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FINITE ELEMENT APPROXIMATION OF A TWO-LAYERED LIQUID FILM
IN THE PRESENCE OF INSOLUBLE SURFACTANTS*

JOHN W. BARRETT! AND LINDA EL ALAoUI!

Abstract. We consider a system of degenerate parabolic equations modelling a thin film, consisting
of two layers of immiscible Newtonian liquids, on a solid horizontal substrate. In addition, the model
includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces,
and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the
two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy
inequality controlling the Laplacian of the liquid heights. We introduce a fully practical finite element
approximation of this nonlinear degenerate parabolic system, that satisfies discrete analogues of these
energy inequalities. Finally, we prove convergence of this approximation, and hence existence of a
solution to this nonlinear degenerate parabolic system.
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1. INTRODUCTION

In [1,2] fully practical finite element approximations were proposed and analysed for a system of nonlinear
degenerate parabolic equations modelling a thin film of liquid, laden with insoluble surfactant, on a horizontal
substrate in the possible presence of both attractive and repulsive van der Waals forces. In this paper, we
extend the approximation and subsequent analysis in [1] to the case when the thin film consists of two layers of
immiscible Newtonian liquids with possibly different viscosities. In addition, the model includes the presence of
insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive
and repulsive van der Waals forces in terms of the heights of the two layers, and possibly the total height of the
film.

The model problem, derived using lubrication theory, as it appears in the applied mathematics, physics and
engineering literature, see e.g. [4], is the following: Find {u;(x,t),v;(z,t),w;(z,t)}?_, such that

I % =V- [% u? Vwy + %u% ug Vwy — %U%V(ol(vl) + o2(v2))], (1.1a)
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va(z, t) vy (z,t)
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lower, viscosity uy(x,t)

FIGURE 1. Geometry of the two-layered system.

1 % =V [2ufus Vwy + ug uj Vws — ug ug V(o (v1) 4+ 02(v2))] + p V- [2 uj Vws — 2 uj Voo (v2)], (1.1b)
wy —wy = —c1 Auy + ¢1(ur) — da(ua), (1.1¢)
wg = —ca A(ug + ug) + ¢2(uz) + d3(ur + uz), (1.1d)

i % =p1p Ao + V- [3uf v1 Vwr + ug o1 (ug Vwg — Vioy(v1) + o2(02)])] (1.1e)

2
6712 _— l
2

Gt = p2ppAvg + V- [ u? vy Vwy + ug vg (ug Vwy — Vo (v1) + 0'2(1)2)])]

+uV- [% u% v9 Vwsg — ug v VU2(U2)] (1'1f)

in Q7, where Qp := Q x (0,7], and © is a bounded domain in R? d =1 or 2. Let y be the vertical variable,
with y = 0 being the solid horizontal substrate. Then wu;(x,t) and ws(z,t) are the height and reduced pressure,
respectively, at € Q and time ¢ of the lower liquid having viscosity p > 0, whereas us(x,t) and wa(x, t) are the
height and reduced pressure of the upper liquid having unit viscosity. The concentration of insoluble surfactant
at the liquid-liquid interface, y = uq(z,t), is v1(z,t); and at the liquid-air interface, y = (u1 + us2)(x,t), is
va(x,t); see Figure 1. The constants p;, ¢; € Rsq are the inverses of the surface Peclet numbers and the
modified capillary numbers, respectively, with ¢ = 1 for the y = u; interface and i = 2 for the y = w1 + us
interface. In addition, o; € C'(R>g) with o;(s) > 0 and o/(s) < 0 for all s € R>g is the constitutive equation
of state relating the surface tension o; to v; on the ith interface, i.e. surfactant reduces surface tension. An
empirical model, proposed in [11], often used in the literature is o;(s) := (a; + 1) [1 + 0(c;) 8] 2 — «a;, where

1
0(cv;) == (2£1)% — 1 and o; € Roq relates to the activity of the surfactant. Hence o; : [0,1] — [0, 1]. We shall
assume that the surfactant concentration for each interface is dilute, v; € [0, 1], in which case the limit a; — oo
is taken, and the equation of state simplifies to
oi(s)=0o(s):=1—3s i=1,2. (1.2)

The van der Waals forces, ¢;,j =1 — 3 in (1.1c,d) acting simultaneously on the three heights, are given by

0i(s) = (s)+ ¢, (5),  ¢f(s):=—=6;5"", v;>3,  ¢;(s)i=a;57 (1.3)
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where a; € R>q is a scaled dimensionless Hamaker constant and §; € R represents the effect of repulsive
van der Waals forces. We shall assume throughout that §; > 0, i = 1, 2, so that these repulsive forces prevent
both films from rupturing, i.e. u; > 0. However, there is no a priori bound below on w; so (1.1a—f) is a degenerate
nonlinear parabolic system, which is fourth order in w;. This degeneracy makes the analysis/numerical analysis
of the system particularly difficult. In addition, as there is no maximum principle for parabolic equations of
fourth order, a naive discretization does not guarantee the nonnegativity of the approximation to ;.

In [1] a finite element approximation to the single-layered surfactant model in presence of van der Waals
forces, (1.1a—f) with ¢; = 0, u = 1, v1(-,0) = 0 and ¢; = ¢2 = 0, was presented. In addition, convergence of
this approximation was proved, yielding an existence proof for the degenerate nonlinear parabolic system. It
is the aim of this paper to adapt the techniques in [1] to present, and prove convergence of, a finite element
approximation to (1.1a—f).

As remarked previously, recall (1.2), the physically relevant values of v; lie in the interval [0, 1]. Noting this,
it is convenient for the analysis is this paper, as it was in [1,2], to replace v; in non-differentiated terms of v; by
BY(v;); where for a given M > 1, M : R — (—o0, M] is defined as

BM(s) =[s — M]_+ M, with [s]_ = min{s,0}. (1.4)

This two-layered system introduces new difficulties, and it is also convenient in the case d = 2 to replace u; in
non-differentiated terms of u;, which are not arguments of ¢;, by 3™ (u;) for some sufficiently large cut-off M.
We will return to the need for these cut-offs later in this section.

Altogether, in this paper we consider the following initial boundary value problem:
(P) Find functions {u;, v;, w;}2_; : Q x [0,T] — R such that

%t =V [5 [BY ()] Vo + 3 [BY (u1)]? up Vg — 3 [BY (u)]* V(o (v1) + o (v2))] in Qp, (1.5a)
p2e = V- [ [BM (u1)]? ug Vwry + BM (ur) u3 Vws — M (w1) us V(o (v1) + o(v2))]

+ 1V [2ud Vwy — 2 u3 Vo(vr)] in Qp, (1.5b)
wy — we = —c1 Aug + ¢1(ur) — da(usg) in Qp, (1.5¢)
wy = —cg A(uy + uz) + ¢2(uz) + ¢3(u1 + uz) in Qp, (1.5d)

p G = pru Ao+ V- [5[BY ()] 81 (o) Vr + Y (ur) B (01) (u2 Vs — Vo (v1) + o(v2)])]
in Qp, (1.5¢)

p G = popAvg + V- [ [BY (w1)]? B (v2) Vaor + B (ur) 5" (v2) (w2 Vws — Vio(v1) + o (v2)])]
+ V- [$uj B (v2) Vws — uz B (v2) Vo (vs)] in Qp, (1.5f)
up(z,0) = ul(z) > 0, vy (z,0) =9(z) >0 Vo € Q, (1.5g)
us(z,0) = ud(z) > 0, va(z,0) = v3(z) >0 Vo € Q (1.5h)

with no flux boundary conditions on (1.5a,b), (1.5e,f), and homogeneous Neumann boundary conditions
on (1.5¢,d). The latter can be interpreted as a 90° angle condition on the film surfaces, where they meet
the exterior container. In the above p, ¢;, p; € Rsq are given constants, while o(-), ¢;(-) and M (-) are given
by (1.2), (13) and (14) with a;, 03 € RZQ, 01, 62 € Ryg and M > 1.

