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NEW MIXED FINITE VOLUME METHODS FOR SECOND ORDER
ELIPTIC PROBLEMS ∗

Kwang Y. Kim
1

Abstract. In this paper we introduce and analyze new mixed finite volume methods for second order
elliptic problems which are based on H(div)-conforming approximations for the vector variable and
discontinuous approximations for the scalar variable. The discretization is fulfilled by combining the
ideas of the traditional finite volume box method and the local discontinuous Galerkin method. We
propose two different types of methods, called Methods I and II, and show that they have distinct
advantages over the mixed methods used previously. In particular, a clever elimination of the vector
variable leads to a primal formulation for the scalar variable which closely resembles discontinuous
finite element methods. We establish error estimates for these methods that are optimal for the scalar
variable in both methods and for the vector variable in Method II.
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1. Introduction

Mixed methods for elliptic problems have been a subject of active research and widely used in a variety of
applications because of their desirable properties such as good approximation of the vector quantity and local
conservation of mass. Typical examples are approximation of fluid velocities in porous media flow problems and
electric currents in semiconductor simulation.

There are many mixed methods developed so far. Mixed finite element methods are the standard finite
element methods applied to the mixed formulation of the underlying problem with the approximation spaces
subject to the inf-sup condition; see, for example [7–10, 14, 16, 27, 28, 32, 33, 35, 37] and the references therein.
Finite volume techniques have been also applied to the mixed systems of elliptic problems. Mixed covolume
methods are based on the idea of covolumes which provide control volumes around each unknown, and produce
a discrete problem comparable to a lowest-order mixed finite element method (cf. [12, 17–19]). A mixed finite
volume method on non-staggered triangular grids was proposed by Courbet and Croisille [23] and later extended
to quadrilateral grids by Chou, Kwak and Kim [20]. It has many distinct features when compared with the
two methods above, like violation of the inf-sup condition and no use of covolumes. See also [24, 31] for a
Petrov-Galerkin mixed method and [2, 5, 38, 39] for finite difference type methods.
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For all the methods mentioned above the vector approximation is sought in H(div)-conforming spaces,
requiring it to have continuous normal components across the interelement boundaries. For mixed finite element
or covolume methods, this makes it very costly to solve the resulting discrete systems either directly or iteratively.
One popular way to avoid this difficulty is to relax the continuity of normal components of the vector variable
via the Lagrange multipliers so that it may be eliminated locally (usually called the mixed-hybrid method). By
following this idea, it was established in [1, 3] that the whole discrete mixed system can be reduced to some
nonconforming finite element method involving only the Lagrange multipliers. On the other hand, for mixed
finite volume methods of Courbet and Croisille in which a nonconforming approximation is directly considered
for the scalar variable, the vector variable can be decoupled in a clever way with no help of Lagrange multipliers,
and this results in a nonconforming finite element method for the scalar variable only. However, this method
relies heavily on the use of a nonconforming element for the scalar variable with the interface degrees of freedom,
and so does not seem straightforward to extend it to elements of arbitrary orders, although a quadratic element
was constructed in [25].

Recently, there has been a growing interest on the local discontinuous Galerkin methods (abbreviated as
the LDG methods) which are based on discontinuous spaces for both the scalar and the vector approximations.
Thus one can eliminate the vector variable locally element-by-element to express the whole system in terms of
the scalar variable alone, which leads to a discontinuous finite element method for the scalar variable. In order
to communicate information between neighboring elements, numerical fluxes are introduced on the interface
integrals which are given as linear combinations of the averages and jumps of the nearby unknowns. We refer
the interested reader to [4, 6, 11, 13, 15, 22, 26, 34] for more details.

The goal of this paper is to introduce and analyze new mixed finite volume methods for second order elliptic
problems. We choose to use H(div)-conforming spaces for the vector approximation and discontinuous spaces
for the scalar approximation. The discretization is fulfilled by combining the concept of the numerical fluxes
used in LDG methods and the simple finite volume techniques used in the previous mixed finite volume methods
on non-staggered grids.

We show that the new methods have combined advantages of the mixed methods previously developed. First,
they have the same local mass conservation properties as mixed finite element methods, and can be defined
for elements of arbitrary orders. Second, unlike LDG methods, we do not need to abandon the continuity of
normal components of the vector for the purpose of eliminating it and obtaining a discrete system for the scalar
alone. In fact, elimination of the vector variable can be done in a clever way, as in [20], which leads to a primal
formulation for the scalar variable, and the vector variable can be recovered locally from the computed scalar
variable. It is worthwhile to mention that this fact not only provides a convenient way of implementation but
also a way of deriving error estimates without resort to the theory of saddle-point problems. In light of these
facts our new methods can be viewed as a generalization of mixed finite volume methods of [20,23] to elements
of arbitrary orders, and at the same time, as an improvement over the standard mixed finite element methods
which allows to decouple the vector variable from the scalar one without help of the Lagrange multipliers.

