : [0, T ] → H is assumed to be
approximated by a step function: f(t) =

∑n−1
l=0 f

l with a constant vector valued function f l : [tl, tl+1) → H for
each 0 ≤ l ≤ n− 1.

Now we begin constructing the approximate solutions. We denote by uht(t, ·) the numerical trajectory of
displacement and by vht(t, ·) the numerical trajectory of velocity and by βht(t, ·) the numerical trajectory of
the bonding field and ˙βht(t, ·) the numerical trajectory of velocity of the bonding field, respectively. In our
approximation, uht is a piecewise linear continuous interpolant with uht(tl, ·) = ul and uht(tl+1, ·) = ul+1 for
t ∈ [tl, tl+1] and also βht is a piecewise linear continuous interpolant with βht(tl, ·) = βl and βht(tl+1, ·) = βl+1

for t ∈ [tl, tl+1], whereas vht(t, ·) is a constant interpolant of vht(t, ·) = vl+1 for t ∈ (tl, tl+1] and ˙βht(t, ·) is
a constant interpolant of ˙βht(t, ·) = (β̇)l+1 for t ∈ (tl, tl+1]. Then from (6.2) we can obtain uht(t, ·) = ul +
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1
2

∫ t

tl
vht(τ −ht, ·)+vht(τ, ·) dτ for t ∈ (tl, tl+1]. We also set up a step function (NC)ht

(t, ·) as (NC)ht
(t, ·) = N l

C

for t ∈ [tl, tl+1). Then the approximate contact force (NC)ht
(t, x) can be defined to be

(NC)ht
(t, x) = ht

n−1∑
l=0

δ(t− (l + 1)ht)N l
C(x), (6.5)

where δ is the Dirac delta function.
In the semi-discrete case, the energy function El is defined as

E(tl) := El =
1
2

(∥∥vl
∥∥2

H
+
〈
Aul, ul

〉
+ κ
∥∥βl (ul − ϕ)

∥∥2

H

)
. (6.6)

Based on the energy function El, we want to prove that the solutions (ul, vl, βl) are in suitable spaces for
each discretized time tl, independent of time step ht > 0. Moreover, we can observe in the next Lemma 6.1 that
energy dissipates, i.e., El ≥ El+1. Taking κ = 1 for the sake of convenience, we consider the following lemmas.

Lemma 6.1. If the discretized solutions
(
ul, vl

)
satisfy the numerical formulation (6.1)–(6.4), then

(
ul, vl

) ∈
V ×H for any l ≥ 1, independent of ht > 0.

Proof. Multiplying both sides of (6.1) by each side of (6.2), it follows from extension of (·, ·)H that

1
2ht

(∥∥vl+1
∥∥2

H
− ∥∥vl

∥∥2
H

)
= − 1

2ht

(〈
Aul+1, ul+1

〉− 〈Aul, ul
〉)− 1

4
〈
B
(
vl+1 + vl

)
, vl+1 + vl

〉
+

1
ht

(
f l, ul+1 − ul

)
H

+
1
ht

〈
N l

C, u
l+1 − ul

〉
− 1
ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ul

)
H

= − 1
2ht

(〈
Aul+1, ul+1

〉− 〈Aul, ul
〉)− 1

4
〈
B
(
vl+1 + vl

)
, vl+1 + vl

〉
+

1
ht

(
f l, ul+1 − ul

)
H

+
1
ht

〈
N l

C, u
l+1 − ϕ

〉− 1
ht

〈
N l

C, u
l − ϕ

〉
− 1
ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ul

)
H
.

From the complementarity condition (6.3), we obtain

1
2ht

(∥∥vl+1
∥∥2

H
− ∥∥vl

∥∥2
H

)
≤ − 1

2ht

(〈
Aul+1, ul+1

〉− 〈Aul, ul
〉)− 1

4
〈
B
(
vl+1 + vl

)
, vl+1 + vl

〉
− 1
ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ul

)
H
. (6.7)

We now modify
(
ul+1 − ϕ

)
on the last term (6.7):

(
ul+1 − ϕ

)
=

1
2
(
ul+1 − ϕ+ ul − ϕ+ ul+1 − ul

)
. (6.8)
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Since the visco operator B is elliptic, applying the equation (6.8) to (6.7), we obtain

1
2ht

(∥∥vl+1
∥∥2

H
+
〈
Aul+1, ul+1

〉) ≤ 1
2ht

(∥∥vl
∥∥2

H
+
〈
Aul+1, ul

〉)
+

1
ht

(
f l, ul+1 − ul

)
H

− 1
2ht

(B (βl+1, ul+1 − ϕ+ ul − ϕ+ ul+1 − ul
)
, ul+1 − ul

)
H

≤ 1
2ht

(∥∥vl
∥∥2

H
+
〈
Aul, ul

〉)
+

1
ht

(
f l, ul+1 − ul

)
H

− 1
2ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ul

)
H
− 1

2ht

(B (βl+1, ul − ϕ
)
, ul+1 − ul

)
H
. (6.9)

Now we change (6.9) as follows:

− 1
2ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ul

)
H
− 1

2ht

(B (βl+1, ul − ϕ
)
, ul+1 − ul

)
H

= − 1
2ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ϕ

)
H

+
1

2ht

(B (βl+1, ul+1 − ϕ
)
, ul − ϕ

)
H

− 1
2ht

(B (βl+1, ul − ϕ
)
, ul+1 − ϕ

)
H

+
1

2ht

(B (βl+1, ul − ϕ
)
, ul − ϕ

)
H

= − 1
2ht

(B (βl+1, ul+1 − ϕ
)
, ul+1 − ϕ

)
H

+
1

2ht

(B (βl+1 − βl + βl, ul − ϕ
)
, ul − ϕ

)
H
.

