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THE hp-VERSION OF THE BOUNDARY ELEMENT METHOD
WITH QUASI-UNIFORM MESHES IN THREE DIMENSIONS *

ALEXEI BESPALOV! AND NORBERT HEUER!

Abstract. We prove an a priori error estimate for the hp-version of the boundary element method
with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes
are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open
surfaces exhibit typical singularities which limit the convergence rate of the boundary element method.
On closed surfaces, and for sufficiently smooth given data, the solution is H'-regular whereas, on open
surfaces, edge singularities are strong enough to prevent the solution from being in H'. In this paper
we cover both cases and, in particular, prove an a priori error estimate for the h-version with quasi-
uniform meshes. For open surfaces we prove a convergence like O(hl/ 2p~1), h being the mesh size and
p denoting the polynomial degree. This result had been conjectured previously.
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1. INTRODUCTION

We study the hp-version of the boundary element Galerkin method (BEM) for hypersingular integral oper-
ators on piecewise plane surfaces. The particularly important case of open surfaces is included. We prove an
a priori error estimate for the hp-version with quasi-uniform meshes which is, by heuristic arguments, optimal
when singularities do not include logarithmic contributions. Whether our result is optimal for logarithmic sin-
gularities is unknown. Fixing polynomial degrees our error bounds yield error estimates for the A-version which
(in the case of singularities) have been unknown.

In the finite element framework, many hp a priori error estimates have been proved, for quasi-uniform as
well as graded meshes. For an overview see the book by Schwab [27] and the references given there. Recent
error estimates, in particular for mixed methods, can be found in [2,3,16,25], see also the following discussion.

There are much fewer results in the case of the BEM (for an early overview see [30]). The first paper on the p-
version of the BEM for problems in three dimensions appeared 1996 [28]. It covers only polyhedral domains (and
hypersingular operators) where solutions are in H! (on the boundary). The second paper [23], which appeared
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1999, analyses the hp-version of the BEM with geometrically graded meshes on open surfaces, for hypersingular
and weakly singular operators. This method uses appropriate combinations of graded meshes and highly non-
uniform polynomial degrees to achieve a convergence that is faster than algebraic, even in the presence of strong
singularities that are inherent to problems on open surfaces. From those results one cannot, however, deduce
a priori error estimates for the p-version or hp-version with quasi-uniform meshes. In the latter cases polynomial
degrees are large also on elements close to the singularities, whereas the hp-version with geometrically graded
meshes uses lowest order polynomials at the singularities. The hp-version with geometrically graded meshes is
numerically convincing and well analysed. However, the analysis of high order approximations of singularities
is challenging and with this paper we fill one of the gaps in the existing literature.

In our previous paper [11] we studied the p-version of the BEM for hypersingular operators on open surfaces.
The strongest singularities of typical solutions are edge singularities which behave like y'/2 where y denotes
the distance to an edge of the surface. Let us denote this surface by I'. Then this edge singularity is in the
Sobolev space H!=¢(T) for any £ > 0, but it is not an element of H*(I'). The energy space of hypersingular
operators is H'/2(I"), sometimes denoted by H010/2(F). (For a definition of the Sobolev spaces see Sect. 3 below.)
Therefore, in order to find an optimal a priori error estimate, one has to analyse the approximation in H'/ 2T
of a function which is not in H!(T"). One possibility to deal with this is to introduce weighted Sobolev spaces.
In particular, Jacobi-weighted Sobolev and Besov spaces are appropriate to prove optimal error estimates for
the p-version, see [20,21] for the BEM in two dimensions and [5,19] for the FEM in two and three dimensions. In
order to obtain error estimates in the energy norm, a key ingredient is to prove that the interpolation between
appropriate weighted spaces reproduces the energy space. For the space HY2 on open curves or surfaces this
result is not immediate. In two dimensions it can be proved by using arguments of complex analysis (see [8],
Lem. 3.1) and in three dimensions this is open. In this paper we follow the strategy of [11] and avoid the use
of weighted spaces by performing the approximation analysis in fractional order Sobolev spaces. We note that
in [12] we studied the p-version for weakly singular operators. These operators are inherently connected with
negative order fractional Sobolev spaces and we reduced their analysis to the case of positive order fractional
Sobolev spaces.

Considering the particular edge singularity y'/? for hypersingular operators, we proved a convergence like
O(p~1) for the p-version [11]. Here, p denotes the polynomial degree of the approximating functions. In this
paper, we extend the analysis to the hp-version and the corresponding error estimate for the edge singularity
gives an upper bound that behaves like O(hl/ 2p~1). Here, h refers to the maximum diameter of the elements.
This result is in agreement with conjectures stated in [23].

Fixing polynomial degrees, our results on the hp-version in particular prove a priori error estimates for the
h-version of the BEM with quasi-uniform meshes. In fact only very little has been proved for the h-version
of the BEM in three dimensions. For problems with singularities we only know of [33] where von Petersdorff
and Stephan present a sub-optimal error estimate (for quasi-uniform and graded meshes). In the case of an
open surface their result states an error bound like O(hl/ 2=#) for piecewise polynomial approximations of lowest
order on quasi-uniform meshes. Here, ¢ > 0 and the leading error term contains a factor C(e) whose behaviour
for ¢ — 0 is unknown. Fixing p in this paper we prove an error bound like O(hl/ 2) for any polynomial degree.
Applying arguments from [17] (where the weakly singular operator is studied) one can show that this result is
optimal in the case p = 1 and for rectangular meshes in a neighbourhood of the edge singularities.

To prove results for the hAp-version with quasi-uniform meshes one usually tries to make use of p-version
results by scaling arguments. For the finite element method in two dimensions see [6] and for the BEM in two
dimensions we refer to [31]. There are, however, two principal difficulties. First, p-version analysis employs
different polynomial degrees in different parts of the approximation. When only p-asymptotic estimates are
wanted one approximates, for instance, polynomial jumps of degree p over element interfaces by polynomial
extensions of degree 2p + 1 (¢f. Lem. 3.4 below). This is not possible when aiming at h-version results where
polynomial degrees are fixed (e.g. uniformly at p). In that sense hp-estimates do not directly follow from
corresponding p-estimates by scaling arguments. Second, in this paper we are considering three-dimensional
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problems where different types of singularities appear. This fact, together with the need to directly work in
fractional order Sobolev spaces, makes the use of scaling arguments non-trivial.

For our analysis we assume that the surface under consideration is open (which is the most singular case)
and piecewise plane such that it can be discretised by meshes consisting of triangles and parallelograms. Since
Sobolev spaces are invariant under sufficiently smooth mappings our results generalise to piecewise smooth
surfaces and elements with curved boundaries. For ease of presentation we assume that I' C R? is a plane open
surface with polygonal boundary. Our model problem reads: Find u € H/ 2(') such that

(Wu,v) = (f,v) Yoe HY?(T). (1.1)

Here, f € H™V/ 2(T) is a given functional and W is the hypersingular operator

1 0 0 1

The operator W : H/?2 (T) — H —1/2 (T") is continuous, symmetric and positive definite such that any finite
element method for (1.1) (then called boundary element method) converges quasi-optimally, see [14,29]. Here,
H~'/2(T") is the dual space of H/?(T') and the latter is defined in Section 3.

The rest of the paper is organised as follows. In the next section we define the hp-version of the BEM, recall a
regularity result for the solution of (1.1), and formulate the main theorem stating an a priori error estimate for
the hp-version of the BEM. In Section 3 we introduce the Sobolev spaces and collect several technical results.
Of particular importance is Lemma 3.5 which bounds a fractional order norm by local contributions. This
is needed to join local approximation results in fractional spaces to form a global estimate. Sections 4-6 are
focused on the approximation analysis of particular singularities. In Section 7 we prove a general approximation
theorem and the main result given in Section 2.

2. hp-BEM AND A PRIORI ERROR ESTIMATE

For the approximate solution of (1.1) we apply the hp-version of the BEM on quasi-uniform meshes. In what
follows, h > 0 and p > 1 will always specify the mesh parameter and a polynomial degree, respectively. For any
Q C R™ we will denote po = sup{diam(B); B is a ball in Q}. By A ~ B we mean that A is equivalent to B,
i.e., there exists a constant C' > 0 such that C B < A < C~!'B where B and A may depend on a parameter
(usually h or p) but C' does not.

Let M = {Ap} be a family of meshes A, = {T'j; j = 1,...,J} on I', where I'; are open triangles or
parallelograms such that T' = U‘jlzlf‘j. For any I'; € Ay we will denote h; = diam(I'y) and p; = pr;. Let

h = max h;. In this paper we will consider a family M of quasi-uniform meshes A, on I' in the sense that there
J

exist positive constants o1, o9 independent of h such that for any I'; € Ay, and arbitrary A, € M
hgo’lh]’, h,j SO’ij. (21)

Let Q = (—=1,1)? and T = {(x1,22); 0 < 21 < 1,0 < w3 < 71} be the reference square and triangle, respectively.
Then for any I'; € Ay, one has I'; = M;(K), where M is an affine mapping with Jacobian |J;| ~ h? and K = Q
or T" as appropriate.

Below we will refer to three different patches of elements. The union of the elements at a node v is denoted
by A, i.e., A, := U{[';; v € [}, the union of the elements at one edge e by A, (the endpoints of e are not
included in e), A, := U{f]-; f‘j Ne # o}, and Agp := A, N Ae.

