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Abstract. In this work we present new numerical methods to simulate the mechanics of head-tape
magnetic storage devices. The elastohydrodynamic problem is formulated in terms of a coupled system
which is governed by a nonlinear compressible Reynolds equation for the air pressure over the head, and
a rod model for the tape displacement. A fixed point algorithm between the solutions of the elastic and
hydrodynamic problems is proposed. For the nonlinear Reynolds equation, a characteristics method
and a duality algorithm are developed to cope with the convection dominating and nonlinear diffusion
features, respectively. Furthermore, in the duality method the convergence and optimal choice of
the parameters are analyzed. At each fixed point iteration, in the elastic model a complementarity
formulation is required and appropriate numerical techniques are used. For the spatial discretization
different finite element spaces are chosen. Finally, numerical test examples illustrate the theoretical
results, as well as the good performance in the simulation of real devices.
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1. Introduction

In magnetic tape recording, the tape is passed over a transducer, called the head, to convert electrical and
magnetic signals. The mechanical behaviour of the tape is crucial to determine the quality of the signal. Thus,
the strength of the signal decreases with distance between the head and the tape, while the wear on the head
and the tape increases as the gap tends to zero. Therefore it is desirable to maintain an optimal and small
enough flying height between the head and the tape. These arguments can be extended to other magnetic
storage devices (see [6], for example). The tape movement causes a thin air film to be trapped between the tape
and the head at the beginning of the reading process. Typically, a convergent-divergent gap profile arises that
increases the air pressure above the atmospheric one and, consequently, the tape moves away from the head, so
that the hydrodynamic load (due to the air pressure) balances the external load (due to the tape weight). The
design of suitable head-type interfaces only based on experimental tests is expensive and very time consuming.
So, the use of appropriate mathematical models and efficient numerical techniques is highly interesting.
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2 Depto. de Análisis Matemático, Universidad de Málaga, Facultad de Ciencias, Campus de Teatinos, s/n, 29080-Málaga, Spain.

Article published by EDP Sciences c© EDP Sciences, SMAI 2008

http://dx.doi.org/10.1051/m2an:2008021
http://www.esaim-m2an.org
http://www.edpsciences.org


646 I. ARREGUI ET AL.

In flexible storage media, such as head-tape devices, any tape movement affects the air pressure and this one
in turn influences the tape displacement. So, a typical elastohydrodynamic problem is posed, where the fluid
pressure and the tape movement are highly related. In this thin film setting, the steady state fluid pressure
is usually modelled by a first-order-slip compressible Reynolds equation (gas bearing model), where the gap
function enters as an unknown coefficient to be obtained from an appropriate elastic model governing the tape
displacement and deformation. The main interest is to compute the steady state separation.

The consideration of wide enough tapes (with respect to its length) allows to neglect side flow effects and
leads to models where the pressure and the gap only depend on the variable in the displacement direction [6].
This is not the case when narrow tapes are considered or imperfections in the parameters of the system (such
as axial tension variations) can cause asymmetries in the transverse direction to the displacement [6]. The
consideration of either one or two dimensional models strongly depends on the head and tape geometries as well
as on operating conditions of the device. Nevertheless, as pointed out in [27,28], when the cross section of the
head remains uniform along the width of the tape a one dimensional model can be used mainly to estimate the
gap at the longitudinal central line where side effects are negligible. For example, also one dimensional models
have been recently used in the modelling of head-tape interface in a digital linear tape drive [24].

One-dimensional head-tape models were initially proposed by Stahl et al. [23], who introduced a transient
coupled problem between a first-order-slip parabolic compressible Reynolds equation for the pressure and a
fourth order transient rod model for the tape deflection. The steady state was computed by iteration in the
numerical solution of the time dependent problem until convergence. More precisely, in [23] a fixed point
iteration between the finite differences discretized problems of both time dependent equations is developed,
the nonlinear diffusive term in Reynolds equation being treated explicitly. This method has been heuristically
improved in [18] by means of a different linearization of the diffusive term and a fictitious foundation stiffness
in the tape equation as stabilizing technique. In [16] a spatial finite element discretization is developed on the
transient problem which is posed in different unknowns, the nonlinear diffusive term being treated by a Newton
method with initial guess obtained from the previous time step. In [19] a finite element technique is proposed
for the 1-d model. More recently, in [26] some results concerning the finite element solution of a steady state
coupled problem between a 1-d compressible Reynolds equation and a tape deflection equation are presented.
Furthermore, local pressure effects due to asperities in ultra thin devices are taken into account, the discretized
nonlinear system being solved by means of a Newton method. Some comparisons between numerical results and
interferometric experimental measurements are provided. In [27,28], straightforward extensions of the numerical
techniques in [26] to 2-d models are presented.

On the other hand, the rigorous mathematical analysis of well posed 1-d head-tape models is developed
in [13,14], where existence of solution is obtained by different techniques.

In the case of rigid magnetic storage devices, such as hard disks in computers, the thin gap between the head
and the disk is assumed to be given, so that only the air pressure has to be obtained in a purely hydrodynamic
problem (see [8] for the mathematical analysis of different Reynolds equations depending on the order of the
gap). Particularly, as in the present paper, a first-order-slip compressible Reynolds equation has been considered
in Jai [17], where two scale homogenization techniques are applied to deal with the presence of surface roughness.
Also two numerical alternatives mainly based on fixed point and Newton techniques are proposed to solve the
nonlinear Reynolds equation with oscillating coefficients and the homogenized problems. In [7], the complexity
and limitations of using a Newton technique for the nonlinear diffusive term are pointed out and a combination
with a continuation method is applied. More recently, in [2] we have introduced a new numerical method to
solve a 1-d nonlinear compressible Reynolds equation which mainly takes advantage of writing the problem
in terms of an appropriate maximal monotone operator, preventing from the use of general purpose Newton
methods and the complexity and limitations associated to them. In all previous papers the convergence of the
involved numerical methods is not mathematically analyzed.

In the present paper, we propose an efficient numerical method to solve the one dimensional elastohydrody-
namic problem governed by a first-order-slip compressible Reynolds equation and a clamped rod model. For this
purpose, a fixed point iteration between the solution of the hydrodynamic and elastic subproblems is carried out.
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Figure 1. Geometry of the magnetic device.

