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CONVERGENT FINITE ELEMENT DISCRETIZATIONS
OF THE NONSTATIONARY INCOMPRESSIBLE

MAGNETOHYDRODYNAMICS SYSTEM

Andreas Prohl1

Abstract. The incompressible MHD equations couple Navier-Stokes equations with Maxwell’s equa-
tions to describe the flow of a viscous, incompressible, and electrically conducting fluid in a Lipschitz
domain Ω ⊂ R

3. We verify convergence of iterates of different coupling and decoupling fully dis-
crete schemes towards weak solutions for vanishing discretization parameters. Optimal first order of
convergence is shown in the presence of strong solutions for a splitting scheme which decouples the
computation of velocity field, pressure, and magnetic fields at every iteration step.
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1. Introduction

Let Ω ⊂ R
3 be a bounded polyhedral domain. The magneto-hydrodynamical behavior of liquid metals is

described by the MHD equations

ut + (u · ∇)u − 1
Re

Δu + ∇p+ S b× curlb = g in ΩT := (0, T )× Ω, (1.1)

div u = 0 divb = 0 in ΩT , (1.2)

bt +
1

Rem
curl

(
curlb

)
− curl

(
u× b

)
= 0 in ΩT , (1.3)

together with the following boundary and initial conditions,

u = 0, b · n = 0, curlb× n = 0 on ∂ΩT := (0, T )× ∂Ω, (1.4)
u(0, ·) = u0, b(0, ·) = b0 on Ω, (1.5)

where n ∈ R
3 denotes the outward normal unit vector on ∂Ω. Three nondimensional numbers appear in

(1.1)–(1.3), which are the Reynolds number Re > 0, the magnetic Reynolds number Rem > 0, and the coupling
number S = M2

ReRm > 0, whereM > 0 is the Hartman number. The system (1.1)–(1.3) couples the incompressible
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Navier-Stokes equations with Maxwell’s equations. By formally multiplying (1.1) with the velocity field u,
equation (1.2) with S times the magnetic field b, and integrating over Ω, making the sum of both equations
leads to the energy identity, where the energy ensembles kinetic and magnetic energy portions,

1
2

d
dt

∫
Ω

[
|u|2 + S |b|2

]
dx +

∫
Ω

[
1

Re
|∇u|2 +

S

Rem
|curlb|2

]
dx =

∫
Ω

g · u dx ∀ t > 0. (1.6)

A recent summary of known results for the MHD equations, including modeling, analysis, and numerics is [12].
Strong solutions to (1.1)–(1.3) are only known to exist for small times and sufficiently regular data, while weak
solutions exist globally. This difference in notion of solution for (1.1)–(1.3) is reflected in constructing different
numerical schemes. For stationary incompressible MHD equations, there are numerical analyses for schemes
available, whose convergence is shown either in the context of existing weak or strong solutions; cf. e.g. [15,16,25],
and [11].

The numerical analysis of the stationary incompressible MHD problem started with [15], where inf-sup stable
mixed elements are used to discretize velocity fields and hydrostatic pressure, and W1,2-conforming elements
for the magnetic field; as is shown in [15], Section 6, solutions of the nonlinear finite element scheme exist, and
converge to weak solutions of the limiting problem, provided that Ω ⊂ R

3 is either a convex polyhedron or
has a boundary which is C1,1; see [15], Theorem 6.4. As is e.g. known from [9], see also [1,14], the magnetic
field in non-convex polyhedra Ω may fail to be in W1,2(Ω), such that nodal finite element discretizations,
albeit stable, may not converge to corresponding magnetization fields. This observation recently motivated the
works [16,25], where a mixed formulation of the stationary incompressible MHD problem based on H(curl)-
conforming (edge) elements to approximate the magnetic field is proposed, and convergence to weak solutions
of the limiting problem is shown for vanishing spatial discretization parameter [25], Corollary 4.1. A different
strategy to achieve convergence in general polyhedral domains is realized in [16], where certain weight functions
to account for possible singular solution components induced by reentrant vertices or edges complement a
W1,2(Ω)-conforming finite element discretization. For convex polyhedral domains, or domains with a boundary
which is C1,1, convergence of a stabilized finite element method based on continuous finite elements is shown
in [11].

The goal of this work is to propose and analyze practical, fully discrete schemes which construct weak solutions
of the evolutionary problem (1.1)–(1.5) for vanishing discretization parameters, as well as efficient space-time
discretizations of (1.1)–(1.5) where iterates approximate regular strong solutions at optimal rates of convergence.
Our focus is to compare the different requirements needed to theoretically validate convergence of the different
schemes.

The remainder of this work is organized as follows. We introduce notation and recall necessary material
in Section 2. A finite element based temporal discretization of (1.1)–(1.3) introduced in [2] is analyzed in
Section 3, which inherits a discrete energy law to the fully discrete setting (Scheme A). The first main result is
Theorem 3.1, which verifies that weak solutions of (1.1)–(1.3) may be obtained from corresponding iterates for
vanishing discretization parameters. A disadvantage of Scheme A is the need to compute iterates for velocity
and magnetic field in a coupled manner, which is cured in the following ways:

(i) A simple fixed point strategy is proposed to decouple the computation of iterates for velocity and
magnetic field (Algorithm A): a restrictive mesh-size constraint enters as a sufficient constraint to
validate convergence of the algebraic solver, and hence verify overall (subsequence) convergence towards
weak solutions of (1.1)–(1.3); cf. Theorem 3.2.

(ii) Scheme B is a decoupled variant of Scheme A, where a discrete energy inequality holds only if k =
O(h3) is valid. Overall (subsequence) convergence for vanishing discretization parameters towards weak
solutions of (1.1)–(1.3) is then stated in Theorem 3.3.

These results hold under minimum assumptions with respect to given data, and proposed schemes construct
weak solutions of (1.1)–(1.3) for vanishing discretization parameters in a fully practical manner. A different
viewpoint is taken in Section 4, where optimal rates of convergence for iterates computed by the splitting
Scheme C towards existing strong solutions of (1.1)–(1.3) are verified; cf. Theorem 4.1. This strategy allows for
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a fully decoupled computation of iterates of velocity, magnetic field, and pressure, and combines the decoupling
strategy from Scheme B with the projection method of Chorin [8,27]. As is detailed in Section 4, the Scheme C
is much easier to implement, and is based on stabilization strategies to approximate solenoidal velocity and
magnetic fields. Conclusions are drawn in Section 5.

2. Preliminaries

2.1. Functional spaces and notion of weak solution for MHD equations

Let Ω ⊂ R
3 be a bounded polyhedral domain. For simplicity, we assume that Ω is simply-connected, and

that its boundary ∂Ω is connected. Let H
(
div; Ω

)
ensemble vector fields ξξξ ∈ L2(Ω), such that div ξξξ ∈ L2(Ω);

the space is endowed with the norm ‖ξξξ‖H(div) :=
(
‖ξξξ‖2

L2 + ‖divξξξ‖2
L2

)1/2. We introduce the following subspaces
H0

(
div; Ω

)
:=

{
ξξξ ∈ H(div; Ω) : ξξξ · n = 0 on ∂Ω

}
, and

JJJ :=
{
ξξξ ∈ C∞

0 (Ω) : div ξξξ = 0 in Ω
}
,

H :=
{
ξξξ ∈ L2(Ω) : div ξξξ = 0 weakly in Ω, and ξξξ · n = 0

}
,

J :=
{
ξξξ ∈ W1,2

0 (Ω) : div ξξξ = 0 a.e. in Ω
}
.

By Helmholtz orthogonal decomposition, a vector field can be written as unique sum of its solenoidal and
irrotational components, i.e., L2(Ω) = H ⊕ ∇W 1,2(Ω). Correspondingly, we introduce the space H

(
curl; Ω

)
,

which is endowed with the norm ‖ψψψ‖H(curl) :=
(
‖ψψψ‖2

L2 + ‖curlψψψ‖2
L2

)1/2, and subspaces H0

(
curl; Ω

)
:=

{
ψψψ ∈

H(curl; Ω) : ψψψ × n = 0 on ∂Ω
}
, as well as

WWW :=
{
ψψψ ∈ C∞(Ω) : divψψψ = 0 in Ω, ψψψ · n = 0 on ∂Ω

}
,

HHH := H(curl; Ω) ∩H0(div; Ω),
X :=

{
ψψψ ∈ HHH : divψψψ = 0 a.e. in Ω

}
.

The space DDD(Ω) of restrictions to Ω of smooth functions DDD(R3) is dense, both in H(div; Ω) and H(curl; Ω);
cf. [1], Proposition 2.3. For all ψψψ ∈ X, we have Poincare’s inequality ‖ψψψ‖L2 ≤ C‖curlψψψ‖L2 for all ψψψ ∈ X, which
implies that ‖ ·‖H(curl) and ‖curl(·)‖L2 are equivalent norms on X. The space H0(curl; Ω)∩H0(div; Ω) coincides
with W1,2

0 (Ω); in contrast, explicit counterexamples illustrate that H0(curl; Ω) and H0(div; Ω) are continuously
embedded into W1,2(Ω) only if Ω ⊂ R

3 is either a convex polyhedron or has a boundary which is C1,1; cf. [14],
Section I.3.5, or [1], Section 2.3. The embeddings of H(curl; Ω) and H(div; Ω) into L2(Ω) are not compact;
however, Weber verified compactness of H0(curl; Ω) and H0(div; Ω) into L2(Ω) for general Lipschitz polyhedral
domains; the following compactness results may be found in [1], Proposition 3.7, and [25], Proposition 2.3.

Lemma 2.1. Let Ω ⊂ R
3 be a Lipschitz polyhedron.

(i) There exists an exponent s ≡ s(Ω) > 1
2 , such that HHH ↪→ Ws,2(Ω) is continuous.

(ii) There exists a parameter δ1 ≡ δ1(Ω) > 0 such that the embedding HHH ↪→ L3+δ1(Ω) is compact.

We need the Aubin-Lions’ compactness result for Bochner spaces, cf. [12], Lemma 2.8.

Lemma 2.2. Let B be a Banach space, and B0 and B1 be two reflexive Banach spaces. Assume B0 � B ⊂ B1.
Fix T <∞, and 1 < p0, p1 <∞. Then

{
v ∈ Lp0

(
0, T ;B0

)
: ∂tv ∈ Lp1

(
0, T ;B1

)}
� Lp0

(
0, T ;B).
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2.2. Weak solutions for the MHD equations

We introduce the notion of weak solutions to (1.1)–(1.3) on bounded polyhedral domains Ω ⊂ R
3.