Further, P,(I) denotes the set of polynomials of degree < p on an interval I C R. Moreover, ’P;(T) is the set
of polynomials on T of total degree < p, and ’PE(Q) is the set of polynomials on @ of degree < p in each variable.
Let K C R? be an arbitrary triangle or parallelogram, and let K = M(T) or K = M(Q) with an invertible
affine mapping M. Then by P,(K) we will denote the set of polynomials v on K such that vo M € 77; ()it K
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is a triangle and v o M € P2(Q) if K is a parallelogram (in particular, we will use this notation for K = @ and
K =T). For given p, we then consider the space of continuous, piecewise polynomials on the mesh Ay € M,

Vg'P(D) == {v € COT); vlor =0, vr, € Pp(Ly), j=1,....J}.
Note that V;"?(T') ¢ H'/2(T"). Now, the hp-version of the BEM is: Find upn, € Vy"?(T') such that
(Wunp,v) = (f,v) Vo e V"P(D). (2.2)
Before giving our main result stating an a priori error estimate for (2.2) let us recall the typical structure of

the solution of the model problem for a sufficiently smooth right-hand side function f.

Theorem 2.1 ([33]). Let V and E denote the sets of vertices and edges of T, respectively. For v € V, let E(v)
denote the set of edges with v as an end point. Then, for sufficiently smooth given f, the solution u of (1.1) has

the form
u:urngrZueJrZu”JrZ Z u®?, (2.3)

ecE veV veEV e€ E(v)
where, using local coordinate systems (ry,0,) and (Te1,xe2) with origin v, there hold the following representa-
tions:
(i) The regular part uyeg € H*(T), k > 1.
(ii) The edge singularities u® have the form

e

me [ 5 .
. v
u =Y | D () logea|® | 23 Xi (e ) x5 (we2), (2.4)
j=1 \s=0
where V5 = V5 > %, and me, s; are integers. Here, X7, x5 are C*° cut-off functions with x{ = 1 in a

certain distance to the end points of e and x§{ = 0 in a neighbourhood of these vertices. Moreover, x5 =1 for
0 < Zea < 9. and x§ = 0 for xeo > 26, with some J, € (0, %) The functions b x§ € H™(e) for m as large as
required.

(iii) The vertex singularities u¥ have the form

v
ny 4

v v v Af v
u’ =x (TU)ZZBitﬂong?‘y wiy(0y), (2.5)

i=1 t=0

where A, > A} >0, ny, qf > 0 are integers, and Bf; are real numbers. Here, x" is a C* cut-off function with
x*'=1for0<r, <7, and x* =0 for r, > 27, with some 7, € (0, %) The functions wl, € H1(0,w,) for q as
large as required. Here, w, denotes the interior angle (on T') between the edges meeting at v.

(iv) The edge-vertex singularities u®’ have the form

ev ev ev
U = ul + U2 )

where
Me Ny s5 s
ug? = J e log et [*H log aea| | @i 2y XU (ry )XV (0 2.6
1 ijlts g Lel gLe2 Teq T X (TW)X ( U) ( . )
j=11i=1 \ s=0t=0 [=0
and

me 5§ e
us” = 303" B (r)log zealwlh X" (r)x " (6,) 27)
7j=1s5=0
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with
S
B (ry) = Y BS54 (ry)|log . (2.8)
1=0
Here, q7, Ch A7, 75, X" are as above, Bfﬁts are real numbers, and x' is a C*° cut-off function with x¢¥ =1

for 0 <0, <G, and x°¥ =0 for %ﬂy <0, <w, for some (3, € (0, min{w,/2,7/8}]. The functions BSg may be
chosen such that

B;: (ro) X" (1o)X (0) = XjS(melv Tez) X5(Te2), (2.9)
where the extension of x;s by zero onto R*T = {(xe1,2e2); ez > 0} lies in H™(R?T) for m as large as required.
Here, x5 is a C*° cut-off function as in (ii).

Remark 2.1. (i) For an open surface there holds u,eg € H*(T') N HE(T) and w?, in (2.5) satisfies w?, €
H(0,w,) N H}(0,w,). This will be needed in the proofs of Theorems 6.1 and 7.1.

(ii) The singularity structure of w is being obtained by analysing the Neumann problem for the Laplacian in
the bounded domain  whose boundary is I' (in the case of a closed surface I') or in Q := R3\ T (in the case of
an open surface I'). In the former case u is the trace on T' of the solution to the boundary value problem and
in the latter case it is its jump across I'. The required smoothness of f in (1.1) relates to the smoothness of the
given Neumann datum g. Sufficient for the result above is that g is the normal derivative of a C’l"o%((l)—function.
In particular there holds f = (1/2+ K’)g (with K’ being the adjoint of the double layer potential operator)
and, depending on the number of singularities and the wanted regularity for u,eq, the smoothness requirement

on g can be relaxed to standard Sobolev regularity, for details see [33].
The following theorem is the main result of this paper.

Theorem 2.2. Let u € 1:11/2(F) be the solution of (1.1) with sufficiently smooth given function f such that
the representation from Theorem 2.1 holds. Let vg € V, ey € E(vg) be such that min{A]® + 1/2,~7{°} =
mingy ey ce p(y) MIN{A]Y 4+ 1/2,9}, with XY and v{ being as in (2.4)-(2.7). Then, for any h > 0 and every
p > min {A]°,v{* — 1/2}, the BE approzimation uny, defined by (2.2) satisfies

||u _ Uhp||g1/2(p) < Chmin{,\’;0+1/2,»yf0}p_2 min {70 4+1/2,v;°} (1 + 10g(p/h))ﬁ+l/, (2.10)
where
Vo pge0 {1 gr ozt _ €0 1
p=3 B TR A= (2.11)
q1° + s otherwise,
for numbers ¢i°, s5° as given in (2.6), and
Lof p=min{\¥, % — 11
- 5 D . {A% M 3t (2.12)
0 otherwise.
If 1 <p<min{A]°,7{° — 1/2}, then for any h > 0 there holds
w = wnpll grr2(ry < ChPH2, (2.13)

The positive constants C in (2.10) and (2.13) are independent of h and p.

Remark 2.2. For problems in two dimensions with singularities comprising poly-logarithmic terms it is known
that the p-approximation results have poly-logarithmic contributions where the order is reduced by one if the
exponents of the singularities are integers, see [5,20]. It is an open problem whether this is true also in three
dimensions.

A proof of Theorem 2.2 is given in Section 7.
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3. PRELIMINARIES

We introduce the Sobolev spaces and prove several technical lemmas.
For details concerning Sobolev spaces we refer to [18,24]. For a domain 2 C R™ and an integer s, let H*(Q)
be the closure of C°°(§2) with respect to the norm

[ullFre(@) = llullfre-1(ay + [ulfe@) (s =>1).

Here,
o = [ IDu@)P s, and HO®) = La(9),
Q
where |D%u(x)|> = > lal=s |D%u(x)|? in the usual notation with multi-index o = (a1, ..., a;) and with respect
to Cartesian coordinates @ = (z1,...,2,). For a positive non-integer s with s = m + ¢ with integer m > 0 and
0 < o < 1, the norm in H*(Q) is
||U||§15(Q) = H“H%{m(g) + |U|%rs(§z)
with semi-norm )
[D%u(x) — D*u(y)|
[ / / dz dy.
H*(Q) laZ::m oo |z — y|nt2o

For 0 < s < 1, the closure of C§°(£2) with respect to the above norms is denoted by Hg(f2). For a domain €2
with Lipschitz boundary 99, H'/2(Q) denotes the space of functions in H'/?(Q) whose extensions by zero are
elements of H'/2(R™). A norm in this space is

u(z)[?

2 o 2 2
Il ) = Wl + i oy + | s da

For non-integer s, we equivalently define the Sobolev spaces by real interpolation:

H(Q) = (LQ(Q),H1(9)> 0<s<1)

5,2

and
HY2(Q) = (LQ(Q),H5(9)> L, 12<s<).
bk
We will also need the Besov spaces B3, () defined via interpolation between the above Sobolev spaces (see [9,10]):
let s1,82 € R, 0 < 51 < 89, and s = (1 — 0)s1 + s for 0 < 6 < 1, then

B () = (H"(@), H(2))

9,00.

This space is equipped with the norm
HUHBgO(Q) = sup tfeK(u,t),
t>0

where
K(ut)= inf ([[vllge: @) +tlwllaee@).
For integer k > 0 and p € [0,1] we consider the spaces of continuously differentiable functions Ck(Q) and
C*#(Q) with norms
lullorey = Y sup |D u(x)|

\algkleg
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and

|D%u(x) — D%u(y)|
”uHCw Q) = ||UHck a) + sup .
@ @ }_:kz,yen,z;éy |z —y|~

Now let us collect several technical lemmas. We will need the following scaling result.

Lemma 3.1. Let K" and K be two open subsets of R™ such that K" = M(K) under an invertible affine
mapping M. Let diam K" ~ ppn ~ h and diam K ~ pyi ~ 1. If u € H™(K") with integer m > 0, then
@ =wuo M € H™(K) and there exists a positive constant C' depending on m but not on h or u such that

|0 o (rcy < CR™ 2 Ju] gom (.- (3.1)
Analogously for any o € H™(K) there holds
|ul g (gcny < CHE @] g () - (32)
Moreover, if & € H*(K) with real s € [0, m], then
C’lh%||a||Hs(K) < Jullgsgny < C2h%75||ﬁ||H5(K)' (3:3)

For the proof of (3.1), (3.2) see [13], Theorem 3.1.2. Inequalities (3.3) then follow by interpolation (see [4],
Lem. 4.3).

Remark 3.1. The notation introduced in Lemma 3.1 will be used frequently in this paper. If not specified
otherwise, K" C R? is assumed to be a triangle or parallelogram (an element of the mesh Aj) such that
diam K" ~ ppen =~ h (see (2.1)) and K" = M(K), where K C R? is a triangle or parallelogram with diam K =~
pr =~ 1 and M is an invertible affine mapping of K onto K. The functions u and @ defined on K" and K,
respectively, satisfy the relations: & = wo M and u= G o M1,

The following two lemmas are Theorem 3.8 and Lemma 5.5 of Chapter 2 in [26] (for the case of a triangle or
parallelogram K).