For the numerical solution of the hydrodynamic part, first a characteristics method (adapted to steady state
problems) is developed to cope with the convection dominated feature that arises when considering real data
sets. Secondly, a new version of a duality method is proposed to deal with the nonlinear diffusive term ap-
pearing in Reynolds equation. In [2] a classical constant parameter version of this duality method has been
applied. In the present paper, both the constant and functional parameter versions of the method are applied
in the head-tape elastohydrodynamic setting. Furthermore, for a particular discretized problem in the constant
parameters case, the convergence is stated by using mathematical tools related to maximal monotone opera-
tors, thus extending previous results on the method to a new type of functional equations. Also, the optimal
choice for the functional parameters version is obtained, thus improving the performance of the method. Both
results are illustrated with numerical examples. For the clamped rod model, an obstacle problem formulation
is required at each step of the fixed point algorithm as the tape position is not guaranteed to be over the head.
Next, different appropriate classical numerical techniques (Hermite finite elements combined with projection or
Uzawa algorithms) are applied to the fourth order elliptic variational inequality.

Although the theoretical results are partial and limited to 1-d models, the extension to 2-d models of its
implementation is straightforward and has already been developed in [3], where a new Reynolds-Koiter model
is proposed, mathematically analyzed and numerically solved.

Thus, the plan of the paper is as follows. In Section 2, we present the coupled mathematical model, jointly
with the fixed point algorithm. In Section 3, we describe the numerical methods concerning the hydrodynamic
problem and we state the theoretical results about the convergence (constant parameter case) and the optimal
choice (functional parameter case). Also we present some test examples to illustrate these results. In Section 4,
we briefly describe the numerical methods for the elastic subproblem. In Section 5, we show some results
obtained for a real data coupled problem.

2. The coupled mathematical model. A fixed point algorithm

Figure 1 sketches the schematic of the one dimensional head-media interaction system, showing the tape path
over the head and the gap between the head and the storage media. It is a free span between two supporting
tape guides which determine the length of the parameterization interval, l, of the tape position. Thus, the ends
of the tape are placed at x = 0 and x = l, and the edges of the head are located at x = l1 and x = l2, respectively.
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Figure 2. Zoom of the central part of the device (head-tape contact).

Once the steady state is achieved, we assume that the velocity of the tape, V , is constant in the x direction.
Moreover, air will be considered a perfect gas (with density proportional to pressure) in Newtonian and laminar
regime, inertial forces and stress effects are negligible, and constant viscosity and temperature will be assumed.
Finally, for the elastic tape we assume small displacements and we impose clamped boundary conditions at
both ends located at the tape guides positions.

In this setting, we consider a fourth order linear rod model to describe the tape displacement, u, and a
nonlinear compressible Reynolds equation to model the air pressure distribution, p, inside the thin film between
the head and the tape. Thus, the coupled problem to find p and u is governed by the following set of equations
(see Friedman [12]):

6V μ
d
dx

(ph) − 6λpa
d
dx

(
h2 dp

dx

)
− d

dx

(
h3p

dp
dx

)
= 0 in (l1, l2), (2.1)

− (T − ρV 2)
d2u

dx2
+ EI

d4u

dx4
= (p− pa)χ[l1,l2] in (0, l), (2.2)

h = u− δ̄ in (0, l), (2.3)

p(l1) = p(l2) = pa, (2.4)

u(0) = u(l) =
du
dx

(0) =
du
dx

(l) = 0, (2.5)

where V is the velocity of the tape, λ is the molecular mean free path of the air, pa is the ambient pressure and
μ is the viscosity of the air. Moreover, T , ρ, E and I represent tension, density, Young modulus and inertia
moment of the tape, respectively. The notation χC stands for the characteristic function of the set C.

Thus, for a given gap, h, equation (2.1) is a one dimensional compressible Reynolds equation that governs
the air pressure just over the head. On the other hand, for a known pressure distribution over the head with
atmospheric value away from the head, equation (2.2) defines the position of the tape. The coupled feature
of the problem arises from two main facts: the presence of the gap, h = u − δ̄, in equation (2.1), where the
function δ̄ defines the geometry of the head, and the presence of the pressure in equation (2.2), acting as a
normal force to the tape.
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Notice that the nonlinear equation (2.1) has three terms: a first advective term, a second linear diffusive
one and a third nonlinear diffusive term. So, the hydrodynamic problem is governed by a convection-diffusion
equation with nonlinear diffusion. Furthermore, in real data applications, convection dominates diffusion.

Dirichlet boundary conditions at both ends of the head impose an atmospheric pressure by means of equa-
tion (2.4), while clamped boundary conditions on the displacement are considered at both extremities of the
tape by equation (2.5).

Concerning other data appearing in the coupled model, we consider a reading head with upper circular profile
given by the function [12]:

δ̄(x) = b+

√
r2 −

(
x− 1

2
(l1 + l2)

)2

, x ∈ (l1, l2) ,

where r is the head radius and b = pm − r, pm being termed as the maximum head penetration. The function δ̄
is understood to be extended by zero outside the head limits, when necessary. Typical values of the different
parameters involved are (see [18], for example):

V = 2.54 m·s−1, r = 0.0204 m, pm = 0.00635 m,
l1 = 0.0347 m, l2 = 0.0497 m, l = 0.0843 m,
μ = 1.81×10−5 kg·s−1·m−1, λ = 6.35×10−8 m, pa = 84100 N·m−2,

T = 277 N·m−1, ρ = 0.0207 kg·m−2, EI = 1.52×10−5 N·m.
(2.6)

The mathematical analysis of a very close model to the previous one has been developed in [13]. In this
analysis, the following change of unknowns and variables is introduced:

X = 100 x, P = p/pa, U = 106u, H = 106h, δ = 106δ̄, (2.7)

so that the following system of dimensionless equations is obtained:

d
dX

(PH) − ε
d

dX

(
αH2 dP

dX
+ βH3P

dP
dX

)
= 0 in (L1, L2), (2.8)

− d2U

dX2
+ η

d4U

dX4
= K (P − 1)χ[L1,L2] in (0, L), (2.9)

H = U − δ in (0, L), (2.10)

P (L1) = P (L2) = 1, (2.11)

U(0) = U(L) =
dU
dX

(0) =
dU
dX

(L) = 0, (2.12)

where the involved coefficients are given by

α = 10−4 λpa

εμV
, β = 10−10 pa

6εμV
, η = 104 EI

T − ρV 2
, K = 102 pa

T − ρV 2
·

Notice that the scaling (2.7) allows to obtain in [13] the existence of solution, first analyzing the limit case
ε = η = 0, and points out the convection dominating feature of the convective-nonlinear diffusive problem
for the air pressure. This aspect motivates the use of appropriate numerical methods to deal with convection
dominated problems as, for example, characteristics techniques proposed in the present paper. More precisely,
in [13] the following result is stated:
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Theorem 2.1. If δ ∈ C2(L1, L2) verifies that δ > 0, δ′′ < 0, δ(L1) < δ′(L1)L1 and δ(L2) < δ′(L2) (L2−L), then
there exist positive constants ε+ and η+ such that if 0 < ε < ε+ and 0 < η < η+, the system of equations (2.8)–
(2.12) has a classical solution (P,H,U) with P ∈ W 1,∞(L1, L2), H ∈ W 4,∞(0, L) and P > 0, H > 0 in
[L1, L2].