The basic ingredients of our approach are two energy bounds combined with a regularization procedure. In
particular, for any given ¢ € (0, 1), we introduce the regularized function

B2 (s) = max{p" (s), e}, (1.6)

with yields the regularised system (P.); that is, (P) with {u;, v;, 8 (v;), w;}?_; replaced by {u; e, vie, 8L (vie),
w; ¢ }2_;. On defining the horizontal velocity fields V; . (z,t,y), where y is the vertical variable — recall Figure 1,
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we have from lubrication theory, similarly to [1,2], that

OVie _ Vw in Qr x (0,u1..(z,t)), and % =Vuw in Qr x (uyo(x,t), (u1 e +uge)(z,t))
8y2 - l,e T y Ul,e\dy ’ 8y2 - 2,e T L,e\Ls b)), l,e 2,e )
(1.7a)
subject to the boundary conditions
oV . OVa e
Vi o(z,t,0) =0, i g; (z,t,uy (2, t)) = V—;’(x,t,ulﬁ(ac,t)) + Vo (vi(z, 1)),
Vs e
Vie(@, t,ure(z,t) = Voo, tug (2, 1)), g; (@, t, (ur,e +uze)(z,t) = Vo(va(x,1)) V(z,t) € Qr,
[Vl e’ V!?Q](x t y) Vy € [Ovul E(Zat)]a
d ' ' V(x,t oN 0,7T); 1.7b
an Vae - vool(z,t,y) = Yy € [ur o(x,t), (u1,c + uze)(x, 1)) (1) € x (0,7); ( )

where vgq is normal to 082, and V, as throughout, is respect to the horizontal variable x, and not the vertical
variable y. The above yields for any (z,t) € Qp that

2 2
Vic(z,t,y) = *Z Z Ui e (2, 8) Vg o (2, 1) — Vo (vie(z, )] + % Vi (z,t)  fory € [0,uc(z,t)], (1.8a)

—uy (2, t)

VQ,E(matay) = Vl,e(mataul,s(xat)) + (y - ul,s(xat)) { |:y 9 - UQ,E(xat):| va,e(xat) + VO—(UQ,E(Z;t))}

for y € [u1 e(z,t), (u1,c + uze)(z,t)]. (1.8b)

We can then recast the corresponding (P.) versions of (1.5a,b) and (1.5e,f), with ™ (u; ) replaced by u; ., as

a - Ul,e a c U2 e .
Ye v / Vie(y)dy | =0, De Ly / VoelHy)dy | =0 in Qrp, (1.9a)
ot 0 ot ure
61}1,5 1 - 6’()2 £ 1 o
ot +V. (V17€(.7.7u1,8)ﬁ5 ('Ul,e)) = p1 A'ULE; ot +V. (VQ,E('7'7UI,E +U’2,E)ﬁ5 (UQ,E)) = P2 A'U2,e
In order to derive the crucial energy bounds, we introduce
F/(s)=[6:(s)]7"  and  Fo(1) = F/(1) =0, (1.10)
which, on recalling (1.6), implies that
o=+ (ne—-1)s+1 s<e
F.(s):=9q s(lns—1)+1 e<s<1 (1.11)
(s —1)7 1<s.
Hence F. € C**(R), and for later purposes, we note that
Fos)>%5 -1 Vs>0 and F.(s)> % Vs <O0; (1.12)

see e.g. (2.4) in [2].
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We will now derive several formal bounds for {ui76,vi,a,wi75}%:1. Testing the u; . equation in (1.9a) with
Wj e, @ = 1, 2, combining with the (P.) versions of (1.5¢,d) and noting (1.7a,b) yields that

2

. ute 19y - |?
S 1% Vur P + 2 V(e +ug )+ | D ®iluse) | + Pslure + uae) d$+ﬂ/ (/ a;’e dy) da
Q i1 Q \Jo
uretuz,e | 5)) . 2
+/ </ L dy> dr = /[V17€(~,~,u175)VJ(vLE)+V2,E(~,~,u2,E)VJ(vg,E)] dz, (1.13)
Q Ui, e Q

where @;(-) is an antiderivative of ¢;(-), i.e. ®4(-) = ¢;(-), j = 1 — 3. Testing the v; . equation in (1.9b) with
F!(v; ), noting (1.10) and combining yields that

2 2
%/QZFE(UZ-,E)der Zpi/QFél(vi’E) Vo |2 de = /Q[VLE(" u1e) Vore + Vo, uge) Voo ] da. (1.14)
i=1 i=1
Combining (1.13) and (1.14), and noting (1.2), yields the formal energy identity

dx

2
& [% (Vur el + % [V(ure +ug )+ D [®i(uie) + Fe(vie)] + Pa(uc + uae)
Q =1

+u/ /“ ud dy dw+/ /ulﬁ% Wocl* g, dx+ip'/ Fl'(vi) [Vl dz = 0
o \Jo Ay o \Jui . dy o " '
(1.15)
Noting (1.8a,b) and Young’s inequality,
| s] S%T2+%S2 Vr, s € R, ~ &Ry, (1.16)

one can derive the following inequalities for any v* € (3, %)

we |V . | :
i[5 = [k P s T - oo + ofun, )
+uf Vwre-[uge Vws e + V(o (v ) + 0(v2,))]
2 ﬁ {(% - ’Y?*) ulls,a [V e + (1 — #) Uy e [ug,e Vg e — V(o (vie) + 0(02,5)”2} )
(1.17a)
et MWVa.c ’ 1,3 2 2 2
Dy dy = 3 U2 e |Vw275| T U2e |VU(U276)| - u2,evw276 'VU(UZE)
> (3= L) ud, [Vwse? + (1 - 52) uae [Vo(en ). (1.17b)

From (1.15), (1.17a,b), (1.10) and (1.4), one can derive uniform bounds on Vu;. in L>(0,7; L*()) and
Vi e in L?(7). We note the crucial role that the cut-off 3(-) on v; . plays in the v; . bound, recall (1.10). Of
course one could replace 3(-) with 3% (.), where M arbitrarily large. However, as it does not appear possible
to obtain an a priori L*°(Q7) bound on v; ., some cut-off above on v; . is required. In addition, the singularity
in ®;, i = 1, 2 at the origin yields the positivity of u;.. Furthermore, the bound (1.12) together with (1.15)
yields that fQT [v;]2 dzdt < Ce. As can be seen from the above, it is not necessary to have the cut-off 3 (-)



754 J.W. BARRETT AND L. EL ALAOUI

on u1 . in the coefficients in (P.), in order to obtain the formal energy identity (1.15). This cut-off on u; . in
these coefficients is required for the second energy bound, see below; and this bound is only required if d = 2.
It is easily deduced, that the effect of this cut-off is just to modify the term (1.17a) in (1.15); that is, u; . is
replace by M (uy ¢).

In order to obtain the second energy bound we define a function G € C°°(R~q) such that 73 VG’ (n) = Vn;
that is, for s > 0

G'(s)=s7 = G(s)=-3s?% = G(s)=3s", (1.18)

where the constants of integration have been chosen to be zero. In addition, we introduce G € C%(R~¢) such
that [3M (n)]3 VG, (n) = Vn; that is, for all M > 1 and s > 0

G(s) s € (0, M],
s ()2 =3(5)+3) s> M
Testing the (P.) versions of (1.5a) with G, (u1 ), (1.5b) with G'(uz.), (1.5¢) with —Aw; . and (1.5d) with

—Augy . and combining, formally yields, on noting (1.3), (1.18), (1.19) and the no flux boundary conditions,
that

Gl(s) = BY(E) ™ = Guls) = { (1.19)

[u Gr(uie) + G(uge)] do + % / [c1 |Au17€|2 +co |Aur e + u27€)|2 |dz
Q

—I—Z/ "(uje |Vu”|2dx+/(qbg')'(ul,a+u2,5)|V(u1,a+u2,E)|2dx
Q

=- / (uz,e Vg,e = Vio(v1e) + o(vae)]) - (% [BY (u1,0)] ! Ve + ﬁﬁM(Ul,a) uy 2 VUQ,a) dx
Q

1 WM (u1.6)]? Vw u;? Vg, dz + 1 / u;; Vio(ve,e)] - Vug . dx
Q

T2
2 2 2
- Z/ i) |V o|? da — / (65) (Z u> v (Z u> (1.20)
Q i=1 i=1
It follows from (1.20), (1.16), (1.4), (1.3) and the bound
<PM(s) T <vsT + Cly, (M) Vs, v €Rsg, € (0,0), (1.21)
for ( =v;+1,j =1, 2, and for both a = 3 and 4, that
[ Grr(ure) + Gluge) dz + % / [e1 |Auy e* + co |A(ur e + uz,e)?] do
Q Q
2
+ Z / ((b:r),(Um) |Vui7€|2 dr + / (¢§r)l(ul,€ +u2e) [V(ure + U2,€)|2 dz
=179 2
<cC [ / BM (1 0) [uz,e Ve — V]o(vr.e) + o(va0)] da + / ws.e |V]o (02,0 dz
Q Q
2
+/[ﬁM(u17€)]3 |V ¢|? dz + Z/ |V, |2 dx] ) (1.22)
Q — Ja

From (1.22), (1.15), and (1.17a,b) with u; . replaced by 8* (uj ), one obtains that u; . is uniformly bounded in
L2(0,T; H*()). We note that we have used the cut-off on u; ., in order to control the first and second terms
on the right hand side of (1.20).
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It is the goal of this paper to derive a finite element method that is consistent with the formal energy
bounds (1.15) and (1.22).