Definition 2.1. Let g ∈ L2
(
0, T ;J′), and u0,b0 ∈ H. The pair

(
u,b

)
is said to be a weak solution of

(1.1)–(1.5), if
(i) u ∈ L∞(

0, T ;H
)
∩ L2

(
0, T ;J

)
, and b ∈ L∞(

0, T ;H
)
∩ L2

(
0, T ;X

)
;

(ii)
(
u,b

)
is weakly continuous for t > 0, with values in H;

(iii) for every
(
ξξξ,ψψψ

)
∈ C∞

0

(
[0, T );JJJ

)
× C∞

0

(
[0, T );WWW

)
, there hold

∫ T

0

[
−(u, ξξξt) +

1
Re

(
∇u,∇ξξξ

)
−

(
(u · ∇)ξξξ,u

)
+ S

(
b× curlb, ξξξ

)]
dt =

(
u0, ξξξ

)
+

∫ T

0

(g, ξξξ)dt ,

∫ T

0

[
−(b,ψψψt) +

1
Rem

(
curlb, curlψψψ

)
−

(
u × b, curlψψψ

)]
dt =

(
b0,ψψψ

)
;

(iv) for almost every t ∈ [0, T ],

1
2

[
‖u(t, ·)‖2

L2 + S ‖b(t, ·)‖2
L2

]
+

∫ t

0

[ 1
Re

‖∇u‖2
L2 +

S

Rem
‖curlb‖2

L2

]
ds ≤

1
2
[
‖u0‖2

L2 + S ‖b0‖2
L2

]
+

∫
Ωt

g · u dxds.

In [12], Chapter 2, weak solutions for Ω ⊂ R
3 a convex polyhedron, or a domain with C1,1-boundary are

constructed by a general Galerkin method which uses eigenvalues of the Stokes operator AAA1 : J → J′, and the
magnetostatic operator AAA2 : X → X′. Here, AAA1u = f ∈ J′ if

(∇u,∇ξξξ) − (p, div ξξξ) = (f , ξξξ) ∀ξξξ ∈ W1,2
0 (Ω), (2.1)

and AAA2b = g ∈ X′ if (
curlb, curlψψψ

)
= (g,ψψψ) ∀ψψψ ∈ X. (2.2)

In this paper, weak solutions for general bounded polyhedral domains Ω ⊂ R
3 are obtained by a practicable

discretization of (1.1)–(1.5) which uses finite elements.

2.3. Strong solutions to MHD equations

Strong solutions for (1.1)–(1.5) are weak solutions of the MHD equations for g ∈ L2
(
0, T ;H

)
, and

(
u0,b0

)
∈

J × X such that

u ∈ L∞(
0, T ;J

)
∩ L2

(
0, T ;J ∩ W2,2(Ω)

)
, b ∈ L∞(

0, T ;X
)
∩ L2

(
0, T ;X ∩ W2,2(Ω)

)
.

As an immediate consequence, we obtain bounds for distributional time-derivatives of solutions of (1.1)–(1.5),
and hence may validate

(
u,b

)
∈ C

(
[0, T ];J

)
×C

(
[0, T ];X

)
. Local, unique strong solutions have been constructed

in [26], Theorem 3.2 for bounded domains Ω ⊂ R
3 with regular boundary ∂Ω; necessary tools are regularity

properties of solutions
(
u,b

)
∈ J × X of (2.1) and (2.2), for

(
f ,g

)
∈

[
L2(Ω)

]2,

(
u, p

)
∈ W2,2(Ω) ×

[
W 1,2(Ω) ∩ L2

0(Ω)
]
, where ‖u‖W2,2 + ‖p‖L2

0
≤ C ‖f‖L2 (2.3)

by Cattabriga [6] (see also [14], Thm. 5.4 and Rem. 5.6) for some finite, positive C ≡ C(Ω), and likewise

b ∈ W2,2(Ω), where ‖b‖W2,2 ≤ C ‖g‖L2 (2.4)
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by Georgescu [10], Theorem 3.2.2 (see also [12], Thm. 2.24]). By using curl curlϕϕϕ = graddivϕϕϕ − Δϕϕϕ for all
ϕϕϕ ∈ W1,2(Ω) we have that a solution b ∈ W1,2(Ω) of (2.2) satisfies in distributional sense

− Δb = g in Ω, b · n = 0 and curlb× n = 0 on ∂Ω. (2.5)

2.4. Finite element spaces

Let Th be a quasi-uniform triangulation of the polygonal resp. polyhedral domain Ω ⊂ R
3 into tetrahedra

of maximal diameter h > 0, i.e., Ω =
⋃
K∈Th

K. Let Vh :=
{
ξ ∈ C0(Ω) : ξ ∈ Pi(K) ∀K ∈ Th

}
, where Pi

ensembles polynomials of degree less or equal i ≥ 1. We recall the inverse inequality [5], Lemma 4.5.3, which
holds for ξ ∈ Vh,

‖ξ‖L�,q1 ≤ Chm−�+nmin{ 1
q1

− 1
q2
,0}‖ξ‖Wm,q2 ∀ 1 ≤ q1, q2 ≤ ∞ , 0 ≤ m ≤ �.

Let Vh :=
[
Vh

]3. We define L2(Ω)-, resp. W1,2
0 (Ω)-orthonormal projections P0

h resp. P1
h to Vh,

(
z − P0

hz, ξξξ
)

= 0 ∀ξξξ ∈ Vh, resp.
(
∇[z − P1

hz],∇ξξξ
)

= 0 ∀ξξξ ∈ Vh.

Let Eh = {x�}�∈L denote the set of all nodes of Th. We define the nodal interpolation operator IIIVh
:

C(Ω,R3) → Vh, such that IIIVh
ξξξ :=

∑
z∈Eh

ξξξ(z)ϕz, where {ϕz : z ∈ Eh} denotes the nodal basis of Vh.
For j ≥ 0, consider Lh :=

{
Π ∈ L2

0(Ω) : Π ∈ Pj(K) ∀K ∈ Th
}
. The spaces

(
Vh, Lh

)
are chosen such that

the discrete LBB-condition holds, i.e., Vh ⊂ W1,2
0 (Ω,R3) and Lh ⊂ L2

0(Ω) satisfy the discrete inf-sup condition

sup
ξξξ∈Vh

(div ξξξ,Π)
‖∇ξξξ‖L2

≥ C ‖Π‖L2 ∀Π ∈ Lh. (2.6)

Let
Jh :=

{
ξξξ ∈ Vh : (div ξξξ,Π) = 0 for all Π ∈ Lh

}
�⊂ J

be the space of discretely solenoidal functions. Let u ∈ J be a solution of AAA1u = f in Ω ⊂ R
3. The solution(

U, P
)
∈ Jh × Lh of the discretized incompressible Stokes problem

(
∇U,∇ξξξ

)
− (P, div ξξξ

)
= (f , ξξξ) ∀ξξξ ∈ Vh

satisfies
‖u− U‖L2 + h ‖u− U‖W1,2 ≤ Ch2 ‖u‖W2,2 .

We define L2- resp. W1,2
0 -orthogonal projections to Jh via

(
z − Q0

hz, ξξξ
)

= 0 ∀ξξξ ∈ Jh resp.
(
∇[z − Q1

hz],∇ξξξ
)

= 0 ∀ξξξ ∈ Jh.

The following estimates follow from the above error estimates (see also [17]) (i = 0, 1),

‖z− Qi
hz‖L2 + h‖∇[z− Qi

hz]‖L2 ≤ Ch2 ‖z‖W2,2 ∀ z ∈ J ∩ W2,2(Ω), (2.7)

‖z − Qi
hz‖L2 ≤ Ch ‖z‖W1,2 ∀ z ∈ J ∩ W1,2(Ω). (2.8)

The following stability bound holds for all 2 ≤ r ≤ ∞, see [13],

‖∇Q1
hz‖Lr ≤ C‖∇z‖Lr ∀ z ∈ JJJ ∩ W1,r

0 (Ω). (2.9)

To approximate solenoidal solutions of Maxwell’s equation by nodal elements often introduces nonphysical
artifacts [4,9]; cf. also [18], Section 4.5. This does not occur for edge elements, which only enforce continuity of
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tangential field components across inter-element boundaries. In below, we use Nédélec’s first family of spaces
(cf. [21]) for the unknown B : ΩT → R

3. For every K ∈ Th and k ≥ 1, let NNN k(K) =
[
Pk−1(K)

]3 ⊕ Dk(K),
where Dk is given by the homogeneous polynomials p of degree k that satisfy p(x) ·x = 0 on K ∈ Th. Consider
then

Ch =
{
ψψψ ∈ H(curl) : ψψψ ∈ NNN k(K) ∀K ∈ Th

}
,

Sh =
{
R ∈ W 1,2(Ω) ∩ L2

0(Ω) : R ∈ Pk(K) ∀K ∈ Th
}
,

where Ch ⊂ H(curl; Ω), and Sh ⊂W 1,2(Ω)∩L2
0(Ω). A well-known example is k = 1, where Ch =

{
ψψψ ∈ H(curl) :

ψψψ = aK + bK × x on K ∀K ∈ Th
}
. The spaces

(
Ch, Sh

)
satisfy the following discrete inf-sup condition,

sup
ψψψh∈Ch

(∇R,ψψψ)
‖ψψψ‖H(curl)

≥ C ‖∇R‖L2 ∀R ∈ Sh. (2.10)

We may define the interpolation RRRh : H(curl; Ω) → Ch, which satisfies for all z ∈
{
z ∈ W1,2 : curl z ∈ W1,2

}
that ([21], Thm. 5.41)

‖z −RRRhz‖L2 + ‖curl [z −RRRhz]‖L2 ≤ Ch
(
‖z‖W1,2 + ‖curlz‖W1,2

)
. (2.11)

We introduce the discretely solenoidal function space

Xh :=
{
ψψψ ∈ Ch : (ψψψ,∇R) = 0 for all R ∈ Sh

}
�⊂ X.

We have the L2(Ω)-orthogonal discrete Helmholtz decomposition Ch = Xh ⊕ ∇Sh, as well as the discrete
Poincare-Friedrichs inequality ‖ψψψ‖L2 ≤ C‖curlψψψ‖L2 , for all ψψψ ∈ Xh; cf. [21], Theorem 4.7. We introduce the
L2(Ω)- resp. H(curl; Ω)-orthogonal projections to Xh via

(
z − R0

hz,ψψψ
)

= 0 ∀ψψψ ∈ Xh resp.
(
curl [z − R1

hz], curlψψψ
)

= 0 ∀ψψψ ∈ Xh.