This result is stated by means of a shooting method, after analyzing the limit case η = ε = 0. This technique
is replaced by a comparison argument involving sub and supersolutions in [14], where the result is extended
to the case with slots in the head surface (giving rise to discontinuities in the function which defines the head
upper profile).

Once we have stated the coupled model and recalled the mathematical analysis results, in order to compute an
approximated solution we propose a fixed point iterative scheme, which essentially uncouples the hydrodynamic
and elastic parts of the problem. Thus, as in other related elastohydrodynamic problems (see [1,10,11,25],
for example), we sequentially solve the compressible Reynolds equation and the rod model until fixed point
convergence.

Before stating the algorithm, we notice that, although the existence result in [13] guarantees that the position
of the tape is over the head, we cannot guarantee this property for the solution of the elastic problem at each
step of fixed point algorithm. This is the reason why we replace the elastic problem by a linear complementarity
formulation, where the obstacle condition imposes the tape to be placed over the head. Near convergence, the
region where the tape touches the obstacle disappears. After this important remark, the proposed algorithm
can be written as follows:

• Step 0: initial value P 0.
• Step n+ 1:

– Elastic part: For Pn given, we obtain Un+1 such that:

(Pn+1
E

)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d2Un+1

dX2
+ η

d4Un+1

dX4
≥ K(Pn − 1)χ[L1,L2], X ∈ (0, L)

Un+1 ≥ δ, X ∈ (0, L)

[
−d2Un+1

dX2
+ η

d4Un+1

dX4
−K(Pn − 1)χ[L1,L2]

]
· (Un+1 − δ

)
= 0, X ∈ (0, L)

Un+1(0) = Un+1(L) =
dUn+1

dX
(0) =

dUn+1

dX
(L) = 0.

– Hydrodynamic part: For Hn+1 = Un+1 − δ given, we obtain Pn+1 such that:

(Pn+1
H

)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d
dX

(
Pn+1Hn+1

)− εα
d

dX

((
Hn+1

)2 dPn+1

dX

)

−εβ d
dX

((
Hn+1

)3
Pn+1 dPn+1

dX

)
= 0, X ∈ (L1, L2)

Pn+1(L1) = Pn+1(L2) = 1.

For simplicity, we have taken ε = 1 in the rest of the paper.

3. Numerical solution of the hydrodynamic model

Several difficulties arise when addressing the numerical solution of problem
(Pn+1

H

)
. First, the dimen-

sionless compressible Reynolds equation presents a nonlinear diffusive term; secondly, in real applications
α = O(10−2) and β = O(10−2), so that the advection effects are larger than the diffusion ones (convection
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dominating feature). In this section, we focus on the numerical solution of this problem and we propose some
specific techniques to overcome these difficulties. In [23] the finite differences discretization of the evolutive
problems requires extremely small time steps and the nonlinear diffusive term is treated explicitly (with coeffi-
cient (Hn+1)3Pn replacing (Hn+1)3Pn+1). Notice that the steady state is obtained as the converged solution
of the transient problems. In [18], the nonlinear term is written in the form ∂(Pn+1)2/∂X and it is linearized
by replacing (Pn+1)2 with 2Pn+1Pn − (Pn)2. More recently, in [17] two alternatives are proposed: a fixed
point iteration where the diffusion coefficient is explicitly taken, and a LPDEM method mainly based on a
Kirchhoff-like change of unknown which linearizes the diffusive term and uses a Newton method to deal with
the resulting nonlinear convective term. More recently, in [7] a Newton method is proposed to deal with the
nonlinear diffusive term in a compressible homogenized Reynolds equation, although the authors point out that
the convergence strongly depends on the initial guess close to the solution. For this reason, they also combine it
with a continuation method. In all previously proposed algorithms a convergence analysis is not provided and
some of them are heuristically designed to simulate the devices.

In the present paper, a characteristics algorithm is proposed to deal with the convection dominating feature
and a duality method is used to solve the particular nonlinearity appearing in the diffusive term. Furthermore,
for this duality algorithm a convergence result is stated for the constant parameter case and the functional
parameters are optimized in order to reduce the number of iterations needed to attain the convergence.

3.1. Numerical methods

First, as throughout this section we describe the numerical solution of
(Pn+1

H

)
, we drop the index n + 1

for simplicity (so, we note P = Pn+1 and H = Hn+1). Next, in order to use a finite element method, let us
consider the following variational formulation of the hydrodynamic problem

(Pn+1
H

)
:

Find P ∈ V1 such that:

∫ L2

L1

d(PH)
dX

ϕdX +
∫ L2

L1

(
αH2 + βH3P

) dP
dX

dϕ
dX

dX = 0, ∀ϕ ∈ V0, (3.1)

where the functional sets are:

V0 = H1
0 (L1, L2) and V1 = {ϕ ∈ H1(L1, L2) / ϕ(L1) = ϕ(L2) = 1}.

Next, taking into account the dominating convection feature in (3.1), following [2] we propose to adapt a
characteristics technique for steady state problems. This method introduces an artificial dependence on a time
variable, t, so that:

P̄ (x, t) = P (x) H̄(x, t) = H(x).
If we assume an artificial velocity field v(x) = 1, we have the following identities for the total derivative:

D(P̄ H̄)
Dt

(x, t) =
∂(P̄ H̄)
∂t

(x, t) + v(x)
∂(P̄ H̄)
∂x

(x, t) =
d(PH)

dx
(x),

where D/Dt represents the material derivative along the characteristic line:

τ −→ χ(x, t; τ),

which is the unique solution of the final value problem:⎧⎨
⎩

dχ
dτ

(x, t; τ) = v(χ(x, t; τ)) = 1,

χ(x, t; t) = x.
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In order to discretize the total derivative, for an artificial time step k we denote by χk(x) = χ(x, t; t − k)
the position of a material particle in the instant t − k. Notice that, taking into account the value of artificial
velocity, χ(τ) = x+ τ − t is straightforwardly obtained.