Lemma 3.2. Let m > 1 be real. Let p = m —14 m <2, p<1iyfm=2 andp =114 m > 2. Then
H™(K) c C"*(K), and
lullcowry < Cllullam(x)-

Lemma 3.3. Let u € H¥(K) for real s >0, and v € C1¥/' =V (K, where [s]' denotes the minimal integer such
that s < [s]'. Then uv € H*(K), and

lwolle ey < Cllullms ) vl cror-1a &)

The next lemma is the scaled version of Lemma 9.2 in [28].

Lemma 3.4. Let K" be a triangle (respectively, a parallelogram) satisfying the assumptions of Lemma 3.1,
and let " be a side of K" with vertices vy, va. Let wp, € Pp(I") be such that wpy(v1) = wpyp(v2) = 0, and
lwhpllz,any < f(h,p). Then there exists uny € Papy1(K™) (respectively, upn, € Pp(K™")) such that upp = why
on 1", up, =0 on OKM\I", and for 0 < s <1

[l s (emy < C B2 p~ 125 f(h, p).

Proof. One has (see Rem. 3.1) K" = M(K) with K = T (respectively, K = Q). Let [ be a side of K such that
I" = M(l). Then 1, = wpy o M € Py(l) and by Lemma 3.1 there holds

[Gnpll oy < Ch™Y 2wyl Lyany < CRTY2F (R, p).
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Applying now Lemma 9.2 of [28] to the function @y, we find a polynomial i, € Py, (K), K = T (respectively,
Unp € PE(K), K = Q) such that @y, = Wpp on 1, tpp =0 on OK\I, and for 0 <s <1

Uhpll s () < Ch=Y/2p=1%2 f(h,p).

Setting upp = tnp 0 M1 and using again Lemma 3.1 it is easy to see that up, satisfies all conditions of the
lemma. O

The next lemma is to split the norm in a fractional order Sobolev space onto sub-domains and is critical to
prove global approximation results by using local approximation results on sub-domains. Since this result is of
wider interest we present it in a more general form than needed in this paper.

Let I' C R" (n = 2,3) be a polygon (n = 2) or a polyhedron (n = 3), and let A = {I';} be a regular mesh
on I' consisting of shape regular elements (being affine mappings of a bounded number of reference elements).
For each I'; € A we denote h; = diam(I';). In the lemma below we will consider a locally quasi-uniform mesh A
on [' in the sense that there exists a positive constant o7 independent of the mesh such that for any patch
0 = {I';} C A of neighbouring elements there holds

max hj <oih; for each T'; € 6.
j:T;ed

Lemma 3.5. LetI' C R™ (n = 2,3) be a polygon (n = 2) or a polyhedron (n = 3), and let A = {I';} be a
locally quasi-uniform mesh on I'. Then for 0 < s <1

el Zery = D ullfperyy  Vu € HA(D), (3.4)
i

and for 1/2 < s < 1 there holds

lalldrry < €37 (B>l e, + fulfreqe,y) Ve € B (D). (3:5)
J

The positive constant C in (3.5) is independent of u and the mesh A.

Proof. Since H“Hi(r) =3 H“Hi(rj)v it is enough to consider the semi-norm in H*(T"). For s € (0,1) one has
J

|u|§{s(r)

>/, | et e
(2« 5 5[ [ e

0,5: T;NT;=0  4,5:T;NT;#0, i#j =]
= L+ I+ Is. (36)

This immediately leads to (3.4), because I, I > 0 and

Iy = Z |“|§{s(rj)- (3.7)

j:T;EA

Let % < s < 1. We will estimate the terms I; and I in (3.6) separately. Let I';, I'; € A be such that f‘iﬁf‘j = ¢.
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Denoting d;; = dist (I';,I';) we have

|2
/ / |x7y|n+2s dzdy

IN

2
T( [ wras [y [ g f |u<y>|2dy>
d;; r T, r; T,

C n n
< o (Wl ey + 5l )
ij

Hence

Wl + 7 llull?, o, DY 203 ||ull?, )

Lo< ) —
i,7: f‘iﬂf‘j=® ) i fimfj=® i
2h3
- CZ HUH%2(F Z dn+2s' (38)
i ;NI =0

Let us fix an arbitrary I'; € A. We introduce polar coordinates with the origin at some point z' € T'; and
denote by r; = r;(z) = |z — 2| the polar radius. Then there exists a positive constant C' independent of i and
the mesh A such that

dij = dist (FI;FJ) Z CT',L(LL‘) YV c Fj, VFJ € {F], f]' n f‘z = ¢}

Moreover,
U{l;; T;NT; =0} C {z €T rkh; < |z — ;| < R}

with some constants x and R independent of the mesh. Therefore we estimate for fixed I';

3 >
Rt
)
INA
Q

I

&

o,
&
V)

|

Q
3

2| &
~—

S
S~—

IN

—n—2s n—1 —2s
c [ r ri dr; <Ch;*".

&

Then we obtain by (3.8)

L <C Z hy > ull7, oy (3.9)
I EA

In order to estimate I3 we again fix an arbitrary I'; € A and denote by K hi the patch of neighbouring elements
touching T, i.e., K" = U{I‘j, ;N [; # o}. Observe that the number of elements in any patch K" is
bounded by a constant mdependent of i and A. Let K be an open subset in R™ such that K" = M(K),
where M is the affine mappmg (scaling) satisfying M : @3, = hi@g, k = 1,...,n, v € K" 3 € K. Then
K= UJK where K; = M~1(T';) for each I'; C K" hi . Moreover, due to the local quasi-uniformity of the mesh,
diam K ~ diam K; ~ 1 for each K C K. Therefore

— 251~ N
|u|§-IS(K”'i) ~ h} S|u|%{S(K)a ||UH%2(FJ-) = h?HUH%Q(Kj)a |U|H9(F )y = ~ ™ 2S|U|H9 K;)
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with @& = uwo M, and applying Lemma 3.1 of [11] we obtain

ulfregeny = YTl ) < CRET2 Y <||ﬂ||%2<Kj>+|ﬁ|3fs<Kj>)

j:KjCK
< o S (Nl + T )
j:T;CKhi
< c Z (h 2S||U||L2 +|u|Hb ,)>. (3.10)
j:FJ‘CK’”

Since h; >~ h; for every I'; C K" and each patch K" has a bounded number of elements, we estimate by (3.10)

|2 >
=Y > [ ey < 3wl
i g:D;NCi#8, j#i ¢
< 0 (Nl + o)) (3.11)
j:T;eEA
Now inequality (3.5) follows from (3.7), (3.9), and (3.11) making use of decomposition (3.6). O

Remark 3.2. Inequality (3.4) was given in [32], Lemma 3.2, for the case when the norm in H*® is defined by
the method of complex interpolation, and was proved in [4] in the case of real interpolation.

4. AUXILIARY APPROXIMATION RESULTS

In this section we formulate several results regarding the approximation of smooth and singular functions.
For the approximation of smooth functions we will need the following lemma. For a more elaborate discussion
of polynomial interpolation operators see [15].

Lemma 4.1. Let K" and K be two triangles (parallelograms) satisfying the assumptions of Lemma 3.1, and let
[ be a side of K. Suppose that u € H™(K"). Then ii=uo M € H™(K) and there exists a family of operators
{tp}, p=1,2,..., T, : H"(K) — Pp(K) such that

16— #pit]| ragacy < OB~ D [y eny, m >0, 0< g <m, (4.1)
(@ — 7pt) (2)] < CR* p~ " Dlu]l grm(geny, m > 1, &€ K, (4.2)
o — 7pt| sy < ChH™ Lp=(m=s= 1/2)||u||Hm(Kh), m>3/2, s=0,1, (4.3)

where ;1 = min {m, p+ 1}, and the positive constants C in (4.1)—(4.3) are independent of u, p, and h but depend
on m.

Proof. Making use of Lemma 4.4 in [6], estimates (4.1)-(4.3) follow from the corresponding results of [7],
Lemma 3.1 (for details, see [6], Lem. 4.5, in particular, estimates (4.14), (4.16) therein). O

Now we can prove the result on the approximation of smooth functions. It gives estimates for the error of
this approximation in the norms of the spaces H'/2(T") and H*(T"), s € [0, 1]. For the space H(T) this result
has been proved before in [6], Theorem 4.6.

Proposition 4.1. Let m > 1. Then for u € H™(') N H(T) there exists up, € VJ"P(T) such that for s € [0,1]

lu = wnpll sy < Ch*=*p~ " |Jull gm(ry, = min {m,p+ 1} (4.4)
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if the mesh Ay on T' does not contain triangles, and
[u = wnpll ey < CRH**p~ "= ful| m 1) (4.5)

if Ay, contains triangles; here p is the same as in (4.4) and

1/2 if s€0,1/2),
=4 1/24¢ >0 if s=1/2, (4.6)
s if s €(1/2,1].

Moreover,

< C p™in {m,p+1}—-1/2 p—(m—1/2—e) HUHH’"

Ju— Uhp||ﬁ1/2(r) (T)s (4.7)

where € = 0 if Ay, does not contain triangles, and € > 0 if Ay, contains triangles.
Proof. First, let us assume that m > 3/2. Let K" =T'; € Ay and K = Q (or K = T) so that K" = M;(K).