Two different types of methods, referred to as Methods I and II, will be proposed. For Method I equal-order
approximations are used for both the vector and the scalar variables, which leads to a standard discontinuous
finite element method without the usual symmetrizing (or anti-symmetrizing) term. For Method II a one-order
higher space is used for the scalar approximation, resulting in a discontinuous finite element method of the same
form which, however, incorporates the L2-projection of interface averages and jumps onto the lower-order normal
trace spaces. As we will see later, this projection of interface averages and jumps offers some computational
convenience when compared to the standard form, and to the author’s knowledge, has never been considered
before. We will also establish error estimates that are optimal for the scalar variable in both methods and for
the vector variable in Method II. Only a suboptimal result is obtained for the vector variable in Method I.

The remainder of the paper is organized as follows. In the next section we state the model problem and then
introduce some notation and finite element spaces with their approximation properties. We also describe the
main ideas of how the model problem is discretized. In Sections 3 and 4, our two methods, Methods I and II, are
constructed and analyzed on triangular grids. Discontinuous finite element formulations for the scalar variable
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and their uniform ellipticity are derived, and some error estimates are established for the scalar and the vector
variables. We extend these results to rectangular and prismatic elements in Section 5. Finally, in Section 6,
numerical results are presented for two test problems in order to support the theoretical results obtained in the
previous sections

2. Problem, finite element spaces and discretization

2.1. Model problem

We are concerned with the following second order elliptic boundary value problem with mixed boundary
conditions

−∇ · (κ∇u) + αu = f in Ω, (1a)

u = gD on ΓD, (1b)

κ∇u · ν = gN on ΓN (1c)

for a given data f ∈ L2(Ω), gD ∈ H
1
2 (ΓD) and gN ∈ L2(ΓN ). Here Ω is a bounded domain in R

n (n = 2, 3)
with a polygonal or polyhedral boundary ∂Ω, and ν denotes the outward unit normal to ∂Ω. ΓD is a closed part
of ∂Ω, and ΓN = ∂Ω \ ΓD. We assume that the matrix-valued coefficient κ = κ(x) is symmetric and uniformly
positive definite, i.e., there exist two positive constants c1 and c2 such that

c1ξ
T ξ ≤ ξT κ(x)ξ ≤ c2ξ

T ξ ∀ξ ∈ R
n, x ∈ Ω,

and that α = α(x) is a nonnegative scalar-valued function belonging to L∞(Ω). We restrict the discussion to
the case of meas(ΓD) > 0. All the results derived in this paper are equally valid for pure Neumann problems.

In many practical problems it is of more interest to obtain accurate approximation for the vector variable
σ = −κ∇u. For this purpose we rewrite (1) as a first-order mixed system

σ + κ∇u = 0 in Ω, (2a)

∇ · σ + αu = f in Ω, (2b)

u = gD on ΓD, (2c)

−σ · ν = gN on ΓN , (2d)

and seek both approximations of σ and u simultaneously.

2.2. Notation and finite element spaces

To discretize the system (2), let {Th}h>0 be a family of regular partitions of Ω into triangles (n = 2) or
tetrahedra (n = 3) in the usual sense of Ciarlet [21], where h = maxT∈Th

hT and hT stands for the diameter of
T . The regularity property implies that, for all elements T ∈ Th and all edges (n = 2) or faces (n = 3) e of T ,

meas(T ) � hn
T , meas(e) � hn−1

T ,

where the symbol � indicates that both sides are of the same order of magnitude, i.e., the ratio of both sides
are bounded above and below by positive constants which are independent of hT .

By Eh we denote the collection of all edges (n = 2) or faces (n = 3) of Th which is split into three disjoint
parts EI , ED and EN , according to whether it belongs to Ω, ΓD or ΓN , respectively. We also use the notation
ET to denote the set of edges or faces of an element T . With each e ∈ Eh we associate a unit normal νe which
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is directed outward to Ω for e ∈ ED ∪ EN . For an interior edge or face e ∈ EI shared by two elements T + and
T− with νe being directed from T + to T−, we define the average and the jump of v on e to be

{v} =
v+ + v−

2
, [v] = v+ − v−,

where v+ (resp. v−) denotes the trace of v|T+ (resp. v|T−).
Let Pr(T ) be the space of all polynomials on T of degree r (set P−1(T ) = ∅) and P̃r(T ) the space of all

homogeneous polynomials on T of degree r. We also set

Rr(∂T ) = {µ ∈ L2(∂T ) : µ|e ∈ Pr(e) ∀e ∈ ET }.