Thus using (3.3), (6.4), (6.7), and (6.9), we have

El+1 +
ht

4
〈
B
(
vl+1 + vl

)
, vl+1 + vl

〉 ≤ El +
(
f l, ul+1 − ul

)
H
.

Using the equation (6.2), by the telescoping sum from i = 0 to i = l − 1 we can see that

El +
ht

4

l−1∑
i=0

〈
B
(
vl+1 + vl

)
, vl+1 + vl

〉 ≤ E0 +
ht

2

l−1∑
i=0

∥∥f i
∥∥

H

(∥∥vi+1
∥∥

H
+
∥∥vi
∥∥

H

)
. (6.10)

Now applying the trapezoidal rule and the Cauchy inequality, from (6.10) we obtain

El +
ht

4

l−1∑
i=0

〈
B
(
vl+1 + vl

)
, vl+1 + vl

〉 ≤ E0 + ‖f‖L∞(0,T ;H)

l−1∑
i=0

∫
(ti,ti+1]

‖vht(τ)‖H dτ

= E0 + ‖f‖L∞(0,T ;H)

∫ tl

0

‖vht(τ)‖H dτ

≤ E0 +
1
2

(
T ‖f‖2

L∞(0,T ;H) +
∫ tl

0

‖vht(τ)‖2
H dτ

)
. (6.11)

Thus employing Gronwall inequality and recalling the construction of vht , from (6.6) and (6.11) we obtain

∥∥vl
∥∥2

H
= ‖vht(tl)‖2

H ≤
∫ tl

0

‖vht(τ)‖2
H dτ + 2E0 + T ‖f‖2

L∞(0,T ;H) ≤ C1

(
1 + TeT

)
, (6.12)

where C1 = 2E0 + T ‖f‖2
L∞(0,T ;H). So vl is bounded in H for any l ≥ 1. To see that ul is bounded in V ,
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we use (6.10) to obtain

〈
Aul, ul

〉 ≤ 2E0 + T ‖f‖L∞(0,T ;H) max
0≤l≤n

∥∥vl
∥∥

H
≤ 2E0 + C2

√
C1 (1 + TeT ),

where C2 = T ‖f‖L∞(0,T ;H). Thus the proof is complete. �

From the previous Lemma 6.1 we can see easily that uht ∈ C(0, T ;V ) and vht ∈ L∞(0, T ;H). We note that
throughout this paper, C may be different in each occurrence and does not depend on ht.

Lemma 6.2. The numerical solutions vht are uniformly bounded in L2(0, T ;V ) and uht are uniformly Hölder
continuous from [0, T ] → V with exponent p = 1/2, independent of sufficiently small ht > 0.

The previous Lemma 6.2 has been proved in [5]. Applying Alaoglu’s theorem, it can be shown from Lemmas 6.1
and 6.2 that there is a subsequence denoted by vht such that vht ⇀

∗ v in L∞(0, T ;H) ∩ L2(0, T ;V ) as ht ↓ 0.
Now we start showing the boundedness of contact force in the measure sense. Recalling (6.5), we can see

easily that ∫ T

0

∫
Ω

(NC)ht
(t, x) dxdt = ht

n−1∑
l=0

∫
Ω

N l
C(x) dx.

We also identify the numerical trajectory of the contact force (NC)ht
as the Borel measure on [0, T ]× Ω:

(NC)ht
(B) =

∫
B

(NC)ht
(t, x) dxdt,

where B ⊆ [0, T ]× Ω is a Borel set.

Lemma 6.3. There is a constant C > 0 independent of ht such that

∫ T

0

∫
Ω

(NC)ht
(t,x) dxdt ≤ C.

Proof. We claim that ∫ T

0

∫
Ω

NC(t) dxdt = ht

n−1∑
l=0

∫
Ω

N l
C dx ≤ C.

Recalling (6.1), for any ht > 0 we have

htN
l
C =

(
vl+1 − vl

)
+
ht

2
(
Aul+1 +Aul

)
+
ht

2
(
Bvl+1 +Bvl

)− htf
l

+ ht B
(
βl+1, ul+1 − ϕ

)
. (6.13)

We construct a function w ∈ V satisfying the essential boundary conditions as follows:

w(x) =
{

1 in Ωδ,

− 2
δ3 |x − y|3 + 3

δ2 |x − y|2 in Ω\Ωδ for y ∈ ∂Ω,

where y is a projection of x onto ∂Ω. Notice that w ∈ C1(Ω). For all w ∈ V we define
〈
N l

C, w
〉

at each time
step tl as 〈

N l
C, w

〉
=
∫

Ω

N l
Cw dx.
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Since N l
C = 0 on Ω\Ωδ for any l ≥ 0, it follows that

∫
Ω

N l
Cw dx =

∫
Ωδ

N l
Cw dx+

∫
Ω\Ωδ

N l
Cw dx =

∫
Ωδ

N l
C dx.