The following estimates may be found in [7], Theorem 3.5, or [28], Lemma 3.4, and [18], Theorem 4.8,

‖z − Ri
hz‖L2 + ‖curl [z − R1

hz]‖L2 ≤ Ch
(
‖z‖W1,2 + ‖curlz‖W1,2

)
∀ z ∈ X ∩ W2,2(Ω), (2.12)

‖z − Ri
hz‖L2 ≤ Chσ ‖curlz‖L2 ∀ z ∈ X, for some σ = σ(Ω) > 0. (2.13)

Another link between the spaces Xh and X is accomplished by the Hodge mapping H : H(curl; Ω) → X, such
that

curlH
(
ψψψ) = curlψψψ ∀ψψψ ∈ H(curl; Ω).

The following approximation property is shown in [18], Lemma 4.5,

‖z − H
(
z
)
‖L2 ≤ Ch

1
2+σ ‖curlz‖L2 ∀ z ∈ Xh, for some σ = σ(Ω) > 0. (2.14)

Lowest-order edge elements are divergence free inside each element. However, a nonzero divergence in distri-
butional sense arises from discontinuities of the normal component at inter-element boundaries. Since Xh �⊂ X,
the compactness of bounded sequences {ψψψh}h ⊂ Xh ⊂ H(curl; Ω) is not clear. The following (discrete) com-
pactness property for discretely divergence-free vector fields generalizes the result by Kikuchi in [20]; cf. [18],
Theorem 4.9.

Lemma 2.3. Let {ψψψh} ⊂ Xh be a sequence of fields, which is uniformly bounded in H(curl; Ω). Then there
exists a subsequence {ψψψh′}h′ converging weakly in H(curl; Ω), and strongly in L2(Ω) to a solenoidal function
ψψψ ∈ X.
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2.5. Time discretization

Given a time-step size k > 0, and a sequence {ϕj} in some Banach space X , we set dtϕj := k−1
{
ϕj −ϕj−1

}
for j ≥ 1. Note that (dtϕj , ϕj) = 1

2dt‖ϕj‖2+ k
2‖dtϕj‖2, if X is a Hilbert space. Piecewise constant interpolations

of {ϕj} are defined for t ∈ [tj , tj+1), and 0 ≤ j ≤ J − 1 by

ϕ+(t) := ϕj+1, ϕ−(t) := ϕj ,

and a piecewise affine interpolation on [tj , tj+1) is defined by

ϕ(t) :=
t− tj
k

ϕj+1 +
tj+1 − t

k
ϕj .

There holds ‖ϕ+ − ϕ‖X + ‖ϕ− − ϕ‖X ≤ 2k ‖dtϕ‖X .
Consider the Navier-Stokes equations for an incompressible, viscous Newtonian fluid, by formally putting

S = 0 in (1.1). Projection methods are efficient time-discretization strategies [8,22,24,27], where iterates for
velocity field and pressure are independently computed at every time-step. The following projection scheme by
Chorin is well-known to compute iterates

(
un, pn

)
∈ H×L2

0(Ω) from a given un−1 ∈ H, for every n ≥ 1 [8,27]:

1. Let n ≥ 1. Compute ũn ∈ W1,2
0 (Ω) from

1
k

(
ũn − un−1

)
− 1

Re
Δũn + [un−1 · ∇]ũn = gn in Ω. (2.15)

2. Compute
(
un, pn

)
∈ H× L2

0(Ω) from

1
k

(
un − ũn

)
+ ∇pn = 0 in Ω. (2.16)

The latter step can be reformulated as a problem for the pressure function only,

−Δpn = −1
k
div ũn in Ω, ∂np = 0 on ∂Ω.

Hence, each step consists of a decoupled computation of ũn ∈ W1,2
0 (Ω), pn ∈ W 1,2(Ω) ∩ L2

0(Ω), and un ∈ H
comes from a simple algebraic update.

Inherent error effects due to temporal discretization, and splitting resp. decoupling, which goes along with
unphysical boundary conditions for pressure iterates may be understood by the following reformulation,

dtũn − 1
Re

Δũn + [PHũn−1 · ∇]ũn + ∇pn−1 = gn, (2.17)

div ũn − kΔpn = 0, and ∂np
n = 0 on ∂Ω. (2.18)

It is due to the decoupling character of the projection method that no discrete energy law is available. However,
for strong solutions (

u, p
)
∈ L∞(

0, T ;J ∩ W2,2(Ω)
)
× L∞(

0, T ;W 1,2(Ω) ∩ L2
0(Ω)

)
which exist at least locally in time on regular domains Ω ⊂ R

3 for u0 ∈ J∩W2,2(Ω) (cf. Sect. 2.3), the following
result is shown in [22], Chapter 6. We need two assumptions (A1), (A2) with respect to regularity of data,
which are detailed in Section 4.

Lemma 2.4. Let Ω ⊂ R
3, and suppose (A1), (A2). Let

{(
ũn, pn

)}N
n=1

∈ W1,2
0 (Ω) × [W 1,2(Ω) ∩ L2

0(Ω)] be
solutions of (2.15)–(2.16), and

‖u0 − u0‖L2 +
√
k ‖u0 − u0‖W1,2 ≤ Ck.
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For sufficiently small time-steps k ≤ k0(ΩT ,Re), there exists a constant C ≡ C(ΩT ,Re) > 0 such that (τn :=
min{1, tn})

1
2

max
1≤n≤N

[
‖u(tn, ·) − ũn‖2

L2 +
(
τn ‖p(tn, ·) − pn‖W−1,2

)2

+
(√

τnk ‖p(tn, ·) − pn‖L2
0

)2]

+
k2

2

N∑
n=1

‖dt[u(tn, ·) − ũn]‖2
L2 +

k

Re

N∑
n=1

‖∇[u(tn, ·) − ũn]‖2
L2 ≤ Ck2.

Moreover, the following uniform a-priori bounds are valid,

max
[
‖dtũn‖L2 + ‖ũn‖W2,2 + ‖pn‖W 1,2∩L2

0

]
+

(
k

N∑
n=1

[
‖dtũn‖2

W1,2 + ‖dtpn‖2
L2

0

])1/2

≤ C.

Here, W−1,2(Ω) = [W 1,2
0 (Ω)]′, and suboptimal error estimates for the pressure in L2(Ω) vs. optimal ones in

W−1,2(Ω) reflect arising boundary layers, which are due to the unphysical boundary data prescribed for the
pressure in (2.18)2. We refer to [24] for a sharp local analysis of errors for the pressure in the context of strong
solutions.

3. Reliable discretizations with discrete energy principle

We use a discrete Lagrange multiplier Rn ⊂ Sh to enforce Bn : Ω → R
3 to be discretely solenoidal. Let

k > 0 be the equidistant time-discretization parameter, and Th be a quasi-uniform triangulation of the bounded
domain Ω ⊂ R

3. We set
(
U0,B0

)
=

(
Q0
hu0,Q0

hb
0
)
.

Scheme A. Let n ≥ 1. Find
(
Un, Pn,Bn, Rn

)
∈ Jh × Lh × Xh × Sh, such that

(
dtUn, ξξξ

)
+

1
Re

(
∇Un,∇ξξξ

)
+

(
(Un−1 · ∇)Un, ξξξ

)
+

1
2

(
(div Un−1)Un, ξξξ

)

+ S
(
Bn−1 × curlBn, ξξξ

)
−

(
Pn, div ξξξ

)
=

(
gn, ξξξ

)
∀ξξξ ∈ Vh, (3.1)

(
dtBn,ψψψ

)
+

1
Rem

(
curlBn, curlψψψ

)
−

(
Un × Bn−1, curlψψψ

)
− (∇Rn,ψψψ) = 0 ∀ψψψ ∈ Ch. (3.2)

Remark 3.1. In order to enforce (1.2)2, a penalization term γ
(
div Bn, div ξξξ

)
for γ > 0 in the context of

W1,2-conforming finite elements is added to the left-hand side of (3.14) in [2], in addition to the magnetic
pressure Rn. We refer to [18], Section 6, and [12], Remark 3.3.1, for a discussion of this regularization strategy;
see also Section 4.

Upon choosing
(
ξξξ,ψψψ

)
=

(
Un,Bn

)
, and summing equations (3.1) and (3.2), we obtain the discrete energy

identity

1
2
dt

[
‖Un‖2

L2 + S ‖Bn‖2
L2

]
+
k

2

[
‖dtUn‖2

L2 + S ‖dtBn‖2
L2

]

+
1

Re
‖∇Un‖2

L2 +
S

Rem
‖curlBn‖2

L2 =
(
gn,Un

)
. (3.3)

This fully discrete scheme is based on the same temporal discretization of (1.1)–(1.3) in [2], where its main
motivation is (3.3). Scheme A inherits this property in a fully discrete setting, and is also linear, although
coupled; we may use standard arguments for stable mixed finite element discretizations (see e.g. [1], Sect. 4.1,
for (3.2)) to conclude unique solvability for Scheme A.
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Lemma 3.1. For every n ≥ 1, let
(
Un, Pn,Bn, Rn

)
∈ Jh×Lh×Xh×Sh be the unique solution of (3.1)–(3.2).

There holds

1
2

max
1≤n≤N

[
‖Un‖2

L2 + S ‖Bn‖2
L2

]
+
k2

2

N∑
n=1

[
‖dtUn‖2

L2 + S ‖dtBn‖2
L2

]

+ k

N∑
n=1

[ 1
Re

‖∇Un‖2
L2 +

S

Rem
‖curlBn‖2

L2

]
≤ 1

2
[
‖U0‖2

L2 + S ‖B0‖2
L2

]
+ k

N∑
n=1

(
gn,Un

)
.

The next assertion controls changes in time of iterates
{(

Un,Bn
)}N
n=1

from Scheme A.

Lemma 3.2. Let
{(

Un,Bn
)}N
n=1

⊂ Jh × Xh solve Scheme A. There exists r ≡ r(δ1) > 1, such that

k
N∑
n=1

{
‖dtUn‖r(J∩W2,2)′ + ‖dtBn‖r(X∩W2,2)′

}
≤ C.