So, we approximate the material derivative by a first order quotient:

D(P̄ H̄)
Dt

(x, t) ≈ (P̄ H̄)(x, t) − (P̄ H̄)(χk(x), t − k)
k

=
(PH)(x) − (PH)(x− k)

k
,

and, after substitution in (3.1), we propose to obtain the unknown, P , as the limit of the sequence {Pm}, which
is defined by the following algorithm:

For m ≥ 0 and Pm given, we search Pm+1 ∈ V1 such that:

∫ L2

L1

Pm+1HϕdX + k

∫ L2

L1

(
αH2 + βH3Pm+1

) dPm+1

dX
dϕ
dX

dX =
∫ L2

L1

(
(PmH) ◦ χk

)
ϕdX, ∀ϕ ∈ V0, (3.2)

where k is the artificial time step, and χk(X) = X − k is related to the characteristics method. Notice that
(3.2) is a nonlinear diffusion problem.

Next, to solve the nonlinear problem (3.2), we apply a duality algorithm, which is an extension of the one
proposed in [5] to solve variational inequalities. For this purpose, we first consider the maximal monotone
operator G given by:

G(P ) =

{
0, if P < 0,
P 2, if P ≥ 0,

so that the variational equation (3.2) can be written as:

∫ L2

L1

Pm+1HϕdX + k

∫ L2

L1

(
αH2 dPm+1

dX
+
βH3

2
d(G(Pm+1))

dX

)
dϕ
dX

dX =
∫ L2

L1

(
(PmH) ◦ χk

)
ϕdX, ∀ϕ ∈ V0.

(3.3)
Next, following [20], for a given function ω > 0, such that ω ∈ W 1,∞(L1, L2) and 1/ω ∈ W 1,∞(L1, L2), we

introduce the new unknown θm+1 = G(Pm+1)−ωPm+1. So, we search (Pm+1, θm+1) verifying the still nonlinear
problem:

∫ L2

L1

Pm+1H ϕdX + k

∫ L2

L1

(
αH2 +

βω

2
H3

)
dPm+1

dX
dϕ
dX

dX

+
kβ

2

∫ L2

L1

H3 dω
dX

Pm+1
dϕ
dX

dX =
∫ L2

L1

(
(PmH) ◦ χk

)
ϕdX

− kβ

2

∫ L2

L1

H3 dθm+1

dX
dϕ
dX

dX, ∀ϕ ∈ V0 (3.4)

θm+1 = G(Pm+1) − ωPm+1. (3.5)

In [5], the function ω is taken as constant and usually known as Bermúdez-Moreno parameter; this classical
choice is refered hereafter as the constant parameter version. More recently, the convergence results have been
extended in [20] to the choice of ω as a function, hereafter refered as the variable or functional parameter version.
Particularly, we can use the lemma for the functional parameter version [20] and replace (3.5) by

θm+1 = Gω
1/2ω

(
Pm+1 +

1
2ω
θm+1

)
, (3.6)
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where Gω
1/2ω is the Yosida approximation of G− ωI with parameter 1/2ω, the definition of the Yosida approx-

imation of parameter λ being given by:

Gω
λ(z) =

1
λ

(
I −

(
1

(1 − λω)
I + λG

)−1
)

(z).

In the previous expressions I denotes the identity operator. Finally, in order to overcome the nonlinearity
in (3.6), we propose the following fixed-point algorithm that iterates between equations (3.4) and (3.6):

• For θ�
m+1 known, find P �+1

m+1 verifying the linear problem:

∫ L2

L1

P �+1
m+1H ϕdX + k

∫ L2

L1

(
αH2 +

βω

2
H3

)
dP �+1

m+1

dX
dϕ
dX

dX

+
kβ

2

∫ L2

L1

H3 dω
dX

P �+1
m+1

dϕ
dX

dX =
∫ L2

L1

(
(PmH) ◦ χk

)
ϕdX

− kβ

2

∫ L2

L1

H3 dθ�
m+1

dX
dϕ
dX

dX, ∀ϕ ∈ V0. (3.7)

• For P �+1
m+1 known, θ�+1

m+1 is updated by:

θ�+1
m+1 = Gω

1/2ω

(
P �+1

m+1 +
1

2ω
θ�

m+1

)
. (3.8)

Lagrange piecewise linear finite elements are proposed for the spatial discretization of (3.7).

3.2. Functional framework

In order to state some theoretical results concerning the convergence and optimal choice of parameters, we
introduce an abstract mathematical framework. Thus, let us consider the Hilbert spaces E = L2(L1, L2) = E′

and V = H1(L1, L2). Let be:
• A : V −→ V ′ the operator given by:

Aψ = Hψ − αk
d

dX

(
H2 dψ

dX

)
, ∀ψ ∈ V ;

• a : V × V −→ R the symmetric coercive bilinear form, associated to the operator A, given by:

a(ψ, ϕ) = < Aψ,ϕ >, ∀ψ, ϕ ∈ V ;

• B : E −→ V ′ the operator given by:

< Bw,ϕ > =
∫ L2

L1

H3/2 w
dϕ
dX

dX, ∀w ∈ E, ∀ϕ ∈ V ;

• G : V −→ V , the maximal monotone operator given by:

G(ϕ)(X) =

{
(ϕ(X))2, if ϕ(X) ≥ 0,
0, if ϕ(X) ≤ 0,

G is well posed, due to the inclusion V ⊂ L∞(L1, L2);
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• f ∈ V ′, given by:

< f, ϕ > =
∫ L2

L1

(
(PmH) ◦ χk

)
ϕdX, ∀ϕ ∈ V.

