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Abstract. In this work, we consider the quasistatic frictionless contact problem between a viscoelastic
piezoelectric body and a deformable obstacle. The linear electro-viscoelastic constitutive law is em-
ployed to model the piezoelectric material and the normal compliance condition is used to model the
contact. The variational formulation is derived in a form of a coupled system for the displacement and
electric potential fields. An existence and uniqueness result is recalled. Then, a fully discrete scheme
is introduced based on the finite element method to approximate the spatial variable and an Euler
scheme to discretize the time derivatives. Error estimates are derived on the approximative solutions
and, as a consequence, the linear convergence of the algorithm is deduced under suitable regularity
conditions. Finally, some two-dimensional examples are presented to demonstrate the performance of
the algorithm.
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1. Introduction

In this work, we study, from the numerical point of view, a frictionless contact problem between a viscoelastic
piezoelectric body and a deformable obstacle.

Piezoelectricity is the ability of certain crystals, like the quartz (also ceramics (BaTiO3, KNbO3, LiNbO3,
etc.) and even the human mandible or the human bone), to produce a voltage when they are subjected to mecha-
nical stress. On a nanoscopic scale, the piezoelectric phenomenon arises from a nonuniform charge distribution
within a crystal unit cells. When such a crystal is mechanically deformed, the positive and negative charge
centers displace by differing amounts. Thus, while the overall crystal remains electrically neutral, the difference
in charge center displacement results in an electric polarization within the crystal. Electric polarization due to
mechanical input is perceived as piezoelectricity.

The piezoelectric effect is characterized by the coupling between the mechanical and the electrical properties
of the material: it was observed that the appearance of electric charges on some crystals was due to the action
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Figure 1. A viscoelastic piezoelectric body in contact with a foundation.

of body forces and surface fractions and, conversely, the action of the electric field generated strain or stress
in the body. This kind of materials appears usually in the industry as switches in radiotronics, electroacoustics
or measuring equipments.

Different models have been developed early to describe the interaction between the electric and mechanical
fields (see, e.g., [2,4,13,17–20,25–28] and the references therein). Recently, contact problems involving elastic-
piezoelectric materials [3,5,12,15,21,23,24] or viscoelastic piezoelectric materials [22] have been studied.

In this paper, we consider a viscoelastic piezoelectric body which may become in contact with a deformable
obstacle, the so-called foundation. The contact is assumed frictionless and a normal compliance condition is
employed to model it (see [14,16]). This paper continues [22], providing the numerical analysis of the variational
problem and some numerical results which exhibit its behaviour, and extends the results of [3,12] to the case of
viscoelastic materials.

The rest of the paper is structured as follows. In Section 2 we present the mechanical model, provide its
variational formulation and state an existence and uniqueness result, Theorem 2.1. Then, a fully discrete scheme
is introduced in Section 3 based on the finite element method to approximate the spatial variable and an Euler
scheme to discretize the time derivatives. A main error estimates result is proved, Theorem 3.3, from which
the linear convergence of the algorithm is deduced under suitable regularity conditions (see Cor. 3.4). Finally,
some numerical examples are presented in Section 4 in order to show the performance of the method.

2. Mechanical problem and its variational formulation

Denote by S
d the space of second order symmetric tensors on R

d and by “·” and ‖ · ‖ the inner product and
the Euclidean norms on R

d and S
d.

Let Ω ⊂ R
d, d = 1, 2, 3, denote a domain occupied by a viscoelastic piezoelectric body with a smooth

boundary Γ = ∂Ω. We denote by ν the unit outer normal vector to Γ and we assume that this boundary is
decomposed into three measurable parts ΓD, ΓF , ΓC , on one hand, and on two measurable parts ΓA and ΓB,
on the other hand, such that meas (ΓD) > 0, meas (ΓA) > 0, and ΓC ⊆ ΓB. Finally, let [0, T ], T > 0, be the
time interval of interest (see Fig. 1).

Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively, and, in order to simplify the writing,
we do not indicate the dependence of the functions on x and t. Moreover, a dot above a variable represents the
derivative with respect to the time variable.
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Let us denote by u the displacement field, σ the stress tensor, ε(u) = (εij(u))di,j=1 the linearized strain
tensor given by

εij(u) =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

and ϕ the electric potential.
The body is assumed viscoelastic piezoelectric and satisfying the following constitutive law (see [7,22]),

σ = Aε(u̇) + Bε(u) − E∗E(ϕ),

where A and B are the fourth-order viscosity and elastic tensors, respectively, E(ϕ) = (Ei(ϕ))di=1 represents the
electric field defined by

Ei(ϕ) = − ∂ϕ

∂xi
, i = 1, . . . , d,

and E∗ = (e∗ijk)
d
i,j,k=1 denotes the transpose of the third-order piezoelectric tensor E = (eijk)di,j,k=1. We recall

that
e∗ijk = ekij , for all i, j, k = 1, . . . , d.