Proof. To validate the first assertion, choose ξξξ = Q0
hv ∈ Jh, for every v ∈ J ∩ W2,2(Ω). Thanks to (dtUn,v −

Q0
hv) = 0, (3.1), the continuous embedding W 1,2(Ω) ↪→ L6(Ω), and Lp-interpolation, we conclude

∣∣∣(dtUn,v
)∣∣∣ ≤ C

[ 1
Re

‖∇Un‖L2 + ‖Un−1‖L3‖Un‖L6 + ‖div Un−1‖L2‖Un‖L3

+ ‖gn‖J′
]
‖∇ξξξ‖L2 +

1
Rem

I

≤ C
[ 1
Re

‖∇Un‖L2 + max
(i,l)∈{0,1}2

‖Un−i‖1/2
L2 ‖∇Un−l‖3/2

L2 + ‖gn‖J′
]

×
(
‖v‖W1,2 + h‖v‖W2,2

)
+

1
Rem

I, (3.4)

where I :=
∣∣(Bn−1× curlBn, ξξξ

)∣∣. We control this term separately. For this purpose, we use the Hodge mapping
H : Xh → X, which satisfies (2.14), for some σ ≡ σ(Ω) > 0. We may compute

I ≤ ‖Bn−1 − H(Bn−1)‖L2‖curlBn‖L2‖ξξξ‖L∞ + ‖H(Bn−1)‖L3‖curlBn‖L2‖ξξξ‖L6 .

We use an inverse estimate for the first term, and Lp-interpolation together with Lemma 2.1(i) for the second.
Then, there exists 0 < δ2 ≡ δ2(δ1) < 1, such that we find the upper bound

I ≤ C
[
hσ ‖curlBn−1‖L2‖curlBn‖L2 + ‖Bn−1‖δ2L2‖Bn−1‖1−δ2

H(curl)‖curlBn‖L2

]
‖ξξξ‖L6

≤ C
[
‖Bn−1‖L2 + ‖Bn−1‖δ2L2‖curlBn−1‖1−δ2

L2

]
‖curlBn‖L2‖∇ξξξ‖L2 .

Thanks to the discrete energy law, the first assertion then follows from (3.4), for some existing r ≡ r(δ1) > 1.
To validate the second assertion, choose ψψψ = R0

hw ∈ Xh, for every w ∈ X∩W2,2(Ω). Note that (dtBn,w−
R0
hw) = 0. We use (3.2), Young’s inequality, and Lemma 2.1(ii),

∣∣∣(dtBn,w
)∣∣∣ ≤ 1

Rem
‖curlBn‖L2‖curlψψψ‖L2 + II,
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where II =
∣∣(Un × Bn−1, curlψψψ

)∣∣. We use similar arguments as for I to obtain

II ≤ ‖Un‖L∞‖Bn−1 − H
(
Bn−1

)
‖L2‖curlψψψ‖L2 + ‖Un‖L6‖H

(
Bn−1

)
‖L3‖curlψψψ‖L2

≤ C
[
hσ ‖curlBn−1‖L2 + ‖Bn−1‖δ2L2‖Bn−1‖1−δ2

H(curl)

]
‖Un‖L6‖curlψψψ‖L2 (3.5)

for some σ ≡ σ(Ω) > 0, and 0 < δ2 ≡ δ2(δ1) < 1. In order to control ‖curlR0
hw‖L2 , we use inverse inequality,

and (2.12) to compute

‖curl
[
R0
hw ± R1

hw
]
‖L2 ≤ C

h

{
‖w − R0

hw‖L2 + ‖w − R1
hw‖L2

}

+ ‖curl
[
R1
hw − w

]
‖L2 + ‖curlw‖L2

≤ C
[
(1 + h)‖w‖W2,2 + ‖curlw‖L2

]
.

In (3.5), we now employ an inverse estimate, and the discrete energy law, to conclude the second assertion of
the lemma for some r ≡ r(Ω) > 1. �

Let
{(

Un, Pn,Bn, Rn
)}N
n=0

⊂ Jh × Lh × Xh × Sh solve Scheme A; consider corresponding piecewise affine,
globally continuous interpolants in time

{(
UUU(t, ·), ℘(t, ·),BBB(t, ·), R(t, ·)

)}
0≤t≤T as defined in Section 2.5, and

depending on k, h > 0 in particular. By Lemmas 3.1 and 3.2, for tending ( k, h ) → 0, there exists a convergent
subsequence of the quadruple, and functions

u ∈ L∞(
0, T ;H

)
∩ L2

(
0, T ;J

)
, b ∈ L∞(

0, T ;H
)
∩ L2

(
0, T ;X

)
, (3.6)

such that, for some existing r ≡ r(δ1) > 1, and δ1 ≡ δ1(Ω) > 0,

UUU ∗
⇀ u in L∞(

0, T ;L2
)
,

UUU ⇀ u in L2
(
0, T ;W1,2

)
∩W 1,r

(
0, T ; [V ∩ W2,2]′

)
,

UUU±,UUU → u in L2
(
0, T ;Lq

)
, ∀ 1 ≤ q < 6

BBB ∗
⇀ b in L∞(

0, T ;L2
)
, (3.7)

BBB ⇀ b in L2
(
0, T ;H(curl)

)
∩W 1,r

(
0, T ; [X ∩ W2,2]′

)
,

BBB±,BBB → b in L2
(
0, T ;L2

)
.

Weak incompressibility of u as stated in (3.6)1 follows from (div Un,Π) = 0 for all Π ∈ Lh: on putting
Π = Ihχ ∈ Lh for χ ∈ C∞(Ω), and tending h → 0 validates the assertion. Also, we use Lemma 2.3 to make
sure assertion (3.6)2 that b is divergence-free. We employ Lemmas 2.2 and 2.1(ii) to obtain (3.7)3 and (3.7)6.
Moreover, from Lemma 3.1 we may conclude that sequences {UUU} resp. {UUU±}, as well as {BBB} resp. {BBB±} converge
to the same limit as k, h→ 0, since for example

‖UUU −UUU+‖2
L2(0,T ;L2) =

N∑
n=1

‖Un − Un−1‖2
L2

∫ tn

tn−1

(s− tn
k

)2

ds =
k3

3

N∑
n=1

‖dtUn‖2
L2 ,

which tends to zero for k → 0.
The following result is that

(
u,b

)
is indeed a weak solution to (1.1)–(1.5).

Theorem 3.1. Suppose that Ω ⊂ R
3 is a bounded polyhedral domain, and T := kN > 0. Let

{(
Un, Pn,Bn, Rn

)}N
n=1

⊂ Jh × Lh × Xh × Sh
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be solutions to Scheme A. There exist a convergent subsequence, and
(
u,b

)
∈

(
L∞(

0, T ;H
)
∩ L2

(
0, T ;J

))
×(

L∞(
0, T ;H

)
∩ L2

(
0, T ;X

))
, such that for k, h→ 0, there holds

UUU ∗
⇀ u in L∞(

0, T ;L2
)
, BBB ∗

⇀ b in L∞(
0, T ;L2

)
.

Moreover,
(
u,b

)
is a weak solution to (1.1)–(1.5).

Proof. We rewrite (3.1)–(3.2) as follows. For every t > 0, find
(
U(t, ·),B(t, ·)

)
∈ Jh × Xh, such that for every(

ξξξ,ψψψ
)
∈ Jh × Xh,

(
UUU t, ξξξ

)
+

1
Re

(
∇UUU+,∇ξξξ

)
+

(
(UUU− · ∇)UUU+, ξξξ

)
+

1
2

(
(divUUU−)UUU+, ξξξ

)
+ S

(
BBB− × curlBBB+, ξξξ

)
= (f+, ξξξ), (3.8)

(
BBBt,ψψψ

)
+

1
Rem

(
curlBBB+, curlψψψ

)
−

(
UUU+ ×BBB−, curlψψψ

)
= 0. (3.9)

For every
(
v,w

)
∈ JJJ ×WWW, consider

(
ξξξ,ψψψ) ≡

(
Q0
hv,R

0
hw) ∈ Jh × Xh. Because of (2.7), (2.12), and inverse

inequalities, there holds for h→ 0,

(
ξξξ,ψψψ

)
→

(
v,w

)
in W1,p(Ω) ×

{
ϕϕϕ ∈ H(curl; Ω) : curlϕϕϕ ∈ Lp

} (
1 ≤ p <

2d
d− 2

)
.

After extending (3.8)–(3.9) to
(
ξξξ,ψψψ

)
∈ C∞

0

(
[0, T );JJJ

)
×C∞

0

(
[0, T );WWW

)
, and integrating by parts in the leading

terms of (3.8) and (3.9), by using convergence results (3.7) we may now easily pass to and identify limits for all
terms, which validates that

(
u,b

)
satisfies item (iii) of Definition 2.1 as well.

Properties (ii) and (iv) now follow from standard arguments, and Lemma 3.1. �

The main advantages of Scheme A are its linear character, the discrete energy identity (3.3), and (subse-
quence) convergence of iterates towards weak solutions of (1.1)–(1.5) for vanishing discretization parameters
in a general context of data. However, solutions

(
Un,Bn

)
for every n ≥ 1 are obtained in a coupled manner,

and it is therefore tempting to consider segregated schemes; we refer to [15,25], and also [12], Section 3.6, for a
discussion of decoupling schemes for the stationary problem. The following fixed-point algorithm allows for a
simultaneous computation of new iterates for both, velocity and magnetic field.

Algorithm A. Fix
(
k, h

)
> 0. Let

(
U0,B0

)
∈ Jh × Xh, and set n := 1.

1. Set Un,0 := Un−1, Bn,0 := Bn−1 and � = 0.
2. Compute

(
Un,� Pn,�,Bn,�, Rn,�

)
∈ Jh × Lh × Xh × Sh such that

(
Un,� − Un−1

k
,ξξξ

)
+

1
Re

(
∇Un,�,∇ξξξ

)
+

(
(Un−1 · ∇)Un,�, ξξξ

)
+

1
2

(
(div Un−1)Un,�, ξξξ

)

+ S
(
Bn−1 × curlBn,�−1, ξξξ

)
−

(
Pn,�, div ξξξ

)
=

(
gn, ξξξ

)
∀ξξξ ∈ Vh, (3.10)(

Bn,� − Bn−1

k
,ψψψ

)
+

1
Rem

(
curlBn,�, curlψψψ

)
−

(
Un,�−1×Bn−1, curlψψψ

)
−

(
∇Rn,�,ψψψ

)
= 0 ∀ψψψ ∈ Ch. (3.11)

3. For fixed θ > 0 stop if

∥∥curl
[
Bn,�−1 − Bn,�

]∥∥
L3 +

∥∥Un,�−1 − Un,�
∥∥
L∞ ≤ θ,

set Un := Un,�+1, Bn := Bn,�+1, and go to Step 1.
4. Set � := �+ 1, and go to Step 2.
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A difficulty to validate convergence of this fixed point strategy is the lack of a priori estimates for iterates,
which are independent of k, h > 0. This problematic nature is shared by other decoupling strategies, e.g., where
the third term in (3.11) is substituted by −

(
Un,�×Bn−1, curlψψψ

)
. The following result gives sufficient conditions

to validate convergence of solutions
{(

Uj,�,Bj,�
)}
j,�

to weak solutions of (1.1)–(1.5).