Thus taking any w ∈ V and using (6.2), from (6.13) we have

ht

n−1∑
l=0

∫
Ω

N l
C dx = ht

n−1∑
l=0

∫
Ω

N l
Cw dx =

n−1∑
l=0

(
vl+1 − vl, w

)
+
ht

2

n−1∑
l=0

〈
A
(
ul+1 + ul

)
, w
〉

+ ht

n−1∑
l=0

(
f l, w

)

+
ht

2

n−1∑
l=0

〈
B
(
vl+1 + vl

)
, w
〉

+
n−1∑
l=0

(B (βl+1, ul+1 − ϕ
)
, w
)

≤ (∥∥vl
∥∥

H
+
∥∥v0
∥∥

H

) ‖w‖V + C T max
1≤l≤n

∥∥ul
∥∥

V
‖w‖V + T ‖f‖L∞(0,T ;H) ‖w‖V

+ T
(∥∥ul

∥∥
H

+
∥∥u0
∥∥

H

) ‖w‖V + T max
1≤l≤n

∥∥B (βl+1, ul+1 − ϕ
)∥∥

H
‖w‖V .

Therefore it follows from Lemma 6.1 that

∫ T

0

∫
Ω

(NC)ht
(t,x) dxdt = ht

n−1∑
l=0

∫
Ω

N l
C dx ≤ C,

where C does not depend on ht > 0. The proof is complete. �

Applying the Alouglu theorem and Riesz representation theorem into Lemma 6.3, there is a subsequence,
denoted by (NC)ht

such that (NC)ht
⇀∗ NC in the sense of measures as ht ↓ 0.

Using the inequality (3.4) and Lemma 6.1, we can easily show that the numerical trajectories uht ∈ Cp(0, T ;Vθ),
where p = 1 − θ with 0 ≤ θ < 1. Thus by the Sobolev embedding theorem and the Arzela-Ascoli theorem
Cp(0, T ;Vθ) is compactly embedded in C(0, T ;C(Ω)) = C([0, T ] × (Ω)), where 0 < p ≤ 1 and d/4 < θ < 1.
Therefore there is a subsequence, denoted by uht such that uht → u in C(0, T ;C(Ω)) as ht ↓ 0. Let uht be the
suitable subsequence which is corresponding to (NC)ht

.
Now we claim that the solutions (u, NC) converging by such subsequences

(
uht , (NC)ht

)
satisfy the com-

plementarity condition (2.2) in the weak sense. Using (6.5), from the complementarity conditions (6.3) we
obtain

∫ T

0

∫
Ω

(NC)ht
(uht − ϕ) dxdt =

∫
Ω

∫ T

0

ht

n−1∑
l=0

δ (t− (l + 1)ht)N l
C (uht − ϕ) dt dx

=
∫

Ω

ht

n−1∑
l=0

N l
C

(
ul+1 − ϕ

)
dx = 0.

Therefore we can see that

0 =
∫ T

0

∫
Ω

(NC)ht
(uht − ϕ) dxdt →

∫ T

0

∫
Ω

NC(u− ϕ) dxdt as ht ↓ 0,

which implies that the solutions converging by our numerical trajectories hold the complementarity conditions
in the weak sense.

Let Ωc = {x ∈ Ωδ | u(x) − ϕ(x) = 0}, which is a subset of Ωδ. Then putting κ = a = 1 for the sake of
simplicity, we consider the following Lemma 6.4.
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Lemma 6.4. Suppose that βl ∈ L2 (Ωc) for some l > 0. Then βht is uniformly bounded in W, independent of
ht > 0.

Proof. First we claim that for any l ≥ 0 βl is uniformly bounded in H . For sufficiently small ε > 0

ε2
∥∥βl
∥∥2

H
= ε2

(∫
Ω\Ωδ

(
βl
)2

dx+
∫

Ωδ

(
βl
)2

dx

)

≤
∫

Ω\Ωδ

(
ul − ϕ

)2 (
βl
)2

dx+
∫

Ωδ

ε2
(
βl
)2

dx. (6.14)

Now we consider two cases: the first case is ul(x) − ϕ(x) > 0 on Ωδ for some l ≥ 0 and the second case is
that for l �= mc > 0 there are subsets Ωc ⊂ Ωδ such that Ωc = {x | umc(x) − ϕ(x) = 0}. For the first case, we
can choose an η1 > ε > 0 such that ul(x) − ϕ(x) > η1 on Ωδ. Then recalling the energy function (6.6) and
applying (6.11) and (6.12), from (6.14) we have

ε2
∥∥βl
∥∥2

H
≤

∫
Ω\Ωδ

(
ul − ϕ

)2 (
βl
)2

dx+
∫

Ωδ

(
ul − ϕ

)2 (
βl
)2

dx

=
∥∥(ul − ϕ

)
βl
∥∥2

H
≤ 2E0 + C2

√
C1(1 + TeT ).

For the second case, we similarly choose an η2 > ε > 0 such that ul(x) − ϕ(x) > η2 on Ωδ\Ωc. Thus we obtain

ε2 ‖βmc‖2
H = ε2

(∫
Ω\Ωδ

(βmc)2 dx+
∫

Ωc

(βmc)2 dx+
∫

Ωδ\Ωc

(βmc)2 dx

)

≤
∫

Ω\Ωδ

(umc − ϕ)2 (βmc)2 dx+
∫

Ωδ\Ωc

(umc − ϕ)2 (βmc)2 dx+ C

≤ ‖(umc − ϕ) βmc‖2
H + C ≤ 2E0 + C2

√
C1(1 + TeT ) + C.