Following [4] the following constitutive law is satisfied for the electric potential,

D = Eε(u) + βE(ϕ),

where D is the electric displacement field and β is the electric permittivity tensor.
Since the process is assumed quasistatic, the inertia effects are negligible and therefore,

Div σ + f0 = 0 in Ω × (0, T ),
divD = q0 in Ω × (0, T ),

where f0 is the density of the body forces acting in Ω and q0 is the volume density of free electric charges.
Moreover, Div and div represent the divergence operators for tensor and vector functions, respectively.

We turn now to describe the boundary conditions.
On the boundary part ΓD we assume that the body is clamped and thus the displacement field neglects

there, that is u = 0 on ΓD × (0, T ). Moreover, we assume that a density of traction forces, denoted by fF , acts
on the boundary part ΓF , i.e.,

σν = fF on ΓF × (0, T ).
On the part ΓC the body can become in contact with a deformable insulator obstacle, the so-called foundation.
According to [14] the following normal compliance contact condition is employed,

−σν = p(uν − g) on ΓC × (0, T ),

where σν = σν ·ν is the normal stress, uν = u·ν denotes the normal displacement, g represents the gap between
the body and the obstacle measured along the normal direction ν and p is a given function whose properties
will be described below. Finally, we assume that the contact is frictionless and therefore, στ = σν − σνν = 0.

Let Ω be subject to a prescribed electric potential ϕA on ΓA and to a density of surface electric charges qF
on ΓB, that is,

ϕ = ϕA on ΓA × (0, T ),
D · ν = qF on ΓB × (0, T ).

We assume that qF = 0 on ΓC , that is, the foundation is supposed to be insulator. We note that it is
straightforward to extend the results presented below to more general situations by decomposing Γ in a different
way.

The mechanical problem of the quasistatic contact of a viscoelastic piezoelectric body with a deformable
obstacle is then written as follows.
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Problem P. Find a displacement field u : Ω × (0, T ) → R
d, a stress field σ : Ω × (0, T ) → S

d, an electric
potential field ϕ : Ω × (0, T ) → R and an electric displacement field D : Ω × (0, T ) → R

d such that,

σ = Aε(u̇) + Bε(u) − E∗E(ϕ) in Ω × (0, T ), (2.1)

D = Eε(u) + βE(ϕ) in Ω × (0, T ), (2.2)

Div σ + f0 = 0 in Ω × (0, T ), (2.3)

divD = q0 in Ω × (0, T ), (2.4)

u = 0 on ΓD × (0, T ), (2.5)

σν = fF on ΓF × (0, T ), (2.6)

στ = 0, −σν = p(uν − g) on ΓC × (0, T ), (2.7)

ϕ = ϕA on ΓA × (0, T ), (2.8)

D · ν = qF on ΓB × (0, T ), (2.9)

u(0) = u0 in Ω. (2.10)

Here, u0 represents an initial condition for the displacement field.
In order to obtain the variational formulation of Problem P, let us introduce the variational spaces V , Q

and W , and the convex set WA as follows,

V = {v ∈ [H1(Ω)]d ; v = 0 on ΓD},

Q = {τ = (τij)di,j=1 ∈ [L2(Ω)]d×d ; τij = τji, i, j = 1, . . . , d},

W = {ψ ∈ H1(Ω) ; ψ = 0 on ΓA},

WA = {ψ ∈ H1(Ω) ; ψ = ϕA on ΓA},

and denote by H = [L2(Ω)]d.
The viscosity tensor A(x) = (aijkl(x))di,j,k,l=1 : τ ∈ S

d → A(x)(τ ) ∈ S
d satisfies:

(a) aijkl = aklij = ajikl for i, j, k, l = 1, . . . , d.
(b) aijkl ∈ L∞(Ω) for i, j, k, l = 1, . . . , d.
(c) There exists mA > 0 such that A(x)τ · τ ≥ mA ‖τ‖2

∀ τ ∈ S
d, a.e. x ∈ Ω.

(2.11)



NUMERICAL ANALYSIS OF A FRICTIONLESS VISCOELASTIC PIEZOELECTRIC CONTACT PROBLEM 671

The elastic tensor B(x) = (bijkl(x))di,j,k,l=1 : τ ∈ S
d → B(x)(τ ) ∈ S

d verifies:

(a) bijkl = bklij = bjikl for i, j, k, l = 1, . . . , d.
(b) bijkl ∈ L∞(Ω) for i, j, k, l = 1, . . . , d. (2.12)

The piezoelectric tensor E(x) = (eijk(x))di,j,k=1 : τ ∈ S
d → E(x)(τ ) ∈ R

d satisfies:

(a) eijk = eikj for i, j, k = 1, . . . , d.
(b) eijk ∈ L∞(Ω) for i, j, k = 1, . . . , d. (2.13)

The permittivity tensor β(x) = (βij(x))di,j,k,l=1 : w ∈ R
d → β(x)(w) ∈ R

d verifies:

(a) βij = βji for i, j = 1, . . . , d.
(b) βij ∈ L∞(Ω) for i, j = 1, . . . , d.
(c) There exists mβ > 0 such that β(x)w · w ≥ mβ ‖w‖2

∀w ∈ R
d, a.e. x ∈ Ω.