Theorem 3.2. Suppose that Ω ⊂ R
3 is a bounded polyhedral domain, and T ≡ kN > 0. Let

{(
Un,�, Pn,�,Bn,�, Sn,�

)}
1≤n≤N

�≥0

be a solution of Algorithm A. There exist C̃ ≡ C̃(ΩT , S,Re,Rem) > 0, and q < 1 such that (1 ≤ n ≤ N)
[
‖Un,�+1 − Un,�‖L2 + ‖Bn,�+1 − Bn,�‖L2

]
≤ q

[
‖Un,� − Un,�−1‖L2 + ‖Bn,� − Bn,�−1‖L2

]
(� ≥ 1), (3.12)

provided that k ≤ C̃h4. Moreover, the fixed-point algorithm terminates for every n ≥ 1, and corresponding
unique iterates

(
Un,�n ,Bn,�n

)
∈ Jh × Xh satisfy the perturbed discrete energy law

1
2

max
1≤n≤N

[
‖Un‖2

L2 + S ‖Bn‖2
L2

]
+
k2

2

N∑
n=1

[
‖dtUn‖2

L2 + S ‖dtBn‖2
L2

]

+ k

N∑
n=1

[
1

Re
‖∇Un‖2

L2 +
S

Rem
‖curlBn‖2

L2

]
≤ 1

2
[
‖U0‖2

L2 + S ‖B0‖2
L2

]
+ k

N∑
n=1

(
gn,Un

)

+ Cθ k

N∑
n=1

‖Bn−1‖L2

[
‖∇Un‖L2 + ‖curlBn‖L2

]
. (3.13)

Moreover,
(
Un,�n ,Bn,�n

)
→

(
Vn,Cn

)
(θ → 0) for every n ≥ 1, where

{(
Vn,Cn

)}N
n=1

⊂ Jh × Xh solves

Scheme A, and hence we obtain overall (subsequence) convergence of
{(

Un,�n ,Bn,�n
)}N
n=1

towards weak solu-
tions of (1.1)–(1.5) for

(
k, h, θ

)
→ 0.

Proof. Step 1: Contraction property. We proceed by induction to derive the contraction property (3.12). Let
En,�
ϕϕϕ := ϕϕϕn,� −ϕϕϕn,�−1, for ϕϕϕ ∈ {u,b, p, r}, and suppose ‖Un−1‖L2 + ‖Bn−1‖L2 ≤ C for some 1 ≤ n ≤ N . Then

1
k

(
En,�

u , ξξξ
)

+
1

Re
(
∇En,�

u ,∇ξξξ
)

+
(
(Un−1 · ∇)En,�

u , ξξξ
)

+
1
2

(
(div Un−1)En,�

u , ξξξ
)

+ S
(
Bn−1 × curlEn,�−1

b , ξξξ
)
−

(
En,�p , div ξξξ

)
= 0 ∀ξξξ ∈ Vh,

1
k

(
En,�

b ,ψψψ
)

+
1

Rem

(
curlEn,�

b , curlψψψ
)
−

(
En,�−1

u × Bn−1, curlψψψ
)
−

(
∇En,�r ,ψψψ

)
= 0 ∀ψψψ ∈ Ch.

Upon choosing ξξξ = En,�
u ∈ Jh, ψψψ = En,�

b ∈ Xh yields

1
k

[
‖En,�

u ‖2
L2 + ‖En,�

b ‖2
L2

]
+

1
Re

‖∇En,�
u ‖2

L2 +
1

Rem
‖curlEn,�

b ‖2
L2 ≤

S ‖Bn−1‖L6‖curlEn,�−1
b ‖L2‖En,�

u ‖L3 + ‖En,�−1
u ‖L3‖Bn−1‖L6‖curlEn,�

b ‖L2

≤ 1
2

[ 1
Rem

‖curlEn,�−1
b ‖2

L2 +
1

Re
‖∇En,�

u ‖2
L2

]
+ C‖Bn−1‖4

L6‖En,�
u ‖2

L2 ,

where we use interpolation of L3 between L2 and L6. By inverse estimate, ‖Bn−1‖L6 ≤ Ch−1 ‖Bn−1‖L2 , which
validates (3.12) for some C̃ > 0, such that k ≤ C̃h4.
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Step 2: Overall convergence. As a consequence, Algorithm A terminates, i.e., there exist finite numbers {�n}Nn=1

such that the stopping criterion in Step 3. holds for a given thresholding parameter θ > 0. In particular, iterates
{
(
Un,Bn

)
}Nn=1 satisfy

(
dtUn, ξξξ

)
+

1
Re

(
∇Un,∇ξξξ

)
+

(
(Un−1 · ∇)Un, ξξξ

)
+

1
2

(
(divUn−1)Un, ξξξ

)

+ S
(
Bn−1 × curlBn, ξξξ

)
−

(
Pn, div ξξξ

)
=

(
gn, ξξξ

)

+ S
(
Bn−1 × curl

[
Bn − Bn,�n

]
, ξξξ

)
∀ξξξ ∈ Vh,

(
dtBn,ψψψ

)
+

1
Rem

(
curlBn, curlψψψ

)
−

(
Un × Bn−1, curlψψψ

)
− (∇Rn,ψψψ)

+
(
[Un − Un,�n ] × Bn−1, curlψψψ

)
= 0 ∀ψψψ ∈ Ch.

The estimate (3.13) now follows easily, and (subsequence) convergence of iterates
{(

Un,�n ,Bn,�n
)}N
n=1

towards
weak solutions of (1.1)–(1.5) is a consequence of Theorem 3.1. �

The strong coupling of iterates in Scheme A is manifested by the restrictive constraint k ≤ C̃h4 (and k ≤ Ch2

in a 2D setting) which is sufficient in the decoupling Algorithm A to avoid possible spurious energy transfer
between hydrodynamical and electromagnetic part of the overall system, and validate convergence of iterates
towards weak solutions of (1.1)–(1.5). We remark that no mesh-constraint applies in case ‖Bn−1‖L6 ≤ C would
be available; cf. also Section 4, where convergent discretizations of (1.1)–(1.5) for more regular solutions of
(1.1)–(1.5) are discussed.

The following scheme is a variant of Scheme A, and decouples hydrodynamical and electromagnetic part. As
will be clear from the following, solutions again satisfy a slightly perturbed energy law, provided discretization
parameters satisfy k ≤ C̃h3 (and k ≤ C̃h2 in a 2D setting), which is made possible by the dissipative character
of the implicit Euler method.

Scheme B. Let n ≥ 1. Find
(
Un, Pn,Bn, Rn

)
∈ Jh × Lh × Xh × Sh, such that

(
dtUn, ξξξ

)
+

1
Re

(
∇Un,∇ξξξ

)
+

(
(Un−1 · ∇)Un, ξξξ

)
+

1
2

(
[div Un−1]Un, ξξξ

)

+ S
(
Bn−1 × curlBn−1, ξξξ

)
−

(
Pn, div ξξξ

)
=

(
gn, ξξξ

)
∀ξξξ ∈ Vh, (3.14)

(
dtBn,ψψψ

)
+

1
Rem

(
curlBn, curlψψψ

)
−

(
Un−1 × Bn−1, curlψψψ

)
− (∇Rn,ψψψ) = 0 ∀ψψψ ∈ Ch. (3.15)

In order to obtain the discrete energy identity (3.3) for Scheme B, we choose
(
ξξξ,ψψψ

)
=

(
Un,Bn

)
. We obtain

for the coupling terms

(
Bn−1 × curlBn−1,Un

)
−

(
Un−1 × Bn−1, curlBn

)
=

(
Bn−1 × curlBn−1,Un−1

)
−

(
Un−1 × Bn−1, curlBn−1

)
− k

(
Bn−1 × curlBn−1, dtUn

)
+ k

(
Un−1 × Bn−1, curl dtBn

)
≥ − Ck

[
‖Bn−1‖L∞‖curlBn−1‖L2‖dtUn‖L2 + ‖Un−1‖L6‖Bn−1‖L2‖curldtBn‖L3

]

≥ − Ckh−3/2‖Bn−1‖L2

[
‖curlBn−1‖L2‖dtUn‖L2 + ‖∇Un−1‖L2‖dtBn‖L2

]

≥ −k
4
[
‖dtUn‖2

L2 +
1

Rem
‖dtBn‖2

L2

]
+ Ckh−3‖Bn−1‖2

L2

[
‖curlBn−1‖2

L2 + ‖∇Un−1‖2
L2

]
, (3.16)



1078 A. PROHL

by inverse estimates, and Young’s inequality. We may now proceed by induction to conclude that there exists
C̃ ≡ C̃(ΩT ) > 0, such that for sufficiently small k ≤ C̃h3 there holds

1
2

max
1≤n≤N

[
‖Un‖2

L2 + S ‖Bn‖2
L2

]
+
k2

4

N∑
n=1

[
‖dtUn‖2

L2 + S ‖dtBn‖2
L2

]

+
k

2

N∑
n=1

[ 1
Re

‖∇Un‖2
L2 +

S

Rem
‖curlBn‖2

L2

]
≤ 1

2

[
‖U0‖2

L2 + S ‖B0‖2
L2

]
+ k

N∑
n=1

(
gn,Un

)
. (3.17)

Once this estimate is available, we obtain the assertion of Lemma 3.2 as well, and the convergence results in
(3.7). By following the steps in Theorem 3.1, we find that corresponding limits in (3.7) are a weak solution to
(1.1)–(1.5), provided k ≤ C̃h3 for some C̃ ≡ C̃(ΩT ) > 0 is respected throughout the limiting process.

