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A STABILIZED FINITE ELEMENT SCHEME FOR THE NAVIER-STOKES
EQUATIONS ON QUADRILATERAL ANISOTROPIC MESHES

Malte Braack
1

Abstract. It is well known that the classical local projection method as well as residual-based stabi-
lization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic
meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic
quadrilateral meshes in two spatial dimensions. We describe the new method and prove an a priori
error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior
than other isotropic stabilization methods. The capability of the method is illustrated by means of two
numerical test problems.
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1. Introduction

The solution of partial differential equations on anisotropic meshes is of substantial importance for efficient
solutions of problems with interior layers or boundary layers. For instance, in fluid dynamics at higher Reynolds
number anisotropic meshes are usually used in order to resolve sharp gradients of velocity and pressure per-
pendicular to the boundary. Stabilized finite elements are well established in computational fluid dynamics,
e.g. streamline upwind Petrov-Galerkin (SUPG), as introduced by Brooks and Hughes [13], or pressure sta-
bilized Petrov-Galerkin (PSPG), see [23]. For the isotropic case, there is a wide range of methods and their
analysis, as e.g. Tobiska and Lube [34], Hansbo and Szepessy [22], Franca and Frey [20], or the interior penalty
method by Burman et al. [14]. As a first step towards (isotropic) projection-based stabilization the work of
Codina [16] should be mentioned, where weighted global projections are added to the Galerkin terms.

But there is relatively few theoretical work done for anisotropic meshes. Formaggia and Perotto [18] derived
a priori and a posteriori error estimates for elliptic problems on anisotropic triangular meshes where no stabi-
lization is necessary. It is well-known that stabilized finite element schemes must be modified on anisotropic
meshes. Usually, the anisotropic version differs from the isotropic version in the way to compute a characteristic
mesh size parameter hK on each element K which enters in the formulation as an important parameter. Taking
this as the cell diameter is not the optimal choice as shown by Lube and Apel [28]. Micheletti et al. [32] propose
for convection-diffusion problems and for the Stokes system to take instead the minimal eigenvalue hK := λK,min

of the affine mapping of the reference triangle to the physical one, see [18]. The same is proposed by Codina
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and Soto [17] in the case of the time-dependent Navier-Stokes equations with orthogonal subscale stabilization.
They compare it successfully by a numerical comparison with other possibilities, e.g. to take h as the maximum
element length. Linss derived in [27] a particular choice of hK for a scalar convection diffusion problems on
anisotropic meshes by a comparison with the residual free bubble approach. A numerical study shows a consid-
erable reduction of the discretization error. Even less theoretical results are available for the Oseen system (as
a standard linearization of the Navier-Stokes equations) on anisotropic meshes. The first error analysis is given
by Lube et al. [30] in the case for SUPG/PSPG on hybrid meshes. Their modification in comparison to the
isotropic version is also based on a different choice of hK . On hybrid meshes with a presumed relation of the
mesh sizes in the different coordinate directions based on the diffusion constant ν, the parameter hK is chosen
as |K|1/d.

In this work we propose a numerical scheme for fluid dynamics based on local projection stabilization (LPS)
for anisotropic meshes. In particular, we give a proof for its optimality in the case of the Oseen system as
a standard linearization of the Navier-Stokes system. The used techniques can probably be applied as well
to an anisotropic version of subgrid stabilization of Guermond [21]. The isotropic version of local projection
stabilization (LPS) was introduced in [3] in order to stabilize the saddle point structure of the Stokes system when
equal-order finite elements are used. The method was extended in [4] for convective terms appearing for instance
in the Navier-Stokes equation. An analysis is given in [8] for the Oseen system with equal-order (bi-)linear or
(bi-)quadratic finite elements. Local projection stabilization techniques are already applied with large success
to different fields of computational fluid dynamics, e.g., in 3D incompressible flows [10], compressible flows [33],
reactive flows [11], parameter estimation [5,6] and optimal control problems [26]. Recently, an extension to
arbitrary order and more general projections is derived by Matthies et al. [31].

The first step of formulating LPS on anisotropic quadrilateral meshes is published in [9] by considering the
Stokes system. In the present work we address the by far more relevant and more difficult Oseen system where
also the convective terms should be stabilized in such a way that the a priori error analysis remains optimal
even when strongly stretched elements are used.

This work is structured as follows: in the following section we fix our notations of variables and spaces for the
Oseen system and its Galerkin formulation. Well known asymptotic a priori estimates for the isotropic cases
are presented and discussed in the context of anisotropic meshes. In Section 3, the LPS technique for isotropic
meshes is shortly repeated and then extended to the anisotropic case on structured meshes and afterwards on
unstructured quadrilateral meshes. The error analysis is presented Section 4. In Section 5, the proposed scheme
is validated for the Navier-Stokes system on the basis of two model problems. In particular, we compare the
anisotropic LPS variant with the classical isotropic version.

2. Motivation of anisotropic A PRIORI estimates for the Oseen system

2.1. Oseen system

The Oseen system in the domain Ω ⊂ R
d for velocity v and pressure p consists of momentum and continuity

equation:

σv + (β · ∇)v − μΔv + ∇p = f,

div v = 0,

together with appropriate boundary conditions for v (and eventually for p) on ∂Ω. The absorption coefficient σ
is supposed to be non-negative, σ ≥ 0. The convection field β may vary in space but is solenoidal, divβ = 0.
The viscosity may also vary in space as long as μ(x) > 0 for each x ∈ Ω. However, for ease of presentation
we assume spatial constant μ and σ. We take in mind that the result in this work takes over to the case of
varying coefficients with minor modifications. The right-hand side f is supposed to be in the Hilbert space of
square-integrable generalized functions L2(Ω).
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For the analysis we restrict ourself to the case of homogeneous Dirichlet conditions for the velocities (no-slip
conditions):

v|∂Ω = 0.

Due to the Dirichlet conditions for v on the entire boundary, the pressure has to be normalized, for instance by
the requirement of zero mean: ∫

Ω

p(x) dx = 0.

In the numerical part of this work, we also consider mixed boundary conditions for p and v.

2.2. Galerkin formulation

We embrace the two variables together in the variable u := {v, p}. The natural function space is X := V ×Q
with the Sobolev space of generalized functions with square-integrable derivatives and vanishing traces, V :=
[H1

0 (Ω)]d, and the Hilbert space Q := L2,0(Ω) consisting of L2(Ω) functions with zero mean on Ω. Test functions
are denoted by Greek letters, for instance φ ∈ V as test function for the momentum equation and ξ ∈ Q as test
function for the continuity equation. Using the notation (·, ·) for the L2(Ω)-scalar product the corresponding
Galerkin formulation reads

u ∈ X : a(u;φ, ξ) = (f, φ) ∀{φ, ξ} ∈ X, (2.1)

with the bilinear form

a(u;φ, ξ) := (σv, φ) + ((β · ∇)v, φ) + (μ∇v,∇φ) − (p, divφ) + (div v, ξ).

For the analysis of anisotropic effects we restrict to the two-dimensional case, d = 2. The finite elements we
consider in this work result from iso-parametric transformations TK : K̂ → K of bilinear functions ξ̂ on a
reference cell K̂:

Q1,h := {ξ ∈ C(Ω,R) : ξ
∣∣
K

= ξ̂ ◦ T−1
K }.

The discrete pressure space Qh is the subspace of Q1,h with zero mean:

Qh := {ξ ∈ Q1,h : (ξ, 1) = 0},

and the discrete velocity space is the corresponding vector-valued space with vanishing traces:

Vh := {φ ∈ [Q1,h]d : φ
∣∣
∂Ω

= 0}.