Thus K" and K satisfy the assumptions of Lemma 3.1 and due to Lemma 4.1, there exists 0; = 7, (u o M i) €
Pp(K) such that for s = 0,1

% = 05l s (x0) < CH* ™"l (4.8)
I = 05l mre @y < CR* o™ "5V ] (4.9)
where | C 0K denotes a side of K, u = min{m,p+ 1}. Since m > 3/2, we can modify ¢; as in Theorem 4.1

of [7] to obtain ©; = @ at the vertices of K.
Let v; =9, 0 Mj_l. Then v; € Pp(I';) and we obtain by Lemma 3.1 and (4.8)

[u— vl ms(r;) < CR**p™ ]| gm(r,y, p=min{m,p+1}, s=0,1 (4.10)

Further we consider two elements I';, I'; € Aj, having the common edge " =1T;n fj. Let v; € Py(I';) and
v; € Pp(T;) be the polynomials constructed above. Then the jump w = (v; — v;)|;n € P,(I") vanishes at the
end points of I". Furthermore, using (4.9) and standard interpolation arguments, we find

0] g1y < 1o — 0l ooy + 16— 05| o0y < CR* VD ]| gronr,oryy, 8 = 0,1, (4.11)
@ 1720y < Ch‘hlpf(mfl)||U||Hm(r,,urj), (4.12)
where | = M; ("), M; : K — T, p = min {m,p+ 1}.

We will adJust the function v; on I'; to obtain the continuity of the approximation on the inter-element
edge. If T'; is a parallelogram, we use the constructions from the proof of Theorem 4.1 in [7]. In this case
K=Q=1Ix1I,I=(-1,1) and without loss of generality we can assume that | = {(&1,&2); &1 € I,%2 = —1}.
Then there exists a polynomial t, (&) € P,(I) such that (see [7], pp. 759-760)

and
[l arery < Cp*~Y2, s =0,1. (4.13)
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Let us define 2 := ), (i2). Then 2 € P2Q), 2 =w
prove

nl, 2 =0 on dQ\l, and making use of (4.11), (4.13) we

Q

IN

Il < € (Il Il + Il 19l )

< Ch’klp*(mfl)||U||Hm(riurj);

121l 0@) = @l zro @y [¥pll oy < Ch* ™™ |ull g (rr -
If T'; is a triangle, then we use the result of [1], Theorem 1, giving stable, polynomial preserving trace liftings
on I';: there exists 2 € P}(T) such that Z = on [, 2 =0 on 9T\l
IZlav @y < Cllollgrzgy, N2z < Clldllcao)-
Then using (4.11), (4.12), and interpolation arguments we obtain
ey < CRF'p= ™ ju]l gmr,ur,), s € [1/2,1],

2l sery < NElmeery < CR ™Y uf gmr,oryy, s € 0,1/2).

Now for both cases considered above we define z := Z o M;l € P,(I;). Then setting o = v; + z on I'; and
o = v; on T'j, we find a continuous piecewise polynomial on I'; UT; U 1" such that [|u — || g+(r,) is bounded as
in (4.10). On I'; we use Lemma 3.1 and corresponding estimates for ||2|| s k) with K = Q or T

lw =3l e ryy < llu—=vill gy + CA 2|2l o (@) < CA*~*p~ ") |lull gm(r,ur,), 5 =0,1
if I'; is a parallelogram, and

||u - ’EHHS(FJ Chﬂispi(mis)||u||Hm(F-;UFj)a EAS [1/25 1]) (414)
fu= il < CH =5 D oo, s € 0,1/2) (4.15)

IN

if I'; is a triangle.

Repeating these procedures for each pair of adjacent elements as well as for the elements I'; having the side
I" C O we construct the function wuy, € Voh’p (T"). If the mesh Ay on T consists only of parallelograms, then
upyp satisfies (4.4) for s = 0,1. For real s € (0,1) this result then follows by interpolation.

If the mesh Ay, on I' contains triangular elements, then we deduce (4.5) from (4.14), (4.15). In fact, for
s € [0,3), (4.5) immediately follows from (4.15), because H*(I') = H*(I') = Hg(T) for these values of s
(see [18]). If s € (3,1), then we use Lemma 3.5 and estimates (4.14), (4.15):

e — wngllpey < c(h-28||u—uhp||%2<r>+ 3 |u—uhp|%{s(r,.>)
j:I';Cl
< c<h—28h2ﬂp-2<m-1/2>||u||zm<r> R 2m=) ||u||%{m<r>)
< CRPIp 2y -

For s = %, estimate (4.5) then follows via interpolation between H*(T') and H*"(T), where s’ = 3 — 2,
s"=1+2, 0<e<i.
Since (u — upp) € H§(T') for any s € (3,1], we prove (4.7) (for the meshes of both types) by interpolation

between Hg (T') and Hg (T) with the same s’, s” as above.



THE HP-VERSION OF THE BEM

833

So far we assumed that m > % Now we prove the assertion for 1 < m < % We will consider only the case

of meshes containing triangles. The arguments for meshes without triangles are analogous.
As it is shown in [9],

H™(T) N Hy(T) = (H'(), H*(D))m—1,2 N Hy (V) = (Hg (), H*(T) 0 Hy (1)) m—1.2

and there holds
H™T)N Hy(T) ¢ BZ(T) N Hy(T).
On the other hand, by the reiteration theorem we find that

(Ho (D), H*(D) N Hy (D)) m—1.2 = (H5 (D), H* (') N Hy(D))p2 and  BL(T) = (H*(T), H*(I'))p,

with s €[0,1], 3 <k <2,0= 7=2 € (0,1). Therefore,
H™T) N Hy(T) = (H5(T), H* (') N Hy(1))g,2 € BZ(T) N Hy(T) = (H*(T), H*(T))g,00 N Hg (T).

Decomposing u € H™(I') N H}(T') as

u=v+w, veHT), weHT)nHIT)
and applying (4.5) with m := k to the function w we find wy,, € Voh’p(r) satisfying

[ = whpll ey < C (0]l azs oy + tllwl| e ry)-
Here t = h*=*p~(*=5) and 5 is defined by (4.6). Hence,

lu = whpll oy <€ dnf ([0l ey + tlwllie ),

and recalling the definition of the Besov space BZ(I") we obtain

7(1975 (m—
U — Whp || gs(T) < ull pmry < ~p —* Ul Hm(1)>
[ | < Ct|u] <Ch™ = |

which gives (4.5) for s € [1/2,1]. If s € [0,1/2), then § = 1/2 and (4.5) also holds:

_ (k=1/2)(m—s) o
v = unpllgs@ry < CR™°p s ullgmery < CR™ ™ V2 | g .

This finishes the proof of (4.5) for 1 < m < 3/2. As before, estimate (4.7) is proved by interpolation.

O

Remark 4.1. The given error estimate is of the expected order in h. In p the order is the expected one when
no triangular elements are present or when the error is measured in H*(T') for s > 1/2. Otherwise the p-result
appears to be non-optimal. The difficulty lies in finding an hAp-interpolation operator that works equally well
in Lo(T) and H'(T') such that results in fractional order Sobolev spaces can be obtained by interpolation. The
continuity of interpolating functions across element boundaries is generally incorporated by using appropriate
extension operators, ¢f. Lemma 3.4. For triangles, such an extension operator which works equally well with
respect to h and p in Ly and H' is unknown. Note, however, that there is a quasi-optimal result for an extension
operator that could be used to improve the result of Proposition 4.1 for the case s = 1/2, see [22]. In this paper
we consider singular functions and the slight perturbation of the p-estimate for smooth functions (on triangles

when estimating in H'/2(I")) does not affect the main result Theorem 2.2.



834 A. BESPALOV AND N. HEUER

Let us recall some known results regarding the approximation of singularities by polynomials of arbitrary
degree in fractional order Sobolev spaces on triangles (parallelograms) of fixed size. In the propositions below
K C R? will always denote a triangle or parallelogram satisfying the assumptions of Lemma 3.1. The particular
location of K in R? will be additionally specified in each proposition. We will consider three types of singular
functions on K which correspond to the vertex singularity (see (2.5)) and to the edge-vertex singularities of
both types (see (2.6)—(2.9)):

uy(x) = rlog P x(r)w(h), (4.16)
up(r) = 21" "2} | log w1 ™| log x2| X (r)X (6), (4.17)
us(x) = 23| log w2|x1 (1, 22)x2(22), (4.18)

where \ and v are real parameters to be specified, 3, 31, 32 > 0 are integers, (r,6) are polar coordinates in R?,
X, X, X2 are C'*° cut-off functions satisfying

supp x C [0,70], suppX C [0,50], suppxz C [0,d0]

for some 79, 0o, dp > 0, and the functions w, x1 are sufficiently smooth.

Proposition 4.2 ([28], Thm. 8.2). Let K C R? and suppose that the origin O is a vertex of K. Let uy be
giwen by (4.16) with A > 0 and supp x C [0, 7] for 0 < 79 < pr. Then there exists a sequence ui, € Pp(K),
p=1,2,..., such that for 0 < s <1

ur — wipll ey < Cp 279 (1 +logp)”. (4.19)
Moreover, u1,,(0,0) =0, u1,, =0 on the sides l; C 0K, l; 0, and
lur — w1 pll Lo,y < Cp 22 (1 4 logp)?  for each side Iy, C OK, O € Ij. (4.20)

Proposition 4.3. Let K C R**. Suppose that the origin O is a vertex of K and one of the other vertices of K
lies on the right semi-axis Ox1. Let ug be given by (4.17) with A > —1/2, v > 0, and assume that supp us C
So={(r,0); 0<r<79, 0<0< [ < Trc K. Then there exists a sequence us, € Pp(K), p=1,2,..., such
that usp =0 on OK and for 0 <s <min{l,A\+1,v+1/2}

lug = g pll e sy < Cp~ 2 FIAHZZ) (1 4 log p) it fate, (4.21)

1

where 0 = % if \=v— 35, and 0 = 0 otherwise.

This statement was first proved in [28], Theorem 7.2, under the assumptions that A > 0, v > % Later,
in [11], Theorem 3.5, we generalised that result to A and v with 1 < min{A+1,y+ 1} < 1.