(2.14)

The normal compliance function p(x) : r ∈ R → p(x, r) ∈ [0,∞) satisfies:

(a) There exists mp > 0 such that
|p(x, r1) − p(x, r2)| ≤ mp |r1 − r2|

∀ r1, r2 ∈ R, a.e. x ∈ ΓC .
(b) (p(x, r1) − p(x, r2))(r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .
(c) The mapping x ∈ ΓC �→ p(x, r) is measurable on ΓC ,

for all r ∈ R.
(d) p(x, r) = 0 for all r ≤ 0.

(2.15)

The following regularity is assumed on the density of volume forces, tractions, volume electric charges and
surface electric charges:

f0 ∈ C([0, T ];H), fF ∈ C([0, T ]; [L2(ΓF )]d),
q0 ∈ C([0, T ];L2(Ω)), qF ∈ C([0, T ];L2(ΓB)). (2.16)

Finally, we assume that the gap function, the initial displacements and the boundary condition ϕA satisfy

g ∈ L2(ΓC), g(x) ≥ 0 a.e. x ∈ ΓC , u0 ∈ V, ϕA ∈ C([0, T ], C(ΓA)). (2.17)

Using the Riesz’ Theorem, we define the linear mappings f : [0, T ] → V and q : [0, T ] →W as follows,

(f (t),w)V =
∫

Ω

f0(t) · w dx +
∫

ΓF

fF (t) · w dΓ, ∀w ∈ V,

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx +
∫

ΓB

qF (t)ψ dΓ, ∀ψ ∈W.

We notice that regularity assumptions (2.16) imply that f ∈ C([0, T ];V ) and q ∈ C([0, T ];W ).
Let us denote by j : V × V → R the normal compliance functional given by

j(u,v) =
∫

ΓC

p(uν − g)vν dΓ, ∀u,v ∈ V,

where, for all v ∈ V , we let vν = v · ν.
Plugging (2.1) into (2.3) and (2.2) into (2.4), keeping in mind that E(ϕ) = −∇ϕ and using the boundary

conditions (2.5)–(2.9), applying a Green’s formula we derive the following variational formulation of Problem P.
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Problem VP. Find a displacement field u : [0, T ] → V and an electric potential field ϕ : [0, T ] → WA such
that u(0) = u0 and for all t ∈ [0, T ],

(Aε(u̇(t)), ε(w))Q + (Bε(u(t)), ε(w))Q + (E∗∇ϕ(t), ε(w))Q + j(u(t),w)
= (f(t),w)V , ∀w ∈ V, (2.18)

(β∇ϕ(t),∇ψ)H − (Eε(u(t)),∇ψ)H = (q(t), ψ)W , ∀ψ ∈W. (2.19)

Using analogous ideas to those employed in [21] for a normal compliance elastic problem or in [22] for the case
of viscoelastic materials, we obtain the following theorem which states the existence of a unique weak solution
to Problem VP.

Theorem 2.1. Assume that (2.11)–(2.17) hold. Then there exists a unique solution to Problem VP with the
following regularity

u ∈ C1([0, T ];V ), ϕ ∈ C([0, T ];WA).

The proof of Theorem 2.1 is based on classical results of parabolic nonlinear variational equations and partial
differential equations (see [22]).

3. Fully discrete approximations: error estimates

We now introduce a finite element algorithm to approximate solutions to Problem VP and we derive an error
estimate on them. Moreover, in order to simplify the writing we assume, in this section, that ϕA = 0 (and then
WA = W ). It is straightforward to extend the results presented below to a more general case.

The discretization of (2.18)–(2.19) is done as follows. First, we consider two finite dimensional spaces V h ⊂ V
and Wh ⊂ W approximating the spaces V and W , respectively. h > 0 denotes the spatial discretization
parameter.

Remark 3.1. In the numerical simulations presented in the next section, V h and Wh consist of continuous
and piecewise affine functions, that is,

V h = {wh ∈ [C(Ω)]d ; wh
|Tr

∈ [P1(Tr)]d Tr ∈ T h, wh = 0 on ΓD}, (3.1)

Wh = {ψh ∈ C(Ω) ; ψh|Tr
∈ P1(Tr) Tr ∈ T h, ψh = 0 on ΓA}, (3.2)

where Ω is assumed to be a polygonal domain, T h denotes a finite element triangulation of Ω, and P1(Tr)
represents the space of polynomials of global degree less or equal to one in Tr.