The bilinear form a(u;φ, ξ) is known to be unstable for such an equal-order interpolation of V and Q due to the
violation of the discrete “inf-sup” condition [23], in particular for the finite element spaces under consideration
in this work. A further instability is due to the dominant advective term. Stabilization is a standard tool
to overcome this short-comings. In the next subsection, we state the well-known a priori results of stabilized
equal-order finite elements for the Oseen system in order to clarify their deficits on anisotropic meshes.
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2.3. Isotropic a priori results of stabilized schemes

We denote the diameter of a cell K by hK . Then, the local quantity

PeK = |β|K,∞
hK

μ
,

is the so-called local Peclet number. The most interesting case is PeK > 1 (at least in certain cells K) which
is also called the convection-dominant case. Residual-based methods, as for instance SUPG/PSPG, as well as
projection-based schemes allow for equal-order finite elements of polynomial order r. For the estimates in this
work, we use the notation “a � b” for an upper bound a ≤ Cb with a constant C independent of the mesh size
and aspect ratio. Moreover, this constant will not depend on the parameters σ, β and μ of the problem, but
may depend on the polynomial degree r. The expression a ∼ b is used if there holds a � b, and b � a as well.
It is well-known that the a priori estimate of SUPG/PSPG on shape-regular isotropic meshes is given by:

|||u− uh|||2rbs �
∑

K∈Th

CKh
2r
K ||u||2Hr+1(K), (2.2)

CK := μ+ ||β||L∞(K)hK + σh2
K

for sufficiently smooth velocities and pressure (Hr+1-regularity). Into the triplenorm ||| · ||| in (2.2) the pressure
enters via a L2-term and in combination with the stream-wise derivative of the velocities

|||u|||rbs :=
(
σ||v||2 + μ||∇v||2 + γ||p||2 +

∑
K∈Th

(
δK ||(β · ∇)v + ∇p||2K + γK ||div v||2K

) )1/2

.

Here, γ is a discrete “inf-sup” constant depending on the “inf-sup” constant of the continuous problem. Further
cell-wise constant parameters as δK and γK arise in the stabilized formulation. The estimate (2.2) is valid only
for an “optimal choice” of these parameters, i.e. their asymptotic dependence on the local mesh size and the
local Peclet number must be correct. We refer to [12] and Lube and Rapin [29] for the corresponding estimate
for Pr/Ps elements with s < r.

On quasi-uniform meshes with h = max{hK : K ∈ Th} ∼ hK the a priori estimate (2.2) becomes for the
interesting case of large Peclet number and moderate σ (i.e. MK ∼ ||β||∞h):

|||u − uh|||rbs � ||β||1/2
∞ hr+1/2||u||r+1, (2.3)

where || · ||r+1 is the standard notation for the Hr+1(Ω)-norm.
For local projection stabilization (LPS), the triple norm differs slightly, because certain fluctuations of the

pressure gradient enter in the triple norm. This will be concretized in the following sections. However, we have
for LPS on isotropic meshes qualitatively a very similar bound as (2.2) with a minor different definition of MK ,
see [12]. The convergence on quasi-uniform meshes (2.3) is the same.

2.4. A priori results on anisotropic meshes

On anisotropic meshes, (2.2) and (2.3) are suboptimal, because hK is the cell diameter. Hence it is related
to the mesh size with respect to the coordinate direction of maximal elongation. For instance in the case
of a boundary layer with large second derivatives in y-direction, a Cartesian mesh should be much finer in
y-direction, i.e. hK,y << hK,x, when hK,x and hK,y are the cell sizes in x- and y-direction of a Cartesian mesh,
respectively. More specifically, the optimal mesh sizes in the two coordinate directions should be(

hK,x

hK,y

)2

≈
||∂2

yyv||K
||∂2

xxv||K
· (2.4)
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Now, in the estimate (2.3) the mesh size h must be replaced by the maximal one, i.e. by hx = max{hK,x : K ∈
Th}, so that (2.3) becomes for (bi-)linear elements:

|||u − uh||| � ||β||∞h3/2
x (||∂x∇u|| + ||∂y∇u||), (2.5)

if u ∈ [H2(Ω)]d+1. Here, ||| · ||| stands for ||| · |||rbs as well as for ||| · |||lps (defined later). Obviously, the second
derivatives of u in the estimate (2.5) are not well balanced. In particular, the term h

3/2
x ||∂y∇u|| would be the

dominant one when the second derivative in y-direction is much smaller than the one in x-direction and the
mesh sizes are designed in the optimal way (2.4).

Formaggia and Perotto derived in [18] an a priori estimate for elliptic problems on anisotropic meshes. For
ease of presentation, we simplify their result for a moment to the Poisson problem −Δv = f on a Cartesian
(triangular) mesh. Their results for linear elements reads as

||∇(v − vh)|| �
∑

K∈Th

(
h4

K,x

h2
K,y

||∂2
xxv||2K + 2h2

K,x||∂2
xyv||2K + h2

K,y||∂2
yyv||2K

)1/2

. (2.6)

We observe here, that hK,x and hK,y are multiplied by the corresponding spatial derivatives. The contributions
are well equilibrated under the condition (2.4), at least in the usual situation that the mixed second derivative
is much smaller than the maximal pure one.

Formaggia et al. [19] analyzed the SUPG stabilization for advection-diffusion-reaction problems on triangular
meshes. It results that the stabilization constant should be computed with respect to the smallest elongation
of the mesh cells. This gives an a priori estimate with an appropriate scaling of the different spatial derivatives
for quite arbitrary anisotropic meshes. For ease of presentation, let us shortly restrict their results on Cartesian
meshes with hy ≤ hx. Then their results for SUPG stabilized advection-diffusion-reaction problems reads as:

|||u − uh|||2rbs �
∑

K∈Th

CK

(
h4

K,x

hK,y
||∂2

xxv||2K + 2hK,yh
2
K,x||∂2

xyv||2K + h3
K,y||∂2

yyv||2K

)
. (2.7)

Here, the cell-wise parameter CK is given by CK = μh−1
K,y max(1, P eK) with the local Peclet number with

respect to the small mesh size, PeK := ||β||K,∞hK,yμ
−1.

Lube et al. give in [30] an anisotropic error analysis for SUPG/PSPG for the Oseen system on hybrid meshes
with a presumed relation of the mesh sizes in the different coordinate directions based on the diffusion constant μ.

In this work, we will formulate an anisotropic modification of LPS so that the following estimate holds:

|||u − uh|||2lps �
∑

K∈Th

{
CK,p

(
h−1

K,yh
4
K,x||∂x∇p||2K + h3

K,y||∂y∇p||2K
)

+ CK,v

(
h−1

K,yh
4
K,x||∂x∇v||2K + h3

K,y||∂y∇v||2K
)}

, (2.8)

with quantities CK,p, CK,v specified later and depending mainly on the local Peclet number. If the mesh sizes
hx and hy are well balanced according to (2.4), both contributions from ||∂x∇u||K and ||∂y∇u||K in (2.8) are
well equilibrated and the bound is much better that (2.5). Comparing our result (2.8) with the isotropic version
(2.5) we see that the estimate is better by a factor of (hK,x/hK,y)3/2. For large aspect ratios, this is an enormous
gain. A comparison with (2.7) (for a scalar advection-diffusion-reaction equation) shows that we obtain a very
similar equilibration of the contributions with respect to the spatial derivatives even for the Oseen system.

After a short presentation of LPS on isotropic meshes, we will generalize this technique to the case of
anisotropic meshes on quadrilateral meshes. A stability proof and an a priori estimate will be given for
Cartesian and rotated meshes.
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Figure 1. Possible meshes consisting of patches, T2h (left) and Th (right).

3. Local projection stabilization

The idea of LPS, see [4], consists of adding inconsistent stabilization terms sh(uh;φ, ξ) to the Galerkin form
so that the stabilized discrete system is of the following form: Find uh = {vh, ph} ∈ Xh := Vh ×Qh such that

a(uh;φ, ξ) + sh(uh;φ, ξ) = (f, φ) ∀{φ, ξ} ∈ Xh. (3.1)

The term sh(uh;φ, ξ) is different for isotropic meshes and anisotropic meshes. However, in both cases it is based
on a local projection described in the following.