In the previous abstract frame, the hydrodynamic problem of finding Pm+1 ∈ V1 solution of (3.3) is equivalent
to find y ∈ V1 such that:

Ay + c (BB∗)(G(y)) = f, (3.9)

where c = kβ/2.
Thus, for ω ∈ W 1,∞(L1, L2) such that 1/ω ∈ W 1,∞(L1, L2), we introduce θ = G(y) − ωy ∈ V and pose the

fixed-point algorithm:

Ay�+1 + c (BB∗)(ωy�+1) = f − c (BB∗)(θ�) (3.10)

θ�+1 = Gω
1/2ω

(
y�+1 +

1
2ω
θ�

)
. (3.11)

Remark 3.1. This duality method has never been analyzed when applied to functional equations in the form
of (3.9). More precisely, the constant parameter version of the duality method has been first introduced in [5]
for solving elliptic variational inequalities, so that they can be rewritten in the form:

f ∈ Ly + cMG(M∗y), (3.12)

where L is a monotone operator, M is an appropriately chosen operator and G is a multivalued subdifferential
operator. In this setting, a convergence result is stated in [5]. Also, the convergence for constant ω is obtained
in [4] for the equation

f ∈ Ly +
m∑

i=1

(
ciMiGi

(
Λ−1

Ei
M∗

i y
))

(3.13)

where L is a linear bounded operator, index i corresponds to different multivalued maximal monotone oper-
ators Gi and ΛEi denotes the canonical isomorphism between Ei and its dual space. The analysis of equa-
tion (3.13) is motivated by a gas flux modelling problem. In the constant parameter case, the performance of
the algorithm strongly depends on the choice of the parameter ω. The optimal choice of constant parameter has
been treated in [21] for equations like (3.13) with m = 1. In this same framework, the functional parameters
case is analyzed in [20]. Notice that equation (3.9), which is motivated by the particular nonlinear diffusive
term in the compressible Reynolds model, remains out of the scope of previous works. Therefore, next results
concerning the convergence of the constant parameter version and optimal choice for the functional parameter
case are the first ones for the functional equation (3.9).

3.3. Convergence result for constant parameters

In this section we state the convergence of the algorithm with constant parameters for the case H = 1, when
it is applied to the piecewise linear finite elements discretized problem. For this purpose, we introduce the
spaces:

Vh = {ϕh ∈ C0(L1, L2) / ϕh|K ∈ P1, ∀K ∈ τh},
V1h = {ϕh ∈ Vh / ϕh(L1) = ϕh(L2) = 1},
V0h = {ϕh ∈ Vh / ϕh(L1) = ϕh(L2) = 0},

where τh denotes a uniform finite elements mesh with Nh nodes. Then, the nonlinear discretized problem is
posed as follows:
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Find yh ∈ V1h such that:

Ayh + c ω (BB∗)yh = f − c (BB∗)θh (3.14)

θh = Gω
1/2ω

(
yh +

θh

2ω

)
, (3.15)

and the (�+ 1)-th step of the fixed point algorithm to solve the previous problem can be written as follows:

For θ�
h given, find y�+1

h and θ�+1
h such that:

Ay�+1
h + c ω (BB∗)y�+1

h = f − c (BB∗)θ�
h (3.16)

θ�+1
h = Gω

1/2ω

(
y�+1

h +
θ�

h

2ω

)
. (3.17)

If we particularize for the case H = 1, equation (3.16) admits the variational formulation:

a(y�+1
h , ϕh) + c ω

(
dy�+1

h

dX
,
dϕh

dX

)
= (f, ϕh) − c

(
dθ�

h

dX
,
dϕh

dX

)
, ∀ϕh ∈ V0h (3.18)

where we use the notation (·, ·) for the usual inner product in L2(L1, L2).

Next, we prove that the sequence {y�
h} tends to yh as � goes to infinity, the function yh being characterized

as the solution of the problem:

a(yh, ϕh) + c ω

(
dyh

dX
,
dϕh

dX

)
= (f, ϕh) − c

(
dθh

dX
,
dϕh

dX

)
, ∀ϕh ∈ V0h (3.19)

θh = Gω
1/2ω

(
yh +

1
2ω
θh

)
. (3.20)

For this purpose, we first subtract equations (3.19) and (3.18), and we choose ϕh = yh − y�+1
h , to obtain:

a(yh − y�+1
h , yh − y�+1

h ) + cω

(
d

dX
(yh − y�+1

h ),
d

dX
(yh − y�+1

h )
)

+ c

(
d

dX
(θh − θ�

h),
d

dX
(yh − y�+1

h )
)

= 0. (3.21)

Next, we consider the basis {ψi} of V0h, which is orthonormal with respect to the usual product in L2(L1, L2),
and is formed by the eigenfunctions of the discretized operator of the second derivative with homogeneous
Dirichlet boundary conditions, i.e. we have the property:(

dψi

dX
,
dψj

dX

)
= μi δij , 1 ≤ i, j ≤ Nh,

where {μi} is the spectrum of the operator, sorted out in the form μ1 ≤ μ2 ≤ . . . ≤ μNh
.

So, in terms of the coordinates associated to the previous basis, we have

yh =
Nh∑
i=1

yiψi, y�+1
h =

Nh∑
i=1

y�+1
i ψi, θh =

Nh∑
i=1

θiψi, θ�+1
h =

Nh∑
i=1

θ�+1
i ψi. (3.22)
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On the other hand, for the choice ϕh = ψi, the difference between (3.19) and (3.18) leads to

a(yh − y�+1
h , ψi) + cω

(
d

dX
(yh − y�+1

h ),
d

dX
ψi

)
+ c

(
d

dX
(θh − θ�

h),
d

dX
ψi

)
= 0, 1 ≤ i ≤ Nh. (3.23)

Now, using the expressions in (3.22) and the equations (3.23), from easy computations we get:

c(θi − θ�
i )μi = −a(yh − y�+1

h , ψi) − c ω(yi − y�+1
i )μi, 1 ≤ i ≤ Nh. (3.24)

Next, we obtain a bound for the term (θh − θ�
h, yh − y�+1

h ). For this, we first consider the identities:

(θh − θ�
h, yh − y�+1

h ) =
Nh∑
i=1

(θi − θ�
i )(yi − y�+1

i )

=
Nh∑
i=1

μ−1
i

(−c−1 a(yh − y�+1
h , ψi) − ω(yi − y�+1

i )μi

)
(yi − y�+1

i )

=
Nh∑
i=1

μ−1
i

(−c−1 a(yh − y�+1
h , (yi − y�+1

i )ψi)
)− ω

Nh∑
i=1

(yi − y�+1
i )2, (3.25)

where we have used (3.24). Secondly, we straightforwardly state the inequality

a
(
yh − y�+1

h , (yi − y�+1
i )ψi

)
= (yi − y�+1

i )2 a(ψi, ψi) ≥ 0, 1 ≤ i ≤ Nh.