For the vector approximation we will use the Raviart–Thomas–Nedelec elements (cf. [7, 32, 35, 37])

RT r(T ) = (Pr(T ))n ⊕ xP̃r(T ),

where x = (x1, x2) for n = 2 and x = (x1, x2, x3) for n = 3. It is now well known that

∇ · ξh ∈ Pr(T ), ξh · νT ∈ Rr(∂T ) ∀ξh ∈ RT r(T ),

and that the degrees of freedom for ξh are provided by the moments of order up to r of ξh · νT on ∂T{∫
∂T

ξh · νT µ ds : µ ∈ Rr(∂T )
}

(3)

and the moments of order up to r − 1 of ξh on T (r ≥ 1){∫
T

ξh · τ dx : τ ∈ (Pr−1(T ))n
}
. (4)

The following approximation properties are well known for the space Pr(T ): there exists a function vh ∈ Pr(T )
such that, for 3

2 < s ≤ r + 1,

‖u − vh‖0,T + h
1/2
T ‖u − vh‖0,∂T ≤ Chs

T ‖u‖s,T , (5)

‖∇(u − vh)‖0,T + h
1/2
T ‖∇(u − vh) · νT ‖0,∂T ≤ Chs−1

T ‖u‖s,T . (6)

Similarly, we have for 1
2 < s ≤ r + 1

‖σ − ΠT σ‖0,T + h
1/2
T ‖(σ − ΠT σ) · νT ‖0,∂T ≤ Chs

T ‖σ‖s,T , (7)

‖∇ · (σ − ΠT σ)‖0,T ≤ Chs
T ‖∇ · σ‖s,T , (8)

where the operator ΠT : (Hs(T ))n → RT r(T ) is defined by means of the degrees of freedom (3)–(4)∫
∂T

(σ − ΠT σ) · νT µ ds = 0 ∀µ ∈ Rr(∂T ),∫
T

(σ − ΠT σ) · τ dx = 0 ∀τ ∈ (Pr−1(T ))n (r ≥ 1).

Also, we will often use the following standard inequalities

‖v‖0,∂T ≤ C(h−1/2
T ‖v‖0,T + h

1/2
T ‖∇v‖0,T ) ∀v ∈ H1(T ), (9)

‖v‖0,∂T ≤ Ch
−1/2
T ‖v‖0,T ∀v ∈ Pr(T ). (10)
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The results (5)–(10) can be proved by using the standard scaling argument.
Finally, we define the finite element spaces

Pr = {v ∈ L2(Ω) : v|T ∈ Pr(T ) ∀T ∈ Th},
RT r = {τ ∈ H(div; Ω) : τ |T ∈ RT r(T ) ∀T ∈ Th},

where

H(div; Ω) = {τ ∈ (L2(Ω))n : ∇ · τ ∈ L2(Ω)}.

We point out that while discontinuous approximations are used for the scalar variable, the H(div)-conforming
approximations are used for the vector variable, requiring it to have continuous normal components across
interelement boundaries.

2.3. Discretization

Let us briefly describe the main idea for discretizing the mixed system (2). With RT k × Pl chosen as the
trial spaces, the first two equations of (2) are discretized by testing them with functions from Σ(T ) and V (T )∫

T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ Σ(T ),∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ V (T ).

Next, to communicate between neighboring elements, we express σh · νe|e for e ∈ Eh in terms of {κ∇uh · νe}
and [uh]|e, as is done for numerical fluxes in LDG methods.

Now the problem is how to choose an appropriate pair of test function spaces Σ(T ) and V (T ) in such a way
that

• the number of equations are equal to that of unknowns to yield a square matrix system;
• σh can be easily eliminated from the whole system, leading to a discontinuous finite element method

for uh;
• σh can be recovered in a simple manner from the computed uh.

We mention that these statements are easily seen to be true for the LDG methods because the trial and the
test spaces are identical (namely, a Galerkin method), and σh is completely discontinuous and thus can be
eliminated locally.

For our methods we notice that, since σh · νT |∂T is a priori given in terms of {κ∇uh} and [uh], it suffices
to be able to determine the interior degrees of freedom (4) of σh in terms of uh. Thus we are naturally led
to choose Σ(T ) such that Σ(T ) ⊇ (Pk−1(T ))n. In particular, this choice enables to eliminate and recover σh

locally on each element. On the other hand, we will need to take τ = ∇v for v ∈ Pl(T ) in order to obtain a
discontinuous finite element method for uh, which requires

Σ(T ) ⊇ (Pk−1(T ))n + ∇Pl(T ). (C1)

By dimensional argument we also require

dim Σ(T ) + dimV (T ) = dim(Pk−1(T ))n + dimPl(T ). (C2)

Based on these considerations we construct and analyze two methods (one with l = k and the other with
l = k + 1) in the next sections.
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3. Method I: RT k ×Pk (k ≥ 1)

3.1. Discrete problem

Our first method is based on equal-order interpolation spaces for σ and u, and is given as follows: find
(σh, uh) ∈ RT k × Pk satisfying∫

T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ (Pk−1(T ))n, (11a)∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ Pk(T ), (11b)

and

σh · νe|e =

⎧⎪⎨⎪⎩
−Qh({κ∇uh · νe}) + γh−1

e [uh] for e ∈ EI ,

−Qh(κ∇uh · νe) + γh−1
e (uh − QhgD) for e ∈ ED,

−QhgN for e ∈ EN ,

(11c)

where Qh is the L2-projection onto Pk(e), γ > 0 is a stabilization parameter to be determined later, and he is
the diameter of e ∈ Eh.