This paper is organized as follows. In Section 2 we formulate a fully practical finite element approximation
of the degenerate problem (P) and derive discrete analogues of the energy bounds (1.15), and (1.22) if d = 2
and v; > 7, 7 = 1,2, in (1.3). In Section 3 we prove convergence, and hence existence of a solution to the
system (P). In the case d = 1, we prove existence of a solution to (P) with 3 (u) replaced by u;.

Finally, although there is a vast amount of work in the applied mathematics, physics and engineering litera-
ture, there is very little work in the PDE literature on surfactant type problems. To our knowledge, there is no
work on the two-layered system (P). For the single-layered system, the only papers that we are aware of are the
following. A local existence result without cut-offs is shown in [8] for the pure initial-value problem with very
smooth initial data. A global existence result in one space dimension without van der Waals forces and cut-offs
can be found in [5], but this result does not allow for o of the form (1.2). A global existence result, via the
convergence of a finite element approximation, in both one and two space dimensions with van der Waals forces
and with a cut-off on the surfactant concentration in the coefficients can be found in [1]. The above results are
all for the case of an insoluble surfactant. An extension of the existence result in [1] to the case of a soluble sur-
factant can be found in [3]. Of course, it is possible to extend the results in this paper to the more complicated
two-layered case in the presence of soluble surfactants by combining the ideas here with those in [3].

Notation and auxiliary results

Let D € R, d =1 or 2, with a Lipschitz boundary 0D if d = 2. We adopt the standard notation for Sobolev
spaces, denoting the norm of W™9(D) (m € N, ¢ € [1,00]) by || - |lm,q,p and the semi-norm by | - |;m,q,0. We
extend these norms and semi-norms in the natural way to the corresponding spaces of vector and matrix valued
functions. For ¢ = 2, W™2(D) will be denoted by H™(D) with the associated norm and semi-norm written
as, respectively, || - |lm,p and | - |, p. For notational convenience, we drop the domain subscript on the above
norms and semi-norms in the case D = Q. Throughout (-, -) denotes the standard L? inner product over Q,

while ¢" denotes for any ¢ € [1, 00] the “dual exponent” such that % + % = 1. In addition we define

fni= @ /Qndx v € LY(9), (1.23)

where m(D) denotes the measure of D.
It is convenient to introduce the “inverse Laplacian” operator G : F — Z such that

(VG2, V) = (z,n)y V€ WHT (Q), (1.24)

where F := {z e (Wha'(Q)) : (2,1)y = O} and Z := {z € Wh4(Q) : (z,1) = 0}. Here and throughout (-, - )

denotes the duality pairing between (W14 (Q))" and W4 (Q) for any ¢ € (1,2]. The well-posedness of G follows
from the generalised Lax-Milgram theorem and the Poincaré inequality

o < C (ks + 1, D) Ve Wh(Q) and re€ [1,00]. (1.25)

Throughout C' denotes a generic constant independent of h, 7 and ¢; the mesh and temporal discretization
parameters and the regularization parameter. In addition C(aq, ...,ar) denotes a constant depending on the
arguments {a;}!_,. Furthermore “ (x) denotes an expression with or without the subscript x; similarly for
superscripts.
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2. FINITE ELEMENT APPROXIMATION

We counsider the finite element approximation of (P) under the following assumptions on the mesh:

(A) Let © be a convex polygonal domain if d = 2. Let {7"},~0 be a quasi-uniform family - of partitionings
of Q into disjoint open simplices x with h,, := diam(x) and h := max,c7n h., so that Q = U crnR. In
addition, it is assumed for d = 2 that all simplices kK € T" are right-angled.

We note that the right-angled simplices assumption is not a severe constraint, as there exist adaptive finite
element codes that satisfy this requirement, see e.g. [10].
Associated with 7" is the finite element space

Shi={xeCQ): x| is linear Yk € T"} ¢ H'(Q).
We introduce also
Sgo ={xeS":x>0inQ} C Hiy(Q):={ne H'(Q):n >0 a.e. inQ},

and similarly S and HL,(Q). Let J be the set of nodes of 7" and {p;,};c s the coordinates of these nodes. Let
{x;};es be the standard basis functions for S"; that is x; € Sgo and x;(p;) = d;; for all ¢, j € J. We introduce
7+ C(Q) — Sh, the interpolation operator, such that (7"n)(p;) = n(p;) for all j € J. A discrete semi-inner

product on C(f) is then defined by

(o) = /Q 7 (s () (@) dz = 3 1y (0y) 1), (2.1)

jeJ

where m; := (1,x;) > 0. The induced discrete semi-norm is then |n|, = [(n,m)"]2, where n € C(Q). We
introduce also the L? projection Q" : L2(Q) — S” defined by

Q" )" =(n,x) Vxes" (2.2)

Similarly to the approach in [7,12] for the thin film equation, i.e. a single-layered system without surfactant,
we introduce matrices A, : S* — [L>°(Q)]"*?, and Z(py) : S% — [L°°(Q)]?*? such that for all 2" € S", x € S&
and a.e. in Q)

A-(z"), E(ary(x) are symmetric and positive semi-definite, (2.3a)

Ac(ZM) VAt [FL("] = V2", [Ean 001 VA [Glan (0] = V. (2.3b)

The construction of = and A, is given in [1]. The construction of = is the same as that of E, but with G replaced
by Gar. We note that the right-angle constraint on the partitioning 7" is exploited for these constructions.
Throughout this paper we make use of the fact that the matrices Z(x), Zas(n") and A.(z") commute with each
other for any y, n" € SQO and z" € Sh.
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In addition to 7", let 7 = % be the uniform time step and ¢,, :=n7, n =0 — N. For any given ¢ € (0, 1),
we then consider the following fully practical finite element approximation of (P) with o given by (1.2), and ¢;
given by (1.3):

(P27) For n > 1 find {{U, W, V;n }7_,} € [5"]® such that for all x € 5"

h
UILE_U{L;I = n n — n ]
u(i’ — ,x) + 3 (EnULP VWL, VX) + 4 (IEn (VR E(US.) YW, V)

= 3 (Em (UL} EaUIz N VIV + 1357, V), (2.4)

u(—x)+([ BRI +En(U) B VW, V) + 3 (IEw (UL )P E(U5.) VWL, Vx)
_ ‘([E(UQ P BRI Vg WX)

(U} Ea (U]} 2 (U5 VIS + V3, V), (2.4)

er (VU7 Vx) + (67 07 + 01 01.x) "~ (65 W) + 05 W520x) = (Wi - W3x)'. (240)

2 2 h
e (VIUE. + U3 9X) + <¢>§(U2",E) o3 R + 6 (Z U:;) o5 (Z U;?;l) ,x) = (wzx)"

=1 1=1
(2.4d)

u <i x) oy (VY V) + (Ea(UE) AV VIV + V3L], V)

+ (En (UL 25 A (Vi) VW3, VX)) = =3 (En(UFOF A (Vi) VL, VX)), (24e)

u (L x) "t (VV2e V) + (Ear(UL) A(VEL) VIVEL + V3], V)
+ (S (UL 203 A (V3 VW3 Vx) + 4 (EUL)PA(V3) VWS, V)

4 (BN VG, Ox) = =4 (Ear (U2 A (V) VT, O ); (2.4f)

where, for i = 1,2, U, € St and VP e Sh are approximations of u? and v, respectively, e.g. Up. = 7hu? or

Q"uY and similarly for VZ-?E.

Remark 2.1. We note that the above system decouples into (2.4a—d) and (2.4e,f); that is, one updates the
heights and pressures at the new time level, then the surfactant concentrations. (P*7) is the natural extension
of the approximation of the insoluble single-layered surfactant system studied in [1]. In particular, on setting
01 =0, ¢1 = ¢2 =0 yields that W' =Wy, = W', and U = Uy'. + U3., n =1 — N. Moreover, u = 1 and
’ul = 0 yields that V{", = ¢ and V3!, = V', n =1 — N. Of course, as noted in the introduction, we require

m(+) for {U },, as opposed to Z(:), for this two-layered problem in order to obtain our discrete entropy
bound, see (2.54) below; which is required only in the case d = 2. In the case d = 1, one can replace Z;(+)
by E(:). Finally, as UP, > 0, one can ensure that Eon (U 1) and o5 (Ufe_l) are well defined for n > 1; see
Theorem 2.4 below.
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Remark 2.2. The restriction of o to the linear case (1.2) is not crucial for the analysis in this paper. However,
this choice simplifies our considerations and is also more practical. Different choices of ¢ can be incorporated,
see Remark 2.2 in [1] for details.