Proposition 4.4. Let K C R?>T and suppose that at least one vertex of K lies on the axis Ox1. Let l;, C 0K
(k =1,3 or k = 1,4) denote the sides of K, 7 = {l;, C 0K; I, N Ox; = ¢}, and A = {l, C OK; I}, N Ox;
contains only a single point}. Let ug be given by (4.18) with v > 0, x1 € H™(K), m > 2v + 2, and assume
that (suppus) Nl = @ for each l;, € 7. Then there exists a sequence usp € Pp(K), p=0,1,2,..., such that
for 0 <s<min{l,y+1/2}

lug = us pll s () < C (p+1)72O0F279) (1 4 log(p + 1))°. (4.22)
Moreover, us p, vanishes at the vertices of K, usp, =0 on (0K NOxz1) U T, and for every side I, € A,

lus = wspll oy < C 0+ 1) 7202 (1 4 log(p + 1)) (4.23)
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Proof. If p = 0, then we set ug, = 0 on K, and (4.22), (4.23) are valid. Let p > 1. Then for v > % the assertion
is proved in [28], Theorem 6.2. For 0 < v < 3 see Theorem 3.2 and estimates (3.20), (3.21) in [11]. O

Now we will study the approximation of a certain singular function with small support. For this function we
prove an approximation result which plays an essential role in our further analysis.

Let e € E be an edge of I' with vertices v, w. Recalling that A. denotes the union of elements at the edge e,
we consider the function

u(xela 1'62) = 9332| IOg xe2|ﬁX1 (melameQ)XQ(xe2/h0)a (xela 1'62) S Aea (424)

where v > 0, 8 > 0 is integer, hg = (0102) th with o1, oo being the same as in (2.1), x2 is a C° cut-off
function with support in [0, ] for some 0 < § < 1, x1 € H™(A,) with integer m > 2y + 2, and x; vanishes on
the edges l,,, 1, C OA, with [, Né = {v} and [, N & = {w}.

Observe that u € H*(A.) for any s € [0,1/2 4+ 7). Due to (2.1), hg < p; for any I'; C A., and hence
suppu C Ae.

Lemma 4.2. Let u be given by (4.24). Then for every p = 1,2,... there exists a continuous function wp,
defined on A, such that upy, € Pp(T;) for each Tj C Ae, upp =0 on 0Ae, and for 0 < s <min{1,v+ 1/2}

m

lw— wnpllpreany < CRYTIS p20H1/2=9) (1 4 Jog(p/h)) Z Uxalmea)- (4.25)
t=0

Proof. For simplicity of notation, and when not leading to ambiguity, we will omit e in the subscripts of the
coordinates xe1, Teo. Let KP = I'; C Ac,andlet K C R2* be a triangle or parallelogram such that K" = M(K),
where M is the affine mapping

M:xz;=hi;, i=12 zeK" ieckK.
Then at least one vertex of K lies on the axis Oz, and
Ww(@) = wu(hiy, his) = h"2]| log(hi2)|ﬁxl(h:%1, hio)xa(o10902),
B

%32<f)|1ogh| [log a5 (&1, 82)x2(01002) = (@)% (4),

where
B 3 _
(ﬁ(i‘) =h" E <k>|logh|k¢ﬁk(i’2) with @Z(i‘g) :i‘;“OgiQVXQ(O'lO'QQACQ), ZZO,,ﬂ

Using Proposition 4.4 for each function ¢;, i = 0,..., 3, we find polynomials ¢;, € P,(K) such that ¢; , =0
at the vertices of K and on (0K NO%1) U T,

i — Gipllas ey < Cp 20H279 (1 4 logp), 0< s < min{l,y+1/2},

@i — Giplliaay < Cp~ 2012 (1 4+ logp)’ for every | € A.

Hence, setting

° /8
— B kz:% (k) |log h|*@p_1.p(2)
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we obtain the estimates

3
L 6] . R
16— Pplli=y < WY <k [log h|*||¢—k — Pp—kpll ms (x0)
k=0
° /s
< WpPOHET Y (k) C(k)log" (1/h)(1 +logp)”*
k=0
< C(ﬁ)mp*2<v+1/2*s>(1 +log(p/h))?, 0<s<min{l,v+1/2}, (4.26)
1= @pllzoy < C(B)RTp~ 202 (1 4 log(p/h))?  for every I € A; (4.27)

moreover, ¢, = 0 at the vertices of K and on (0K NOZ1) U T.
Since ¢ € H*(K) and ||@| g+ (x) < ChY log” (1/h), we estimate by (4.26)

1pllaery < N6 = Ppllae ) + ] e (i)
< CRhY(1+1log(p/h))?, 0<s<min{l,y+1/2}, (4.28)
and similarly by (4.27)
&)l L,y < CRY(1 +log(p/h))?  for every I € A. (4.29)

Now let us approximate the smooth function x; € H™(K). Using [6], Lemma 4.1, we find a polynomial
X1,p = TpX1 € Pp(K) satisfying

IN

Cpi(m7Q)||>21”Hm(K)a 0<g<m, (4.30)
Cr Il gy, m> 1, &€ K. (4.31)

X1 — X1,pll o k)

[(X1 — X1.p)(2)]

IN

We define 9(2) := ¢ (&) X1.p(2). Then 1 € Poy(K), ¢ = 0 at the vertices of K and on (9K NOz;) U, and for
0<s<min{l,y+1/2}

18— s () < N%2(8 = @p)llars ey + 1 (Ra = Xa,)Bpll 115 (50)- (4.32)

First, let us consider the case when 1/2 < s < min{1,v + 1/2}. Applying Lemmas 3.2 and 3.3 we have for
any € > 0

1X1(@ = &)l sy < CliXillcor gyl — Gollas () < Cllxallzz+e ()l — Gpll s ()

Hence, taking ¢ sufficiently small (2 4+ ¢ < m) and using estimate (4.26) we find

11 — @)l ms 1y < CRY p= 20279 (1 4 log(p/h))°|| 1|

Hm (K)- (4.33)

For the second term on the right-hand side of (4.32) we again use Lemmas 3.2, 3.3, and then estimates (4.28),
(4.30):

IN

(X1 = X1,p)Ppll s (1) CllX1 = X1,pll z2+= (1) | Pp 1o (K)

IN

CRYp~ (=279 (1 +log(p/h))P|X1 || zrm (1), 2+ <m. (4.34)
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Now we deduce from (4.32)—(4.34) for s € (1/2, min{1,v+ 1/2})

=Bl < Ch max {p=20%1/29) =2} (1 4 log(p/h)? %l s (10

IN

C' 1Y p~20FY279) (1 4 log(p/h))” || 1]

Hm(K)- (4.35)
Here we have chosen ¢ small enough such that 1 + ¢ < 2s, since then one can estimate p~™m*2+s < p=27-142s
for m > 2y + 2.
To treat the case s = 0 we use similar arguments relying on the inequality
[wollgory < Cllulleoiy 10l mo(x).
the embedding H'*¢(K) C C°(K) (¢ > 0), and estimates (4.26), (4.28), (4.31), (4.32):
lla — 1&||H0(K) < Ch p 20t (1 £ log(p/h)? || %1l mrse (i)

+ChY p= U (1 + log(p/h)? (|1 ]| ()

< ChYp 202 (14 log(p/h)” %1 |l (x6) - (4.36)
Analogously, using (4.27), (4.29), (4.31) we obtain for every side | € A
i = Pll,y < C R p~ 202 (1 + log(p/h))? IIRallrm (xc)- (4.37)

Observe that adjusting the constants C' in (4.35)—(4.37) we can obtain these estimates for a polynomial ¢ €
Pp(K) for every p = 1,2,... Therefore, recalling the notation KM = I'; and setting 1; = 1[) o M~ we
find a polynomial ¢; € P,(I';), p = 1,2,... such that ¢; = 0 at the vertices of I';, on (0'; N €), and on
71 = M(7) = {lx C 9T; I N & = ¢}. Moreover, making use of Lemma 3.1 we deduce from (4.35)—(4.37)

m
lu = sllizeryy < € W7 P02 (1t log(p/)? D7 Pl (4.58)
t=0
for s € {0} U (1/2, min {1,v + 1/2}), and
m
= 5| pamy < C hTY2 =202 (1 4 log(p/h))? Z R xalaer,) (4.39)
t=0

for every I" € A7 = M(A).

Suppose that I';, I'; C A, are two elements having the common edge I" = T; NT;. Let ¢; € P,(I';) and
;€ Pp(T;) be the approximations to u constructed above and satisfying estimates (4.38), (4.39). Then the
jump w = (1; — 1;)|;» vanishes at the end points of " and, because of (4.39),

lwllpyamy < lw—illpyamy + v — il ,am)
< CRYTYEpTROHR) (1 4 dog(p/h))” Z R Xl (riory) -
t=0

In the case that I'; is a parallelogram, we use Lemma 3.4 to find a polynomial z € P,(T;) such that

z=w onl" z=0 on JI';\I", (4.40)
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and for 0 <s <1

m

2l brs () < C R 72079 (L log (p/h)) D~ 0™ xalmeroory)- (4.41)
t=0

2
(with different constants C' for the upper bounds in (4.38) and (4.39)). Then Lemma 3.4 yields a polynomial
z € Py(T';) which satisfies (4.40), (4.41) for I'; being a triangle.
Further we set

In the case that I'; is a triangle, we note that (4.38) and (4.39) also hold for a polynomial ; of degree [p—71}

TZ):?/%JFZ on I, 1[):%- on I';.

Then 1) is continuous on T'; UT; U", the norms |lu — J’”Hs(rj), llu— 1Z~)||L2(lh) are bounded as in (4.38), (4.39),
and on the element I'; there holds

lu—=Vlgscy < Nu—villgsey + 2l @)

m
< ORI pT20H229) (1 4 log(p/h))? Z Rt1 Ix1|E¢(r,ur;)-
t=0

Using the same arguments as above we can adjust also the polynomial ¥; on each element I'; C A, N (A, UA,).
We construct the function ¢ satisfying estimates (4.38), (4.39) and vanishing on the side " C dT; such that
I"ne={v}ori"ne={w} (ie., " isl, or l,). In this case the jump is w = (—;)|;» and we set 1) = 1; + z
on Ty, where z € P,(I;) is constructed using Lemma 3.4. Obviously 1) = 0 on I", and estimates (4.38), (4.39)
remain valid because u|;n = 0.