Let us point out that equation (11b) represents the same local conservation law as in the standard mixed
finite element method. Thus the difference between our scheme (11) and the standard mixed finite element
method lies in the discretization of the constitutive relation σ + κ∇u = 0. Also, it is trivial to verify the
requirements (C1)–(C2). As a result, the above scheme yields a square matrix system.

At first sight the scheme (11) appears to be very difficult to implement due to lack of any useful property
such as symmetry or positive definiteness. One remarkable property of this method is, however, that it allows
for an easy elimination of the vector variable σh which leads to a discrete problem for uh only. The following
theorem shows that uh is, in fact, a solution of a discontinuous finite element method (whose existence and
uniqueness will be shown later).

Theorem 3.1. Let (σh, uh) ∈ RT k × Pk be a solution of the scheme (11). Then uh is a solution of the
variational problem

B(uh, vh) = l(vh) ∀vh ∈ Pk, (12)

where we define the bilinear and the linear forms

B(u, v) :=
∑

T∈Th

∫
T

(κ∇u · ∇v + αuv) dx

−
∑
e∈EI

∫
e

{κ∇u · νe}[v] ds −
∑

e∈ED

∫
e

κ∇u · νev ds

+
∑
e∈EI

γh−1
e

∫
e

[u][v] ds +
∑

e∈ED

γh−1
e

∫
e

uv ds,

l(v) :=
∫

Ω

fv dx +
∫

ΓN

gNv ds +
∑

e∈ED

γh−1
e

∫
e

gDv ds.

Proof. Using integration by parts and the fact that σh has continuous normal components on EI , we obtain for
all vh ∈ Pk ∑

T∈Th

∫
T

(σh · ∇vh + ∇ · σh vh) dx =
∑
e∈EI

∫
e

σh · νe[vh] ds +
∫

∂Ω

(σh · ν)vh ds. (13)
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By taking τ = ∇vh in (11a) and w = vh in (11b), it is easy to see that the LHS of (13) can be expressed in
terms of uh only

∑
T∈Th

∫
T

(σh · ∇vh + ∇ · σh vh) dx = −
∑

T∈Th

∫
T

(
κ∇uh · ∇vh + αuhvh − fvh) dx.

Now substitution of (11c) into the RHS of (13) gives the desired result. �

From Theorem 3.1 it is now obvious how to implement the mixed finite volume method (11). First, the scalar
approximation uh is computed from the discontinuous finite element method (12), and then the vector approx-
imation σh can be locally recovered from uh through the equations (11a) and (11c) which specify a complete
set of degrees of freedom (3)–(4) for σh|T . This fact not only provides a convenient way of implementation but
also a way of deriving error estimates without resort to the theory of saddle-point problems, as is demonstrated
in the next subsection.

Remark 3.2. Notice that the discontinuous finite element method (12) lacks the usual symmetrizing or anti-
symmetrizing terms which appear in the traditional methods (see, e.g., [4, 11, 15, 26, 36]). This does not affect
the stability or the convergence rate of the method. To solve the discontinuous finite element method (12) in
an efficient way, one may use the Krylov subspace method like GMRES with preconditioners, e.g., from [29,30].

3.2. Error estimates

Now we turn to error estimates for the scheme (11). For this sake let (s > 0)

Hs(Th) = {v ∈ L2(Ω) : v|T ∈ Hs(T ) ∀T ∈ Th},

and define the mesh-dependent norm for v ∈ H1(Th)

|||v||| :=
( ∑

T∈Th

‖κ1/2∇v‖2
0,T + ‖α1/2v‖2

0,Ω +
∑
e∈EI

h−1
e ‖[v]‖2

0,e +
∑

e∈ED

h−1
e ‖v‖2

0,e

)1/2

.

In the sequel we make the following regularity assumption on u and σ = −κ∇u:

u ∈ Hs(Th), σ ∈ (Hs−1(Th))n, s >
3
2
·

To begin with, we recall an abstract error estimate for the variational problem which is a variant of Strang’s
lemma (cf. [21]). For later use we present the following lemma in its full generality.

Lemma 3.3. Suppose B(u, ·) is well defined and the following uniform ellipticity holds:

B(vh, vh) ≥ c|||vh|||2 ∀vh ∈ Vh.

Let uh ∈ Vh be the solution of

B(uh, vh) = l(vh) ∀vh ∈ Vh.

Then we have

|||u − uh||| ≤ inf
vh∈Vh

(
|||u − vh||| +

1
c

sup
wh∈Vh

B(u − vh, wh)
|||wh|||

)
+

1
c

sup
wh∈Vh

B(u, wh) − l(wh)
|||wh|||

·
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Proof. Given any vh ∈ Vh we obtain

c|||uh − vh|||2 ≤ B(uh − vh, uh − vh)

= B(u − vh, uh − vh) + [l(uh − vh) − B(u, uh − vh)],

which gives

c|||uh − vh||| ≤
B(u − vh, uh − vh)

|||uh − vh|||
+

l(uh − vh) − B(u, uh − vh)
|||uh − vh|||

·

The desired result follows easily by setting wh = uh − vh and taking the supremum on the right-hand side. �

In order to apply Lemma 3.3 in deriving an error estimate for u − uh, we need to prove some preliminary
results.