Thus from both cases βl is bounded in H for any l ≥ 0. Since βht is a continuous linear interpolant on time,
βht is bounded in L∞(0, T ;H). Furthermore it follows from (6.4) that for 0 ≤ l ≤ n− 1∥∥∥∥(β̇)l+1

∥∥∥∥
H

≤ max
0≤l≤n

∥∥∥(ul − ϕ
)2∥∥∥

L∞(Ω)
max

0≤l≤n−1

∥∥βl+1
∥∥

H
≤ C,

which implies that ˙βht is bounded in L∞(0, T ;H).
To see that 0 ≤ βl ≤ 1 for all l ≥ 0, employing (6.4) we compute

βl+1 =
βl

1 + (ul − ϕ)2 ht

· (6.15)

If 0 ≤ βl ≤ 1 for any l ≥ 0, it is obvious from (6.15) that 0 ≤ βl+1 ≤ 1, independent of ht > 0. Inductively, it
is easy to show that the interpolant βht satisfies 0 ≤ βht ≤ 1 on [0, T ]× Ω. The proof is complete. �

Therefore we can conclude from the previous Lemma 6.4 that βht ⇀
∗ β in H and ˙βht ⇀

∗ β̇ in L∞(0, T ;H)
as ht ↓ 0, where H = {ς | 0 ≤ ς ≤ 1 and ς ∈ L∞ (0, T ;H)} .
Remark 6.5. We recall the ordinary differential equation (2.3). The uniqueness of the bonding field β may
be shown, using the Banach fixed point theorem. However, the hard part is to prove the uniqueness of the
solution u and NC, which is still an open question.
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7. Fully discrete scheme

7.1. The time discretization and the Galerkin approximation

A dynamic adhesive contact problem that we implement is a clamped viscoelastic beam equation with a
rigid obstacle. So we consider the fully discrete scheme about the one-dimensional problem, using the time
discretization in time space [0, T ] and the finite element method with B-splines in space [0, L]. Here L is a
length of a beam. Assuming that there is no body force, i.e., f = 0, we set up the following one-dimensional
problem equivalent to (2.4)–(2.5):

v̇ = −u(4) − α v(4) +NC(t, x) − κ (u− ϕ)β2 in (0, T ] × (0, L), (7.1)
0 ≤ NC(t, x) ⊥ u(t, x) − ϕ(x) ≥ 0 in (0, T ] × (0, L).

Since the clamped beam is fixed and flat on its two ends x = 0 and x = L, we have the essential boundary
conditions for the clamped beam:

u(t, x) = ux(t, x) = 0 on [0, T ]× (0, L).

The notation u(4) (or v(4)) implies the fourth derivative of u (or v) with respect to x and a subscript denotes
derivative with respect to a subscripted variable. In order to approximate the spatial variables we introduce
two finite dimensional space Vhx ⊂ V and Hhx ⊂ H , where V is

V = H2
0 (0, L) =

{
w ∈ H2

0 (0, L) | w(0) = wx(0) = w(L) = wx(L) = 0
}

and H is L2(0, L). Now we partition the space [0, L] uniformly:

0 = x0 < x1 < x2 < . . . < xm = L,

where the points xi with 0 ≤ i ≤ m are nodes. Then the mesh size denoted by hx becomes hx = xi+1 − xi.
We note that for a piecewisely smooth functions whx ∈ H2(0, L) if and only if whx ∈ C1[0, L]. Thus for an
approximation of solutions (u, v, N), we choose a finite dimensional space

Vhx =
{
whx ∈ C1 [0, L] | whx |[xi,xi+4]

∈ P3 [xi, xi+4] ,

whx(0) = w′
hx

(0) = whx(L) = w′
hx

(L) = 0
}
,

where P3 is the set of piecewise cubic functions and (′) denotes the derivative with respect to x. Then our basis
functions ψi ∈ Vhx will be cubic B-splines which need to satisfy the essential boundary conditions. According
to the cubic B-splines property, we are able to construct the standard B-spline function S(z) on the reference
interval [−2, 2]:

S(z) =
2
3

⎧⎪⎨
⎪⎩

1 + 3
4 |z|3 − 3

2 |z|2 if |z| ≤ 1,
1
4 (2 − |z|)3 if 1 ≤ |z| ≤ 2,

0 if |z| ≥ 2.
For 2 ≤ i ≤ m− 2 most of basis function ψi is defined by the shifted B-splines:

ψi(x) = S

(
x− xi

hx

)
= S

(
x

hx
− i

)
,

where xi = i · hx. Since the first and last basis functions ψ1, ψm−1 have to satisfy the essential boundary
conditions, those basis functions is modified as follows:

ψ1(x) = ψm−1(x) =
17
28

(
2 ·
(
S

(
x

hx
+ 1
)

+ S

(
x

hx
− 1
))

− S

(
x

hx

))
·
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Now we write the fully approximate solutions
(
ul

hx
, vl

hx
, N l

hx

)
at each time tl as

ul
hx

(x) =
m−1∑
j=1

ul
jψj(x), vl

hx
(x) =

m−1∑
j=1

vl
jψj(x), N l

hx
(x) =

m−1∑
j=1

N l
jψj(x). (7.2)

Note that N l
hx

is the fully approximate solution of the normal contact force NC. We also let the rigid obstacle ϕ
be ϕhx =

∑m−1
j=1 ϕjψj(x).