To discretize the time derivatives, we use a uniform partition of [0, T ], denoted by 0 = t0 < t1 < . . . < tN = T ,
and let k be the time step size, k = T/N . For a continuous function f(t) let fn = f(tn), and for a sequence
{wn}Nn=0 we let δwn = (wn − wn−1)/k denote the divided differences.

In this section, no summation is assumed over a repeated index, and c denotes a positive constant which
depends on the problem data and the continuous solution, but it is independent of the discretization parameters h
and k.

Thus, using the backward Euler scheme, the fully discrete approximation of Problem VP is the following.

Problem VPhk. Find a discrete displacement field uhk = {uhkn }Nn=0 ⊂ V h and a discrete electric potential
field ϕhk = {ϕhkn }Nn=0 ⊂Wh such that uhk0 = uh0 and for all n = 1, . . . , N ,

(Aε(δuhkn ), ε(wh))Q + (Bε(uhkn ), ε(wh))Q + (E∗∇ϕhkn , ε(wh))Q
+ j(uhkn ,wh) = (fn,w

h)V , ∀wh ∈ V h, (3.3)

(β∇ϕhkn ,∇ψh)H − (Eε(uhkn ),∇ψh)H = (qn, ψh)W , ∀ψh ∈ Wh, (3.4)

where uh0 is an appropriate approximation of the initial condition u0.



NUMERICAL ANALYSIS OF A FRICTIONLESS VISCOELASTIC PIEZOELECTRIC CONTACT PROBLEM 673

We notice that the fully discrete problem VPhk can be seen as a coupled system of variational equations.
Using classical results of nonlinear variational equations (see [9]) we obtain that Problem VPhk admits a unique
solution uhk ⊂ V h and ϕhk ⊂Wh, which we summarize in the following.

Theorem 3.2. Assume that (2.11)–(2.17) hold. Then there exists a unique solution to Problem VPhk.

Our interest in this section lies in estimating the numerical errors ‖un −uhkn ‖V and ‖ϕn −ϕhkn ‖W . We have
the following main error estimates result.

Theorem 3.3. Assume that (2.11)–(2.17) hold. Let (u, ϕ) and (uhk, ϕhk) denote the solutions to Problems VP
and VPhk, respectively. Then, the following error estimates hold for all wh = {wh

j }Nj=1 ⊂ V h and ψh =
{ψhj }Nj=1 ⊂ Wh,

max
1≤n≤N

{‖un − uhkn ‖2
V + ‖ϕn − ϕhkn ‖2

W } ≤ c
(

max
1≤n≤N

‖ϕn − ψhn‖2
W

+
N∑
j=1

k
[
‖u̇j − δuj‖2

V + ‖uj − wh
j ‖2
V

]
+ max

1≤n≤N
‖un − wh

n‖2
V

+ ‖u0 − uh0‖2
V +

1
k

N−1∑
j=1

‖uj − wh
j − (uj+1 − wh

j+1)‖2
V

)
.

(3.5)

Proof. First, let us obtain an error estimation on the electric potential. Then, taking (2.19) at time t = tn for
ψ = ψh ∈Wh and subtracting it to (3.4) we obtain that

(β∇(ϕn − ϕhkn ),∇ψh)H − (Eε(un − uhkn ),∇ψh)H = 0, ∀ψh ∈ Wh.

Thus, we have

(β∇(ϕn − ϕhkn ),∇(ϕn − ϕhkn ))H − (Eε(un − uhkn ),∇(ϕn − ϕhkn ))H
= (β∇(ϕn − ϕhkn ),∇(ϕn − ψh))H − (Eε(un − uhkn ),∇(ϕn − ψh))H ,

for all ψh ∈ Wh.
Applying the Cauchy’s inequality

ab ≤ εa2 +
1
4ε
b2, a, b, ε ∈ R, ε > 0, (3.6)

and using properties (2.13) and (2.14), after some algebra we find that

‖ϕn − ϕhkn ‖2
V ≤ c(‖un − uhkn ‖2

V + ‖ϕn − ψh‖2
W ), ∀ψh ∈ Wh. (3.7)

Secondly, we proceed now to estimate the numerical errors on the displacement field. We rewrite variational
equation (2.18) at time t = tn for w = wh ∈ V h and we subtract it to variational equation (3.3) to obtain

(Aε(u̇n − δuhkn ), ε(wh))Q + (Bε(un − uhkn ) + E∗∇(ϕn − ϕhkn ), ε(wh))Q
+ j(un,wh) − j(uhkn ,wh) = 0, ∀wh ∈ V h.