Theorem 3.3. Let Ω ⊂ R
3 be a bounded polyhedral domain, and T := kN > 0. Suppose that k ≤ C̃h3 is

satisfied, for some C̃ ≡ C̃(ΩT ) > 0. Let

{(
Un, Pn,Bn, Rn

)}N
n=0

⊂ Jh × Lh × Xh × Sh

be a solution to Scheme B. There exist a convergent subsequence, and
(
u,b

)
∈

(
L∞(

0, T ;H
)
∩ L2

(
0, T ;J

))
×(

L∞(
0, T ;H

)
∩ L2

(
0, T ;X

))
, such that for k, h→ 0, there holds

UUU ∗
⇀ u in L∞(

0, T ;L2
)
, BBB ∗

⇀ b in L∞(
0, T ;L2

)
.

Moreover,
(
u,b

)
is a weak solution to (1.1)–(1.5).

Remark 3.2. (1) In [25], a stable finite element discretization of the stationary incompressible MHD system is
proposed, which corresponds to the one employed in Schemes A and B. It is shown in [25], Corollary 4.1, that
approximate solutions converge to weak solutions of the stationary MHD system for h→ 0, on general bounded
polyhedral domains Ω ⊂ R

3.
(2) In [15], Section 7, [25], Section 3.4, and [12], Section 3.6, different iterative decoupling strategies for the
stationary case to solve the resulting algebraic problem are reviewed: as is pointed out, decoupling strategies, as
well as Newton’s method often only converge for initial guesses that are sufficiently close to the exact solution,
and depends on the value of Re > 0, in particular.
(3) Sufficient (restrictive) mesh constraints F (k, h) ≥ 0 are given to verify a contraction property (Algorithm A),
or establish an inductive argument for Scheme B to validate (3.17), which result from using different inverse
estimates. In [3], computational experiments compare the proposed schemes (in a related context), study
necessary mesh-constraints for practical convergence, as well as compare edge elements to W 1,2-conforming
elements, which by theory require less restrictive inverse estimates.

4. An efficient splitting scheme

So far, convergence of the coupled Scheme A (unconditional), the decoupling Algorithm A (conditional), and
the decoupled Scheme B (conditional) towards weak solutions of (1.1)–(1.5) has been shown. The main tool for
this purpose is a discrete energy inequality, which allows to construct weak solutions in a limiting process for
vanishing discretization and thresholding parameters. In this section, we take another stand-point by assuming
that strong solutions of (1.1)–(1.5) exist, and approximating them by efficient schemes. We propose an optimally
convergent scheme which is much simpler if compared to Schemes A and B, and uses nodal elements instead
of Nedelec elements. As a result of these simplifications, no discrete energy law is available any more – which
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leaves unclear whether computed iterates converge in a general context where only weak solutions of (1.1)–(1.5)
are known to exist.

We make the following assumptions below (see Sect. 2.3 for used notation):
(A1) (regularity of the domain) Let Ω ⊂ R

3 be a bounded domain, such that unique solutions
(
u,b

)
∈ J×X

of AAA1u = f ∈ L2(Ω) resp. AAA2b = g ∈ L2(Ω) satisfy
(
u,b

)
∈

[
W2,2(Ω)

]2, and

‖u‖W2,2 ≤ C ‖f‖L2 resp. ‖b‖W2,2 ≤ C ‖g‖L2 .

(A2) (regularity of the data) Let
(
u0,b0

)
∈

[
W2,2(Ω)

]2, and g ∈ W 1,2
(
0, T ;L2(Ω)

)
. Moreover, for every

given T > 0, the tuple
(
u,b

)
∈

[
L∞(

0, T ;W2,2
)]2 is strong solution to (1.1)–(1.5).

We remark that additional regularity of Ω ⊂ R
3 is needed to make sure that (A1) holds in a general setting;

see the discussion in Section 2.3.
The following Scheme C differs from the above Scheme A in the following aspects:

(i) finite element spaces for velocity field resp. pressure are

Vh =
{
ξξξ ∈ C0(Ω) : ξξξ ∈ P1(K,R3) ∀K ∈ Th

}
, L̃h =

{
χ ∈ C(Ω) : χ ∈ P1(K) ∀K ∈ Th

}
,

which now both use piecewise affine, globally continuous functions;
(ii) a consistent regularization term −γ∇divB on the left-hand side of (1.3) is added;
(iii) W1,2(Ω)-conforming finite elements to approximate the magnetic field b : ΩT → R

3 are used, where

C̃h =
{
ψψψ ∈ C(Ω) : ψψψ ∈ P1(Ω,R3) ∀K ∈ Th

}
⊂ H0(div; Ω) ∩ W1,2(Ω)

now ensembles piecewise affine, globally continuous functions;
(iv) the hydrodynamical and electromagnetic parts are decoupled;
(v) a modification of Chorin’s projection method to solve the incompressible Navier-Stokes equation [8,22,27]

is used.
The computation of iterates for velocity field, pressure, and magnetic field are fully decoupled in the following
scheme.

Scheme C. Let n ≥ 1. 1. For given
(
Un−1,Bn−1

)
∈ Jh × C̃h let Ũn ∈ Vh be a solution of

1
k

(
Ũn − Un−1, ξξξ

)
+

1
Re

(
∇Ũn,∇ξξξ

)
+

(
(Un−1 · ∇)Ũn, ξξξ

)
+

1
2

(
(div Un−1)Ũn, ξξξ

)

+ S
(
Bn−1 × curlBn−1, ξξξ

)
=

(
gn, ξξξ

)
∀ξξξ ∈ Vh.

2. For given Ũn ∈ Vh compute
(
Un, Pn

)
∈ Jh × L̃h from

(∇Pn,∇χ) = −1
k

(
div Ũn, χ

)
∀χ ∈ L̃h,(

Un, ξξξ
)

=
(
Ũn, ξξξ

)
+ k

(
pn, div ξξξ

)
= 0 ∀ξξξ ∈ Vh.

3. Let Bn ∈ C̃h solve for all ψψψ ∈ C̃h that (γ > 0)

(dtBn,ψψψ) +
1

Rem

(
curlBn, curlψψψ

)
+ γ

(
div Bn, divψψψ

)
−

(
Ũn−1 × Bn−1, curlψψψ

)
= 0.

The first step allows for a component-wise computation of new iterates of the velocity field. In Step 2, the
new pressure iterate solves a Poisson equation, and the computation of the new discretely solenoidal velocity
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field Un only requires to invert a mass matrix. The third step couples with updates of the velocity field in an
explicit manner. All steps require to solve linear problems. For every n ≥ 1, a reformulation of this scheme for
iterates

(
Ũn, Pn,Bn

)
is

(dtŨn, ξξξ) +
1

Re
(∇Ũn,∇ξξξ) +

(
(Ũn−1 · ∇)Ũn, ξξξ

)
+

1
2

(
(div Ũn−1)Ũn, ξξξ

)

+ S
(
Bn−1 × curlBn−1, ξξξ

)
+ (∇Pn−1, ξξξ) = (gn, ξξξ) ∀ξξξ ∈ Vh, (4.1)

(div Ũn, χ) + k (∇Pn,∇χ) = 0 ∀χ ∈ L̃h, (4.2)
(dtBn,ψψψ) +

1
Rem

(
curlBn, curlψψψ

)
+ γ

(
div Bn, divψψψ

)
−

(
Ũn−1 × Bn−1, curlψψψ

)
= 0 ∀ψψψ ∈ C̃h. (4.3)

Equations (4.1)–(4.3) show space-time discretization, semi-explicit treatment of several nonlinear terms, as
well as a perturbation of the (discrete) incompressibility constraint in (4.1), and an explicit treatment of the
related Lagrange multiplier in (4.1). The ‘quasi-compressibility’ equation (4.2) implies that the finite element
discretization based on the P1/P1-element for the hydrodynamic part is stable, once k ≥ Ch2 is satisfied,
cf. [19,22]; LBB-stable pairings with proper approximation properties are suitable as well, and k ≥ Ch2 is not
needed there. Unfortunately, the characterization (4.1)–(4.3) of iterates computed from Scheme C does not allow
for a discrete energy estimate. In fact, the following theorem validates convergence of iterates

{(
Ũn,Bn

)}N
n=1

of optimal order in terms of discretization parameters k, h > 0, provided strong solutions to (1.1)–(1.5) exist.

Theorem 4.1. Let T = kN > 0, and
{(

Ũn, Pn,Bn
)}N
n=1

solves Scheme C. Suppose that (A1), (A2) are valid,
as well as

[
‖u0 − U0‖L2 + ‖b0 − B0‖L2

]
+ (

√
k + h)

[
‖u0 − U0‖W1,2 + ‖b0 − B0‖W1,2

]
≤ C

(
k + h2

)
. (4.4)

For sufficiently small time-steps k ≤ k0(T ), and h ≤ h0(T ), there exists C ≡ C(ΩT , S,Re,Rem) > 0, such that
(τn = min{1, tn})

(a) max
1≤n≤N

[
‖u(tn, ·) − Ũn‖L2 + τn ‖p(tn, ·) − Pn‖W−1,2 + ‖b(tn, ·) − Bn‖L2

]
≤ C(k + h2),

(b) max
1≤n≤N

√
τn ‖p(tn, ·) − Pn‖L2

0
+

(
k

N∑
n=1

‖∇PW1,2

[
u(tn, ·) − Ũn

]
‖2
L2

)1/2

+
(
k

N∑
n=1

‖∇PW1,2

[
b(tn, ·) − B̃n

]
‖2
L2

)1/2

≤ C(
√
k + h).

The proof is split into several steps, each of which accounts for approximation effects due to (semi-implicit)
time-discretization, perturbation of the incompressibility constraint, and spatial discretization. Being provided
with a strong solution of (1.1)–(1.5), where

(
u0,b0

)
∈

[
W2,2(Ω)

]2 and g ∈ W 1,2
(
0, T ;L2(Ω)

)
, we may easily

verify the following bounds,

‖u‖
L∞

(
0,T ;W2,2

)
∩W 1,∞

(
0,T ;L2

)
∩W 1,2

(
0,T ;W1,2

)
∩W 2,2

(
0,T ;J′

) + ‖p‖
L∞

(
0,T ;W 1,2

)
∩W 1,2

(
0,T ;L2

0

)
+ ‖b‖

L∞
(
0,T ;W2,2

)
∩W 1,∞

(
0,T ;L2

)
∩W 1,2

(
0,T ;W1,2

)
∩W 2,2

(
0,T ;X′

) ≤ C. (4.5)

In order to verify Theorem 4.1, we start with an error analysis which accounts for temporal discretization
effects. For every 1 ≤ n ≤ N , let

(
un, pn,bn

)
∈ W1,2

0 (Ω) ×
[
W 1,2(Ω) ∩ L2

0(Ω)
]
×

[
W1,2(Ω) ∩ H0(div; Ω)

]
be
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the solution of

(dtun, ξξξ) +
1

Re
(
∇un,∇ξξξ

)
+

(
(un−1 · ∇)un, ξξξ

)
+

1
2

(
(div un−1)un, ξξξ

)

+ S
(
bn−1 × curlbn−1, ξξξ

)
+ (∇pn−1, ξξξ) = (gn, ξξξ) ∀ξξξ ∈ W1,2

0 (Ω), (4.6)

(div un, χ) + k (∇pn,∇χ) = 0 ∀χ ∈W 1,2(Ω) ∩ L2
0(Ω), (4.7)

(dtbn,ψψψ) +
1

Rem

(
curlbn, curlψψψ

)
+ γ

(
div bn, divψψψ

)

−
(
un−1 × bn−1, curlψψψ

)
= 0 ∀ψψψ ∈ H0(div; Ω) ∩W1,2(Ω). (4.8)

The following analysis of (4.6)–(4.8) is split into several steps, each of which addresses different approxima-
tion effects due to implicit time discretization, decoupling of hydrodynamic and and electromagnetic part, as
well as splitting the Stokes operator to independently compute velocity field and pressure, and an associated
perturbation of the incompressibility constraint for the velocity field.