Thus, by applying this inequality to (3.25) we deduce

(θh − θ�
h, yh − y�+1

h ) ≤ −μ−1
Nh
c−1a(yh − y�+1

h , yh − y�+1
h ) − ω(yh − y�+1

h , yh − y�+1
h ).

Moreover, by using the coerciveness of a and the expression of the constant c, we get

(θh − θ�
h, yh − y�+1

h ) ≤ −2μ−1
Nh
αβ−1

∣∣∣∣ d
dX

(yh − y�+1
h )

∣∣∣∣
2

− ω
∣∣yh − y�+1

h

∣∣2 , (3.26)

where |·| is the usual norm in L2(L1, L2).

Next, we obtain a bound for λ
∣∣θh − θ�+1

h

∣∣2. For this, we first apply the contractivity, with constant λ−1, of
the Yosida operator Gω

λ when λω = 1/2 and get:

λ
∣∣θh − θ�+1

h

∣∣2 ≤ λ−1
∣∣yh + λθh − y�+1

h − λθ�
h

∣∣2
= λ−1

∣∣yh − y�+1
h

∣∣2 + λ
∣∣θh − θ�

h

∣∣2 + 2
(
yh − y�+1

h , θh − θ�
h

)
.

Then, using (3.26) in the previous inequality, we deduce:

λ
∣∣θh − θ�+1

h

∣∣2 ≤ λ−1
∣∣yh − y�+1

h

∣∣2 + λ
∣∣θh − θ�

h

∣∣2 − 4μ−1
Nh
αβ−1

∣∣∣∣ d
dX

(yh − y�+1
h )

∣∣∣∣
2

− 2ω
∣∣yh − y�+1

h

∣∣2 . (3.27)

So, taking into account the choice λω = 1/2 in (3.27), we can write:

λ
∣∣θh − θ�+1

h

∣∣2 ≤ λ
∣∣θh − θ�

h

∣∣2 − 4μ−1
Nh
αβ−1

∣∣∣∣ d
dX

(yh − y�+1
h )

∣∣∣∣
2

≤ λ
∣∣θh − θ�

h

∣∣2 .
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Therefore, the sequence
{∣∣θh − θ�

h

∣∣2} is monotone decreasing and, so, convergent. Moreover, as we have

0 ≤
∣∣∣∣ d
dX

(yh − y�+1
h )

∣∣∣∣
2

≤ μNh
βλ

4α

(∣∣θh − θ�
h

∣∣2 − ∣∣θh − θ�+1
h

∣∣2) , (3.28)

the sequence {y�+1
h } converges to yh as � goes to infinity.

Remark 3.2. Although the convergence result is stated for the case H = 1, numerical tests show good
convergence properties for other choices of H . In these tests, it has also been observed that convergence does
not deteriorate as the spatial mesh becomes finer.

3.4. Optimization of the duality algorithm with functional parameters

In this section, we analyze the optimal choice of the functional parameter ω in order to accelerate the
convergence of the algorithm (3.7)-(3.8). This optimal choice is crucial to obtain a good practical performance
of the algorithm as the number of iterations depends on ω. For this purpose, notice that in the abstract
notation (3.10)–(3.11), Yosida approximation of operator G with parameter 1/(2ω) is given by expression

Gω
1/2ω(z) = 2ω

(
I −

(
1
2
I +

1
2ω
G

)−1
)

(z).

Next, we define the function Fω : V −→ V , given by:

Fω(θ) = Gω
1/2ω

(
y(θ) +

θ

2ω

)
,

where, given q ∈ V , y(q) is such that:

Ay(q) + c (BB∗)(ωy(q)) = f − c (BB∗)(q).

Let θ be a fixed point of Fω . Our aim is to accelerate the convergence of the fixed-point algorithm, by
choosing ω such that:

DFω(θ) = 0, (3.29)
DFω(θ) being the Gâteaux-derivative of Fω in θ.

Proposition 3.1. A sufficient condition for (3.29) is ω = 2y(θ).

Proof. Let z = y(θ) + θ
2ω . Some straightforward calculations show that:

〈DFω(θ), q〉 =
dGω

1/2ω

dz

(
y(θ) +

θ

2ω

)(
y(q) +

q

2ω

)
, ∀q ∈ V. (3.30)

If we can choose ω so that:
dGω

1/2ω

dz

(
y(θ) +

θ

2ω

)
= 0,

then (3.29) is achieved. An easy application of the inverse function theorem leads to

dGω
1/2ω

dz
(z) = 2ω

(
1 − 1

1
2 + 1

2ωG
′(t)

)
(z), (3.31)

where t verifies the equation
1
2
t+

1
2ω

G(t) = z, (3.32)
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Table 1. Number of iterations (Id) and quadratic error in Test 1.

ω = 2 ω = 2p
Δx Id ep Id ep

10−2 7 1.2 × 10−6 4 1.1 × 10−6

10−3 7 1.2 × 10−8 4 4.9 × 10−9

10−4 7 7.7 × 10−10 4 6.1 × 10−10

Table 2. Number of iterations (Id) for different ω in Test 1.

ω 0.02 0.2 1 2 3 20 200
Id 231 41 12 7 8 60 525
ω 0.02p 0.2p p 2p 3p 20p 200p
Id 200 34 8 4 8 48 455

provided that z �= 0. So, using (3.30) and (3.31), a sufficient condition for (3.29) is:

1
2

+
1
2ω
G ′(t) = 1, with z = y(θ) +

θ

2ω
in (3.32),

which is equivalent to ω(X) = G ′(t)(X). Finally, as θ = G(y(θ)) − ωy(θ), it easily follows the equivalence:

z = y(θ) +
θ

2ω
⇐⇒ t = y(θ)

and the optimal choice for the parameter is ω = 2y(θ). �

Remark 3.3. Notice that the optimal choice of the parameter depends on solution y(θ). So, when the exact
solution is unknown, in our practical implementation ω = 2Pm is taken, Pm being the approximation of solution
in the last step of the characteristics loop.

3.5. Some test examples

In this section we present several tests that show the behaviour of the previously described numerical tech-
niques and illustrate the related theoretical results.

Test 1. Let us consider the following nonlinear diffusion problem:

⎧⎨
⎩− d

dx

(
h2 dp

dx
+ h3p

dp
dx

)
= f in (0, 1)

p(0) = p(1) = 1

where h(x) = 2 − x and f is such that the solution is p(x) = 1 + x− x2.