The mesh Th is supposed to be constructed by patches of quadrilaterals. A coarser mesh T2h is obtained by one
global coarsening of Th. The correspondence between these two meshes is as follows: each quadrilateral P ∈ T2h

is cut into four new quadrilaterals (dividing all lengths of edges of P by 2) in order to obtain the fine partition Th.
Due to this construction we can associate to each cell K ∈ Th a corresponding patch P = P (K) ∈ T2h with
K ⊂ P . In Figure 1 we show such a mesh schematically. Such meshes are also the basis of the two-level scheme
of John et al. [24,25]. For the formulation of this projection method, hanging nodes are allowed. The discrete
solution is interpolated on these irregular nodes by the values on the regular nodes of the corresponding edge
so that the solution remains continuous. In other words, no degrees of freedom are associated to these irregular
nodes. This standard procedure is described e.g. by Ciarlet [15] and is applicable to arbitrary order r ≥ 1.
However, in the analysis of this work, we restrict to the case of anisotropic Cartesian meshes without such
irregular nodes.

The space Qdisc
2h consists of patch-wise constants, but discontinuous across patches P ∈ T2h:

Qdisc
2h := {ξ ∈ L2(Ω) : ξ

∣∣
P
≡ const. ∀P ∈ T2h}.

The projection

πh : L2(Ω) → Qdisc
2h

is defined as the patch-wise mean. On a patch P ∈ T2h we have:

πhq
∣∣
P

:=
1
|P |

∫
P

q(x) dx.

In particular, it satisfies the following orthogonality property:

(q − πhq, ξ) = 0 ∀ξ ∈ Qdisc
2h . (3.2)
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The difference between the identity I and πh,

κh := I − πh,

is a fluctuation filter entering in the stabilization. Its concrete form is specified in the following subsections.

3.1. The case of isotropic meshes

On isotropic meshes the stabilization term sh(·; ·, ·) in (3.1) is of the form:

siso
h (uh;φ, ξ) := (κh∇ph, α∇ξ) + (κh(∇vh), δ∇φ). (3.3)

The quantities α and δ are patch-wise constants, depending on the local Peclet number. If the flow is locally
transport dominated, i.e. PeK > 1 on cell K, the stabilization parameters are chosen on the associated patch
P = P (K) as α|P ∼ δ|P ∼ hP ∼ hK .

Due to the orthogonality property (3.2) it holds

(κh∇p, α∇ξ) = (κh∇p, ακh∇ξ) ∀p, ξ ∈ Q.

The same type of orthogonality holds for the stabilization for the velocities. As a consequence, the stabilization
term (3.3) is symmetric.

Instead of the full gradient ∇v in the definition (3.3) of the stabilizing term, the stream-wise derivative
together with additional control over the fluctuations of the divergence of v can be chosen:

s̃h
iso(uh;φ, ξ) := (κh∇ph, α∇ξ) + (κh(β · ∇vh), δβ · ∇φ) + (κh(div vh), γ divφ).

We refer to [8] for more details. For comparison, we recall a standard residual-based stabilization consisting of
PSPG and SUPG, see [20,22,34]:

srbs
h (uh;φ, ξ) :=

∑
K∈Th

{
(div vh, γdivφ)K + (σvh + (β · ∇)vh − μΔvh + ∇ph − f, α∇ξ + δ(β · ∇)φ)K

}
,

with (different) cell-wise constant parameters α, δ, γ. Control over the divergence div vh is included in residual-
based stabilization as for LPS when only stream-wise derivatives of vh are stabilized.

3.2. Local projection stabilization on anisotropic Cartesian meshes

The local projection stabilization for Oseen for anisotropic meshes aligned with the coordinate axes becomes:

sh(u;φ, ξ) := (Mpκh(∇ph),Mp∇ξ) +
(
Mvκh(∇v),Mv∇φ

)
(3.4)

with the diagonal matrices Mp,Mv are given by

Mp = diag(α1/2
x , α1/2

y ), Mv = diag(δ1/2
x , δ1/2

y ), (3.5)

and patch-wise constant parameters αx, αy, δx, δy. Because Mp and Mv are diagonal matrices, the stabilization
can also be written as:

sh(u;φ, ξ) := (κh(∂xph), αx∂xξ) + (κh(∂yph), αy∂yξ) + (κh(∂xvh), δx∂xφ) + (κh(∂yvh), δy∂yφ).
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In order to derive the announced estimate (2.8) we have to determine the scaling of the stabilization parameters
appropriately. It turns out that the optimal choice of the stabilization parameters depends on the minimal
Peclet number:

Pemin,K :=
min(hK,y, hK,x)||β||∞,K

μ
·

For the isotropic case, this characteristic number is the usual local Peclet number. Since the mesh size may
vary from cell to cell, this is a local quantity.

The analysis in the next section will show that the following choice of the parameters αK,x := αx|K , αK,y :=
αK,y, δK,x := δx|K and δK,y := δy|K are optimal:

αK,0 := μ−1 min(1,Pe−1
min,K), (3.6)

αK,x = h2
K,xαK,0, (3.7)

αK,y = h2
K,yαK,0, (3.8)

δK,x = ||β||2∞,KαK,x, (3.9)

δK,y = ||β||2∞,KαK,y. (3.10)

The convection dominant case Pe−1
min,K << 1 for certain cells K is of course the most interesting one.

For residual type stabilization schemes (SUPG, PSPG), the difference between the isotropic and the anisotropic
case consists in a different choice of the stabilization parameters, see e.g. Formaggia et al. [19], while the ad-
ditional terms remain isotropic. The stabilization parameter in [19] is identical to αK,y. However, for LPS,
the proposed stabilization itself is anisotropic. The parameters δK,x and δK,y must differ from αK,x and αK,y,
respectively, by the factor ||β||2∞,K in order to obtain optimality.

3.3. Extension to meshes under affine linear maps

Now we allow the patches K ∈ T2h to be mapped by a standard invertible affine linear map from a reference
quadrilateral K̂ to the patch K, TK : x̂ 
→ x. Following the notations in [18] such a map can be formulated as

TK x̂ = tK +MK x̂,

with a shift vector tK ∈ R
2 and a matrix of the form MK = BKZK ∈ R

2×2. The matrix ZK is an orthonormal
matrix and BK is symmetric positive definite with eigenvalues λK,1 ≥ λK,2 > 0 and eigenvectors r1, r2, sampled
together in the matrices ΛK = diag(λK,1, λK,2) and RK = [r1, r2]. Hence

BK = RT
KΛKRK .

The stabilization term is still of the form (3.4) but with a different definition of the matrices Mp and Mv. These
become on a patch K ∈ Th:

Mp|K = α
1/2
K,0MK ,

Mv|K = ||β||∞,KMp|K .

In the case of a Cartesian mesh, it holds ZK = RK = I and ΛK = diag(hx, hy). It is easy to check, that we
recover the previous case of Cartesian grids with the same orientation as the coordinate axes, i.e. Mp and Mv

are given by (3.5).
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4. Error analysis

4.1. Stability

The a priori estimate (2.2) was shown in [8] for piecewise bilinear (r = 1) and quadratic (r = 2) elements for
the triple norm:

|||u|||lps :=
(
σ||v||2 + μ||∇v||2 + sh(u;u)

)1/2
. (4.1)

In the following analysis of the anisotropic version, we focus on the case r = 1 so that the presentation remains
simpler. However, the analysis holds for arbitrary order (but sub-optimal for r ≥ 2). At first, we formulate the
stability property and the “perturbed Galerkin orthogonality” property of the discrete operator a(·; ·)+ sh(·; ·):

Theorem 4.1. For all u ∈ X it holds the stability property

a(u;u) + sh(u;u) = |||u|||lps.

If u ∈ X is the solution of (2.1) and uh ∈ Xh the solution of the discrete problem (3.1), then it holds:

a(u− uh;ϕ) = sh(uh;ϕ) ∀ϕ ∈ Xh.