Therefore,
(Aε(u̇n − δuhkn ), ε(un − uhkn ))Q + j(un,un − uhkn ) − j(uhkn ,un − uhkn )

+ (Bε(un − uhkn ) + E∗∇(ϕn − ϕhkn ), ε(un − uhkn ))Q
= (Aε(u̇n − δuhkn ), ε(un − wh))Q + j(un,un − wh) − j(uhkn ,un − wh)

+ (Bε(un − uhkn ) + E∗∇(ϕn − ϕhkn ), ε(un − wh))Q, ∀wh ∈ V h.
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From properties (2.15), we have (see [8] for details),

j(un,un − uhkn ) − j(uhkn ,un − uhkn ) ≥ 0,
j(un,un − wh) − j(uhkn ,un − wh) ≤ c‖un − uhkn ‖V ‖un − wh‖V .

Using repeatedly inequality (3.6) and properties (2.11), (2.12), (2.13) and (2.15), after easy calculations it follows
that

(Aε(δun − δuhkn ), ε(un − uhkn ))Q ≤ c
(
‖u̇n − δun‖2

V + ε‖un − uhkn ‖2
V

+ ‖ϕn − ϕhkn ‖2
W + ‖un − wh‖2

V + ‖un − uhkn ‖2
V

+ (Aε(δun − δuhkn ), ε(un − wh))Q
)
, ∀wh ∈ V h,

where ε > 0, here and below, is assumed small enough and we denote δun = (un − un−1)/k.
Keeping in mind that

(Aε(δun − δuhkn ), ε(un − uhkn ))Q ≥ c

2k

(
‖un − uhkn ‖2

V − ‖un−1 − uhkn−1‖2
V

)
,

proceeding by induction it leads to the following inequality,

‖un − uhkn ‖2
V ≤ c

n∑
j=1

k
(
‖u̇j − δuj‖2

V + ‖ϕj − ϕhkj ‖2
W + ‖uj − wh

j ‖2
V

+ ‖uj − uhkj ‖2
V + (Aε(δuj − δuhkj ), ε(uj − wh

j ))Q
)

+ ‖u0 − uh0‖2
V ,

(3.8)

for all wh = {wh
j }nj=0 ⊂ V h.

Since (see [11])

n∑
j=1

k(Aε(δuj − δuhkj ), ε(uj − wh
j ))Q

=
n∑
j=1

(Aε(uj − uhkj − (uj−1 − uhkj−1)), ε(uj − wh
j ))Q

≤ ε‖un − uhkn ‖2
V + c‖un − wh

n‖2
V + c‖u0 − uh0‖2

V + c‖u1 − wh
1‖2
V

+ c

n−1∑
j=1

‖uj − uhkj ‖V ‖uj − wh
j − (uj+1 − wh

j+1)‖V ,

combining (3.7) and (3.8) and applying a discrete version of Gronwall’s inequality (see [10] for details), we
obtain (3.5). �

We notice that the above error estimates are the basis for the analysis of the convergence rate of the algorithm.
Thus, let Ω be a polyhedral domain and denote by T h a triangulation of Ω compatible with the partition of
the boundary Γ = ∂Ω into ΓD, ΓF , ΓC on one hand, and on ΓA and ΓB, on the other hand. Let V h and Wh

be defined by (3.1) and (3.2), respectively, and assume that the discrete initial condition uh0 is obtained by

uh0 = Πhu0, (3.9)

where Πh = (πh)di=1 : [C(Ω)]d → V h, and πh : C(Ω) →Wh is the standard finite element interpolation operator
(see, e.g., [6]).

Then, we have the following corollary which states the linear convergence of the algorithm under suitable
regularity conditions.
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Corollary 3.4. Assume that (2.11)–(2.17) hold. Let (u, ϕ) and (uhk, ϕhk) denote the solutions to Problems VP
and VPhk, respectively, and let the discrete initial condition be given by (3.9). Under the following regularity
conditions

u ∈ H2(0, T ;V ) ∩H1([0, T ]; [H2(Ω)]d), ϕ ∈ C([0, T ];H2(Ω)), (3.10)

the linear convergence of the algorithm is achieved, that is, there exists a positive constant c > 0, independent
of the discretization parameters h and k, such that

max
1≤n≤N

{‖un − uhkn ‖V + ‖ϕn − ϕhkn ‖W } ≤ c(h+ k). (3.11)

Proof. We have the following approximation properties of the finite element spaces V h and Wh (see [6]),

max
1≤n≤N

inf
ψh

n∈Wh
‖ϕn − ψhn‖W ≤ ch‖ϕ‖C([0,T ];H2(Ω)),

max
1≤n≤N

inf
wh

n∈V h
‖un − wh

n‖V ≤ ch‖u‖C([0,T ];[H2(Ω)]d).

Moreover, from the definition of the finite element interpolation operator Πh it follows that

‖u0 − uh0‖V ≤ ch‖u‖C([0,T ];[H2(Ω)]d).

It is easy to check that
N∑
j=1

k‖u̇j − δuj‖2
V ≤ ck2‖u‖2

H2(0,T ;V ).