On the other hand, we use another finite dimensional space Hhx which is different from Vhx to approximate
bonding field β. Let

Hhx =
{
�hx ∈ L∞ [0, L] | �hx |[xi, xi+1)

∈ P0 [xi, xi+1)
}

where P0 is the set of piecewise constant functions. Then we write the fully approximate solution βl
hx

at each
time tl as

βl
hx

(x) =
m−1∑
j=1

βl
jφj(x), (7.3)

where the basis function φj ∈ Hhx is a piecewise constant basis function unlike we use piecewise cubic basis
functions for other approximate solutions uhx , vhx , Nhx .

Recalling (6.1)–(6.2), we set up the following fully numerical formulation:

vl+1
hx

− vl
hx

ht
= −

(
ul+1

hx

)(4)
+
(
ul

hx

)(4)
2

− α

(
vl+1

hx

)(4)
+
(
vl

hx

)(4)
2

+ N l
hx

− κ
(
ul+1

hx
− ϕhx

) (
βl+1

hx

)2
, (7.4)

0 ≤ N l
hx

⊥ ul+1
hx

− ϕhx ≥ 0, (7.5)

vl+1
hx

+ vl
hx

2
=

ul+1
hx

− ul
hx

ht
, (7.6)

βl+1
hx

− βl
hx

ht
= −κ

a

(
ul

hx
− ϕhx

)2 (
βl+1

hx

)
. (7.7)

Then using (7.6), from (7.4) we derive the discrete-time equation of motion:

(
2 + h2

tκ
(
βl+1

hx

)2)
ul+1

hx
+
(
h2

t

2
+ αht

)(
ul+1

hx

)(4)
=(

αht − h2
t

2

)(
ul

hx

)(4)
+ 2ul

hx
+ 2htv

l
hx

+ h2
tκ
(
βl+1

hx

)2
ϕhx + h2

tN
l
hx
. (7.8)

Note that βl+1
hx

can be computed from (6.15), using previous solution ul
hx

and βl
hx

. Now multiplying the basis
function ψi by both sides of (7.8) and using integration by parts, we have the Galerkin approximation for one
time step:

(
2M + h2

tκMl+1
β +

(
h2

t

2
+ αht

)
K
)

ul+1 =
((

αht − h2
t

2

)
K + 2M

)
ul + 2htMvl + h2

tκMl+1
β ϕ + h2

tMNl,

(7.9)
and from (7.6)

vl+1 =
2
ht

(
ul+1 − ul

)− vl. (7.10)
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Here the mass matrix M and the stiffness matrix K have the the following form:

M = (M)ij =
∫ L

0

ψi(x)ψj(x) dx, K = (K)ij =
∫ L

0

ψ′′
i (x)ψ′′

j (x) dx,

and another mass matrix Ml+1
β containing the next approximation of bonding field βl+1 is computed as follows:

Ml+1
β =

(
M l+1

β

)
ij

=
m−1∑
i,j=1

∫ L

0

(
βl+1

hx

)2
ψi(x)ψj(x) dx

=
m−1∑
i,j=1

m−1∑
k=1

(
βl+1

k

)2 ∫ L

0

φk(x)ψi(x)ψj(x) dx

=
m−1∑
i,j=1

m−1∑
k=1

(
βl+1

k

)2 ∫ xk+1

xk

ψi(x)ψj(x) dx. (7.11)

Note that the symmetric matrices M and K are positive definite and Ml+1
β is a semi-positive symmetric

definite matrix. From the construction of basis function ψi those matrices are banded matrices with three
sub-diagonals and three super-diagonals, i.e., if 0 ≤ |i− j| ≤ 3 those matrices contain nonzero entries and oth-
erwise those zero entries. At each time step tl, the discretized solutions ul, vl, Nl,βl ∈ R

m−1 have the form ul =(
ul

1, u
l
2, . . . , u

l
m−1

)T , vl =
(
vl
1, v

l
2, . . . , v

l
m−1

)T , Nl =
(
N l

1, N
l
2, . . . , N

l
m−1

)T and βl =
(
βl

1, β
l
2, . . . , β

l
m−1

)T respect-
ively. Also let ϕ = (ϕ1, ϕ2, . . . , ϕm−1) be the approximation of the rigid obstacle.

In order to define energy function for the fully discrete case, we express the gap function gl
hx

at each time
step tl between the viscoelastic clamped beam and the rigid obstacle by

gl
hx

(x) =
m−1∑
i=1

gl
iψi(x), (7.12)

where gl
i = ul

i − ϕi. Let the approximate gap function gl be gl =
(
gl
1, g

l
2, . . . , g

l
m−1

)
at time step tl. Now

recalling (6.6), we define the energy function in the fully discrete case:

E (tl) := E
[
ul,vl,βl

]
=

1
2

((
vl
)T

Mvl +
(
ul
)T

Kul + κ
(
gl
)T

Ml
β gl
)
. (7.13)

Assuming that there is no body force, it will be seen from the next Lemma 7.1 that energy does not increase
in the fully discrete case. This result is the same as energy not including adhesive energy (see [1,2,5]) does not
increase.

Lemma 7.1. Suppose that the fully discrete approximations obtained from (7.9)–(7.10) satisfy the complemen-
tarity conditions:

0 ≤ ul+1 − ϕ ⊥ MNl ≥ 0. (7.14)

Then energy does not increase, i.e., E
[
ul+1,vl+1,βl+1

]
≤ E

[
ul,vl,βl

]
for any l ≥ 0.