Lemma 3.4. The scheme (12) is consistent in the sense that

B(u − uh, vh) = B(u, vh) − l(vh) = 0 ∀vh ∈ Pk.

Proof. Use integration by parts on each element and then the continuity of u and κ∇u·νe across e ∈ EI , together
with (1), to complete the proof. �

Lemma 3.5. The following uniform ellipticity holds:

B(vh, vh) ≥ C|||vh|||2 ∀vh ∈ Pk,

provided that γ > 0 is sufficiently large (independently of the mesh size).

Proof. For e ∈ EI shared by two elements T + and T−, we obtain∫
e

{κ∇vh · νe}[vh] ds ≤ C‖{∇vh}‖0,e‖[vh]‖0,e ≤ C‖∇vh‖0,T+∪T− h−1/2
e ‖[vh]‖0,e,

where we used the inverse inequality (10). Summing over all e ∈ EI , we obtain

∑
e∈EI

∫
e

{κ∇vh · νe}[vh] ds ≤ C1

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T

)1/2(∑
e∈EI

h−1
e ‖[vh]‖2

0,e

)1/2

.

Similarly, ∑
e∈ED

∫
e

κ∇vh · νevh ds ≤ C2

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T

)1/2( ∑
e∈ED

h−1
e ‖vh‖2

0,e

)1/2

.

Consequently, it follows that

B(vh, vh) ≥
∑

T∈Th

‖κ1/2∇vh‖2
0,T + ‖α1/2vh‖2

0,Ω +
∑
e∈EI

γh−1
e ‖[vh]‖2

0,e +
∑

e∈ED

γh−1
e ‖vh‖2

0,e

− C1

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T

)1/2(∑
e∈EI

h−1
e ‖[vh]‖2

0,e

)1/2

− C2

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T

)1/2( ∑
e∈ED

h−1
e ‖vh‖2

0,e

)1/2

.
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Using the inequality ab ≤ 1
4a2 + b2, we then obtain

B(vh, vh) ≥ 1
2

∑
T∈Th

‖κ1/2∇vh‖2
0,T + ‖α1/2vh‖2

0,Ω

+ (γ − C2
1 )
∑
e∈EI

h−1
e ‖[vh]‖2

0,e + (γ − C2
2 )
∑

e∈ED

h−1
e ‖vh‖2

0,e

≥ C|||vh|||2,

provided that γ > 0 is taken to be larger than max(C2
1 , C2

2 ). �

Corollary 3.6. The scheme (11) has a unique solution (σh, uh) ∈ RT k × Pk.

Proof. It suffices to show that, if f = gD = gN = 0, then we have σh = uh = 0. By the uniform ellipticity of
B(·, ·) the problem (12) has a unique solution, that is, uh = 0. Since σh|T is completely determined by (11a)
and (11c), it follows that σh = 0. �

Now it remains to estimate the terms in Lemma 3.3. In fact, we only need to estimate the first two terms,
as our method is consistent. We see that, for all vh, wh ∈ Pk,

B(u − vh, wh) =
∑

T∈Th

(∫
T

κ∇(u − vh) · ∇wh dx +
∫

T

α(u − vh)wh dx

)
−
∑
e∈EI

∫
e

{κ∇(u − vh) · νe}[wh] ds −
∑

e∈ED

∫
e

κ∇(u − vh) · νewh ds

+
∑
e∈EI

γh−1
e

∫
e

[u − vh][wh] ds +
∑

e∈ED

γh−1
e

∫
e

(u − vh)wh ds

≤ C|||u − vh||| |||wh||| + C

( ∑
T∈Th

hT ‖∇(u − vh) · νT ‖2
0,∂T

)1/2

|||wh|||,

which gives

sup
wh∈Pk

B(u − vh, wh)
|||wh|||

≤ C|||u − vh||| + C

( ∑
T∈Th

hT ‖∇(u − vh) · νT ‖2
0,∂T

)1/2

.

Therefore it follows from Lemma 3.3 that, for all vh ∈ Pk,

|||u − uh||| ≤ C|||u − vh||| + C

( ∑
T∈Th

hT ‖∇(u − vh) · νT ‖2
0,∂T

)1/2

.

Finally, using the approximation properties (5)–(6), we arrive at the following theorem.