Repeating this procedure, we obtain a continuous function up, defined on A, such that wup, € P,(T';) for
I'; C Ae, upp =0 on A, and for s € {0} U (1/2, min{1,~v+ 1/2})

m
Z [ — uhp”%{S(FJ) < C h2r+1=s) p—4(’7+1/2—s) (14 10g(p/h))2ﬁ Z p2(t=1) |X1|§{t(Ae)' (4.42)
j: TjCAe t=0

For s = 0 this immediately leads to (4.25). If 1/2 < s < min {1,y +1/2}, then we also obtain (4.25) from (4.42)
by using Lemma 3.5. Estimate (4.25) for any s € (0,1/2] then follows by interpolation between H°(A.) and
H*'(A.) with 1/2 < s < min {1, + 1/2}. O

5. APPROXIMATION OF EDGE-VERTEX SINGULARITIES

Let e € E be the edge of I with vertices v, w. As before, we denote by [, and [,, the edges of 0A, such that
l,ne={v}and [, Ne = {w}.

Let us consider the cut-off functions x” and x¢¥ which appear in the expressions for the edge-vertex singu-
larities u§” and u$? (see (2.6), (2.7)). We adjust the supports of these cut-off functions as follows:

supp x C [0,27,] with 0 <7, < min {7 dist {v,w}, 1},

supp x*’ C [0, %ﬁv] with 0< 8, < min{%@o, %wv, h

where 0y is the minimal angle of the elements in the mesh A;. Then u{’ and u§¥ vanish outside the sector
S ={(rv,0,); 0 <1y <27, 0< 6, < %ﬁv}, in particular, 4§’ = u$¥ = 0 on I, U L.
In the two sub-sections below we will study the approximation of the singular functions u{” and u§".
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5.1. Approximation of the function u{"

Theorem 5.1. Let u = u$’ be given by (2.6). Then there exists up, € Vy"P(T') with p > min {\,y — 2} such
that for s € [0,min {1, A\ + 1,7+ 1/2}),

HU' _ U/thHS(F) < Chmin{A+1,'y+1/2}75p72(min{A+1,7+1/2}75) (1 + log(p/h))ﬁJru7 (51)
where A=A} > —1/2, v =~§ > 0,
v e 1 ; v __ A€ 1
5= @ +sit+s if A\=71—73
qi + s§ otherwise,

and

L= % Zf p:mln{Aaﬁy*%}a
0 otherwise.

If1 <p<min{\~y— 3}, then there exists up, € VJ"P(T) satisfying for s € [0,1]
lu = unpll sy < CAPHITS. (5.2)
Proof. For simplicity we consider the singular function
u(wy,@z) = a2y a3 loger| ™ log ea| X" (r) X (6), (5.3)

where A = AV > —1/2, v =~¢ > 0, and 1, B2 > 0 are integers.
Let us introduce an auxiliary cut-off function y2 € C°°(R™) such that for some ¢ € (0, 1)

Xx2(t) =1 for 0 <t <46/2 and x2(t) =0 fort>o.
Denoting hg = (c102) " 'h we decompose the function u in (5.3) as
u = ux"(r/ho) +u(l = x"(r/ho))x2(x2/ho) + u(l = x"(r/ho))(1 = x2(x2/ho))
= Y1+ 2+ s (54)

We will approximate the functions ¢; (i = 1,2,3) in (5.4) separately.

Approximation of ¢;. Due to the adjustment of the supports of the cut-off functions x* and x¢", the singular
function ¢; has small support, supp 1 C K", where K" =T'; C A,, is the element touching simultaneously
the edge e and the vertex v. Let K C R?T be a triangle or parallelogram such that K" = M (K), where M is
the affine mapping

M:z; =hi;, i=1,2 xzeK" tekK.
Then K satisfies the assumptions of Proposition 4.3, and for h < % we have

¢1(2) = pi(hiy, hig)

B1 P2
wat i 3 30 () () noshlt e tog S logaaf e (oroan e 0

k1=0k2=0

where 7 = (22 + #2)1/2, § = arctan(i2/i1).
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By Proposition 4.3, for each pair (ki, ko) with k; = 0,...,3; (i = 1,2) there exists a polynomial @khk? €
Pp(K) vanishing on 0K and satistying for 0 < s < min{1, A+ 1,7+ 1/2}

#7783 g a1 [10g &2 x" (1027 (B) = | <

He(K)

Cp—Q(min{)\+1,’y+1/2}—s) (1 + 10gp)k1+k2+g.

Setting
5 G Br\ (B 5
1/)1(53) = h/\ Z Z (k ) (k )|1Ogh|kl+k2wﬁ1k1ﬁ2k2 (i')v
ki=0ko—0 N1 2
we estimate
l¢1 — 7/;1||HS(K) <
B1,62 3 3 )
W ) og hlF 2Ok kg )p i DFLTH2E=9 (1 Jog p) itk —hate
k1) \ ko
k1,ka=0
< C(ﬁhﬁ2)h)\p—2(min{)\+1,'y+1/2}—s)(1 +10g(p/h))51+ﬁ2(1 +10gp)”. (55)

Let ¢ := 1/;1 oM~ on K" =Ty. Then ¢ € Pp(T'1), 1 =0 on OI'y, and making use of Lemma 3.1 we deduce
from (5.5)

ler — drllgeyy < ChY*|lé1 — dnllgs i)
< th/\—i-l—sp—2(min{)\-1—1,'y—|-1/2}—s)(1_’_1Og(p/h))ﬁ1+62(1_i_logp)o7 (56)

where 0 < s <min{l,A+1,v+1/2}, 0 =1/2if A =~ —1/2, and o = 0 otherwise.

Approximation of ¢s. The function ¢y in (5.4) has a singular behaviour only with respect to x2 and has
small support, supp 2 C (A. N RY), where R = {(r,0); T,ho <7 < 27,, 0< 0 < %ﬁv}. Thus we can write o2
in the form given by (4.24):

pa(z1,02) = a7 Tx3|logar|® | log za|? X" (r) " (0)(1 — X" (r/ho))x2(x2/ho)
= a3|log 22| x1 (w1, m2)x2(22/ o),

where
X (21, w2) = 27" [log 21 |7 )" ()X (0)(1 — X" (r/ho)). (5.7)

Note that x; € C*®(A.), supp x1 C R, in particular, y; = 0 on the edges l,,l, C 0A..
Now we can apply Lemma 4.2 to find a piecewise polynomial approximation of ¢ on A.: there exists a
function 9 such that 19 € P,(T;) for each I'; C A., 12 = 0 on 0A,, and for 0 < s < min {1,y +1/2}

m

loz = alle(a,y < CHH72p720F279 (14 log(p/h))* Y~ '~ Pl mea,) (5.8)
t=0

for some integer m > 2 + 2.
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To evaluate semi-norms of the function x; given by (5.7) we use the following inequalities:

0 0

8—:; =|cosf| <1, ‘a—;‘|Sin9|§1;
00 sin 6 1 00 cosf 1
eyl < o= <-
0xq A O T r

Hence it follows by induction that for any integer k,I > 0

O | it [ 200 ] e (5.9)
Oxkoxh | — T | 0xhoLk | T ' '
Furthermore, for any integer k£ > 1 one has
ok 0 for 0 < r < 1pho and r > 27, ho,
‘_k(l—X”(T/ho))‘ = v\ (k) [,k ’ '
or (X)W |he ™ for Tyho <1 <27,k

< or* for > 0. (5.10)

Since supp x1 C RY, x1 ~r on R?, and x?, x¢* € C®(R"), we estimate by (5.7), (5.9), (5.10) for t =0,...,m

h 21,
x1l3e 4,y < Cllog(1/h))* / 22377 dr < C(log(1/h))% / / 222 Az day
AeﬁR’f 0 kh

for a positive constant x independent of h. Hence

RATYHLZ N <y —1/2,
Xtlmeca,) < Clog™ (1/R)RY270 ¢ log!2(1/h) i A=~ —1/2,
1 A >y —1/2,
and we obtain by (5.8)
2 = Wzl ro(a,) < CRMNOFLTFLZ7S pm2OHE) (10g(1/R))51+7 (1 4 log(p/h)) ™, (5.11)

where 0 < s < min{1,v + 1/2} and o is the same as in (5.6).

Approximation of ¢; and 2 on I'. Let us extend ¢; (i = 1,2) by zero onto the remaining parts of I'. Then
Y; € Voh’p (T"), ¢ = 1,2 and there hold the following estimates

o1 — Y|l e (ry < CRAMT7sp=2min AL T2 =9) (1 4 Jog(p /)P 72 (1 + log p)” (5.12)
for 0 <s <min{l,A+ 1,7+ 1/2}, and
o2 = nllrery < € RROFLTHY2E70 = 20HY279) (10g(1/1)) 7147 (1 + log(p/ ) (5.13)

for 0 <s <min{l,v+1/2}.
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In fact, for s = 0 estimates (5.12) and (5.13) immediately follow from inequalities (5.6) and (5.11), respec-
tively. If 1/2 < s < 1, then we use Lemma 3.5:

loa = iy < C<h25||802 — Pl m) + Z lpa — ¢2|§15(F1)>
jT;CT
< C(h_Qsllsoa it S e wn%{s(r,.))
j:T;CAe

< O (hles = Valldaa, + Iz = ol an)

and (5.13) follows from (5.11). The estimate (5.12) for 1/2 < s < 1 is proved analogously. Finally, for
0 < s <1/2, estimates (5.12), (5.13) follow via interpolation between H(T') and H*' (I') for some s’ € (3,1).