Finally, we find that (see [11]),

1
k

N−1∑
j=1

‖uj − wh
j − (uj+1 − wh

j+1)‖2
V ≤ ch2‖u‖2

H1(0,T ;[H2(Ω)]d).

Combining the previous estimates and (3.5) it leads to (3.11). �

We notice that the regularity conditions (3.10) have not been proved yet. However, since the problem
is quasistatic and the contact is produced with a deformable obstacle, it seems reasonable to assume them.
Anyway, this is an open and interesting problem that we hope to address in the near future.

4. Numerical results

In order to recover the convergence results of the fully discrete method discussed in the previous section,
some experiments have been done in the study of two two-dimensional test problems. First, in Section 4.1 we
describe the algorithm used to solve Problem VPhk and, secondly, in Sections 4.2 and 4.3, we consider two
two-dimensional test problems in order to highlight the linear convergence obtained in Corollary 3.4, but also
to describe some mechanical aspects of the frictionless viscoelastic piezoelectric contact behaviour.

4.1. Numerical algorithm

The algorithm, used in solving the fully discrete frictionless contact problem VPhk, is based on a backward
Euler difference for the time derivatives and on a penalty approach (see [29] for more details) to simulate
the normal compliance law. In order to give the solution algorithm, we have to introduce the expressions of
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the functions wh, uh and δuh(resp. ϕh and ψh) by considering theirs values at the ith nodes of T h and the
basis functions αi (resp. γi) of the space V h (resp. Wh) for i = 1, . . . , Ntot (Ntot is the total number of nodes),

wh =
Ntot∑
i=1

wiαi, uh =
Ntot∑
i=1

uiαi, δuh =
Ntot∑
i=1

δuiαi, (4.1)

and ψh =
Ntot∑
i=1

ψiγi, ϕh =
Ntot∑
i=1

ϕiγi. (4.2)

The penalty approach shows us that Problem VPhk can be governed by the following system of nonlinear
equations

Ã(δun) + G(un, ϕn) + F̃(un) = 0. (4.3)

The vectors un, δun and ϕn represent respectively the generalized vectors defined as follows

un = {uin}Ntot

i=1 , δun = {δuin}Ntot

i=1 and ϕn = {ϕin}Ntot

i=1 . (4.4)

The generalized contact operator F̃(un) ∈ R
d×Ntot × R

Ntot is defined by F̃(un) = (F(un),0ψ), where the
penalized contact operator F(un) = cp dist(uν(tn) − g,R+)νt ∈ R

d×Ntot denotes the gradient of the penalized
contact functional Lhk(un) = cp

2

∫
ΓC

dist2(uν(tn) − g,R+)dΓ in the direction u,

(F̃(un) · (w, ψ))Rd×Ntot×RNtot = ((F(un),0ψ) · (w, ψ))Rd×Ntot×RNtot = (∇un
Lhk(un),w)Rd×Ntot

and 0ψ is the zero element of R
Ntot . cp is the surface stiffness coefficient and so 1/cp is the deformability

coefficient. In addition, the generalized viscous term Ã(δun) ∈ R
d×Ntot × R

Ntot is defined by Ã(δun) =
(A(δun),0ψ). Thus, the terms A(δun) ∈ R

d×Ntot and G(un, ϕn) represent respectively the viscous term and
the elastic-piezoelectric term given by

((Ã(δun) · (w, ψ))Rd×Ntot×RNtot = ((A(δun),0ψ) · (w, ψ))Rd×Ntot×RNtot (4.5)

= (A(δun) · w)Rd×Ntot = (Aε(δun), ε(wh))Q ∀wh ∈ V h,

(G(un, ϕn) · (w, ψ))Rd×Ntot×RNtot = (Bε(un), ε(wh))Q + (Eε(wh),∇ϕn)H − (fn,w
h)V

−(Eε(un),∇ψh)H + (β∇ϕn,∇ψh)H − (qn, ψh)W ∀wh ∈ V h, ψh ∈Wh,

where w (resp. ψ) denotes the generalized vector constituted by the values wi (resp. ψi) for i = 1, . . . , Ntot.
We remark that the volume and surface forces are contained in the term G(un, ϕn).