Theorem 3.7. Let uh ∈ Pk be the solution of the problem (12). Then we have for 3
2 < s ≤ k + 1

|||u − uh||| ≤ C

( ∑
T∈Th

h
2(s−1)
T ‖u‖2

s,T

)1/2

. (14)

Now we turn to error estimation for the vector variable. The following lemma provides a result which plays
a crucial role in deriving an error estimate for σ − σh in L2-norm.
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Lemma 3.8. Given p ∈ L2(∂T ) and β ∈ (L2(T ))n, let ξh ∈ RT k(T ) satisfy∫
∂T

ξh · νT q ds =
∫

∂T

p q ds ∀q ∈ Rk(∂T ),∫
T

ξh · τ dx =
∫

T

β · τ dx ∀τ ∈ (Pk−1(T ))n (k ≥ 1).

Then we obtain
‖ξh‖0,T ≤ C(‖β‖0,T + h

1/2
T ‖p‖0,∂T ).

Proof. By considering the L2-projections, we may assume that p ∈ Rk(∂T ) and β ∈ (Pk−1(T ))n. Then the
proof is done by using a simple scaling argument [3, 7]. �

We are now ready to prove the following theorem.

Theorem 3.9. Let (σh, uh) ∈ RT k × Pk be the solution of the system (11). Then, for 3
2 < s ≤ k + 1 we have

‖σ − σh‖0 ≤ C

( ∑
T∈Th

h
2(s−1)
T (‖u‖2

s,T + ‖σ‖2
s−1,T )

)1/2

. (15)

Furthermore, if ∇ · σ ∈ Hs−1(Th), we have

‖∇ · (σ − σh)‖0 ≤ C

( ∑
T∈Th

h
2(s−1)
T (‖u‖2

s,T + ‖∇ · σ‖2
s−1,T )

)1/2

, (16)

where the term ‖u‖2
s,T is dropped and s can be up to k + 2 in the case α ≡ 0.

Proof. By (11a), (11c) and the fact that (ΠT σ) · νT = Qh(σ|T · νT ) and [u] = 0 on e ∈ EI , we obtain for e ∈ ET

(σh − ΠT σ) · νe|e =

⎧⎪⎨⎪⎩
Qh

(
{κ∇(u − uh) · νe}

)
+ γh−1

e Qh[uh − u] for e ∈ EI ,

Qh

(
κ∇(u − uh) · νe

)
+ γh−1

e Qh(uh − u) for e ∈ ED,

0 for e ∈ EN ,

and for all τ ∈ (Pk−1(T ))2∫
T

(σh − ΠT σ) · τ dx =
∫

T

[
(σ − ΠT σ) + κ∇(u − uh)

]
· τ dx.

Now, applying Lemma 3.8 to these equations, we deduce that

‖σ − σh‖0 ≤ C

(
|||u − uh|||2 +

∑
T∈Th

(
‖σ − ΠT σ‖2

0,T + hT ‖∇(u − uh) · νT ‖2
0,∂T

))1/2

.

By using (6), (7) and (14), we obtain the first result.
For the second part we start with the error equation∫

T

(
∇ · (σ − σh) + α(u − uh)

)
wh dx = 0 ∀wh ∈ Pk(T ).

By taking wh = ∇ · (ΠT σ − σh) it is easy to derive that

‖∇ · (σ − σh)‖0,T ≤ C(‖∇ · (σ − ΠT σ)‖0,T + ‖α1/2(u − uh)‖0,T ),
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from which the second result follows by (8) and (14). �

Remark 3.10. Theorems 3.7 and 3.9 indicate that the error bound is optimal for u− uh but only suboptimal
for σ − σh with respect to the polynomial degree.

4. Method II: RT k × Pk+1 (k ≥ 0)

4.1. Discrete problem

In view of the suboptimality of the error estimate for σ − σh with respect to the polynomial degree, we are
naturally led to consider using the higher-order space Pk+1 for the scalar approximation. So our second method
reads as follows: find (σh, uh) ∈ RT k × Pk+1 satisfying∫

T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ (Pk−1(T ))n ⊕∇P̃k+1(T ), (17a)∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ Pk(T ), (17b)

and

σh · νe|e =

⎧⎪⎨⎪⎩
−Qh({κ∇uh · νe}) + γh−1

e Qh([uh]) for e ∈ EI ,

−Qh(κ∇uh · νe) + γh−1
e Qh(uh − gD) for e ∈ ED,

−QhgN for e ∈ EN .

(17c)

Recall that Qh is the L2-projection onto Pk(e).
It is not difficult to check that many nice properties of Method I are also valid for Method II. In particular,

note that a square matrix system is produced by introducing additional test functions from ∇P̃k+1(T ), since
we have

dim∇P̃k+1(T ) + dimPk(T ) = dimPk+1(T ).

Moreover, we can derive the following theorem similar to Theorem 3.1 which states that uh is the solution of
a slightly modified discontinuous finite element method. The proof proceeds exactly in the same way as in
Theorem 3.1 and is thus omitted.