Proof. The stability follows immediate after integration by parts keeping in mind that β is solenoidal. The
perturbed orthogonality property is obtained by subtracting (3.1) from (2.1). Both properties are independent
of the specific structure of sh(·; ·) as long it is symmetric. �

4.2. L2-orthogonal interpolation and fluctuations on anisotropic Cartesian meshes

In this part, we develop an L2-orthogonal interpolation on anisotropic Cartesian meshes. This will be needed
to analyze LPS for meshes as treated in Section 3.2. The mesh is assumed to be finer in y-direction:

hK,y < hK,x.

We only need the important interior angle condition for neighbor cells K,L ∈ Th:

hK,x ∼ hL,x and hK,y ∼ hL,y.

This condition implies that the mesh sizes with respect to the x-direction of neighbor cells are of the same
order. The same should hold for the y-directions. Although we allow for varying cells sizes in x-direction (and
in y-direction), this change must be moderate from one cell to the next one.

A key ingredient for showing that the (inconsistent) stabilization term has an appropriate asymptotic behavior
on anisotropic meshes is the existence of an anisotropic L2-orthogonal interpolation operator Jh:

Lemma 4.2. It exists an interpolation operator Jh : V → Vh with the orthogonality property

(v − Jhv, ψ) = 0 ∀v ∈ V, ∀ψ ∈ Qdisc
2h , (4.2)

which satisfies on each cell K ∈ Th and its associated patch P = P (K) ∈ T2h the following stability properties

||∂xJhu||K � ||∂xu||P +
hK,y

hK,x
||∂yu||P , (4.3)

||∂yJhu||K � h−1
K,yhK,x||∂xu||P + ||∂yu||P , (4.4)
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as well as the following approximation properties for u ∈ H2(Ω)

||u− Jhu||K � h2
K,x||∂x∇u||P + h2

K,y||∂y∇u||P , (4.5)

||∂x(u − Jhu)||K � hK,x||∂x∇u||P + h−1
K,xh

2
K,y||∂y∇u||P , (4.6)

||∂y(u − Jhu)||K � h−1
K,yh

2
K,x||∂x∇u||P + hK,y||∂y∇u||P . (4.7)

Proof. We follow the idea in [8] and construct

Jh := Bh + Mh

as a sum of an interpolation operator Bh which is the anisotropic version of the Scott-Zhang operator (see [1,2,7])
fulfilling certain anisotropic interpolation properties specified in a short while, and a corrector Mh which insures
the orthogonality property (4.2). In [8] (isotropic version) the operator Mh is build in such a way that for u ∈ V
and ψ ∈ Qdisc

2h it holds:

(Mhu, ψ) = (u− SZhu, ψ), (4.8)

and ||Mhu||K � ||u− SZhu||P , where SZh is the isotropic Scott-Zhang interpolator. However, since no specific
feature of SZh is used in [8], the construction take over to the case where we replace SZh in (4.8) by the
anisotropic version Bh. Hence, we obtain the orthogonality property (4.2) and

||Mhu||K � ||u − Bhu||P . (4.9)

For details on the construction of Mh we refer to [8]. The operator Bh satisfies (see [7]):

||∂xBhu||K � ||∂xu||P +
hK,y

hK,x
||∂yu||P , (4.10)

||∂yBhu||K � ||∂yu||P , (4.11)
||u − Bhu||K � hK,x||∂xu||P + hK,y||∂yu||P , (4.12)

as well as the following approximation properties for u ∈ H2(Ω)

||u− Bhu||K � h2
K,x||∂x∇u||P + h2

K,y||∂y∇u||P , (4.13)

||∂x(u − Bhu)||K � hK,x||∂x∇u||P + h−1
K,xh

2
K,y||∂y∇u||P , (4.14)

||∂y(u − Bhu)||K � hK,x||∂x∇u||P + hK,y||∂y∇u||P .

Now, we turn to the stability and approximation properties of the sum Jh = Bh + Mh. The L2-estimate (4.5)
is a direct consequence of (4.9) and (4.13):

||u− Jhu||K ≤ ||u− Bhu||K + ||Mhu||K � ||u− Bhu||K . (4.15)

Stability (4.3) and (4.4) is obtained due to stability of Bh ((4.10) and (4.11)) and due to the estimate of ||∂xMhu||
and ||∂yMhu|| by an inverse inequality:

||∂xMhu||K � h−1
K,x||Mhu||K

� h−1
K,x||u − Bhu||K (4.16)

� ||∂xu||P (K) + h−1
K,xhK,y||∂yu||P (K).
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The bound (4.4) is obtained analogously. The estimate (4.6) is obtained by the inverse estimate (4.16) and
(4.13):

||∂xMhu||K � hK,x||∂x∇u||P (K) + h−1
K,xh

2
K,y||∂y∇u||P (K).

The proof of (4.7) is similar but based on the inverse estimate

||∂yMhu||K � h−1
K,yh

2
K,x||∂x∇u||P (K) + hK,y||∂y∇u||P (K). �

Remark 4.3. These estimates are qualitatively very similar to the anisotropic interpolation result in [18]. In
particular, we obtain the same factor h−1

K,yhK,x in front of the pure x-derivative in (4.7) reflecting the degree of
anisotropy and seems to be suboptimal, because the anisotropic interpolant Bh does not need this factor and is
only due to the additional orthogonality property (4.2). However, we will see that this factor comes into play
for the local projection stabilization at another place independently of the approximation properties of Jh.

Lemma 4.4. We consider the interpolant Jhu of Lemma 4.2 and the triple norm ||| · |||lps with the stabilization
term defined in (3.4) and the following relation for the parameters

αK,x = αK,yh
2
K,xh

−2
K,y and δK,x = δK,yh

2
K,xh

−2
K,y. (4.17)

Then we obtain the following upper bound:

|||u− Jhu|||2lps �
∑

K∈Th

{
αK,xh

2
K,x||∂x∇p||2K + αK,yh

2
K,y||∂y∇p||2K

+ (σ + (μ+ δK,y)h−2
K,y) · (h4

K,x||∂x∇v||2K + h4
K,y||∂y∇v||2K)

}
.

(4.18)

Proof. By the use of the preceding lemma we obtain with hK,y ≤ hK,x:

σ||v − Jhv||2 + μ||∇(v − Jhv)||2 �
∑

K∈Th

{
(σh2

K,x + μh2
K,xh

−2
K,y)h2

K,x||∂x∇v||2 + (σh2
K,y + μ)h2

K,y||∂y∇v||2
}
.

This is bounded by the right-hand side of (4.18). The stabilization term can be treated by the L2-stability
of κh:

sh(u− Jhu, u− Jhu) � ||Mpκh(∇(p− Jhp))||2 + ||Mvκh(∇(v − Jhv))||2

� ||Mp∇(p− Jhp)||2 + ||Mv∇(v − Jhv)||2.

The pressure part can be bounded by the interpolation properties of Jh by:

||Mp∇(p− Jhp)||2K = αK,x||∂x(p− Jhp)||2K + αK,y||∂y(p− Jhp)||2K
� (αK,x + αK,yh

−2
K,yh

2
K,x)h2

K,x||∂x∇p||2K + (αK,xh
2
K,yh

−2
K,x + αK,y)h2

K,y||∂y∇p||2K .

Now we see that under the additional relation (4.17) between the parameters αx and αy, that these terms are
bounded by the right-hand side of (4.18). The velocity part of the stabilization behaves absolutely in the same
way. �
Lemma 4.5. On each cell K ∈ Th and its associated patch P = P (K) ∈ T2h it holds

||κh∂xu||P � hK,x||∂x∇u||P ∀u ∈ H2(P ),

||κh∂yu||P � hK,x||∂xyu||P + hK,y||∂yyu||P ∀u ∈ H2(P ),
||κhu||P � ||u||P ∀u ∈ L2(P ).
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Proof. Due to a scaling argument it holds for w = ∂xu:

||κh∂xu||P = ||w − πhw||P � hP,x||∂xw||P + hP,y||∂yw||P ≤ hK,x||∂x∇u||P .