Below we recall some well-known results concerning S for any x € T", x, 2" € 8" m € {0,1}, p € [1,00],
s€[2,00]ifd=1and s € (2,00] if d =2:

X < Ch;d(%i%) IX|m.px for any r € [p, 00| ; (2.5)

lim, [|(7 = 7")nl1,s = 0 v € WhH(€Q); (2.6)
(I — 7)o < CRE™ 1,00 vne W (k); (2.7)
[.xde < [ a"[x*de < (d+2) [ x*dz; (2.8)

06 2") = 062" < T =7 (2o < CRT™ Xl p |27 1,0 (2.9)

It follows from (2.2) and (2.1) that

@ n)(pj) =m; (n,x;) VieJ = [Q" o <Inlose Vne L. (2.10)
In addition, it holds for m € {0,1} that

(I = Q") <CH =™ nl1,r ¥y eWh(Q) for any r € [2, c0]. (2.11)

We note that assumption (A) and (1.11) yield that
/Vzh. ValFl(zM] de > 2", Vit e St vkeT", (2.12)

see (2.13) in [1] for details. On setting Z" := {z" € S" : (2",1)" = 0}, it is easily established that
|2M0.g <CHA G211, Ve zh for any ¢ € (1,2]. (2.13)

We note that the results (2.11) and (2.13) above exploit the fact that we have a quasi-uniform family of
partitionings {7"}~0. Finally, we introduce the “discrete Laplacian” operator A" : S* — S" such that

(Ar2h )= —(V2" V) vy € Sh. (2.14)

We introduce for any € € (0,1), on recalling (1.18) and (1.19), the regularized functions G. : R — R>¢ and
Ge : R — Ry such that

Goarre(s) i= G (s) + (s — &) Gy (e) + e Gln(e) s<e (2.15)
(M,)e . aQ ’
() (8) s 2 €.

Furthermore, we define =, : S" — [L*°(Q)]9*? and Zp. : S — [L°°(Q)]4*4, for any € € (0, 1), such that for
all 2" € S the analogues of (2.3a,b) with G () replaced by G(yr,)., respectively, hold.
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Lemma 2.3. Let the assumptions (A) hold. Then for any given ¢ € (0,1), M > 1 and « € (0,00) the functions

Ao, Zc, Epe 2 St — [L2(Q)]9% and E, Zpp 0 Shy — [L2(Q)]9%? are continuous and satisfy for all 2" € S",
xeSQO,EGRd and k € TH

e€TE <A e £<€TE e ST [E(N)” | € < max|max{e, 2(2)} €7,

e €Te < T [Ep (2" | € < MeT¢, min[x ()} e <ETEMX))™ |w €< max[x(z)]" Te,

minfmin{x(z), M})” §7€ < € En ()" |« § < METg; (2.16)
and
max|[{A (") = B1(=") T} (@) < he [V2"c |, (2.17a)
max [{[200)" — (]* T} @)l] < max{a, 1} x|y [ [Vl [0, (2.17b)
max|[{[Ex (0] — [8Y (01 THa) | < maxfa, 1187 () lgaete ™ [ [Vl [P0, (2.17c)

where I is the d x d identity matrix.

Proof. For the proof of continuity and (2.16) for A. and =), see Lemma 2.1 in [2] and Lemma 2.2 in [1]. For
the proof of (2.17a,b), see Lemma 2.3 in [1]. These proofs are easily adapted to yield continuity and (2.16) for
Em(,e), and (2.17c). O

As in [1], it is convenient to split ®;, recall (1.15), into its convex and concave parts. We have for given
aj € R>q, §; € R>¢ and v; > 3 that for all s € Rg

D,(s) = <I>j+(s) + @ (s), where q)j(s) =gl P (s) = — Y 52 j=1-—3. (2.18)

It holds, on recalling (1.3), that ¢j = ((I)j)’ and ¢; = (<I>j_)’. For future reference, we note as §; > 0, j =1, 2,
that

(o) > i i=3) (2a;\755 1 gt : .
D (s) > — (52)77°2 —5®(s) VseRso, j=1,2

j 2(v;—1) \ 55 2

_ antan) s —2 -
@;(81) + @;(81 + 82) > @;(51) + @3_(51) > 7(‘11;“(7«31)9/11) 3) (2( 15? 3))111*3 — %@T(S) Vs, s9 € Ryg. (219)

As ¢ : Ryg — R, where ¢(r) = fyd)j(r) — G?M) (r) + C()r, is monotonically increasing for any v > 0 with
C'(7y) sufficiently large; we have that for all v > 0, there exists a constant C'(y) > 0 such that

(V" [Glan 0L VX) < v (Va8 0L VX) + C0) IxlE - Yxest, =12 (2.20)
In addition, if v; > 7, j =1, 2, one can deduce that

(67 (s2) — &5 (51)]? < C1(65, 5, a5) [0 (s2) — &) (s1)] (52 — 51) + Ca(ay) (s2 — 51)° Vs, 51 >0, j=1,2;
(2.21)
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see e.g. Lemma 4.4 in [6], and hence that

2

V' [¢7 (x)] , < C1(%5,75,a5) (VA" [6F (001, VX) + Calay) X7 Vx €Sty  j=1,2 (2.22)

We note also that for all s; > 0
[65 (51 + 52) — 63 (53 + 50)]? < 295 (51) — 93 (53)]° + 2[05 (s2) — 85 (s4)]*. (2.23)

Hence, similarly to (2.22), we have that
2
V(65 0+ )l | < D (016, v5,5) (V107 (0), V36) + Calas) [GR] W, xo € St (224)
J=1

Similarly to the proof of (2.22), one can also show that
2
200 VA G ()] | < Crd2,v2) (VA" 63 ()], Vi) + Ca(82, ) [XIE - Vx € S, (2.25)

To prove existence of a solution to (P"7) we need to go through a regularization procedure, which is similar
to that used in Theorem 2.1 in [1]. For this purpose we introduce for any ¢ € R+, on recalling (2.18), the C*!
convex (concave) functions for j =1 — 3, <I>j[ : R — R>¢ such that

5 (5 ::{ OEQ) + (5= Q7O+ 5L (670 s<¢ (226

@;t(s) (<s

We set d)}'fq = (@fg)', Q= <I>24+<I>ji< and note that @j(s) > <I>Jr (8) = 0=, (s) > @, (s) for all s € Rx.

Furthermore, ®;, j = 1, 2 is strictly monotonically decreasing on (0 ,[a—J] *3)) (0 00) if a; = 0, and CIJJ._I

uniquely defined on R>g. Finally, we recall the well-known identity
27 (r—s) = (r? — s?) + (r — 5)% (2.27)

Theorem 2.4. Let ¢;(-) satisfy (1.3) with §; > 0, j =1, 2. Let the assumptions (A) hold and {U" L Vi !

€ Sty x 8" i =1,2. Then for all e € (0,1) and for all h, 7 > 0 there exists a solution {U]'., W], V;»} €
[SEo] x [S"]?, i =1, 2, to the n-th step of (PP7) with fUP. = U and £V = V"1 i=1, 2.

Proof. As noted in Remark 2.1, the system (P"7) decouples. We introduce the following regularized version
of (2.4a-d) of (P*7) at time 1evel tn for any fixed 7", ¢ € (0,1) and ¢ > 0: Find {U]", ., W/ .37, € [S"]!
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such that for all y € S”

h
U{Ls _U{LQI = n n — n — mn mn
p (B ) (UL 0P T2 90) + 4 (Eanc U IPEUR OV W V)
- 3 = n—1y14 n— n—
= 3 (B UL N B U] VIVET + 135, VX), (2.282)
h
Uns 7Un;1 L — mn mn — n — mn n
M<72, S ,x) 4 (BclU3e OF VW3 0, 9X) + (Barc Ut o) B (U OF YW 0, VX)

+ 3 (Barc(Ule QP Ee(Use ) VW ¢, V)

[N

= —4(EcUs. )} B3 VS V)
— (B UL O Ev U 2 s ) VIVIT + VE), V), (2:28D)
r (VUI. e VX) + (61U o) + 61U x) = (68 U 0) + 65,0 U3).%)
- (Wffa,c — W, X)h, (2.28¢)

h
& (VU7 ¢ + U3 VX) + (63U ) + 05 (U521, X)

h h
+ (‘z’:{c(Uﬁe,q + U3 ) + o5 (U + Uéf;l),x) = (Wﬁe,g,x) : (2.28d)

To prove existence of a solution to (2.28a—d) we introduce for i =1, 2, m; = :,CUfs_l and D; ¢ : Z" x Zh — 7"
such that for any (Uy,Us) € Z" x Z"

(D1,c(U1,Us), x)" = (Uy = (I = HUT )" + 5 ([EM,C(UI +m1)]? E¢(Uz + ma) VIV, VX)

2

D Vi

i=1

, VX) + % ([EM,C(Ul -+ ml)]3 VWD VX), (229&)

(D2 (U1, U2), )" = (U2 — (I = HHUF 0" +7 <5M,<(Ul +my) [E¢(Uz 4+ mg)]* VIWs, VX)
+ % ([EM,C(Ul + ml)]Q EC(UQ + mg) VWl, VX) + % ([E((Ug + mg)]B VWQ, VX)
+ 7 (Earc @1+ mu)) Ec(Tz +ma) [Ex (U] VIV + 1357, Vx)

+ 7 (12T + ma)]} B VT, V) (2.29b)
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where

W1 =—(c1+ c2) AMUL — e ATy + 7" [6] (U1 +ma) + 67 (U721

+ 763 (U1 + Uz + my +ma) + 65 (U +USTY),  (2:30a)
Wy = —co AMU, +TUs) + Wh[(big(ﬁg +mso) + ¢£<(U£;1)]
+ 765 (U1 + Ta + my +ma) + 65 (U +USTY]. (2.30b)

Solving the regularized problem (2.28a— d) is equivalent to finding {U1, Uz} such that fori = 1, 2, D; ¢(U1,Us) =
0, since given such U; and Uy then {U" S i’;’c}?:l ={U; +m;, W;}2_, solves (2.28a-d).