Proof. Employing integration by parts and using the mass M and stiffness matrix K, it follows from the fully
approximate formulation (7.4)–(7.6) and (7.12) that

1
2ht

((
vl+1

)T
Mvl+1 − (vl

)T
Mvl

)
=

1
2ht

((
ul+1

)T
Kul+1 − (ul

)T
Kul

)
+

1
h2

t

(
ul+1 − ul

)T
K
(
ul+1 − ul

)
+

1
ht

(
Nl
)T

M
(
ul+1 − ϕ − ul + ϕ

)− κ

ht

(
gl+1

)T
Ml+1

β

(
gl+1 − gl

)
.
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Thus it follows from the complementarity conditions (7.14) that

1
2ht

((
vl+1

)T
Mvl+1 − (vl

)T
Mvl

)
≤ − 1

2ht

((
ul+1

)T
Kul+1 − (ul

)T
Kul

)
− κ

ht

(
gl+1

)T
Ml+1

β

(
gl+1 − gl

)
.

(7.15)
Then we want to modify the last term on the right side of (7.15):

κ

ht

(
gl+1

)T
Ml+1

β

(
gl+1 − gl

)
=

κ

2ht

(
gl+1 + gl + gl+1 − gl

)T
Ml+1

β

(
gl+1 − gl

)
.

Thus since Ml
β is semi-positive symmetric definite for each l ≥ 0, we have

1
2ht

((
vl+1

)T
Mvl+1 − (vl

)T
Mvl

)
− 1

2ht

((
ul+1

)T
Kul+1 − (ul

)T
Kul

)
≤ − κ

2ht

(
gl+1 + gl + gl+1 − gl

)T
Ml+1

β

(
gl+1 − gl

)
= − κ

2ht

(
gl+1

)T
Ml+1

β

(
gl+1 − gl

)− κ

2ht

(
gl
)T

Ml+1
β

(
gl+1 − gl

)
− κ

2ht

(
gl+1 − gl

)T
Ml+1

β

(
gl+1 − gl

)
≤ − κ

2ht

(
gl+1

)T
Ml+1

β

(
gl+1 − gl

)− κ

2ht

(
gl
)T

Ml+1
β

(
gl+1 − gl

)
= − κ

2ht

(
gl+1

)T
Ml+1

β gl+1 +
κ

2ht

(
gl+1

)T
Ml+1

β gl

− κ

2ht

(
gl
)T

Ml+1
β gl+1 +

κ

2ht

(
gl
)T

Ml+1
β gl

= − κ

2ht

(
gl+1

)T
Ml+1

β gl+1 +
κ

2ht

(
gl
)T (

Ml+1
β − Ml

β

)
gl +

κ

2ht

(
gl
)T

Ml
βg

l.

Now we can observe from (7.7) and (7.11) that
(
gl
)T (

Ml+1
β − Ml

β

) (
gl
) ≤ 0. Therefore we obtain

1
2

((
vl+1

)T
Mvl+1 +

(
ul+1

)T
Kul+1 + κ

(
gl+1

)T
Ml+1

β gl+1
)

≤ 1
2

((
vl
)T

Mvl +
(
ul
)T

Kul + κ
(
gl
)T

Ml
β gl
)
,

as required. �
We note that the previous Lemma 7.1 will be a good indication of stability for our numerical results. Indeed,

in the next Section 8 it will be seen that the numerical solutions computed from our numerical scheme support
that energy does not increase.

7.2. Nonsmooth Newton’s method

Employing nonsmooth Newton’s method (see [24]), we implement the fully numerical scheme which has been
discussed in the previous Section 7.1. We recall the linear system (7.9), in which the next step solution ul+1

can be computed. However, ul+1 has to satisfy the complementarity condition (7.14). We can see easily from
the linear system (7.9) that MNl can be expressed in terms of ul+1

MNl =
1
h2

t

[(
2M + h2

tκMl+1
β +

(
h2

t

2
+ αht

)
K
)

ul+1

−
((

αht − h2
t

2

)
K + 2M

)
ul − 2htMvl − h2

tκMl+1
β ϕ

]
,
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where the previous solutions ul, vl are already known and βl+1 contained in matrix Ml+1
β can be computed

from (6.15). Bringing the new smooth mapping F : R
m−1 → R

m−1, we define MNl as MNl := F
(
ul+1

)
. Thus

we are led to the NCP (nonlinear complementarity problem):

0 ≤ ul+1 − ϕ ⊥ F
(
ul+1

) ≥ 0. (7.16)

Many methods for solving NCP are presented in the book [12] by Facchinei and Pang. Those methods are
based on a C-function called the (nonlinear) complementarity function. We note that C-function is called a
NCP-function in other papers (e.g., [20]). C-function ξ : R

2 → R is a mapping having the following property

ξ(x, y) = 0 ⇔ 0 ≤ x ⊥ y ≥ 0.

The basic example of C-function is a minimum function, i.e., ξ(x, y) = min(x, y). Many C-functions are listed
in [12]. The advantage of C-function is that it converts the complementarity condition to a single equation
and then can be applied to the nonsmooth Newton’s method. While the Fischer-Burmeister function is used
as a C-function in [1], the Kanzow-Kleinmichel function will be done in this work as in [2]. We note that the
Kanzow-Kleinmichel function is studied in the paper [20] and defined as

ξ(x, y) =

√
(x− y)2 + 2 q x y − (x + y)

2 − q
for 0 ≤ q < 2.