Theorem 4.1. Let (σh, uh) ∈ RT k × Pk+1 be a solution of the scheme (17). Then uh ∈ Pk+1 is a solution of
the variational problem

B(uh, vh) = l(vh) ∀vh ∈ Pk+1, (18)

where we define the bilinear and the linear forms

B(u, v) :=
∑

T∈Th

∫
T

(κ∇u · ∇v + αu v) dx

−
∑
e∈EI

∫
e

Qh({κ∇u · νe})[v] ds −
∑

e∈ED

∫
e

Qh(κ∇u · νe)v ds

+
∑
e∈EI

γh−1
e

∫
e

Qh([u])[v] ds +
∑

e∈ED

γh−1
e

∫
e

Qh(u)v ds,

l(v) :=
∫

Ω

f̄v dx +
∫

ΓN

Qh(gN )v ds +
∑

e∈ED

γh−1
e

∫
e

Qh(gD)v ds,

and w means the L2-projection of w onto Pk(T ).
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Remark 4.2. The inclusion of the L2-projection Qh offers some computational advantages when calculating
the stiffness matrices. Indeed, in two space dimensions, all the line integrals on e ∈ Eh involve polynomials of
degree 2k + 1 as the integrands and thus can be calculated by the Gaussian quadrature

∫
e

φds =
k+1∑
l=1

wl,e φ(bl,e) ∀φ ∈ P2k+1(e),

where {bl,e}k+1
l=1 denote the k + 1 Gauss points and {wl,e}k+1

l=1 the corresponding weights. In particular, since φ

and Qh(φ) have the same values at the points {bl,e}k+1
l=1 if φ ∈ Pk+1(e), it follows that

∫
e

Qh([uh])[vh] ds =
k+1∑
l=1

wl,e [uh(bl,e)] [vh(bl,e)].

4.2. Error estimates

To derive error estimates for the scheme (17), we assume for simplicity that α is piecewise constant on Th.
Proceeding as in the proof of Lemma 3.5, we easily obtain for all vh ∈ Pk+1

B(vh, vh) ≥ C

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T + ‖α1/2v̄h‖2

0,Ω +
∑
e∈EI

h−1
e ‖Qh[vh]‖2

0,e +
∑

e∈ED

h−1
e ‖Qhvh‖2

0,e

)
:= C|||vh|||2∗.

It is easy to see that ||| · |||∗ also defines a norm for the space H1(Th). The uniform ellipticity for the new bilinear
form B(·, ·) is an immediate consequence of the following proposition.

Proposition 4.3. The two norms ||| · ||| and ||| · |||∗ are uniformly equivalent on Pk+1 (i.e. with constants
independent of the mesh size).

Proof. Fix vh ∈ Pk+1. From the property of L2 projections, it is obvious that |||vh||| ≥ |||vh|||∗. To prove the other
inequality, we note that

|||vh||| ≤ C(I1 + I2 + |||vh|||∗),
where

I1 := ‖α1/2(vh − v̄h)‖0,Ω, I2 :=
(∑

e∈EI

h−1
e ‖(I − Qh)[vh]‖2

0,e +
∑

e∈ED

h−1
e ‖(I − Qh)vh‖2

0,e

)1/2

.

By using the approximation property of L2 projections, it is not difficult to show that

I1 ≤ C

( ∑
T∈Th

α‖∇vh‖2
0,T

)1/2

≤ C|||vh|||∗,

I2 ≤ C

( ∑
T∈Th

∑
e∈ET

h−1
e ‖(I − Qh)vh|T ‖2

0,e

)1/2

≤ C

( ∑
T∈Th

‖∇vh‖2
0,T

)1/2

≤ C|||vh|||∗.

This completes the proof. �

Now we apply Lemma 3.3 to perform the error analysis for the new problem (18). It is sufficient to consider
the consistency error B(u, wh) − l(wh) as the remaining terms can be treated as previously. Using integration
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by parts on each T ∈ Th and the continuity of u and κ∇u · νe across e ∈ EI , together with (1), one can write

B(u, wh) − l(wh) =
∑

T∈Th

∫
T

(κ∇u · ∇wh + αūwh) dx −
∑
e∈EI

∫
e

Qh(κ∇u · νe)[wh] ds

−
∑

e∈ED

∫
e

Qh(κ∇u · νe)wh ds −
∫

Ω

f̄wh dx −
∫

ΓN

Qh(gN )wh ds

=
∑

T∈Th

(∫
T

κ∇u · ∇wh dx −
∫

∂T

Qh(κ∇u · νT )wh ds

)

+
∑

T∈Th

(∫
T

αūwh dx −
∫

T

f̄wh dx

)
=
∑

T∈Th

∫
∂T

(I − Qh)(κ∇u · νT )wh ds

+
∑

T∈Th

(∫
T

α(ū − u)wh dx +
∫

T

(f − f̄)wh dx

)
:= E1 + E2.

Let c be a piecewise constant approximation of wh such that

‖wh − c‖0,T + h
1/2
T ‖wh − c‖0,∂T ≤ ChT ‖∇wh‖0,T .