Assume that for a given R > 0 there does not exist {U1, Uz} € ZJ := {{z], 28} € [Z"]? : [21]3 + [24]3 < R?}
with D; ¢(U1,Us2) = 0 for ¢ = 1, 2. For any fixed ¢ > 0 it follows from (2.29a,b), (2.30a,b), (2. 14) (2. 26) and
Lemma, 2.3 that D; ¢ is continuous on zh - Hence, we can define the continuous function B¢ : an B = zZn 1, Where

Be(U1,Uz) = — {RDl_C(U_l’UZ) R Dy C_(Ul_’U2)}1 . As Z% is a convex and compact subset of the finite dimensional
[|D1,c(U1,U2)|3+|D2,¢c(U1,U2)|3]2

space [S"]2, the Brouwer fized point theorem (see e.g. [9], Thm. 9.36, p. 357) asserts that there exists {Uf, Uf} €
Z% such that B¢ (Uf,Uf )= {Uf,ﬁf }. Moreover, |Uf:|2 + |U§ |2 = R2. We will now prove a contradiction for
R sufficiently large. Let W1 and W2 be defined by (2.30a,b) with U; replaced by UZ , i =1, 2. Then (2.14),
the monotonicity of QSIC, (1.16), (2.8) and (1.25) yield for v > 0 sufficiently small that

2
—R —R.}, -
Z(Uz’vwi) *01|U1|1+C2|U1 +U2|1+Z Uz? (U +mi) + ¢; (U] )

i—1 i—1
771 7R 7R 7R — n— n—
+(U1 +U2,¢;C(U1 +m1+U2 +m2)+¢37C(U17€1+U 1))}7,
—R —R =R —R R —R -
>a|Up F+elU] +U, 15 =~U [+ U, + U5 5] - Cly AU 1)

o =R o =R =R
> 4 |U; |?+72|U1 +U, [ -Cly {Uznel 1)
Cmin 7R 7B _ Cmin R? -
> (TR + U [R] - Cly U o) = @ — O(y (U 1Y)), (2.31)
where ¢pin = min{cy,ca}. Similarly, on noting in addition (2.27), we have for ¢ € (0,(;], where ¢ :=
min{min_ g U{'. " (2), min, g U3'_ " (x)}, that for v > 0 sufficiently small

2
ST+ mg - UL W

i=1

2
¢y —R o —R —R —R n n
> [T B+ 20 + T, B+ Y O +mi— UL 6 (T +mi) + o (URH))"

=1

2 h
+ (Z[Uf +mi = U Y, 68 (T +ma+ Ty +ma) + 65, (UF2H + U2",21)> c({ur!
i=1

Y

2
¢y —R o —R —R —R n—
LT R+ 410 + T2 15+ Y (T +mi = U7 i (UFTH)

=1
2 h
+ (Z[Ufﬂm Ui dsc (U +U2",21)> CHUnT o)

g Oy, (U7 1), (232)

v
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We obtain from (2.29a,b), (1.16) and (2.32) for all ¢ € (0, (3] that for v > 0 sufficiently small

2
—R —R., —R
Z(DLC(UI ) U2 )a Wz

=1

—R 1 =R —R 1 =R s (e =R —R _—R
=pU; +mi — U{I,517W1 )"+ 1Ty +mg — U;,aleQ )+ 3 ([:M,C(Ul +my)]P VIV, aVW1)

)h

r (i— R ——R ~—R —_ —R — =R ~—R ~—R
Ty ([:C(U2 +ma)]P VIV, ,VWQ) +r (:Mg(U1 +my) [Ee(Ty +m) 2 VIVy, VIV, )
- —=R —R —R _~—R o7 (1— R 3 1L o e —R
7 ([Enc @) +m)PEc(Ty +ma) VW], VW ) + 47 (2T +ma))? [EURE VYS!, VIV, )
T (= =R 3 n—1y1% n— n— TR
+3 (Banc@) +m0) EnUIT) VIS + V30, VYY)

— 7R —_ n—1y14 n— n— R
Z(Ty +ma) [En (U] VIVES! + V35, VIV )

W=

—_ —R
+ 7 ([Barc @ +ma)]
7R 7R n—1 778 n— n
>M(U1+m1 U1n517W ) +N(U2+m2_U2,617W2)h_C(T”Ya{U 1"/151121)
> mewn B O o U0 VL), (2.33)

» T,E

Hence (2.31) and (2.33) yield for any ¢ € (0, (1] that

2
Z (UR WR)h >0 and Z (D, (U?,U?),Wf)h >0 for R sufficiently large. (2.34)

However, {U1,Usz} is a fixed point of B¢(,-) and so

2
—R
2 RZ iC U17U2 ), W )"
Z(Ulvwl )hz* — -y )
=1 (IDLT)R + D2 (T))

which clearly contradicts (2.34). Therefore, we have existence of a solution {U}, ., W}, -}7_; to (2.28a-d) for

all € € (0,1
We will now show that for ¢ sufficiently small, {U}", o ffe’c}?:l solves (2.4a—d). Choosing x = Wi ¢
n (2.28a), x = Wy . in (2.28b), and summing yields that

5 (EarcUL P VWEL YW, )

n— 1 n h
[M Z i, U i,e,()
78 (B (U OF VWE , VWE ) + 7 (Barc (UL o) [Be(US O VIR ¢, VW )
7 (Barc U O Ee (U3 ) VWL ¢ VW )
= —3 (BarcUF. OF B (I HE VI + VL VWL )
— (B (UL OIF Enr (U B (U3 ) VIVIE ! + VI, VW3 )

— 74 (BcUs. N EUEEH]E VYR VWL ). (2.35)
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Choosing x = U7', . — Uy’ Lin (2.28¢), x = ZZ (Ul = U ) in (2.28d), and summing yields that
>0 )

Z Uzne ¢ Un 1
i=1

2 2 2 h
+> (ﬁc(UzacH%c(Un DUl —UlS 1) +<¢’§f< (Z ffe,c)Jr%c(ZUn 1)2 tec Ui 1])
< :

i=1 1=1

2

¢l (VU{I’EVC, VU, — U{f;l]) + ¢ <V

=Z( e Ulee — Ul l)h- (2.36)

On noting (2.27), the convexity of @IC and the concavity of @}, j =1 — 3, it follows from (2.36) that

2 5 2
c n 2 n n— n—
71 |:|U1,E,(|1+ |U1,€,<7U17€1 i| ?2 'LEC Z(UzSC U 1)
1 i=1 1
2 2 h
+< Z¢i1<(U;}EC +(I)3C<Z zs() )
i=1 —1
2 2 2 2 ho g N
LR+ DU+ ( D i (US| + D (ZU;jEl) ,1) > (Wi Ul U2
i=1 1 i=1 i=1 i=1
(2.37)
Combining (2.37) and (2.35) yields for ¢ € (0, (1] that
2 2 2 2
G UR R+ 10T —UP R + % | Do Ulee| + (DUl = U
i=1 1 i=1 1

2
Z@z((Uzec

=1

g

+ 3 (BcUs. OF YW ¢, VWL ) + —(:M<<U15g>[~c<U25g>1 VWL VWS )

5 2 h
ZUZ};l <Z +@3g<ZU[}81>,1>
pat ) —

n n n T = n 2= — L — n
~ 2 (Eme (UL P ~<<U2,E,<>VW1,E,@vwm) — 5 (B g 01 B OV Vg ()

+ (1)3 ¢ <Z ) ) 3;t “MvC(U{Lﬁ,C)]S VW{?QC’ VW{?QC)
m
2

<SS+

T (1= n 3= n—1y14% n— n— n
— % (Eag U2 1 En (U VIV + V), VT, )
— 2 (Barc Ur 1} Ba (U E Ec(U ) VIV + V3, VR ).

m

(2.38)