Applying the Kanzow-Kleinmichel C-function with q = 1 into (7.16), we establish the following equation:

Fkk

(
ul+1

)
:=

⎛
⎝ ξ

(
ul+1

1 , F1

(
ul+1

1

))
· · ·

ξ
(
ul+1

m−1, Fm−1

(
ul+1

m−1

))
⎞
⎠ = 0,

where Fkk : R
m−1 → R

m−1 is a semismooth function. Practically, putting a smoothing parameter into the
function Fkk, we can implement the smoothed guarded Newton’s method, where an Armijo/Goldstine line
search strategy is used. Since our detailed strategy for computing ul+1 has been already described in [1,2],
we omit it here. When our numerical solutions are computed with the guarded Newton’s method, the average
number of linear systems solved per time step is mostly in between 19 and 31. This indicates that the average
number seems not to increase as ht and hx go to zero. Consequently our Newton’s method performs fairly
efficiently as done in the previous papers [1,2].

8. Numerical experiments and discussion

In this section, we present numerical simulations (using the size of subinterval hx = 0.02) and discuss
them. In the computation, the following datum are used: the length of a clamped beam is L = 20 and its
initial displacement is expressed by the polynomial u0(x) =

(
x4 − 40x3 + 400x2

)
/1000 and the initial velocity

v0(x) = −10 and the final time T = 4 and the body force f = 0, and the rigid foundation is a piecewise
quadratic function

ϕ(x) =
{ −4(x− 5)2 on [0, 8],

−17(x− 14)2/18 − 2 on [8, 20].

Note that we do not consider the units of measurement for any datum. In addition, coefficients a = 0.01
and κ = 1 and α = 0.05 (in the visco case) are used in most of numerical experiments. In the equation of
motion (7.1) we take the coefficient of u(4) as 50 rather than 1, in order to obtain more realistic simulation.
We notice that u0 holds the essential boundary conditions and the sign of v0 is negative, because our clamped
beam is assumed to move initially downward.
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Recalling the energy function (7.13), we observe three pictures for the total energy in Figure 2. As one can
see, every graph drawn in (a) (including different time step ht), (b), and (c) is going down, which supports
dissipation of energy shown in Lemma 7.1. One more important thing is that in some parts where graphs are
decreasing, it means that the beam is hitting the rigid foundation, i.e., contact forces are taking place. Those
numerical results are extremely significant to justify that our numerical results are stable. There is no error
analysis, because the uniqueness of solution is not still proved. Probably error analysis will not be able to be
considered unless the uniqueness is shown. (a) makes a conjecture on energy conservation with adhesion energy
in the limit, i.e., as ht ↓ 0 and hx ↓ 0. While all graphs drawn in (a) show the possibility of energy conservation
for small fixed a = 0.01, three graphs (ht = 0.00125 used) in (b) support the energy balance. We notice that
the different scale is used in (b) to have a close look at the energy balance. Furthermore, we need to note that
the reason that after around t = 3.5 both energy with a = 0.01 and energy with a = 100 are bigger than the
one (a = 0.000001) is that there is already occurring the second contact in the case (a = 0.000001). (c) shows
the larger rate of energy dissipation is due to viscosity and even adhesion. This picture (c) supports the energy
balance (5.3). Note that the time step size used in (b) and (c) is ht = 0.005.

Figure 3 presents the flow of the bonding field β. From (a) and (b) we can see that the bonding field is
decreasing very rapidly before the beam reaches the obstacle, because the small adhesion rate a = 0.01 is used.
Moreover we can observe that β in the viscoelastic case drops down more slowly than in the purely elastic case.
However we can guess that the bonding field β for these two cases will eventually be zero. On the other hand, on
some parts of the beams the bonding field keeps the same value, which means that contact forces are occurring,
i.e., there is no gap between the body and obstacle. Those descriptions can be confirmed with the differential
equation (2.3).

In Figure 4, there are four pictures regarding contact forces. One of important things is that the viscosity
makes contact forces more singular. This has been already confirmed in both the theoretical approach of [23]
and the numerical experiments of [5]. When comparing pictures (a), (b), (c), and (d), we can recognize that the
bonding field β seems not to give an effect of the magnitude of contact forces NC. In fact, we have already seen
from the Signorini’s conditions (the complementarity conditions) that β does not have any influence on NC.

Figures 5 and 6 show the motion of the purely elastic clamped beam. The remarkable difference between
the two cases (with adhesion and without adhesion) is that the deformation of the beam without adhesion is
bigger than its deformation with adhesion, because the bonding field works downward and prevents the beam
from extending upward.

Figures 7 and 8 show small deformations of the viscoelastic beam, compared with the purely elastic beam.
On the other hand, the velocity of the purely elastic beam without adhesion is presented in Figure 9 and

with adhesion in Figure 10, while the velocity of the viscoelastic beam without adhesion is shown in Figure 11
and with adhesion in Figure 12. When the beam touches the rigid foundation, the elastic beam has higher
frequency than the viscoelastic beam does. According to this physical phenomenon, we are able to guess that
the rate of the deformation of the purely elastic beam is much faster than the viscoelastic beam. Moreover, we
can observe that viscosity causes the regularity of velocity. As one can see in those Figures 9–12, the vibration
of elastic and viscoelastic beam looks a little bit different depending on whether adhesion processes are applied
or not, which means that the effect of adhesion does not have a big influence on the vibration of the beams.