Table 1 shows the number of iterations, Id, of the duality method (with optimal constant and variable pa-
rameters) and the relative quadratic error ep (between the numerical approximation and the analytical solution)
for different mesh sizes and a tolerance equals to 10−7. Table 2 illustrates the optimality of parameters in terms
of the number of iterations. The same kind of results have been observed in the case h = 1.
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Table 3. Number of iterations for different parameter choices in Test 2.

ω = 2 ω = 2pm ω = 2p
Δx Ic Id Ic Id Ic Id

10−2 796 4.1 796 3.0 796 2.9
10−3 6899 3.0 6899 2.6 6899 2.5
10−4 58 569 2.2 58 569 2.3 58 569 2.2

Table 4. Number of iterations for different parameter choices in Test 3.

ω = 2 ω = 2pm ω = 2p
Δx Ic Id Ic Id Ic Id

10−2 1041 3.8 1041 3.0 1041 2.8
10−3 9062 2.8 9062 2.6 9062 2.5
10−4 76 766 2.1 76 766 2.3 76 766 2.1

Test 2. Let us now consider the convection-diffusion problem which consists in finding the pressure, p, such
that: ⎧⎨

⎩10
d
dx

(h p) − d
dx

(
h2 dp

dx
+ h3p

dp
dx

)
= f in (0, 1)

p(0) = p(1) = 1

where h(x) = 2 − x and f is such that the solution is p(x) = 1 + x − x2. We have taken k = 0.5 Δx as time
step. The obtained results are shown in Table 3, where Ic is the number of iterations of the characteristics
algorithm and Id is the average number of iterations in the duality algorithm per characteristics loop iteration.
The tolerance has been taken to 10−10 both in the characteristics and the duality methods.

Test 3. Let us now consider the convection-diffusion problem which consists in finding the pressure, p, such
that: ⎧⎨

⎩10
dp
dx

− d
dx

(
(1 + p)

dp
dx

)
= f in (0, 1)

p(0) = p(1) = 1

where f is such that the solution is p(x) = 1 + x− x2. Notice that this test corresponds to Test 2 with h = 1.
We have also taken k = 0.5 Δx as time step. The obtained results are shown in Table 4 and are very similar to
those of Test 2. Notice that in the case h = 1 convergence has been theoretically stated.
Test 4. In [17], the following compressible Reynolds equation is proposed to model lubricated rough surfaces:

⎧⎨
⎩300

d
dx

(h p) − d
dx

(
0.4h2 dp

dx
+ h3p

dp
dx

)
= 0 in (0, 1)

p(0) = p(1) = 1

where h(x) = 2−x+0.6 sin(100πx). Table 5 shows the number of iterations obtained for constant and functional
parameters for different mesh sizes and maximum relative error ε = 5 × 10−9.

Analogous results to those in Table 2 have been obtained in Tests 2 to 4, the optimal parameters being the
same as in Test 1.
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Table 5. Number of iterations in Test 4.

ω = 2 ω = 2pm

Δx Ic Id Ic Id
10−3 4862 7.5 4802 2.9
10−4 45 039 4.4 45 006 2.8
10−5 433 272 3.9 433 198 2.7

4. Numerical solution of the elastic problem

In this section we briefly describe the numerical methods to solve the elastic problem
(Pn+1

E

)
for a given

pressure approximation. For simplicity, we drop the index n throughout this section. First, we propose a
Hermite cubic finite element method (see Reddy [22], for example) for spatial discretization. For this, we
consider the space

Wh =
{
wh ∈ C1(0, L) / wh|E ∈ P3, ∀E ∈ τh; wh(0) = wh(L) = w′

h(0) = w′
h(L) = 0

}
,

and the convex set associated to the unilateral constraint is approximated by

K0h = {wh ∈Wh /wh(xi) ≥ δ(xi), ∀xi node of τh} .

Then, a variational inequality formulation of the discretized problem is posed as follows:

For Ph ∈ Vh given, find Uh ∈ K0h solution of:

∫ L

0

dUh

dX

(
dwh

dX
− dUh

dX

)
dX + η

∫ L

0

d2Uh

dX2

(
d2wh

dX2
− d2Uh

dX2

)
dX ≥

K

∫ L

0

(Ph − 1)χ[L1,L2] (wh − Uh) dX, ∀wh ∈ K0h. (4.1)

Among the different suitable methods for elliptic variational inequalities [15], we have compared the results
obtained with projected Gauss-Seidel, projected gradient and Uzawa duality methods, this last one being
the most efficient in terms of the number of iterations and CPU time. For completeness, we next briefly
describe the application of this duality algorithm. Thus, we consider a 1-d finite element mesh with N nodes
of the interval [0, L] and we note by A and b the matrix and the second member, respectively, of the system
associated to the discretized problem. We denote by u a vector of 2N components that contains the value of
the approximated solution (odd components) and its first derivative (even components) at the nodes. Thus,
the unilateral constraint only acts on the odd components and the scheme of the algorithm can be written as
follows:

1. Initialize the vector λ0 ∈ R
2N
+ .

2. k-step: For λk given, we compute uk, such that:

Auk = b+ λk.

3. We apply a step of projected gradient for the dual maximization problem, i.e. for uk given we compute
for j = 1, . . . , N :

λk+1
2j−1 = max

{
λk

2j−1 + ρ(δ2j−1 − uk
2j−1), 0

}
,

λk+1
2j = λk

2j + ρ(δ2j − uk
2j).
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In the previous scheme, the parameter ρ is associated to the gradient method and, for convergence purposes,
it is chosen such that ρ < μmin, μmin being the minimum eigenvalue of the symmetric positive definite matrix A
(see Ciarlet [9], for details). We have noted by δ2j−1 the value of the obstacle at the node j of the mesh.

5. Numerical solution of the coupled problem

In Section 2 we have described the fixed point algorithm to approximate the solution of the coupled problem,
by sequentially solving the elastic and hydrodynamic subproblems until convergence. In order to validate this
algorithm we have successfully performed several numerical tests with analytical solution, one of them being
Test 5 in this section. Next, we present a test with real data in order to simulate an elastohydrodynamic process
taking place in a real head-tape magnetic storage device.