Lemma 4.1. Let T = kN > 0, and
{(

ũn, pn,bn
)}N
n=1

solves (4.6)–(4.8). Suppose that (A1), (A2) are valid, as
well as (4.4), with h = 0. For sufficiently small time-steps k ≤ k0(ΩT ), there exists C ≡ C(ΩT , S,Re,Rem) > 0,
such that

(a) max
1≤n≤N

[
‖u(tn, ·) − ũn‖L2 + τn ‖p(tn, ·) − pn‖W−1,2 + ‖b(tn, ·) − bn‖L2

]
≤ Ck,

(b) max
1≤n≤N

√
τnk ‖p(tn, ·) − pn‖L2

0
+

(
k

N∑
n=1

‖u(tn, ·) − ũn‖2
W1,2

)1/2

+
(
k

N∑
n=1

‖b(tn, ·) − bn‖2
W1,2

)1/2

≤ Ck.

In below, we say that the triple
{(
ξξξn,ψψψn, χn

)}N
n=1

⊂
[
L2

]2 × L2
0 satisfies property:

(P1) if the following bounds hold uniformly in k > 0,

max
1≤n≤N

{
‖ξξξn‖W2,2 + ‖ψψψn‖W2,2 + ‖χn‖W 1,2∩L2

0
+ ‖dtξξξn‖L2 + ‖dtψψψn‖L2

}

+
(
k

∑
1≤n≤N

[
‖dtξξξn‖2

W1,2 + ‖dtψψψn‖2
W1,2 + ‖dtχn‖2

L2
0

])1/2

≤ C;

(P2) if the following error estimates are satisfied, for τn := min{tn, 1},

max
1≤n≤N

{
‖u(tn, ·) − ξξξn‖L2 + ‖b(tn, ·) −ψψψn‖L2 + τn ‖p(tn) − χn‖W−1,2 +

√
τnk ‖p(tn, ·) − χn‖L2

0

}

+
√
k
(
k

N∑
n=1

[
‖u(tn, ·) − ξξξn‖W1,2 + ‖b(tn, ·) −ψψψn‖W1,2

])1/2

≤ Ck.
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Proof of Lemma 4.1. Step 1: Implicit discretization of (1.1)–(1.5). For every 1 ≤ n ≤ N , let
(
unA, p

n
A,b

n
A

)
∈

J ×
[
W 1,2(Ω) ∩ L2

0(Ω)
]
×

[
W1,2 ∩ H0(div; Ω)

]
be the solution of

(dtun, ξξξ) +
1

Re
(
∇un,∇ξξξ

)
+

(
(un−1 · ∇)un, ξξξ

)

+ S
(
bn × curlbn, ξξξ

)
+ (∇pn, ξξξ) = (gn, ξξξ) ∀ξξξ ∈ W1,2

0 (Ω), (4.9)

(dtbn,ψψψ) +
1

Rem

(
curlbn, curlψψψ

)
+ γ

(
div bn, divψψψ

)

−
(
un × bn, curlψψψ

)
= 0 ∀ψψψ ∈ H0(div; Ω) ∩ W1,2(Ω). (4.10)

Similar to studies for Scheme A, iterates
{(

unA, p
n
A,b

n
A

)}N
n=1

exist, and verify the discrete energy estimate from
Lemma 3.1. A lengthy, but elementary analysis controls implicit time discretization effects (enϕϕϕ := ϕϕϕ(tn, ·)−ϕϕϕnA),

1
2

max
1≤n≤N

[
‖enu‖2

L2 + ‖enb‖2
L2

]
+
k2

2

N∑
n=1

[
‖dtenu‖2

L2 + ‖dtenb‖2
L2

]
+ k

N∑
n=1

[
‖∇enu‖2

L2 + ‖∇enb‖2
L2

]
≤ Ck2, (4.11)

where C > 0 depends on (4.5), and results from Taylor’s expansion, regularity properties (4.5) of the strong
solution of (1.1)–(1.5), cancellation of coupling terms in (4.9) and (4.10) if correspondingly stated for eu resp. eu

instead of u resp. b, as well as discrete Gronwall’s inequality. The second sum results from the dissipative
character of the implicit Euler scheme, and implies the following bound for the first two terms

‖dtunA‖L2 + ‖dtbnA‖L2 + ‖unA‖W2,2 + ‖pnA‖W 1,2∩L2
0
+ ‖bnA‖W2,2 ≤ C (1 ≤ n ≤ N). (4.12)

The remaining estimates follow from (2.3) and (2.4), where we use the following bounds,
∥∥(un−1

A · ∇)unA
∥∥
L2 ≤

[
‖en−1

u ‖L6 + ‖u(tn−1, ·)‖L6

]
‖∇unA‖L3

≤ C
(√
k + 1

)
‖∇unA‖

1/2
L2 ‖unA‖

1/2
W2,2 ,∥∥bnA × curlbnA

∥∥
L2 ≤

(
‖enu‖L6 + ‖u(tn, ·)‖L6)‖curlbnA‖L3

≤ C
(√
k + 1

)
‖bnA‖

1/2
W1,2‖bnA‖

1/2
W2,2 ,∥∥curl(unA × bnA)

∥∥
L2 ≤ ‖unA‖W1,3

(
‖enb‖L6 + ‖b(tn, ·)‖L6

)
+ ‖bnA‖W1,3

(
‖enu‖L6 + ‖u(tn, ·)‖L6

)
≤ C

(√
k + 1

)[
‖unA‖

1/2
W1,2‖unA‖

1/2
W2,2 + ‖bnA‖

1/2
W1,2‖bnA‖

1/2
W2,2

]
.

In order to show k
∑

1≤n≤N
[
‖dtun‖2

W1,2 +‖dtbn‖2
W1,2

]
≤ C, we use again the error estimates above, for example

k

N∑
n=1

‖∇dtunA‖2
L2 ≤ k

N∑
n=1

[
‖∇dtenu‖2

L2 + ‖∇dtu(tn, ·)‖2
L2

]
≤ 3
k

N∑
n=1

‖∇enu‖2
L2 + C ≤ 2C.

Properties for pressure iterates given in (P1), (P2) use standard stability properties of the div-operator. Hence
properties (P1) and (P2) hold for (4.9)–(4.10).

Step 2: Decoupling of the implicit discretization (4.9)–(4.10). We change the coupling term in (4.9) to S
(
bn−1×

curlbn, ξξξ
)
, and in (4.10) to

(
un−1 × bn−1, curlψψψ

)
; solutions of the corresponding scheme are referred to as{(

unB, p
n
B,b

n
B

)}
∈ J×W 1,2(Ω) ×

[
W1,2(Ω) ∩ H0(div; Ω)

]
.

We may proceed similar to the previous step to validate properties (P1) and (P2) for{(
unB, p

n
B,b

n
B

)}N
n=1

: in order to verify the discrete energy inequality (3.17), we use integration by parts in



THE INCOMPRESSIBLE MHD SYSTEM 1083

the third line, and Sobolev inequalities in the fourth line of (3.16) to obtain

(
Bn−1 × curlBn−1,Un

)
−

(
Un−1 × Bn−1, curlBn

)
≥ −Ck

[
‖Bn−1‖W2,2‖curlBn−1‖L2‖dtUn‖L2

+
(
‖Un−1‖W1,2‖Bn−1‖W2,2 + ‖Bn−1‖W1,2‖Un−1‖W2,2

)
‖dtBn‖L2

]

≥ −k
8
[
‖dtUn‖2

L2 +
1

Rem
‖dtBn‖2

L2

]
+ Ck

[
‖Un−1‖2

W2,2 + ‖Bn−1‖2
W2,2

]
×

[
‖Bn−1‖2

W1,2 + ‖un−1‖2
W1,2

]
. (4.13)

Now, for every 1 ≤ n ≤ N the error estimate (4.11) carries over to
(
unB, p

n
B,b

n
B

)
, as well as its consequences

(4.12), and an inductive argument then settles (3.17) for them. The remaining properties of (P1) and (P2) now
easily follow again.