The other estimates are obtained similarly. �

The next lemma shows that the stabilization term evaluated at the discrete interpolant Jhu can be bounded
by the right-hand side of (4.18) as well:

Lemma 4.6. For the stabilization term defined in (3.4) and the relation (4.17) for the stabilization parameters
it holds:

sh(Jhu;Jhu) �
∑

K∈Th

{
αK,xh

2
K,x||∂x∇p||2K + αK,yh

2
K,y||∂y∇p||2K

+ (σ + (μ+ δy)h−2
K,y)(h4

K,x||∂x∇v||2K + h4
K,y||∂y∇v||2K)

}
.

Proof. First, we note that due to the triangle inequality and Young’s inequality one obtains:

sh(Jhu;Jhu) ≤ 2(sh(Jhu− u;Jhu− u) + sh(u;u)). (4.19)

Due to sh(Jhu − u;Jhu − u) ≤ |||Jhu − u|||lps and Lemma 4.4 the first part of the right-hand side of (4.19) is
bounded properly. The velocity part of the last term in (4.19) can be bounded on cell K by use of Lemma 4.5
by the second derivatives on the associated patch P = P (K) ∈ T2h:

||Mvκh∇v||2K � δK,x||κh∂xv||2K + δK,y||κh∂yv||2K
≤ δK,xh

2
K,x||∂x∇v||2P + δK,yh

2
K,x||∂xyv||2P + δK,yh

2
K,y||∂yyv||2P

� δK,xh
2
K,x||∂x∇v||2P + δK,yh

2
K,y||∂y∇v||2P .

Hence, with the relation δK,x = δK,yh
2
K,xh

−2
K,y and the same procedure for the pressure stabilization we obtain

an appropriate bound also on sh(u;u). �

4.3. A priori error estimate on anisotropic Cartesian meshes

The following auxiliary result will be necessary in the following.

Lemma 4.7. For the choice (3.6)–(3.10) for the stabilization parameters it holds:

min(δ−1
K,y, μ

−1) = αK,xh
−2
K,x, (4.20)

max(δK,y, μ) = α−1
K,yh

2
K,y. (4.21)

Proof. We start with the square of the right-hand side of (4.20). Due to the assumption hK,y ≤ hK,x we have
Pemin,K = ||β||∞,KhK,yμ

−1 and therefore:

αK,xh
−2
K,x = μ−1 min(1,Pe−1

min,K) = min(μ−1, h−1
K,y||β||

−1
∞,K). (4.22)

Furthermore, it holds:

δK,y = h2
K,y||β||2∞,Kμ

−1 min(1,Pe−1
min,K)

= hK,y||β||∞,KPemin,K min(1,Pe−1
min,K)

= hK,y||β||∞,K min(Pemin,K , 1). (4.23)
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Using this in (4.22) gives

αK,xh
−2
K,x = min(μ−1, δ−1

K,y min(Pemin,K , 1))

= min(μ−1, δ−1
K,y, δ

−1
K,yPemin,K).

In the case of Pemin,K ≥ 1 this implies (4.20) directly. For Pemin,K < 1 this is also true, because it follows
with (4.23): δ−1

K,yPemin,K = h−1
K,y||β||

−1
∞,K = Pe−1

min,Kμ
−1 > μ−1. The identity (4.21) follows now immediately by

help of (4.20):
α−1

K,yh
2
K,y = α−1

K,xh
2
K,x = (min(δ−1

K,y, μ
−1))−1 = max(δK,y, μ). �

Theorem 4.8. For the choice of the stabilization parameters as in (3.6)–(3.10) we obtain:

|||u − uh|||2lps �
∑

K∈Th

{
h4

K,xh
−1
K,y(CK,p||∂x∇p||2K + CK,v||∂x∇v||2K)

+ h3
K,y(CK,p||∂y∇p||2K + CK,v||∂y∇v||2K)

}
.

(4.24)

with

CK,p = min(Pemin,K, 1)||β||−1
K,∞,

CK,v = hK,yσ + μh−1
K,y + ||β||K,∞.

Proof. We split the error u− uh into the interpolation part η = u−Jhu and the projection part ξ = Jhu− uh.
The interpolation part is bounded by Lemma 4.4. It is easy to check that for the choice of parameters as
in (3.6)–(3.10) we obtain α0 = CK,p/hK,y and (σ+(μ+ δK,y)h−2

K,y) ≤ CK,v/hK,y. The interpolation error |||η|||lps

is therefore bounded by the right-hand side of (4.24). The sophisticated part is the projection error |||ξ|||lps. Due
to the stability result and the perturbed Galerkin orthogonality (Thm. 4.1) it holds:

|||ξ|||2lps = a(ξ, ξ) + sh(ξ, ξ)

= −a(η, ξ) + a(u − uh, ξ) + sh(ξ, ξ)
= −a(η, ξ) + sh(uh, ξ) + sh(ξ, ξ)
= −a(η, ξ) + sh(Jhu, ξ).

For the stabilization part we obtain:

|sh(Jhu, ξ)| ≤ sh(Jhu,Jhu)1/2sh(ξ, ξ)1/2

≤ sh(Jhu,Jhu)1/2|||ξ|||lps.

Hence, with Lemma 4.6 this contribution can be bounded appropriately. For the term a(η, ξ) we have

|a(η, ξ)| � |||η|||lps|||ξ|||lps + |(ηp, div ξv)| + |(ηv,∇ξp)| + |(ηv, β · ∇ξv)|. (4.25)

Therefore, it is sufficient to bound the last three terms of (4.25):
• Due to the orthogonality property (3.2) of πh it holds for the first term on a patch K ∈ T2h:

|(ηp, div ξv)K | = |(ηp, (div ξv) − πh(div ξv))K |
= |(ηp, κh(div ξv))K |
≤ δ

−1/2
K,y ||ηp||K ||Mvκh(∇ξv)||K .
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In addition it holds

|(ηp, div ξv)K | ≤ μ−1/2||ηp||Kμ1/2||∇ξv||K .

Hence, the term |(ηp, div ξv)K | is bounded by

|(ηp, div ξv)K | ≤ γK ||ηp||K(μ1/2||∇ξv||K + ||Mvκh(∇ξv)||K),

with γK := min{δ−1/2
K,y , μ−1/2}. According to Lemma 4.7 it holds γK = α

1/2
K,xh

−1
K,x, so that

|(ηp, div ξv)| ≤
( ∑

K∈T2h

αK,xh
−2
K,x||ηp||2K

)
|||ξ|||lps

≤
( ∑

K∈T2h

αK,xh
2
K,x||∂x∇p||2 + αK,yh

2
K,y||∂y∇p||)2

)1/2

|||ξ|||lps.

• For the second term of (4.25) we have:

|(ηv,∇ξp)K | = |(ηv, κh(∇ξp))K |
� (α−1/2

K,x ||ηv1 ||K + α
−1/2
K,y ||ηv2 ||K) ||Mpκh(∇ξp)||K

� α
−1/2
K,y

(
h2

K,x||∂x∇v||K + h2
K,y||∂y∇v||K

)
||Mpκh(∇ξp)||K .

Assembling these terms together gives:

|(ηv ,∇ξp)| ≤
( ∑

K∈T2h

hK,y

αK,y

(
h4

K,xh
−1
K,y||∂x∇v||2K + h3

K,y||∂y∇v||2K
))1/2

|||ξ|||lps.

By help of Lemma 4.7 we have α−1
K,yhK,y = max(μh−1

K,y, ||β||K,∞) ≤ CK,v, so that the considered term is
bounded by the right hand side of (4.24).