Approximation of p3. Now we approximate the function @3 in (5.4). Observe that @3 € C5°(T') and
supp s C ['N RN RY, where R} is defined above and R} = {(x1,22); z2 > 6ho/2} for some 6 € (0,1). We
also note that the mesh contains triangles and/or parallelograms. Therefore, applying Proposition 4.1, we find
Y3 € VJ"P(T') such that for s € [0, 1]

llos — W3l ey < CRA*p~ "9 [ 0s]| g 1), (5.14)

where m > 1, p=min{m,p + 1}, and § is defined by (4.6).
Let us estimate the norm ||@3|| gm(r). Similarly to (5.9), (5.10) one has for k,1 >0

8k+l9

oMl —k, —1 —k, . —1

dzhoxl, < Craytay dzhoxl, < Cotay
ok+1 i e dt B
WG*X (r/ho))| < Cay"zy7, d—xé(1*X2(9€2/h0)) < Cuxy .

Hence, recalling that
31, w2) = 27 2] |log 1|7 [log wa| X" ()X (0)(1 — X" (r/h0))(1 = xa(w2/h0)),
supp w3 C RPN RE, and xa, XV, X € C(R"), we can estimate derivatives of @3 as

akJrl 03 (:E)
dxk oz},

_ | Crn(og(1 Jh))PrHB2 g} =T Rl for 2 € RPN RE,
0 for x € T\ (R} N RY).

Since (R N RE) € T" = {(w1,22); kh < 21 < 1, kh < x5 < x1} for some x > 0, the above estimates for
derivatives of @3 yield

leallpnry < Cloga/mP™ 4o 3= Gt) [ 30 0

0<k+I<m

h h
150 REORE

IN

C(m)(log(1/h))2F1+82) / P20 20mm) g,

Th
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For any integer m > min {\ 4+ 1,7+ 1} this implies

1 x1
J xf()‘fw Ik xg(vfm)dxgdxl if A>vy—1/2,
rh rh
lisll3mmy < Cllog(1/h))XPrt) £ = 1
[ 2207 [ 2O qgrday i A<y —1/2
rh xr2

< Ch2(min{>\+1,'y+1/2}7m)(log(l/h))Q(ﬁlJrBQJraJrv)’ (515)

where o is the same as in (5.6), v = 1 if m = min {A+ 1,7+ 1}, and v = 0 if m > min {\+ 1,y + 3}. Therefore
we obtain by (5.14)

H903 N 1/)3||H5(F) < Chu—s—i—min{/\+1,'y+1/2}—mp—(m—§)(10g(1/h))51+ﬁ2+0+1/’ se [0’ 1]’ (516)

where m > min{A\+ 1,7+ 1/2}, m > 1, y = min {m, p + 1}, and 5 is defined by (4.6).
Ifp>2min{\+ 1,7+ %} — %, we select an integer m satisfying

2min{A+1,y+ i} +3<m<p+1.

Then pp=m > £ and p~ (=9 < p2min A+HLY+1/2E=9) for any s € [0, 1].
If min{A+1,v+ %} —l<p<2min{A+1,v+ %} — % (i.e., p is bounded), we choose an integer m such that

max {1, min{)\—l—l,v—i—%}} <m<p+1,

and if p = min {A+ 1,7+ 1/2} — 1, then we take m = min {\+ 1,7+ 3} = p+ 1. In both these cases y =m > 1
and p~(m=5) < C(N, y) p2min A1 +1/28=5) for any s € [0, 1].
Thus, for any p > min {\, vy — %}, selecting m as indicated above we find by (5.16)

s — U3l ms(ry < Chmin AL HL/2) = =2(min A HLYFL/2E29) (1og (1 /) )P HPetetr 5 € 0, 1], (5.17)

where o is the same as in (5.6), v = 1 if p=min{\,y — 3}, and v = 0 otherwise.

Approximation of u = 1 + 2 + 3. Let us define upy, := ¥ + 1o+ 13 € Voh P(T"). Then combining estimates
(5.12), (5.13), and (5.17) we obtain (5.1).
It remains to consider the case 1 < p < min{\, v — %} In this case one does not need decomposition (5.4).

Since u € H™ (') N HY(T) with 1 < m < min {\ + 1,7 + 1}, we apply Proposition 4.1 to find up, € Vg"?(I)
satisfying for s € [0, 1]

v —unpllgsry < CR* |l gm(ry,  p=min{m,p+1}.
Hence, selecting m € [p+ 1,min{A + 1,7 + 3}) we prove (5.2). 0

5.2. Approximation of the function u§¥
In this sub-section we study the approximation of the edge-vertex singularity u§¥ given by (2.7), (2.9).
Theorem 5.2. Let u = uS” be given by (2.7), (2.9). Then there exists up, € Vy"P(T') with p >~ — 1 such that
for s € [0,min{1,vy+1/2}),
lu = wnpll sy < CRYFV275p=20F279 (1 4 log(p/h)) P, (5.18)

where v =7 >0, B = s§ > 0 s integer, v = % ifp=r~— %, and v = 0 otherwise.
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If1 <p<~—1, then there exists up, € VJ"P(T) satisfying for s € [0,1]
lu—wnpl prsry < CAPFIS, (5.19)
Proof. For simplicity we consider one component of the function u§”. Let

u(zy, w2) = 23| log w2 x1 (21, m2) x5 (22), (5.20)

where v = v¢ > 0, 8 > 0 is integer, x§ € C*°(R™) is the same as in (2.4), xy;1 € H™(T') with m as large
as required. Recalling that the supports of the cut-off functions x¥ and x¢’ (see (2.9)) were adjusted so that
suppus’ C S = {(r,0); 0 <r <27, 0<6< %@J} with 7, < idist {v,w} and G, < %90, we can assume that
the function x3 in (5.20) vanishes on the edges I, l,, C A, (I, and [, have been defined at the beginning of
this section). Suppose that h < 3. Letting ho = (0102) ~'h we decompose u as

u = ux5(x2/ho) + u(l — x5(22/ho)) = ¢1 + @2. (5.21)

The singular part ¢; of this decomposition has the form given by (4.24), and ¢1 = 0 on 0A.. Therefore,
applying Lemma 4.2 we find a function ¢, such that 1 € P,(I';) for T'; C A., 1 = 0 on JA., and for
0 < s <min{l,7v+ 1/2} there holds

k
o1 — wl”%{S(Ae) < C h2(r+1=s) p—4(’7+1/2—s) (14 1og(p/h))26 Z p2(t=1) |X1|§{t(Ae) (5.22)
t=0

for some integer k > 2 + 2.
Since meas (A¢) ~ h and x; € H™(T") for sufficiently large m, we estimate

k

Zhw_l) IX1lFre(a,) < CRT2 ||X1||20k(A6) meas (4.) < Ch™* ||X1||2ck(f) < Ch™ X1l 3pm ry-
=0

Then we obtain by (5.22)
o1 = Pillarea,) < CRYTH275p=20F1/279) (1 - log(p/h))?, s € [0, min {1,y + 1/2}). (5.23)

Let us extend v by zero onto I'\ A.. Then 1 € Voh’p (I') and the norm |[[¢1 — 1| g+ (1 is obviously bounded as
in (5.23) for s = 0. Due to Lemma 3.5, this conclusion is also true for any s € (1/2, min {1,vy+1/2}). Therefore,
by using interpolation, we obtain for any s € [0, min {1,y + 1/2})

o1 — Yullprery < CRYT278 p=20F1/279) (1 4 Jog(p/h))P. (5.24)

To approximate the smooth part ¢, € H™(I')N Ha (') of decomposition (5.21) we apply Proposition 4.1. There
exists 1y € Vi"P(I') satisfying for s € [0, 1]

o2 = Yol ey < CRP*p~ %9 | og| grrry, (5.25)

where k € (1, m] is integer, u = min {k,p + 1}, and § is defined by (4.6). -
Recalling the definition of the function x§ in (5.20) (see Thm. 2.1), we conclude that suppps C T'N RE,
where R} = {(x1,22); hode < x2 < 25.}. Hence we find by simple calculations

20,

lp2 13k ry < Cllog(1/h))* / 237 "M da,.
hode
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Then for any k satisfying &k > 1 and v + % < k < 'm we obtain by (5.25)
o2 — ol sy < CRYTRFLZFR=8p= (k= 1000 (1 /1), s € [0,1], (5.26)

where 1 = min {k,p+ 1}, § is defined by (4.6), v =3 if k=y+ 3, and v =0if k >~ + 3.

Now we set upp 1= Y1 + 12 € Voh"p(I‘). Then combining estimates (5.24), (5.26), making use of decomposi-
tion (5.21) and the triangle inequality we obtain for any s € [0, min {1,y + 1/2})

ot — oy < O ma {p2041/279), k=501 (1 4 log(p/ ). (5.27)
Let p > 2v + % Since m is large enough, we can select an integer k satisfying
27+ 3 <k <min{m,p+ 1}.

Then p = min{k,p+ 1} = k, max {p—2(7+1/2—8)7p—(k—5)} = p~20+1/2=9) for any s € [0, 1], and (5.27) leads
to (5.18).

If v — % <p<2y+ % (i.e., p is bounded), we select an integer k € (max{l,’er %},er 1], and if p =~ — %,
then we choose k = v+ 4 = p + 1. In both these cases p = k, p~#=5) < C(v) p~20+1/27%) for any s € [0, 1],
and (5.18) is again deduced from (5.27).

If1 <p<y—1, thenu e H*(I) N H§(T) with 1 < m < v+ 3. In this case we apply Proposition 4.1
directly to the function u: there exists up, € VJ"*(I) satisfying for s € [0,1]

lu — wnpl| sy < CR**||uf| gm(ry, @ =min{m,p+1}.