Applying Young’s inequality, (1.16), to the right-hand side of (2.38), with v = % for the crucial fourth term,

yields that it can be bounded by
12 (B (UL OF VWE (VWL ) + 5 (U O VWEe . YW )

+ T (EM,C(U{I,(S,Q) [EC(UQn,a,C)]Q VWQ’”;E,C’ VWQTfE,C) + C(Tv h, {Un 1’ szz‘ 1}z=1)' (239)

14p
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Hence combining (2.38) and (2.39) yields the existence of constants Cj independent of ¢ € (0, (1] such that for
i=1,2

(iU ) )" <Cr = @ (U ((p;)) < Cahplt :=Cs Vj€J, (2.40)

min

where Amin 1= min,czn hy. The bound (2.40), on noting (2.18) and (2.26), yields for all ¢ € (0, (2], where
G = min{®;}(C3), &5 (C3), (1}, that for i =1, 2

(U o (ps) = @i (Ul c(pj) <Cs = U c(pj) > ¢ >0 for all nodes pj € T". (2.41)

This yields that for all ¢ € (0, (2] a solution {U}", ., 154} ", to (2.28a~d) solves (2.4a—d), since Epy C(Uleg) =
EM(ng)v HC(UQEC)*H(U&Q ¢’ ( zgs) ¢i( zgs) i=1,2, and‘f’sg(zz 1 zge) ¢’3(Zl 1 zgs)

We now address the simpler task of proving existence of a solution {V;". " 12 | to (2.4e,f). Choosing y =
wh[FE’(VfE)], 1 =1, 2, in (2.4e,f), respectively, and adding; yields, on noting (2.3b), that

2

p 3 (v = v ) o (T TR RO |+ e (B3 VL 9L

)

2
+7 (EM(Uln,e) \Y
= _r (% ExUF)P VT, + En(UP) E(US,) VWS,V

>

i=1

2

S

i=1

vV

2

> Vi

=1

) - % (EWs )P VW3, VVL).
(2.42)

Now, F! > 1 implies for ¢ = 1, 2 that
n n—1 / n h n n—1 h 1 n n—12
(vin = Vi L)) = (Fvi) = RV, 1)+ 30 = vt g, (2.43)

It follows from (2.42), (2.43), (1.12) and (2.12) that

Z| |h<CTNa{puvn 1Uzna’We}z 1)

On noting the above, and recalling Lemma 2.3 and that [F/(-)] ! is uniquely defined on R, it follows that (2.4e,f)
is a continuous and coercive discrete nonlinear system. The Brouwer fixed point theorem then yields the existence
of a solution {V;"}7_, to (2.4e,f). O
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Lemma 2.5. Let the assumptions of Theorem 2.4 hold. Then for all € € (0,1) and for all h, 7 > 0 a solution
{ LWLV, a} to the nth step of (P™7) is such that

2

Yo vt

9

a|Uf. U + e

2 2
+y v - VJé‘lli]

1 i=2

({ ’LE’ lE ) %

2 n I n T 1 (= n 3 n 2 — n 3 n 2
7| o (VYL VA EL VL) | + 3 | B O YW+ |EUs) vws. |
1=1
2 2 2
+ 47 |EURNE VVEL| + 1 |Em (U] E(US) VWS, + [Em(UT)I2 V| D Vi
=1 0
2 2 5 2
+ 55 [EnUTEV Y V|| + 5 [Em(UP))? E(US) VWS + [Ex(UFH]2 V| D Vi)
i=1 0 =1 0
2
n—1 y/n—172 T = 1 n712 T nll n—1
EQULT Vi V) + % B Ve + 2 [En @) ZV,E L (2.44)
0
where

2

D Uik

=1

C1 |Uin,s|% +c2

({ 4,67 zsz )::%

Furthermore, if ¢;(-) satisfies (1.3) with v; > 7, j =1, 2, then

5 2
(#GM(U{l,E)JrG(UQ”,a)’l)th% 01|AhU{f€|ﬁ+02 N (ZUi,s)
i=1 h
2 2
o1 [ (v von) |+ £ (v o (L) | v 2o
= ' i=1

< (pGu(UITYH + G, ) +3 i(w o7 (U] vost)

=1
2
1= n—t|? = n \3 n |? n |2 n—12
+ B v |+ can|ExUrE W+ Y [0+ Ui ]
i=1
5 2
+C(M) |[En(UT))2 E(US) VWS + En (U DIFV [V (2.46)
1=1 0
Proof. Choosing x = W/, i = 1, 2, in (2.4a), respectively, x = Uy', — Uj' Lin (2.4c), x = ZZ JNOP = U g

n (2.4d), and combining; yields the ¢ unregularized version of (2 38). Combining this with (2. 42) ylelds
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on noting (2.43) and (2.45), and applying Young’s inequality (1.16), that

2

> Ur - Ui

9

+Y V-V

n—1|2
alll.-Ul i te

({ 167 ’L& ) é

—/77N 3 n
[‘:‘(U2,E)] 2 VWQ,E

)

— n v 8 n |2
+3 [% ‘[:M(Ul,e)]z VWY, 0 +

+r sz (Vv Ve FL(v))
2 2 ?
+7 |EWEF VVEL| + 5 |En (UL EU5) VWL + Ex(UT)IFV | YVt
2 2 o ’ 2
o5 |En TV DOV || + 55 [Ear (U] E(UF.) VWS + Ear (U7 )]F V ZV-’,’;I
=1 0 ) , 0
<EQUIT VIR + 5 [EnOEEY | Vit | - 5 (B Vs, V15 )
=1 0

2

Yot

2p
i=1

)

= 3 r=rn—1y13 n n— T = n n =(rm n
-3 ([:(U2 Bk [Z(Uz,e 1)]2 VWQ,aa VVQ,E 1) ~ 324 ([‘:‘M(U17E)]2 vwl,a? ‘:‘(UQ,a) VWQ,a +V

- L ([EMU{%E)]% VW, [Ev(UT))Z E(US) VW, + [En(UTTH)]E V

20
i=1
) 2
n—1 n—1 - n—1y1% n—1 T |[= L 2
<EQUIT VIR + 25 [En IRV (v | + 5 B v
=1 0
T 3 n 2 from) n 3 n 2 T from) n 1 n

+ 73 || Earf v+ [Ewg v ] + £ [Ewp v,

) 2
+ 2 |Em(UT))2 E(US) VW3 + Em(UT)]Z V| Y Vi

i=1 0

5 2

+ o [En (U] E(U) VWS + En(UP ]2V DOV | (2.47)

i=1 0

Hence, on choosing v = 5 in (2.47) yields the desired result (2.44).
Choosing x = 7"[G},(UT".)] in (2.4a), and noting (2.3b), yields that
U{La Un ! n h
K (7 G (Ul,s)) % (VWI e VUI E)
2
= n = n \132 = n—1\1% n— n
=-3 ([:M(ULE)] E(US) VW3 + [En (UL Ex(UTZH]EV YVt aVﬂh[G'M(ULE)])
i=1

2

2
+ i(wh[%w{fs)}, VU{fE). (2.48)

St

i=1

< HIEMUP)E EWUL) VWL + [Ev(UPZH]EV

1
4
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Similarly, on choosing x = 7"[G/(U3,.)] in (2.4b), yields that for all v > 0, there exists C(y, M, 1) > 0 such that

h
(M G’(U25)> + 3 (vwg., vz, )

1 2
<7

1 — 2 n n — n 3 n
EE v+ (vﬂh[a’wg,an,wg,a)] + O, M) [Ear (UF )] VW

2 2
n—1
> Vi

i=1

L—irm n - n—1\14% = 2
+C (v, M, ) |[En(UF )% E(US) VWS + [En (U] V v |E(Uz:) VA (G (U3 )]

(2.49)

Choosing x = —A"UP, in (2.4¢) and x = fAh[Zz 1 U] in (2.4d), then adding yields, on noting (2.14)
and (2.1), that

2

2
fep AR + 3 (vl (Ur) + 6 (U], VU )

=1 7
2
DU
=1

el

Combining (2.48)(2.50), and noting the convexity of Gy, (2.20), (2.22), (2.24) and (2.25), it follows for
all v > 0 that

22: (vw;;, ) _ ‘MU1 _

i=1

S

(2.50)

2
h h 2
u(Gu(UF) = Gu (U, 1) + (GUEL) = GUEZY) 1) + 5 |en|AMUT R + ca |A" | DU ]
=1 h
2 2
r(i- Z (vw (67 (U )],VU{}E> +1 <V7rh ot (Z U[}E> VIS o )
i=1 i=1 i=1
2 2 ?
< HEEE V[ 4 0 M) B (UR 1 EUE) YWE, + Ea (Y | v
i=1 0
3 2 - 2
£ 00 M) a7 YW+ O fag,05,03Km) S (UL + 107
i=1
2
+z Z (w 67 ( U’};l)],VU;jgl) (2.51)
Choosing ~ sufficiently small yields the desired result (2.46). |

We now prove discrete analogues of the formal energy bounds (1.15), with (1.17a,b), and (1.22).