• Similar arguments as for the first term gives for the third term of (4.25):

|(ηv, β · ∇ξv)K | � γK ||β||K,∞||ηv||K ||Mvκh(∇ξv)||K ,

with γK defined as before. Summing over all cells K as for the previous terms and due to γ2
K ||β||2K,∞hy =

αK,0hy||β||2K,∞ = min(1,Pemin,K)||β||K,∞ ≤ CK,v this term is also bounded by the right hand side
of (4.24).

Assembling terms of equal order together leads to the assertion. �

Remark 4.9. In contrast to residual-based stabilization methods the parameters α and β are independent of
the absorption coefficient σ which can also be interpreted as the inverse of a time step, i.e. σ ∼ 1/Δt. This is
due to the fact that the stabilization does not act on the zero-order term σv in the Oseen system.

Remark 4.10. Although the analysis holds for r ≥ 1, it is only optimal for the case r = 1. For r ≥ 2 and higher
regularity of the solution, the previous proof has to be extended. This is of course possible but the anisotropic
character would make the presentation much more opaque.
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4.4. A priori error estimate on isotropic meshes

In the case of an isotropic mesh, hK = hK,x ∼ hK,y, the stabilization terms become α|K = αK,x ∼ αK,y and
δ|K = δK,x ∼ δK,y ∼ ||β||2K,∞αK . Theorem 4.8 becomes in this special case:

Theorem 4.11. The a priori estimate becomes in the isotropic case:

|||u− uh|||2lps �
∑

K∈Th

h3
K

(
CK,p||∇2p||2K + CK,v||∇2v||2

)
with CK,p = min(PeK , 1)||β||−1

K,∞ and CK,v = hKσ + μh−1
K + ||β||K,∞.

In particular, for Peclet number larger than one, i.e. the convection dominated case, the right hand side
becomes (formally) independent of the viscosity:

Cp = ||β||−1
K,∞

Cv � hKσ + ||β||K,∞.

4.5. A priori estimate for rotated meshes

In Section 3.3 we discussed the anisotropic LPS variant on rectangular meshes not necessarily aligned with the
coordinate axes. In the particular case of rotated meshes, the transformation is of the type TK = tk+ΛKZK , with
ZK = [ηK,1, ηK,2] and ΛK = diag(λK,1, λK,2). We obtain a similar a priori estimate as before in Theorem 4.8
by replacing the partial derivatives ∂x and ∂y by the partial derivatives in direction η1 and η2 of the turned
coordinate system.

|||u− uh|||2lps �
∑

K∈Th

(
αK,η1λ

2
K,1||∂η1∇p||2K + αK,η2λ

2
K,2||∂η2∇p||2K

+ (σ + (μ+ δK,η2)λ
−2
K,2) · (λ4

K,1||∂η1∇v||2K + λ4
K,2||∂η2∇v||2K)).

5. Numerical validation

In order to validate the proposed discrete scheme for the computation of convection dominated flows on
anisotropic meshes we consider the nonlinear Navier-Stokes equations:

(v · ∇v) − μΔv + ∇p = f, (5.1)
div v = 0,

together with boundary conditions for v and p specified later for the particular problem. We need configurations
with the following properties of the solution u = {v1, v2, p} for the stationary Navier-Stokes equations:

• u should be analytically given in order to evaluate discretization errors;
• u should have a boundary layer in order to justify anisotropic meshes.

We design here two test problems which will be used for numerical validation of the anisotropic stabilization.
The first configuration consists of a flow in a tube with a boundary layer on a Cartesian mesh. It turns out

that up to a certain degree of anisotropy the classical isotropic local projection stabilization is still convergent.
Therefore, we will make a comparison with the anisotropic version. The second configuration consists of a flow
in a disc with a very sharp boundary layer. Here, the orientation of the mesh and the anisotropy depends on the
particular cell. It turns out, that the (multigrid) solver does not converge any more on highly anisotropic meshes
with isotropic LPS. However, with anisotropic stabilization, we obtain fast convergence and the theoretical
results of the preceding sections are reflected.
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5.1. Tube flow with boundary layer

In this numerical test case we consider a tube with length L ≥ 1 and height H = 1. The computational
domain is therefore given by Ω = (0, L)× (0, H). We have Dirichlet conditions for the velocities

v = v0 on Γdir,

at the boundary part Γdir ⊂ ∂Ω consisting of the horizontal and the left vertical part of ∂Ω. The remaining
boundary (right vertical boundary part) Γout := {L} × (0, 1) is the natural “outflow” boundary

μ
∂v

∂n
− p · n = 0 on Γout.

The boundary values v0 and the forcing term f of the momentum equation (5.1) are taken in such a way that
we obtain the following analytical solution:

v1(x, y) =
eγ − eγ(1−y)

eγ − 1
,

v2(x, y) = ε(1 − x/L)2,
p(x, y) = (L− x)xy,

with ε = 0.01 and γ = μ−1/2. The velocity component in x-direction, v1, exhibits a boundary layer at the lower
boundary y = 0 of thickness γ−1 =

√
μ. The vertical velocity is chosen small but non-zero so that the velocity

stabilization in vertical direction does not vanish for the exact solution and so that v2 is not in the discrete
space Q1,h.

We compare the classical isotropic local projection stabilization with the anisotropic version derived in the
previous sections for the (interesting) convection dominant case μ = 10−5. In order to see the impact of
anisotropy we take the length as L ∈ {2, 10, 50, 100}. The case L = 1 needs not be performed because both
methods become identical on isotropic meshes. The number of grid points are equal for both coordinate
directions and equidistant in x-direction as well as in y-direction. Hence the anisotropy is uniform in space and
equal to a = L/H = L. Because the computational domain Ω as well as hx increase linearly with the amount
of anisotropy, also the discretization errors are expected to scale at least linearly in dependence of a.

Because we use Cartesian grids for this model problem, the stabilization can be chosen as proposed in the
theoretical part of this work:

αx := α0h
2
xμ

−1 min(1,Pe−1
y ), δx := ||β||2∞αx

αy := α0h
2
yμ

−1 min(1,Pe−1
y ), δy := ||β||2∞αy.

The parameter α0 = 1 leads just to a uniform scaling.
The results for the moderate aspect ratio a = 2 are shown in the Table 1. Since the scaling of the two velocity

components v1 and v2 as well as their gradients are very different, the error in each velocity component is listed
separately. The isotropic and anisotropic version of the local projection stabilization behave pretty much the
same. Whereas, a small increase of the error is observed in the horizontal velocity component by a factor of
nearly two for the anisotropic version, the error in the vertical velocity component is reduced by more than a
factor of 2. However, we observe O(h2) convergence for the L2-error in pressure and velocities with the isotropic
version as well with the anisotropic version. The error in the gradient of p, v1 and v2 is at least of order O(h).

At aspect ratio a = 10, see Table 2, the isotropic version shows its first deficits. Although both methods
show the theoretically expected convergence rates O(h) and O(h2), depending on the specific quantity, the error
with the anisotropic version is of about three orders of magnitude smaller for the vertical velocity component.
In the horizontal velocity component, the discretization error with anisotropic stabilization is also substantially
reduced. Surprisingly, the pressure is even slightly better with the isotropic version by a very small factor.
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Table 1. Convergence history for tube flow with iso- and anisotropic stabilization for aspect
ratio a = 2 and μ = 10−5.

hy ||p− ph|| ||∇(p− ph)|| ||v1 − v1,h|| ||∇(v1 − v1,h)|| ||v2 − v2,h|| ||∇(v2 − v2,h)||
isotropic LPS

1/2 2.79 e–01 1.15 e+00 3.31 e–02 2.10 e–01 6.45 e–04 2.04 e–03
1/4 6.12 e–02 4.78 e–01 3.69 e–02 2.81 e–01 1.85 e–02 1.48 e–01
1/8 1.51 e–02 2.35 e–01 6.88 e–03 1.06 e–01 3.94 e–03 6.13 e–02