The solution algorithm consists in a combination between the finite differences (backward Euler difference)
and the linear iterations method (Newton method). To solve (4.3), at each time increment the variables (un, ϕn)
are treated simultaneously through a Newton method and therefore in what follows we use xn to denote the
pair (un, ϕn). The algorithm that we used in the viscoelastic piezoelectric case can be developed in three steps
which are the following:

• A prediction step
This step gives the initial displacement and the velocity by the following formula

ϕ0
n+1 = ϕn+1, u0

n+1 = un+1 and δu0
n+1 = δun.
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• A Newton linearization step
At an iteration i of the Newton method, we have

xi+1
n+1 = xin+1 −

(
Qi
n+1

k
+ Ki

n+1 + T i
n+1

)−1

×
(
Ã(δuin+1) + G(uin+1, ϕ

i
n+1) + F̃(uin+1)

)
,

with Ki
n+1 = Du,ϕG(uin+1, ϕ

i
n+1), Qi

n+1 = Du,ϕÃ(δuin+1), T i
n+1 = Du,ϕF̃(uin+1), and where xi+1

n+1 denotes
the pair (ui+1

n+1, ϕ
i+1
n+1); i and n represent the Newton iteration index and the time index, respectively. Here,

Du,ϕG, Du,ϕÃ and Du,ϕF̃ denote the differentials of the functions G, Ã and F̃ with respect to the variables u
and ϕ. This leads us to solve the resulting linear system

(
Qi

n+1
k + Ki

n+1 + T i
n+1

)
Δxi

= −Ã(δuin+1) − G(uin+1, ϕ
i
n+1) − F̃(δuin+1),

(4.6)

where Δx = (Δui, Δϕi) with Δui = ui+1
n+1 − uin+1 and Δϕi = ϕi+1

n+1 − ϕin+1. We solve the linear system
of equations (4.6) by using a Conjugate Gradient Method with efficient preconditioners to overcome the poor
conditioning of the matrix due to the penalized contact terms. In particular, we used specific incomplete
LU factorization methods like the Element-By-Element preconditioner (see [1]). We notice that, in the case
where the operators Ã and G are linear, the matrices Qi

n+1 and Ki
n+1 do not change during the Newton

iterations.

• A correction step
Once the system (4.6) is resolved, we update xi+1

n+1 and δui+1
n+1 by

xi+1
n+1 = xin+1 + Δxi and δui+1

n+1 = δuin+1 +
Δui

k
·

For more considerations about Computational Contact Mechanics, see the recent monograph [29].

4.2. First two-dimensional example

In order to recover the theoretical numerical behaviour of the fully discrete scheme discussed in Section 3,
we carry out some numerical simulations based on an academic viscoelastic piezoelectric contact problem with
normal compliance law. To do that, we consider a piezoelectric body extending indefinitely in the first direc-
tion X1 of a Cartesian coordinate frame (O,X1, X2, X3). The material used was assumed to be an academic
isotropic piezoceramic with hexagonal symmetry like zinc oxide material (class 6 mm in the international clas-
sification [13]) but in which we introduce a viscous behaviour. In the crystallographic frame, the X3-direction
is a six-fold revolution symmetry axis and the (X1OX3) and (X2OX3) planes are mirrors. The electric and
mechanical loads applied to the body are supposed to be constant along the X1 direction. As a consequence,
the fields E, D, ε and σ turn out to be constant along X1. In addition, we suppose that: ε11 = 0, ε12 = 0,
ε13 = 0 and D1 = 0; thus, we have to consider a plane problem. In the frame (O,X2, X3), constitutive
equations (2.1) and (2.2) can be written by using a compressed matrix notation instead of the tensor notation
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Table 1. Material viscoelastic constants of the considered piezoelectric body.

Elastic (GPa) Viscoelastic (GPa · s)
b22 b23 b33 b44 a22 a23 a33 a44

210 105 211 42.5 21 10.5 21.1 4.25

Table 2. Material electric constants of the considered piezoelectric body.

Piezoelectric (C · m−2) Permittivity (C2 · N−1 · m−2)
e32 e33 e24 β22/ε0 β33/ε0

−0.61 1.14 −0.59 −8.3 −8.8

as follows, ⎡
⎢⎢⎢⎢⎣
σ22

σ33

σ23

D2

D3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣
b22 b23 0 0 e32
b23 b33 0 0 e33
0 0 b44 e24 0
0 0 e24 −β22 0
e32 e33 0 0 −β33

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ε22
ε33
2ε23
−E2

−E3

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣
a22 a23 0 0 0
a23 a33 0 0 0
0 0 a44 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ε̇22
ε̇33
2ε̇23
−E2

−E3

⎤
⎥⎥⎥⎥⎦ (4.7)

where ε̇ij =
1
2

(
∂u̇i
∂xj

+
∂u̇j
∂xi

)
. In equation (4.7), taking advantage of the symmetries of the mechanical tensors,

the passage of the fourth-order viscosity and elastic tensors (bijkl and aijkl) to the second-order tensors (with
the matrix notation: bpq and apq) is done by using the following identifications:

bijkl ≡ bpq =

⎛
⎝ b22 b23 0

b23 b33 0
0 0 b44

⎞
⎠ and aijkl ≡ apq =

⎛
⎝ a22 a23 0

a23 a33 0
0 0 a44

⎞
⎠

with the following notation:

ij or kl = 22 −→ p or q = 2,
ij or kl = 33 −→ p or q = 3,

ij or kl = 23 or 32 −→ p or q = 4.