Theorem 2.6. Let ¢;(-) satisfy (1.3) with §; > 0, j = 1, 2. Let the assumptions (A) hold and {U?.,V .} €
Shy x S" for i =1,2. Then for all e € (0,1), h >0 and 7 > 0 a solution {{U,, W, V12 WV | to (PPT)

’LE’ 1,7 ,€
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is such that, fori=1,2, U € S&y, U, = fUP, and V. = fV2 . n=1— N, and

2
1 ninlzch ||U1’f5||1 + co max

30 [ max (@(U), )"+ max (V) 1)

1 =l

2
ho g N
QL («1)3(2 ) +Z[max Vil +e7" s 1= 1V-8] + 0 2107 ~ U2

i=1

N || 2 2 [N N N
tea Y D00 - U +Z DV = VI S 4 pi D (VI VAt ELVED) + pi YT IV
n=1||i=1 =1 Ln=1 n=1 n=1
> -1 3 2 = 3 2 -1 |= 1= 2 0
307 i En@r O]+ [lEp oWt Eu @l swp) v | < cce
n=1
(2.52a)
where
h
5 2
1 2 1
T|EU)E VVL| +p7 T [Ew(UD))F V| DV (2.52b)
=1 0
In addition, we have that
N Un U’IL 1 V'n, V’IL 1 2
>ords o] ] s [ | < oo mex IEORPL D, st
n=1 i=1 lq n=0=N
where ¢ =2 and r =00 if d=1, q € (1,2) andrf— if d=2; and
_ [1,00] if d=1,
EUL )] o.s < CNUS|T Va € (0,00), Vse€ 2.53b
[EWElos < CURLIE  Vae (0,00), Vs {[m) i, (2.53b)
Furthermore if ¢;( ) satisfies (1.3) with v; > 7, j =1, 2, then
. . 2 2
pomax (Gu(UT),1) + max (G(Ug.).1) +er 1 |AMUT 7+ cp |A" <2 Ui,a>
n= i= h
N 2 N 2 2
+y 7 Z(w (65 (U )LVU;}E) +y 7 (wh [qsg <ZU{}E> vI> o )
n=1 =1 n=1 ) =1
<C |+ (pGu(UP) + GUI.), 1 +TZ(V7T (67 (U2 )],VUSE) (2.54)
=1
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Proof. Summing (2.44) from n =1 — k yields for any £ < N that

>t

k
({ E’V;ke}z 1) %Z cl|U{l,e {Ialf"i'c

n=1 =1 n=1
5 k 2 2
3 27 |BWRE VAL + i D7 |[Eu(UR0)] 2(UL) VWEL + [Em(UR))F V | DOV
n:lk n=1 , i=1 0
+oe > 7 [En(UP)) E(UF,) VIV, + [Em (U772 ZV-’; !
n=1 2 0 ,
EWUL VYo + 3 |EURNE V.| + 25 [Em(ULL)]F VY Z (2.55)
0

Therefore the desired bounds in (2.52a,b) follow immediately from (2.55) on noting (1.12), (2.19), (1.25), (2.1),
(2.8), (2.12) and (2.16).

From (1.24), (2.2), (2.4a), (2.16) and (2.11) we obtain for n € W4 (Q) that
U’ Ur.-Urnc! Ur.-Urct h
(Vo[ ) ) = p (Bl ) = (Bfie Qi)
s(EmUTOP VWL, VQ ) — (Em(UT )P EWUS.) VW3, VQ" )
— S(En(UF))? Ex (U] VIV + V521, VQ )

2
n—1
> Vi
i=1 0

— n 3 n
+ 1B U1 IWEL o) Il (2.56)

< C(M) [|[En (U1 )]} E(US.) YW3lo + [V

Similarly to (2.56), we obtain from (1.24), (2.2), (2.4¢), (2.16) and (2.11) for n € W4 (Q) that

p (VG0 1 W) = —py p (VP VQM)) — (Sar (U7) A (VL) VIV + Ve, V™)

- (EM(Uin,a) E(U2n,e) AE(Vlr,le) VWQ’”;E’ VQhﬂ) - %([EM(U?,&)P AE(‘/lr,la) vw{fa? Vth)
2

> vie!

i=1 0

— n 1= n n ol n 3 n
+IEmUL)]? E(US) VWS o + [[Em (U] VW1,5|0] 014 (2.57)

<C(M) [muIVerlo + |V

U2s 25 ] V77) and (Vg[VQE 25 ] V77)

]||1,q, 1 = 1, 2. Summing these over n, and noting the

Using similar techniques as in (2 56) and (2.57) to bound (VG|
obtain bounds on ||g[%]||1,q and ||g[%v5
bounds (2.52a) yield the bounds (2.53a).

The proof of (2.53b) follows from (2.16), an inverse inequality and Sobolev embedding; see the proof of
Theorem 2.2 in [1] for details. Finally the inequality (2.54) results from summing (2.46) from n = 1 — k, for
any k < N, and noting the bounds (2.52a). |
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Lemma 2.7. Fori = 1,2 let u,v) € H, wzthu € L>®(Q) andu(m)>§>0f0rae x € Q, and the

19 Y1

assumptions (A) hold. On choosing either {UP_, V. } = {Q"u, Q"0l}, or {UP_, VO } = {x"ul, x"} if either
d =1 or {uf,v)} € [WH(Q)]* with e > 2; it follows that {UY_, V.} € [SQOP with UY. > ¢ are such that for
all h >0 -

2
C+ (pGu (U + GUE) )" + 1> (Valef (U0.), VUL, ) < C. (2.58)
1=1

Proof. The desired result (2.58) follows immediately from (2.52b), (2.10), (2.7), (2.11), (2.18), (1.11), (1.19),
(1.18), (1.3) and (2.16). O

3. CONVERGENCE

We set, for i =1, 2,

Ue(t) = =22t U+ =t ! L€ [tn1,tn] n>1 (3.1a)
and U:'a(t) = U, U, .(t):=U/"" ! t€ (th—1,tn] n>1. (3.1b)

We note for future reference that

Uie —UE = (t —t5) 20e t€ (tyo1,tn) n>1, (3.2)

where ¢, :=t, and t,, :=t,_1. We introduce also 7(t) := 7 for t € (t,,_1,t,], n > 1. Using the above notation,
and introducing analogous notation for W; . and V; ., (P2 phr 7) can be restated as:
Find {U; ., Vi }2, € [C([0,T]; S")]* and {VVJr 2 4 € [L°°(O T; S™)]? such that for all y € L2(0,T; S")

T h
o 1, —_ & — —_
[ (%5 0)" + 4 (P VW 930 + 4 (Ea (U2 202 T4 90

T
4 [ (Eu I En T VIV + Vi) T 3.30

/0 [ (2%2.3) "+ (1% B3P + En(U) B2 VWS V) + & (Ene (U B0 YW, Vx)] e

(3.3b)

T
/0 [ (282 5)" + 1 (V90 + (Ear (U7 A (V) VIV + V41, 9)

T
+ (En(U) B(UF) Ae(Vi) VWS, Vi) |de = —4 / (Ex(UF )P AV YW Vx) di,  (3.30)

T h
/0 [ (22.X) + p2 (T35, V) + (Bar (UF) A (V) DIVEE + V2], 9)

+ (“M(U )E(U2 E)A (VY2 E)VW2 E’VX) 2 ([E(U;fs)] AE(‘/QJ,;)VWQJ,FQVX)

T
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where for a.a. t € (0,7) and for all 2" € S"
h h h
er (VUL V2t) + (6 (UF) + 07 (UL), =) = (65 (UF) + 65 (Us),2") = (Wit = W3 2"), (3.3¢)

2 2 h
e (VIUL, + V3], V2") + (%*(U;E) + 65 (Us) + ¢ (Z U;) +65 (Z U&) ,zh> = (wi, zh)h;
=1 =1
(3.3f)

that iS, WIJ;*WQJ,FE = AhUlJTE+7Th[¢f(Uler)+¢li(U1i€)]77rh[¢§r(U2Jts)+¢2i (Uis)] and W2J,r5 = —C2 Ah(UlJts+
Uf.) + 7o (US) + 65 Uz 0] + 7 [of (S U) + 05 (S0, 0]
Lemma 3.1. Let ¢;(-) satisfy (1.3) with 6; > 0, j =1, 2, and the assumptions of Lemma 2.7 hold. In addition,

let Th™40=2) L0 andeh %G5 S0 ash — 0, where p=2ifd=1, and p > 2 if d = 2. Then there exists
a subsequence of {{Ui ¢, Vi, er 2 n, where {U; e, Vie, W;‘E}?:1 solve (P27, and for i = 1,2 functions

w; € L0, T; Hio(Q)) N H' (0, T; (Wh' (), (3.4a)
vi € L0, T; L*(92)) N L2(0, T HL () N H' (0, T; (W ())"), (3.4b)
such that M (uy), B (v;) € L=(Qr), (3.4c)

with u;(+,0) = ud(-) in Y1, v;(-,0) = v9(+) in Ya, where H'(Q) <> Y1, L*(Q) < Ya, and for a.a. t € (0,7T)
Jﬁui('at) = JCUlO >0, :)Cvi(',t) = JCU?, such that as h — 0