Test 5: We consider the problem defined by equations:

d
dX

(PH) − d
dX

(
αH2 dP

dX
+ βH3P

dP
dX

)
= g in (L1, L2), (5.1)

− d2U

dX2
+ η

d4U

dX4
= K (P − 1)χ[L1,L2] + f in (0, L), (5.2)

H = U − δ in (0, L), (5.3)

P (L1) = P (L2) = 1, (5.4)

U(0) = U(L) =
dU
dX

(0) =
dU
dX

(L) = 0, (5.5)

where we introduce the new functions f and g so that the exact solution is given by

P (X) = (X − L1)(L2 −X) + 1, U(X) = cX2(X − L)2.

Moreover, we have chosen the values c = 21.11, L1 = 0.2, L2 = 0.8 and L = 1. Also, the parameters α, β, η
and K have been taken to the values

α = 1.16 × 10−2, β = 3.04 × 10−2, η = 5.49 × 10−4, K = 3.0375 × 104,

which are obtained by scaling a real device [6].
Concerning the data of the numerical methods, first we point out that all meshes have three regions with

constant stepsize: a central one, over the head, and two other regions located at both sides of the head. Notice
that the spatial mesh stepsize is much smaller in the central region than in the other two ones. The artificial
time step is taken to k = 0.5Δx, where Δx is the minimum spatial stepsize. Table 6 shows the pressure (eP )
and displacement (eU ) quadratic errors when using the duality algorithm with functional parameter ω = 2Pm,
Pm being the computed solution in the last characteristics loop iteration. Moreover, Nl, Nc and Nr denote
the number of nodes of the uniform meshes in the left, central and right regions of the domain for the elastic
problem, Nc also representing the number of mesh nodes for the domain (L1, L2) in the Reynolds equation. For
the numerical algorithms in the hydrodynamic problem a relative quadratic error stopping test equals to 10−7

has been considered. Moreover, in the elastic part, a direct heptadiagonal system solver has been used for the
primal problem, ρ = 10−6 is taken in the iterations of the dual problem and a relative error stopping test of 10−6

is considered. Finally, the tolerance for the fixed point algorithm is 10−8 both for the pressure and the displace-
ment, the number of iterations being noted by Ip in Table 6. Notice that as the exact displacement and pressure
are known, we can calculate the relative quadratic error between approximated and exact solutions. In Table 6
we can observe the good behaviour in both cases, and the decrease of the errors as the number of nodes increases.
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Table 6. Quadratic errors for displacements and pressure in Test 5.

Nl +Nc +Nr eP eU Ip
20 + 501 + 20 3.4 × 10−9 4.05 × 10−8 3
40 + 1001 + 40 1.7 × 10−9 9.90 × 10−8 3
80 + 2001 + 80 8.5 × 10−10 4.20 × 10−8 2
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Figure 3. Computed pressure in Test 6 for a mesh with 12 000 nodes in central region and
1000 nodes at both sides.

Test 6: We consider a real device characterized by the parameters detailed in (2.6). The dimensionless
coefficients α, β, η and K are the same as in Test 5, as well as the scaled equations with f = g = 0.

Among the different obtained results, in Figures 3 and 4 we present the computed pressure and head-
tape gap, respectively, for a particular set of parameters in the numerical methods. More precisely, they
correspond to a mesh with 12 000 nodes at the central region over the head and 1000 nodes at each side, while
k = 0.5 min{Δx} = 6.25× 10−7 has been chosen. In Figure 3 we can appreciate the presence of sharp pressure
spikes near both ends of the head, the one on the right being sharper. Also the gap function presents the typical
spike near the outflow boundary. These results agree with those presented in the related literature (see [6,23],
for example).

Finally, in Figures 5 and 6 we present the convergence behaviour of the pressure and gap, respectively, when
mesh is refined. Notice the good behaviour despite the presence of spikes and the not so smooth pressure and
gap in this real data elastohydrodynamic setting.

6. Conclusions

In this paper we have introduced new numerical methods to solve a coupled system governed by a nonlinear
compressible Reynolds equation and a rod model. The system models the elastohydrodynamic process taking
place in head-tape magnetic reading devices. After describing the involved numerical techniques, their good per-
formance is well illustrated by their application to academic problems with closed form solution. The numerical
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simulation of devices with real data sets is also carried out. The main original point of the numerical techniques
is the use of a nonclassical duality method for solving the nonlinear diffusion term, jointly with a characteristics
scheme for the convection dominating aspect. Concerning the duality method, which is based on Yosida reg-
ularization of maximal monotone operators, partial and interesting theoretical results about convergence have
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been obtained in a new functional equation setting. Furthermore, when using functional parameters in the
method, an optimal choice has been found. This aspect is relevant for saving computational costs and it has
been illustrated accordingly by several test examples.

The extension to two spatial dimensions has also been studied by the authors, from the modelling and
numerical point of view [3]. In fact, for example, the increasing use of smaller flow factors in recording requires
narrower tapes, leading to side flow effects which are neglected in one dimensional approaches. Thus, an
additional interest of the proposed numerical techniques for the first-order slip Reynolds equations is that they
can be easily extended to two spatial dimensions. Also, in the 2-d setting, the fixed point iteration should
uncouple the hydrodynamic equations and the appropriate elastic model. In [3] a new elastohydrodynamic
Reynolds-Koiter model governing a head-tape magnetic reading device is proposed and the numerical methods
here applied to the nonlinear compressible Reynolds equation are extended to the 2-d case. In order to take
into account curvature effects, the tape movement is governed by a Koiter model and appropriate numerical
methods are used.

Finally, in order to improve the accuracy of the methods in complex geometries, the use of multigrid or
adaptive meshing is being studied by the authors. Both techniques are specially useful in two dimensions when
a complex or discontinuous geometry of the head could lead to discontinuities or large gradients in the main
unknowns. This is not the case in the present paper. In adaptive mesh refinement the pressure gradient could
be considered as the metric for making subdivision decisions.
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[5] A. Bermúdez and C. Moreno, Duality methods for solving variational inequalities. Comput. Math. Appl. 7 (1981) 43–58.
[6] B. Bhushan, Tribology and Mechanics of Magnetic Storage Devices. Springer, New York (1996).
[7] G. Buscaglia and M. Jai, A new numerical scheme for non uniform homogenized problems: application to the nonlinear

Reynolds compressible equation. Math. Probl. Engrg. 7 (2001) 355–378.
[8] G. Buscaglia, S. Ciuperca and M. Jai, Existence and uniqueness for several nonlinear elliptic problems arising in lubrication

theory. J. Diff. Eq. 1 (2005) 187–215.
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