Finally, we present the velocity of the bonding field in Figures 13 and 14. We notice that the last pictures
for each beam are drawn in different scale, to see how the velocity β̇ of each beam performs around the time
when β̇ become zero. The rate that β̇ is going to zero is slower in the viscoelastic case than in the purely elastic
case. However, it seems that the velocity of the bonding field will become zero after all. This is also confirmed
from the evolution (2.3) of the bonding field.

9. Conclusions

In this work, dynamic frictionless contact problems of viscoelastic bodies with the adhesion processes are
considered. It is shown that there is a subsequence of the numerical approximations that converges to a solution
of the adhesive contact problem in the weak sense. Unlike energy balance only caused by viscoelasticity, we derive
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(c) Viscoelastic case with adhesion

Figure 2. Energy functions with a hybrid of two numerical schemes.
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(a) Purely elastic case (b) Viscoelastic case

Figure 3. Flow of bonding field β.

(a) Purely elastic case with adhesion (b) Purely elastic case without adhesion

(c) Viscoelastic case with adhesion (d) Viscoelastic case without adhesion

Figure 4. Contact forces.
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(a) The motion of the beam at
1-78th time steps.
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(b) The motion of the beam at
79-432nd time steps.
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(c) The motion of the beam at
433-800th time steps.

Figure 5. The motion of the purely elastic clamped beam without adhesion.
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(a) The motion of the beam at
1-78th time steps.
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(b) The motion of the beam at
79-432nd time steps.
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(c) The motion of the beam at
433-800th time steps.

Figure 6. The motion of the purely elastic clamped beam with adhesion.
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(a) The motion of the beam at
1-78th time steps.
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(b) The motion of the beam at
79-432nd time steps.
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(c) The motion of the beam at
433-800th time steps.

Figure 7. The motion of the viscoelastic clamped beam without adhesion.

a new form of energy balance. Our numerical scheme is implemented using time-discretization and the FEM
with B-splines. The complementarity problem that set up at each time step is solved, employing nonsmooth
Newton’s method with the Kanzow-Kleinmichel function. Our numerical methods are performed reasonably
well and provide evidence of energy balance.
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(a) The motion of the beam at
1-78th time steps.
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(b) The motion of the beam at
79-432nd time steps.
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(c) The motion of the beam at
433-800th time steps.

Figure 8. The motion of the viscoelastic clamped beam with adhesion.
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(a) The velocity of the beam
from 1st to 78th time step.
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(b) The velocity of the beam
from 79th to 432nd time step.
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(c) The velocity of the beam
from 433rd to 800th time step.

Figure 9. The velocity of each point on the purely elastic beam without adhesion.
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(a) The velocity of the beam
from 1st to 78th time step.
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(b) The velocity of the beam
from 79th to 432nd time step.
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(c) The velocity of the beam
from 433rd to 800th time step.

Figure 10. The velocity of each point on the purely elastic beam with adhesion.
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(a) The velocity of the beam
from 1st to 78th time step.
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(b) The velocity of the beam
from 79th to 432nd time step.
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(c) The velocity of the beam
from 433rd to 800th time step.

Figure 11. The velocity of each point on the viscoelastic beam without adhesion.
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(a) The velocity of the beam
from 1st to 78th time step.
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(b) The velocity of the beam
from 79th to 432nd time step.
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(c) The velocity of the beam
from 433rd to 800th time step.

Figure 12. The velocity of each point on the viscoelastic beam with adhesion.
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(a) The velocity of the bonding
field from 1st to 78th time step.
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(b) The velocity of the bonding
field from 79th to 432nd time
step.
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(c) The velocity of the bonding
field from 433rd to 800th time
step.

Figure 13. Velocity β̇ of bonding field in the purely elastic case.
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(a) The velocity of the bonding
field from 1st to 78th time step.
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(b) The velocity of the bonding
field from 79th to 432nd time
step.
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(c) The velocity of the bonding
field from 433rd to 800th time
step.

Figure 14. Velocity β̇ of bonding field in the viscoelastic case.

One of our main concerns is to investigate the relation between the contact forces and adhesion. Indeed,
adhesion processes do not make contact force more regular and numerical results also seem to support this,
whereas viscosity tends to make the contact forces less regular. Investigating an effect which makes the normal
contact force more regular and proving the uniqueness of the solution u and the contact force NC will be future
research.
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[14] M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris Sér. II 295 (1982) 913–916.
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[17] M. Frémond, E. Sacco, N. Point and J.M. Tien, Contact with adhesion, in ESDA Proceedings of the 1996 Engineering Systems
Design and Analysis Conference, A. Lagarde and M. Raous Eds., ASME, New York (1996) 151–156.

[18] W. Han, K.L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact. Int. J. Solids Structures 39 (2002)
1145–1164.

[19] L. Jianu, M. Shillor and M. Sofonea, A viscoelastic frictionless contact problem with adhesion. Appl. Anal. 80 (2001) 233–255.
[20] C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems.

Comput. Optim. Appl. 11 (1998) 227–251.
[21] K. Kuttler, Modern Analysis. CRC Press, Boca Raton, FL, USA (1998).
[22] G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral contraint at the boundary. J. Diff. Eq. 53

(1984) 309–361.
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