Step 3: Chorin’s projection method. For every 1 ≤ n ≤ N , let
(
unC , p

n
C ,b

n
C

)
∈ W1,2

0 (Ω)×
[
W 1,2(Ω) ∩L2

0(Ω)
]
×[

W1,2(Ω) ∩H0(div; Ω)
]

be the solution of

(dtunC , ξξξ) +
1

Re
(
∇unC ,∇ξξξ

)
+

(
(un−1
C · ∇)unC , ξξξ

)
+

1
2

(
(div un−1

C )unC , ξξξ
)

+ S
(
bn−1
B × curlbn−1

B , ξξξ
)

+ (∇pn−1
C , ξξξ) = (gn, ξξξ) ∀ξξξ ∈ W1,2

0 (Ω), (4.14)

(div unC , χ) + k (∇pnC ,∇χ) = 0 ∀χ ∈W 1,2(Ω) ∩ L2
0(Ω), (4.15)

(dtbnC ,ψψψ) +
1

Rem

(
curlbnC , curlψψψ

)
+ γ

(
div bnC , divψψψ

)

−
(
un−1
C × bn−1

C , curlψψψ
)

= 0 ∀ψψψ ∈ H0(div; Ω) ∩ W1,2(Ω). (4.16)

We have bn−1
B × curlbn−1

B ∈ W1,2(Ω) for every 1 ≤ n ≤ N ; by Lemma 2.4, and using enϕϕϕ := ϕϕϕnB − ϕϕϕnC , we
conclude that

1
2

max
1≤n≤N

‖enu‖2
L2 +

k2

2

N∑
n=1

[
‖dtenu‖2

L2 + 2‖∇enp‖2
L2

]
+ k

N∑
n=1

‖∇enu‖2
L2 ≤ Ck2. (4.17)

Therefore, ‖pn‖W 1,2∩L2
0
≤ C for all 1 ≤ n ≤ N , and because of (4.15), we so we have similar to (4.12),

‖dtunC‖L2 + ‖pnC‖W 1,2∩L2
0
+ ‖unC‖W2,2 ≤ C (1 ≤ n ≤ N), (4.18)

where the latter result now follows from (4.14), and regularity theory for elliptic problems.
In order to verify results which correspond to those in (4.17), (4.18) for {bnC}n ⊂

[
W1,2(Ω) ∩ H0(div; Ω)

]
,

we use (4.16) to control {enb}n ⊂
[
W1,2(Ω) ∩ H0(div; Ω)

]
: by elementary calculations, on using

(
un−1
B × bn−1

B − un−1
C × bn−1

C , curlenb
)

=
(
un−1
C × en−1

b , curlenb
)

+
(
en−1
u × bn−1

B , curl, enb
)

≤
(
‖un−1

C ‖L∞ + ‖bn−1
B ‖L∞

)
‖en−1

b ‖L2‖curlenb‖L2 ,

Sobolev’s and Young’s inequality, as well as a priori bounds from the previous step, this implies properties (P1)
and (P2) for

{(
unC , p

n
C ,b

n
C

)}
1≤n≤N .

Step 4: Recoupling effects caused by Chorin’s projection method. For every 1 ≤ n ≤ N , let(
unD, p

n
D,b

n
D

)
∈ W1,2

0 (Ω)×
[
W 1,2(Ω)∩L2

0(Ω)
]
×

[
W1,2(Ω)∩H0(div; Ω)

]
be the solution of a slight modification

of (4.14)–(4.16), where the coupling term in (4.14) replaced by S
(
bn−1
D × curlbn−1

B , ξξξ
)
. Let enϕ := ϕnC − ϕnD,
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then the equations for
(
enu, e

n
p , e

n
b

)
∈ W1,2

0 (Ω) ×
[
W 1,2(Ω) ∩ L2

0(Ω)
]
×

[
W1,2(Ω) ∩ H0(div; Ω)

]
read

(dtenu, ξξξ) +
1

Re
(
∇enu,∇ξξξ

)
+

(
[un−1
C · ∇]enu, ξξξ

)
−

(
[en−1

u · ∇]enu, ξξξ
)
−

(
[en−1

u · ∇]unC , ξξξ
)

+
1
2

[(
(div un−1

C )enu, ξξξ
)

+
(
(div en−1

u )enu, ξξξ
)

+
(
(div en−1

u )unC , ξξξ
)]

+ S
[(

bn−1
C × curlen−1

b , ξξξ
)
−

(
en−1
b × curl en−1

b , ξξξ
)
−

(
en−1
b × curlun−1

C , ξξξ
)]

+ (∇en−1
p , ξξξ) =

− S
[(

bn−1
B × curl

[
bn−1
B − bn−1

C

]
, ξξξ

)
−

([
bn−1
B − bn−1

C

]
× curl

[
bn−1
B − bn−1

C

]
, ξξξ

)

−
([

bn−1
B − bn−1

C

]
× curlun−1

B , ξξξ
)]

∀ξξξ ∈ W1,2
0 (Ω),

(div enu, χ) + k (∇enp ,∇χ) = 0 ∀χ ∈W 1,2(Ω) ∩ L2
0(Ω),

(dtenb,ψψψ) +
1

Rem

(
curlenb, curlψψψ

)
+ γ

(
div en−1

b , divψψψ
)
−

(
un−1
C × en−1

b , curlψψψ
)

+
(
en−1
u × en−1

b , curlψψψ
)
−

(
en−1
u × bn−1

C , curlψψψ
)

= 0 ∀ψψψ ∈ H0(div; Ω) ∩W1,2(Ω).

We choose
(
ξξξ, χ,ψψψ

)
=

(
enu, e

n
p , e

n
b

)
, add the three equations, and sum over all time steps 1 ≤ n ≤ N . Because

of properties (P1) and (P2) for
{(

unC , p
n
C ,b

n
C

)}N
n=1

, most of the terms are simple to control, and we focus here
on only two which cause some difficulties. We start with

(
en−1
b × curlen−1

b , enu
)
−

(
en−1
b × en−1

u , curlenb
)
.

Similar to (4.13), we may employ cancellation of the terms for equal indices, and a priori estimates (P2) for{(
unD, p

n
D,b

n
D

)}N
n=1

which are available if the above error analysis is embedded into an inductive argument.
The second problematic term is (∇en−1

p , enu) = k (∇enp ,∇en−1
p ), which can be restated as follows,

k (∇enp ,∇en−1
p ) = k ‖∇enp‖2

L2 − k2(∇enp ,∇dtenp )

= k ‖∇enp‖2
L2 − k (dtenu,∇enp ) ≥ k

[1
8
‖∇enp‖2

L2 −
2
7
‖dtenu‖2

L2

]
,

where we employ again the quasi-compressibility constraint. Thanks to the dissipative character of the implicit
Euler method, the last term may again be control by (dtenu, enu) = 1

2dt‖enu‖2
L2 + k

2‖dtenu‖2
L2 . As a consequence,

we may conclude (P1), and (P2) then easily follows from the previous steps. �

The proof of Theorem 4.1 is an immediate consequence of Lemma 4.1.

Proof of Theorem 4.1. Lemma 4.1 asserts the approximation property (P2) for solutions
{(

un, pn,bn
)}N
n=1

of (4.6)–(4.8). By the method of proof of Lemma 4.1, we may use it to validate property (P2) for solutions
of (4.6)–(4.8) as well.
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In order to verify Theorem 4.1, it remains to control spatial discretization effects; for this purpose we
subtract equations (4.1)–(4.3) from (4.6)–(4.8). By conformity of the finite element discretization, we obtain((

En
u, E

n
p ,E

n
u

)
:=

(
un − Ũn, pn − Pn,bn − Bn

))

(dtEn
u,ΞΞΞ) +

1
Re

(
∇En

u,∇ΞΞΞ
)

+
(
[un−1 · ∇]En

u,ΞΞΞ
)
−

(
[En−1

u · ∇]En
u,ΞΞΞ

)
−

(
[En−1

u · ∇]un,ΞΞΞ
)

+
1
2

[(
(div un−1)En

u,ΞΞΞ
)

+
(
(div En−1

u )En
u,ΞΞΞ

)
+

(
(div En−1

u )un,ΞΞΞ
)]

+ S
[(

bn−1 × curlEn−1
b ,ΞΞΞ

)
−

(
En−1

b × curlEn−1
b ,ΞΞΞ

)

−
(
En−1

b × curlun−1,ΞΞΞ
)]

+ (∇En−1
p ,ΞΞΞ) = 0 ∀ΞΞΞ ∈ Vh

(div En
u,Λ) + k (∇Enp ,∇Λ) = 0 ∀Λ ∈ L̃h,

(dtEn
b,ΨΨΨ) +

1
Rem

(
curlEn

b, curlΨΨΨ
)

+ γ
(
div En−1

b , divΨΨΨ
)
−

(
un−1 × En−1

b , curlΨΨΨ
)

+
(
En−1

u × En−1
b , curlΨΨΨ

)
−

(
En−1

u × bn−1, curlΨΨΨ
)

∀ψψψ ∈ C̃h.

Let
(
ΞΞΞ,Λ,ΨΨΨ

)
=

(
PW1,2En

u,PW 1,2∩L2
0
Enp ,PW1,2Enu

)
∈ Vh × L̃h × C̃h. A standard error analysis now shows

assertion Theorem 4.1. �

Remark 4.1. (1) The stabilized finite element method introduced in [11] to solve the stationary incompressible
MHD system is related to the Scheme C, in the sense that the (consistent) stabilization procedure in [11] is
based on the quasi-compressibility constraint (ε > 0)

div u− εΔp = εh in Ω ,

for some h ≡ h(u,b), and ε = O(h2). In the context of Scheme C, we have h ≡ 0, and ε = O(k) – which leads
to the mesh-constraint k ≥ Ch2 to apply the results from [19] to circumvent the discrete LBB constraint, and
validate well-posedness of the discrete scheme, as well as optimal convergence behavior.

(2) A well-known drawback of projection methods are arising non-physical boundary layers for pressure iterates;
we refer to [22,24] where modified methods are introduced and studied, which enforce the incompressibility
constraint by projection, and are exempted from this deficiency.

(3) Another statement of (1.1)–(1.3) is the Helmholtz formulation

ut + (u · ∇)u − 1
Re

Δu + ∇
(
p+

S

2
|b|2

)
= S (b · ∇)b + g

div u = 0 div b = 0

bt −
1

Rem
Δb + (u · ∇)b − (b · ∇)u + ∇q = 0,

where q ∈ L2
0(Ω) is a Lagrange multiplier to allow for solenoidal fields b : ΩT → R

3. In [23], Sections 6
and 7, different quasi-compressibility strategies are studied which mimic corresponding projection methods in
the context of splitting temporal discretization. However, as is outlined in [12], Section 3.6, the Helmholtz
formulation is not well-suited to implement the natural boundary conditions (1.4), which is the reason to better
discretize (1.1)–(1.5) directly.
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5. Conclusions

It is well-known that global weak solutions for equations (1.1)–(1.5) and Ω ⊂ R
3 bounded exist for a general

context of data, while existence of strong solutions is only locally known, and requires a restricted set of data. In
this paper, we propose four different fully discrete schemes which reflect this problematic nature of the problem:

(1) Weak solutions in general polyhedral domains Ω ⊂ R
3 are approximated by Scheme A, and certain

decoupling strategies (Algorithm A and Scheme B), where H(curl; Ω)-conforming edge elements for the
magnetic field, and a discrete energy principle are crucial tools to verify convergence of iterates in the
sense of existing subsequences which converge to weak solutions of (1.1)–(1.5) for vanishing discretization
parameters.

(2) Strong solutions in regular domains Ω ⊂ R
3 are approximated by iterates from a time-splitting scheme

(Scheme C) which uses nodal finite elements, in the sense of strong convergence with optimal rates.
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