Usipe, Uij; — Uy weak-+ in L>(0,T; H'(Q)), (3.5a)
Vies VziE — v; weak-+ in L>°(0,T; L*(Q)), weakly in L*(0,T; H'(Q)), (3.5b)
gagivf — ga(;;" and ga‘ggf — g?;g weakly in LQ(O, T, Wl’q(Q))7 (3.5¢)
Usipe, Ufa — strongly in L*(0,T; L*()), (3.6a)
Vie, VziE — v strongly in L*(0,T; LP(Q)), (3.6b)
[EM(Ufa)]a — [ﬁM(ul)]“I, for any « € (0, 00), strongly in L*(0,T; L(S2)), (3.7a)
[E(Ui)]a —us 7, for any a € (0,00), strongly in L*(0,T; L*()), (3.7b)
AE(VZJFE) — B (v) T strongly in L*(0,T; LP(Q)); (3.7¢)
where s € [2,00] and g =2 ifd=1, s € [2,00) and ¢ € (1,2) if d = 2.
Furthermore, if d =1, ord =2 and v > 7 in (1.3), then u; in addition to (3.4a) satisfies
u; € L*(0,T; H*()); (3.8)
and there exists a subsequence of {{Ui.e, Vie, W;fe 2}, satisfying (3.5a—c), (3.6a,b), (3.7a—<) and as h — 0
AhU:E — Au,; weakly in L*(Q7), (3.9a)
Uie, UL = ug weakly in L*(0,T; W'P(Q)), (3.9b)
Ui, Uii — Uy strongly in L*(0,T;C%7(Q)), for any v € (0,1 — g), (3.9¢)

and for a.a. t € (0,7T)
ui(-,t) € COV(Q)  with ug(x,t) > C(t) >0 vz € Q. (3.9d)
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On extracting a further subsequence, it holds also as h — 0 that

wh[q&i(UfE)]( 1) — (;Sji(uj( 1)) forj=1,2, strongly in C(Q) for a.a. t € (0,T), (3.10a)

J
2 2

| oF ZUfE (1) — ¢= Zuj( -, 1) strongly in C(Q) for a.a. t € (0,T), (3.10b)
i=1 ;
Wfs( 1) = wi( 1) weakly in H*(Q) for a.a. t € (0,T), (3.10c)
[Em(UF)]2 VWY, — [5M(u1)]% \ weakly in L*(Q7), (3.10d)
[E(US E)] \VAUSS e u2 Vws weakly in L*(Qr), (3.10e)
[:M(Uffs)]% E(US,) VW, — [BM (u1)] ug Vws weakly in L*(Qr); (3.10f)
where

wy — we = —c1 Aug + ¢1(ur) — da(ug) and wy = —ca A(uq + ua) + da(u2) + ds(us + uz). (3.11)

Proof. Noting the definitions (3.1a,b), the bounds in (2.52a,b) and (2.53a,b), together with (2.58), imply that

2
+ +
Z [ U( )||L°°(O o) T IVi )”%OO(O,T;Lz(Q)) + pi ||‘/if€ )||2L2(O,T;H1(Q)) S ]*”LOO(O T:L2(Q))
i=1
1 aU 1 av av, .
+ 172 = 20,00 ) + T2 6= (2000 + ||g 2= 1220, mmra ) + 195 120,70 ()
+ |\[EM(U1+,E)]§ VWL 132 ) + BTN VW2+5||L2(QT) +Em(UF))Z E(US) VW53 200y < C.
(3.12)
Furthermore, we deduce from (3.2), (3.12) and (2.5) that for i =1, 2
_d(1-2
”Ui,s — Uii”LHO,T;Hl(Q)) <Cr, ||Vi,e - ‘/;‘%E”L?(O’T;LP(Q)) <Ch a1=3) . (3.13)

Hence, on noting (3.12), (3.13), U; . > 0, (1.4), our assumptions on h and a standard compactness result, we
can choose a subsequence {U; ., Vi, W;"}2_, such that the convergence results (3.4a—c), at first without the
nonnegativity constraint on v; and the bound on v; in (3.4c¢), (3.5a—c) and (3.6a,b) hold. Then (3.4a,b) and
Theorem 2.4 yield, on noting (2.7), (2.11) and a standard compactness result, that the subsequence satisfies the
additional initial and integral conditions.

The proof of the results (3.7b,c) can be found the proof of Lemma 3.1 in [1]; and this can be easily adapted to
prove (3.7a), on noting (2.17¢). Furthermore, we note that Lemma 2.1 in [2] and (3.7¢) imply that for 8*(v;) > 0
a.e. = v; > 0 a.e., and hence HL () in (3.4b), and the v; result in (3.4c).

The results (3.8)(3.10a—f) can be proved by a simple adaption of the proof of the corresponding results in
Lemma 3.1 in [3]. O

Theorem 3.2. Let all the assumptions of Lemma 3.1 hold. Then there exists a subsequence of {{Uie, Vi,
er }2_ 1}, where {{Uza,Vza,W‘|r 2_}n solve (P™T), and functions {u;,vi,w; Y2, satisfying (3.4a—c), (3.8)
and (3.9d). In addition, as h — 0 the following hold: (3.5a—c), (3.6a,b), (3.7a—¢), (3.9a—¢), (3.10a—<) for a.a.
t € (0,T), and (3.10d-f). Moreover, we have that u; and v; fulfil u;(-,0) =u?(-) in Y1, v;(-,0) =v)(-) in Ya,

where H'(Q) <5 Y1, L2(Q) <5 Yy, Furthermore, {u;, vi, w; Y2, satisfy for alln € L?(0,T; wd'(Q , withq' =2
=1
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ifd=1and ¢ € (2,00) if d =2,

T
1 /O (B m)g dt + /Q (216 (u1)]? Vo + 5 [8™ (u1))? uz Vs + 5 [8M (w1)]* V(o1 + v2)] - Vi da dt =0,
’ (3.14a)

T
u/ (Gt n)g dt+/Q (15 ud + B (1) u3] Vs + § [8Y (u1)]? ua Vr + Y (ur) ua V(o1 + v)] - Vi da dt
0 T

+/ [$u3 V] -V dz dt =0, (3.14b)
Qr

T
M/ (%L )y dt+/ [p1 Vo1 + & [BM(u1)]? B (v1) V| - Vpda dt
0 Qr

+ BM (uq) B (v1) [ug Vws 4+ V(v +v2)] - Vyda dt = 0, (3.14c)
Qr

M/()T<%Lfan>q' dt + /QT 02 1 Vv2 + 3 [BY (u1)]? B (v2) Vs + B (ur) B (va) (u2 Ve + Vo1 + v3])]- Vi dz dt
+ /QT [Lu3 B (v2) Vws + up B (v2) Vo] - Vi da dt = 0; (3.14d)

where for all € € HY(Q) and for a.a. t € (0,T)
/Q{ [wi (1) —wa ()] € — 1 Vur (+1). V& = [d1(ua (-, 1)) + d2(ua(+1)] €} dz =0, (3.14e)
/Q{wz( )€ — o V(ug (-, t) +ug(,1). VE+ [pa(ua( -, 1) + da(ua( - t) +uz( 1)} de=0.  (3.14f)

Proof. On choosing z" = 7€, where € € Wh4'(Q), in (3.3e,f); it follows from (2.1), (2.8), (2.6), (3.5a)
and (3.10a-c) that (3.14e,f) holds for £ = &. The desired result (3.14e,f) then holds for any ¢ € H(Q)
via a density argument.

For any n € L0, T; Wh7(Q)) and 7 € H'(0,T; W>°(Q)), we choose x = 7/ in (3.3a)-(3.3d) and then
analyse the subsequent terms. The desired results (3.14a-d) follow from (3.5a—c)—(3.7a—c), (3.10d-f), (2.9)
and (2.13) from a simple adaption of the proof of Theorem 3.1 in [1]. O

Remark 3.3. As noted in Remark 2.1 above, in the case d = 1 one can replace Zp/(-) by Z(+) as the discrete
entropy bound (2.54) is not required to prove (3.8)—(3.10a—f). It is then an easy matter to adjust the proofs
above to show that this modified (P"7) converges to (3.14a—f) with 3™ (u;) replaced by wu;.
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