1/16 3.79 e–03 1.18 e–01 1.27 e–03 4.14 e–02 6.97 e–04 2.20 e–02
1/32 9.50 e–04 5.89 e–02 2.17 e–04 1.60 e–02 1.20 e–04 7.66 e–03
1/64 2.38 e–04 2.95 e–02 4.21 e–05 6.94 e–03 2.06 e–05 2.61 e–03

1/128 5.94 e–05 1.47 e–02 9.58 e–06 3.38 e–03 3.45 e–06 8.52 e–04
1/256 1.49 e–05 7.37 e–03 2.24 e–06 1.67 e–03 5.25 e–07 2.42 e–04

anisotropic LPS
1/2 4.89 e–01 1.21 e+00 3.31 e–02 2.10 e–01 6.45 e–04 2.04 e–03
1/4 6.50 e–02 5.00 e–01 1.90 e–02 2.04 e–01 3.27 e–03 2.43 e–02
1/8 1.64 e–02 2.46 e–01 4.56 e–03 1.05 e–01 4.80 e–04 6.08 e–03

1/16 4.13 e–03 1.23 e–01 1.08 e–03 5.29 e–02 6.88 e–05 1.60 e–03
1/32 1.03 e–03 6.15 e–02 2.61 e–04 2.65 e–02 1.22 e–05 4.67 e–04
1/64 2.59 e–04 3.08 e–02 6.63 e–05 1.32 e–02 3.21 e–06 1.65 e–04

1/128 6.47 e–05 1.54 e–02 1.68 e–05 6.63 e–03 8.38 e–07 7.02 e–05
1/256 1.62 e–05 7.70 e–03 4.22 e–06 3.31 e–03 2.11 e–07 3.31 e–05

Table 2. Convergence history for tube flow with iso- and anisotropic stabilization for aspect
ratio a = 10 and μ = 10−5.

hy ||p− ph|| ||∇(p− ph)|| ||v1 − v1,h|| ||∇(v1 − v1,h)|| ||v2 − v2,h|| ||∇(v2 − v2,h)||
isotropic LPS

1/2 1.56 e+01 3.70 e+01 7.40 e–02 4.69 e–01 1.44 e–03 9.13 e–04
1/4 3.60 e+00 8.81 e+00 8.01 e–01 5.04 e+00 1.14 e+00 5.32 e+00
1/8 8.32 e–01 2.87 e+00 5.52 e–01 3.90 e+00 5.64 e–01 3.12 e+00

1/16 1.97 e–01 1.22 e+00 2.34 e–01 2.60 e+00 1.59 e–01 1.58 e+00
1/32 5.59 e–02 6.23 e–01 6.75 e–02 1.60 e+00 3.50 e–02 8.31 e–01
1/64 1.45 e–02 3.23 e–01 1.29 e–02 8.12 e–01 6.53 e–03 3.39 e–01

1/128 3.34 e–03 1.64 e–01 1.71 e–03 1.71 e–01 1.08 e–03 8.95 e–02
1/256 8.29 e–04 8.22 e–02 1.83 e–04 2.62 e–02 1.65 e–04 2.04 e–02

anisotropic LPS
1/2 1.62 e+01 3.70 e+01 7.40 e–02 4.69 e–01 1.44 e–03 9.13 e–04
1/4 3.49 e+00 8.36 e+00 4.77 e–02 4.82 e–01 8.64 e–02 3.58 e–01
1/8 8.51 e–01 3.03 e+00 4.86 e–02 3.99 e–01 7.36 e–03 4.05 e–02

1/16 2.13 e–01 1.37 e+00 3.82 e–03 1.25 e–01 5.22 e–04 4.29 e–03
1/32 5.32 e–02 6.65 e–01 7.06 e–04 5.96 e–02 4.37 e–05 5.73 e–04
1/64 1.33 e–02 3.30 e–01 1.73 e–04 2.97 e–02 6.49 e–06 1.19 e–04

1/128 3.32 e–03 1.65 e–01 4.34 e–05 1.48 e–02 1.45 e–06 3.85 e–05
1/256 8.31 e–04 8.24 e–02 1.09 e–05 7.41 e–03 3.54 e–07 1.60 e–05
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Table 3. Convergence history for tube flow with anisotropic stabilization for aspect ratio
a = 50 and μ = 10−5. The isotropic version did not converge.

hy ||p− ph|| ||∇(p− ph)|| ||v1 − v1,h|| ||∇(v1 − v1,h)|| ||v2 − v2,h|| ||∇(v2 − v2,h)||
anisotropic LPS

1/2 1.52 e+03 1.98 e+03 1.65 e–01 1.05 e+00 3.23 e–03 4.08 e–04
1/4 1.96 e+02 3.68 e+02 9.83 e–02 1.04 e+00 1.96 e–01 7.72 e–01
1/8 4.76 e+01 8.93 e+01 4.78 e–01 3.74 e+00 1.66 e–02 8.24 e–02

1/16 1.19 e+01 2.54 e+01 2.24 e–02 4.73 e–01 1.14 e–03 7.66 e–03
1/32 2.97 e+00 8.99 e+00 2.33 e–03 1.40 e–01 8.95 e–05 8.48 e–04
1/64 7.43 e–01 3.90 e+00 5.02 e–04 6.66 e–02 1.13 e–05 1.40 e–04

1/128 1.86 e–01 1.87 e+00 1.25 e–04 3.32 e–02 2.32 e–06 3.49 e–05

Table 4. Convergence history for tube flow with anisotropic stabilization for aspect ratio
a = 100 and μ = 10−5. The isotropic version did not converge.

hy ||p− ph|| ||∇(p− ph)|| ||v1 − v1,h|| ||∇(v1 − v1,h)|| ||v2 − v2,h|| ||∇(v2 − v2,h)||
anisotropic LPS

1/2 1.50 e+04 1.12 e+04 2.34 e–01 1.48 e+00 4.56 e–03 2.89 e–04
1/4 1.13 e+03 2.06 e+03 1.38 e–01 1.47 e+00 2.77 e–01 1.09 e+00
1/8 2.71 e+02 4.84 e+02 1.23 e+00 1.02 e+01 2.36 e–02 1.17 e–01

1/16 6.73 e+01 1.24 e+02 4.71 e–02 9.20 e–01 1.61 e–03 1.08 e–02
1/32 1.68 e+01 3.59 e+01 4.06 e–03 2.04 e–01 1.25 e–04 1.19 e–03
1/64 4.20 e+00 1.27 e+01 8.05 e–04 9.45 e–02 1.49 e–05 1.85 e–04

1/128 1.05 e+00 5.52 e+00 2.00 e–04 4.69 e–02 2.91 e–06 4.32 e–05

A possible explanation is that the pressure does not has a boundary layer. However, the difference is in the
range of 1% and hence not relevant.

For aspect ratios a = 50 and a = 100 convergence is obtained only with anisotropic LPS, see Tables 3 and 4.
It was not possible to obtain results with the classical (isotropic) LPS or with PSPG/SUPG without increasing
α0 and δ0. But with the anisotropic version of LPS, we still get second order behavior of the error in L2 and
better than first order in the gradients.

From previous work we know that the classical combination of pressure stabilized Petrov-Galerkin (PSPG)
with streamline upwind Petrov-Galerkin (SUPG) for Navier-Stokes behaves pretty much the same like isotropic
local projection stabilization, we conclude that this anisotropic stabilization performs much better.

5.2. Circular flow with boundary layer

In the second configuration non Cartesian meshes are subject of investigation. We propose to consider the
unit circle Ω = {(x, y) ∈ R

2 : x2 + y2 < 1} and a solution with quite simple structure in cylinder coordinates,
r =

√
x2 + y2 for the radius, and ω = arccos(x/r) for the angle. The divergence-free constraint in cylinder

coordinates become

div v =
1
r

∂

∂r
(rvr) +

1
r

∂vω

∂ω
= 0.