Hence, selecting m € [p+ 1,7 + %) we prove (5.19). O

Remark 5.1. Observe that the proof of Theorem 5.2 also applies to the edge singularity terms given by (2.4). In
fact, adjusting the support of the cut-off function x§ in (2.4) it is easy to obtain x§ = 0 on the edges L,,, L, C 0A..
Therefore each component of ¢ can be written in the more general form (5.20) and the statement of Theorem 5.2
remains valid for u = u®.

6. APPROXIMATION OF VERTEX SINGULARITIES

Let v be a vertex of I' and let A, be the union of elements I'; such that v € f]-.

Theorem 6.1. Let u = u® be given by (2.5). Then there exists up, € Vy"P(T) with p > X such that for
0<s<1,
lw = wnpl e (ry < CRMTp2 A7) (1 4 log(p/h))+, (6.1)
where A =AY >0, B =q{ > 0 is integer, v = % if p= M\, and v = 0 otherwise.
If 1 <p < X, then there exists upy € VP (T satisfying for s € [0,1]

lu = wnpllrery < CRPT, (6.2)

Proof. The idea and arguments in the proof below are the same as in the proofs of Lemma 4.2, Theorems 5.1
and 5.2. That is why we outline the proof omitting inessential details.
Let
u =1 log 7P (r)w(h), (6.3)
where A = A} > 0, 3 > 0 is integer, " is the same as in (2.5), w € H™(0,w,) N H}(0,w,), w, denotes the
interior angle on I" at v, and m is as large as required. Note that u € Hg(T'), because A > 0.
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We decompose u as u = @1 + @, Where
o1 :=ux"(r/ho), @2:=u(l—x"(r/ho)), ho=(0102)""h. (6.4)

The singular function ¢, has small support, supp @1 C A,. Let K" = I'y C A, and let K C R? be a triangle or
parallelogram such that K" = M(K) under the affine mapping M : x; = hi;, i = 1,2, * € K", # € K. Then
O = (0,0) is a vertex of K and for h < 1 we have

B
¢1(2) = @1 (hiy, hig) = B (i) |log h|¥|log #[°~*x¥ (o1 027 w(0).
k=0

Let A = {I;} contain those sides I; C 0K for which O € I;, and let B be the union of the other sides of K.
Then applying Proposition 4.2 to each function #*|log#|*x?(c1027)w(f), k = 0,...,3, we find a polynomial
¢ € Pp(K) such that ¢(0,0) =0, ¢ =0 on 5,

IN

161 = Bllars x¢) CB) 1 p~ 237 (1t log(p/h)?, s =0,1, (6.5)

o1 — <ZA5||L2(1) < C(B) » p72(A+1/2) (1+ log(p/h))ﬁ for every | € A. (6.6)

Let us define ¢; := ¢o M~ Then #; € Pp(l'), ¢; = 0 at the vertex v and on the sides I} € B; = M(B).
Furthermore, making use of Lemma 3.1, we obtain by (6.5), (6.6)

IN

o1 = @il () O p 20 (1t log(p/h))?, s =0, 1, (6.7)

ler — djllL,amy < C W2 p=2041/2) (1+ log(p/h))ﬁ for every I" € A; = M(A). (6.8)

Suppose that I';, I'; C A, are two elements having the common edge " =T,n f‘j. Let ¢; € Pp(T';) and
¢; € Pp(I'j) be the approximations of ¢ constructed above and satisfying estimates (6.7), (6.8). Then the
jump g = (¢; — ¢;)|;» vanishes at the end points of I" and

191l oqry < CRAT2 202 (1 4 log(p/h))”.
Hence, due to Lemma 3.4, there exists z € P,(I';) such that z = g on I, 2 =0 on 9I';\(", and
2l s ryy < Ch)‘H*Sp*Q()‘H*S) (1+ log(p/h))ﬁ7 s=0,1.

Setting ¢ = ¢; + 2z on I'; and ¢ = ¢; on I'; we find a continuous piecewise polynomial & such that the norm
1 — q~5||Hs(piUpj) is bounded as in (6.7) for s = 0, 1.

Let eq, ez be the edges of I' meeting at the vertex v. Since w(0) = w(w,) = 0, the function ¢; vanishes
on ey, es. Therefore, using the same arguments as above we can adjust ¢; on each element I'; C 4, N(A., UA.,).
Then we construct a polynomial q~5 € Pp(I';) vanishing on OI'; N é, with k = 1 or 2 as appropriate.

Note that the number v, of elements in A, is independent of h (v, < ‘;—;’, where 6 is the minimal angle of
elements in the mesh). Therefore, repeating the above procedure we construct a continuous function ; such
that ¢y € P,(I';) for each I'; C Ay, ¥1 = 0 on dA,, and the norm [|p; — 1| gs(a,) for s = 0,1 is bounded as

in (6.7). Extending ¢ by zero onto I'\ A, we obtain ¢, € Vy"?(I') satisfying for s = 0,1
llor — 1llas ) < C hMs p=2F1=9) (1 - log(p/h))P. (6.9)

By interpolation we prove that (6.9) holds for 0 < s < 1.
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For the function @9 (see (6.4)) one has
p2 =1 |logr|"x"(r)(1 = X" (r/ho))w(8) € H™(T) N Hy(T),

supp 2 C I'N R", where R" = {(z1,22); Toho <7 < 27,}.
Hence, using (5.9) and (5.10) we find by simple calculations

27T,
lpalZepy < Cllog(1/h))?? / 20K pdr 0 < k< m. (6.10)

Tvho

Further, due to Proposition 4.1, there exists 15 € Voh’p(F) such that for s € [0, 1]

o2 — Yol ey < CR**p~ =9 0o]| i (. (6.11)

where k € (1,m] is integer, p = min {k,p+ 1}, and 3 is defined by (4.6).
If A+ 1<k <m, then (6.10) and (6.11) yield

02 — ol ey < CRUTSTATEFL=(=8 10054 (1 /1) s € [0, 1], (6.12)

Whereyzéifk:)\Jrl, andv=0if k> A+ 1.

If p > A, then similarly as in the proofs of Theorems 5.1 and 5.2 we select an integer k such that u = k
in (6.12) and p~*=%) < C(\)p~2+1=%) for any s € [0,1]. Then combination of (6.9) and (6.12) gives (6.1)
With wny := 1 + o € Vg"P(T).

The proof of estimate (6.2) is analogous to the proof of the corresponding results in Theorems 5.1 and 5.2. O

7. GENERAL APPROXIMATION RESULT AND PROOF OF THEOREM 2.2

By combination of the approximation results for singularities from Sections 5 and 6 we obtain a general
approximation result for the function u given by (2.3)—(2.7).

Theorem 7.1. Let the function u be given by (2.3)—(2.7) on T' with vf > 0 and A} > 0. Also, let vy € V,
eo € E(vo) be such that min{A\{® + 1/2,71°} = minycv,ccp) min{A} + 1/2,~{}, with A} and 7§ being as
n (2.4)-(2.7). Then, for any h > 0 and every p > min {\?, v —1/2}, there exists a function up, € VJ"" such
that for 0 < s <min {1, \]° + 1,4° +1/2}

v = wnpllars(ry < C max {hmi“ {kpt1}=s )= (k=5)
pmin {0 +1,77°+1/2}—s p72(min{)\11]0+1,'yf°+1/2}75)(1 n log(p/h))ﬁ“’} ’
(7.1)

where B and v are defined by (2.11) and (2.12), respectively, § = s if the mesh Aj, on T' does not contain
triangles, and § is defined by (4.6) for meshes containing triangles.
If 1< p < min{A, 7% —1/2}, then for any h > 0 there exists up, € Vy"? such that for s € [0, 1]

lu = wnpll rory < C RMRRPH =S, (7.2)

Proof. To approximate the smooth part u,ee € H*(T)NHE(I') of decomposition (2.3) we use Proposition 4.1, and
applying Theorems 5.1, 5.2, and 6.1 we find piecewise polynomial approximations for the singularities u®’, u",
and u® on I' (see also Rem. 5.1). Then combining the corresponding error estimates from these statements we
obtain (7.1) and (7.2). O
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Proof of Theorem 2.2. Due to the regularity result of Theorem 2.1 and the quasi-optimal convergence of the
BEM (see, e.g., [29]), one needs to find piecewise polynomial functions approximating the solution u in (2.3)
and satisfying the upper bounds stated in (2.10), (2.13).

Let p > min {\?,~7% —1/2}. Then applying Theorem 7.1 we find vy, € Vy"?(I') satisfying the upper bound
given by (7.1). Since (u — vpp) € Hg'(T) for some s’ € (3,1), we obtain by interpolation between H°(T') and
H; (1)

lu—vmpll ey < C maX{hmin{k’pﬂ}*l/Qp*(k*l/Q*E),

hmin{/\f0+1/27’)’160} p—2 111in{)\11’0+1/2»’71€0}(1 + 10g(p/h))ﬁ+l/} s (73)

where € > 0 and 3, v are the same as in (7.1).
Let us select k& > 2min {A\}° + 2,74{°} + 1 > 2. Then for sufficiently small £ > 0

in{k,p+1}—1/2 , —(k—1/2— in {\7041/2,47°} —2min{\]041/2,4°0
pmin {k,p+1} /p( / E)Shmm{lJr/vl}p mm{1+/v1}’

and the desired error bound (see (2.10)) follows from (7.3).
If 1 <p<min{A}°, 7 —1/2}, then u € H™() N H}(T') with 1 < m < min{A{° + 1,7{° + 1}. Selecting
m € [p+ 1, min {A}° +1,7{° + 1}) and applying Proposition 4.1 we find vy, € Voh’p(r) such that

lw = vrpll grz(ry < C prin{mptit=1/2 ||| grmry < C hPH1/2,
which proves (2.13). -
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