In the same way for the third order piezoelectric tensor, we have,

eijk ≡ eiq =
(

0 0 e24
e32 e33 0

)
with

jk = 22 −→ q = 2,
jk = 33 −→ q = 3,

jk = 23 or 32 −→ q = 4.

The coefficient values are given in Tables 1 and 2. The permittivity constant of the vacuum ε0 = 8.885 ×
10−12 C2 · N−1 · m−2.

As a first two-dimensional example, we consider the problem depicted in Figure 2, where a square body is
in contact with a foundation. The domain Ω = (0, 1) × (0, 1) is a cross-section of a three-dimensional square
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3

Foundation

x

fF

x2

Figure 2. Discretization of the body in contact with a foundation.

body clamped on ΓD = ΓA = {0} × [0, 1] and the electric potential is equal to zero there. On the remaining
boundary ΓB of Ω, we assume that qF = 0 C · m−2. Let ΓF = ({1}× [0, 1])∪([0, 1]×{1}). The body is subjected
to the action of surface tractions acting on [0, 1] × {1}, i.e., fF = (0,−10) N · m−2, while the part {1} × [0, 1]
is free. The body is in frictionless contact with an insulator foundation with normal compliance, in the form
with a zero gap function, on ΓC = [0, 1]× {0}. Finally, we assume that there are no body forces and no electric
charges, i.e. f0 = 0N · m3, q0 = 0 C · m−3, and we use the following initial condition u0 = 0 m.

To see the convergence behaviour of the fully discrete scheme, we compute a sequence of numerical solutions
based on uniform partitions of the time interval [0, 1], and uniform triangulations of the domain [0, 1]× [0, 1] of
the type shown in Figure 2 which represents a coarse discretization (h = 1/8). Then, we provide the estimated
error values for several discretization parameters h and k. Here, the sides of the square are divided into 1/h
equal parts. We start with h = 1/2 and k = 1/2 which are successively halved. The numerical solution
corresponding to h = 1/256 and k = 1/256 is taken as the “exact” solution, which is used to compute the errors
of the numerical solutions with larger values of h and k; this finer discretization corresponds to a problem with
around 222 900 degrees of freedom. The linear asymptotic convergence behaviour obtained in Corollary 3.4 is
almost observed (see Fig. 3).

4.3. Second two-dimensional example

As a second two-dimensional example of Problem P, we consider the body Ω with the boundary Γ which can
come into contact with a deformable foundation (see the setting shown on the left-hand side of Fig. 4). To fix
the geometry we set the points P1 = (0, 1), P2 = (1, 0), P3 = (3, 1), P4 = (1.5, 1), P5 = (1, 1.5) and P6 = (1, 4).
We define ΓB = ΓC = [P1, P2], ΓD = [P4, P5] and ΓF = Γ\(ΓC∪ΓD); {X2, X3} denotes the canonical orthonormal
basis. Here, we use as material the viscoelastic piezoelectric body whose constants are given in Tables 1 and 2.
We suppose that the body is clamped on ΓD and we employ the following data:

fF = 0N · m−2, f0 = 0N · m−3, q0 = 0 C · m−3,

ϕA =

⎧⎨
⎩

20 V on [P3, P4],

0 V on [P5, P6],
g = 10−4 m, T = 10 s, u0 = 0m.
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Figure 3. Estimated errors for the first two-dimensional example.
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Figure 4. Problem setting (left) and the discretization of the body (right).

This physical setting permits to show the inverse piezoelectric effect that corresponds to the appearance of strain
or stress in the body due to the action of the electric field. This example represents a contactor stimulated by
an electric field.

We suppose that the time interval [0, 1] is discretized with a uniform partition. The picture on the right-hand
side of Figure 4 shows a uniform triangulation of the domain Ω. According to Figure 5, it can be seen that
the action of the difference of the electric field on [P3, P4] and [P5, P6] induces a deformation of the body. That
results in to make come into contact the body with the foundation on ΓC . Indeed, we remark that some contact
nodes are in slip case and the contact forces are following the exterior normal on ΓC . This is due to the fact
that the problem is frictionless. Moreover, Figure 6 shows the distribution of the electric displacement field
and the electric potential in the body. We can notice a certain correspondence between the distribution of the
electric displacement field and the viscoelastic constraints presented in Figure 7. This happens since the higher
values of the electric field are localised on the zones where the viscoelastic constraints are stronger.
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Figure 5. Initial and amplified deformed mesh with contact interface forces in the viscoelastic
piezoelectric case.
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Figure 6. The electric displacement field (arrows) and the electric potential (colours) in the
deformed configuration.

32.53

29.59

27.46

25.34

23.21

21.09

18.96

16.84

14.71

12.59

10.46

8.336

6.211

4.086

1.962

0.0000E+00

Figure 7. Initial boundary and the viscoelastic constraints in the deformed configuration.
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