A velocity field with vω = const. and vr = 0 is therefore divergence free. A possible ansatz is:

v1(r, ω) = −V (r) sin(ω),
v2(r, ω) = V (r) cos(ω),
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Figure 2. Left: Hedge hogs of the solution v. Right: ||v|| in dependence of the radius r.

with V (r) still to determined. In order to produce a boundary layer we take V (r) = e−(r−r0)
2/ε with parameters

ε = 10−3 for tuning the size and r0 = 0.98 for position the biggest variance in velocity very close to the boundary.
Due to the Dirichlet conditions for the velocities the pressure has to be normalized. We take

p(r, ω) = r − 2
3
,

so that ∫
Ω

p(x, y) dxdy =
∫ 1

0

∫ 2π

0

rp(r, ω) dω dr = 0.

Hence, the pressure has zero mean,
∫
Ω p dx = 0. The Dirichlet conditions for v are given by

v0 = V (1){− sin(ω), cos(ω)}.

The viscosity is taken as μ = 10−2. Note, that the (exact) solution is independent of μ, but one may also
couple ε in dependence of μ when studies on varying viscosities are intended.

The velocity field in the disc are also illustrated in the left part of Figure 2, but the boundary layer can not
be observed on that plot. Therefore, we show on the right part of Figure 2 the L2-norm of the velocity, ||v||, in
dependence of the radius r (this quantity is independent of ω). Furthermore, the pressure field and the velocity
field v1 are shown in a 3-dimensional plot in Figure 3. Here, the vertical direction shows the corresponding
value. Also here, the boundary layer in v can be easily observed. An anisotropic mesh close to the boundary
seems to be appropriate for resolving the sharp layer in v.

We perform two types of test:
(a) Simple bisection of all cells starting with different anisotropies at the outer circle. During the refinement

process the degree of anisotropy is constant.
(b) We perform global refinement but we shift the mesh points during refinement towards the boundary

layer. Hence, the degree of anisotropy increases under mesh refinement. In Figure 4, a zoom of such a
mesh is shown.

The refinement strategy with a fixed anisotropy ratio (a) is chosen in order to validate the asymptotic conver-
gence rate under mesh refinement with bisection. For (b) we expect a different convergence behavior for the
errors in p than in v. Since v has only contributions close to the boundary we expect a better convergence in
the velocities than in pressure.
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Figure 3. Pressure field and x-component of the velocity field, v1.

Figure 4. Zoom of a mesh used for solving the problem of circular flow.

In Table 5 the errors are presented for anisotropy ratio of 3, 5.25 and 16 for refinement strategy (a). Since
the two components of the velocity are of the same character, we do not list their errors for each component,
but the norms of the vectors v−vh. All quantities show the expected convergence rates. Also here, the isotropic
version of local projection does not work, so that we can not list the corresponding discretization errors.

The results with anisotropic LPS and refinement strategy (b) is listed in Table 6. The L2-error of p becomes
almost divided by a factor of 4 from one mesh to the next, the error in the gradient, ||∇(p − ph)|| is almost
halved. We do not approach the full factors 4 and 2, because of the already mentioned special designed
refinement process (in order to increase the anisotropy gradually). The convergence of ||v − vh|| is a little bit
better than (# nodes)−1 and for ||∇(v − vh)|| better than (# nodes)−1/2. Hence, we see exactly the expected
convergence behavior.

6. Summary

In this work, we extended the local projection stabilization for the Navier-Stokes discretization with equal-
order bilinear finite elements to anisotropic quadrilateral meshes. Whereas on isotropic meshes we recover
the classical local projection stabilization, we get a much more accurate and more robust method for highly
anisotropic meshes, for instance when boundary layers should be resolved. We gave an a priori estimate for
the Oseen linearization of the Navier-Stokes system leading to a qualitatively better convergence behavior than
other isotropic stabilization methods. The numerical results reflect the theoretical expectations.
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Table 5. Convergence history for flow in a disc with anisotropic stabilization, Test (a).

# nodes ||p− ph|| ||∇(p− ph)|| ||v − vh|| ||∇(v − vh)||
aspect ratio = 3

25 3.56 e–01 2.97 e+00 6.30 e–01 8.37 e+00
89 3.60 e–01 2.26 e+00 1.24 e+00 8.93 e+00

337 8.99 e–02 7.52 e–01 6.54 e–01 1.20 e+01
1313 6.20 e–03 1.98 e–01 2.08 e–01 1.13 e+01
5185 1.78 e–03 1.25 e–01 6.91 e–02 6.97 e+00

20 609 5.26 e–04 3.83 e–02 1.73 e–02 3.47 e+00
82 177 1.40 e–04 1.56 e–02 4.37 e–03 1.74 e+00

aspect ratio = 5.25
25 2.41 e–01 2.14 e+00 3.99 e–01 9.06 e+00
89 3.44 e–01 5.77 e+00 3.08 e–01 1.02 e+01

337 2.95 e–02 7.65 e–01 2.26 e–01 1.03 e+01
1313 3.40 e–03 1.97 e–01 1.16 e–01 9.21 e+00
5185 9.38 e–04 7.55 e–02 2.60 e–02 4.13 e+00

20 609 2.56 e–04 3.52 e–02 6.64 e–03 2.10 e+00
82 177 6.78 e–05 1.84 e–02 1.65 e–03 1.04 e+00

aspect ratio = 16
25 4.31 e–01 6.54 e+00 3.97 e–01 6.65 e+00
89 1.06 e+00 3.23 e+01 3.58 e–01 7.61 e+00

337 5.31 e–02 2.92 e+00 1.08 e–01 5.60 e+00
1313 2.57 e–03 1.44 e–01 2.45 e–02 2.83 e+00
5185 7.35 e–04 7.77 e–02 6.49 e–03 1.41 e+00

20 609 2.07 e–04 4.23 e–02 1.83 e–03 6.97 e–01
82 177 5.92 e–05 2.30 e–02 4.76 e–04 3.38 e–01

Table 6. Convergence history for flow in a disc with anisotropic stabilization, Test (b).

# nodes max. aspect ratio ||p− ph|| ||∇(p− ph)|| ||v − vh|| ||∇(v − vh)||
25 3.6 0.298348 2.94098 0.34221 8.08301
89 6.5 0.0464173 0.532067 0.473274 8.27074

337 9.4 0.00721525 0.309655 0.116721 6.26525
1313 12.0 0.0020788 0.137325 0.0332289 3.3837
5185 20.4 0.000605623 0.0681489 7.73223e–03 1.44632

20 609 40.7 0.000174225 0.0369805 1.92249e–03 0.724083
82 177 81.4 5.43015e–05 0.0209124 4.54694e–04 0.340097
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[33] H. Paillere, P. Le Quéré, C. Weisman, J. Vierendeels, E. Dick, M. Braack, F. Dabbene, A. Beccantini, E. Studer, T. Kloczko,

C. Corre, V. Heuveline, M. Darbandi and S. Hosseinizadeh, Modelling of natural convection flows with large temperature
differences: a benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference. ESAIM:
M2AN 39 (2005) 617–621.

[34] L. Tobiska and G. Lube, A modified streamline diffusion method for solving the stationary Navier-Stokes equations. Numer.
Math. 59 (1991) 13–29.


	Introduction
	Motivation of anisotropic A PRIORI estimates for the Oseen system
	Oseen system
	Galerkin formulation
	Isotropic a priori results of stabilized schemes
	A priori results on anisotropic meshes

	Local projection stabilization
	The case of isotropic meshes
	Local projection stabilization on anisotropic Cartesian meshes 
	Extension to meshes under affine linear maps

	Error analysis
	Stability
	L2-orthogonal interpolation and fluctuations on anisotropic Cartesian meshes
	A priori error estimate on anisotropic Cartesian meshes
	A priori error estimate on isotropic meshes
	A priori estimate for rotated meshes

	Numerical validation
	Tube flow with boundary layer
	Circular flow with boundary layer

	Summary
	References