Then we obtain by using the fact that (ΠT σ) · νT = Qh(σ|T · νT )

E1 =
∑

T∈Th

∫
∂T

(I − Qh)(κ∇u · νT )(wh − c) ds

≤ C

( ∑
T∈Th

hT ‖(σ − ΠT σ) · νT ‖2
0,∂T

)1/2( ∑
T∈Th

‖∇wh‖2
0,T

)1/2

,

and

E2 =
∑

T∈Th

(∫
T

α(ū − u)(wh − c) dx +
∫

T

(f − f̄)(wh − c) dx

)

≤ C

( ∑
T∈Th

h2
T (‖u − ū‖2

0,T + ‖f − f̄‖2
0,T )

)1/2( ∑
T∈Th

‖∇wh‖2
0,T

)1/2

.

From these results and Lemma 3.3 it follows that

|||u − uh||| ≤ C|||u − vh||| + C

( ∑
T∈Th

hT ‖∇(u − vh) · νe‖2
0,∂T

)1/2

+ C

( ∑
T∈Th

(
hT ‖(σ − ΠT σ) · νT ‖2

0,∂T + h2
T (‖u − ū‖2

0,T + ‖f − f̄‖2
0,T )

))1/2

.

By (5)–(7) and the standard results for the L2 projection, we obtain the following theorem.
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Theorem 4.4. Let uh ∈ Pk+1 be the solution of the problem (18). Then we have for 3
2 < s ≤ k + 2

|||u − uh||| ≤ C

( ∑
T∈Th

h
2(s−1)
T (‖u‖2

s,T + ‖σ‖2
s−1,T + ‖f‖2

max(s−2,0),T )
)1/2

. (19)

The error bound for σ −σh can be derived in the same way as Method I and is stated in the following theorem.

Theorem 4.5. Let (σh, uh) ∈ RT k ×Pk+1 be the solution of the system (17). Then, for 3
2 < s ≤ k +2 we have

‖σ − σh‖0 ≤ C

( ∑
T∈Th

h
2(s−1)
T (‖u‖2

s,T + ‖σ‖2
s−1,T + ‖f‖2

max(s−2,0),T )
)1/2

. (20)

Furthermore, if ∇ · σ ∈ Hs−1(Th), we have

‖∇ · (σ − σh)‖0 ≤ C

( ∑
T∈Th

h
2(s−1)
T (‖u‖2

s,T + ‖σ‖2
s−1,T + ‖∇ · σ‖2

s−1,T + ‖f‖2
max(s−2,0),T )

)1/2

, (21)

where the term ‖u‖2
s,T + ‖σ‖2

s−1,T + ‖f‖2
max(s−2,0),T is dropped in the case α ≡ 0.

Remark 4.6. From the error estimates for Methods I and II established above, we can conclude that Method II
is more efficient than Method I in the sense that (1) with the same vector space Method II produces an optimal
vector approximation and a one-order higher scalar approximation than Method I, and (2) with the same scalar
space Method II uses a one-order lower vector space to achieve the same order of accuracy as Method I.

Remark 4.7. It is possible to make use of other H(div)-conforming spaces for the vector approximation, for
example, the Brezzi–Douglas–Marini space defined by

BDMr(T ) = (Pr(T ))n (r ≥ 1).

The degrees of freedom for ξh ∈ BDMr(T ) are given by the moments of order up to r of ξh · νT on ∂T{∫
∂T

ξh · νT µ ds : µ ∈ Rr(∂T )
}

and the moments of ξh on T {∫
T

ξh · τ dx : τ ∈ ∇Pr−1(T ) ⊕ Ψr(T )
}

,

where we set
Ψr(T ) = {τ ∈ (Pr(T ))n : ∇ · τ = 0, τ · νT = 0}.

Moreover, an operator ΠT : (Hs(T ))n → BDMr(T ) can be defined analogously to the RT space so that it
satisfies the approximation properties (7)–(8). We refer to [7–9] for a detailed discussion on this space.

For k ≥ 1, Method II based on the BDM space is formulated as follows: find (σh, uh) ∈ BDMk ×Pk+1 such
that ∫

T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ Ψk(T ) ⊕∇Pk+1(T ),∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ Pk−1(T ),
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and

σh · νe|e =

⎧⎪⎨⎪⎩
−Qh({κ∇uh · νe}) + γh−1

e Qh([uh]) for e ∈ EI ,

−Qh(κ∇uh · νe) + γh−1
e Qh(uh − gD) for e ∈ ED,

−QhgN for e ∈ EN ,

where Qh is the L2-projection onto Pk(e), as before.
It can be easily checked that all of the previous results hold for this case as well. The conditions (C1)–(C2)

(modified in a suitable way) are satisfied, and thus (1) a square matrix system is produced, and (2) σh can be
eliminated to yield the same discontinuous finite element method (18) for uh only, with one minor modification:

αuh and f̄ now means the L2-projections onto the lower-degree space Pk−1.

We should say that this modification does not deteriorate the order of convergence given in Theorems 4.4
and 4.5, since the term h2

T (‖u − ū‖2
0,T + ‖f − f̄‖2

0,T ) still gives optimal estimates.

4.3. Choice of stabilization parameter

In this subsection we demonstrate how the stabilization parameter γ > 0 can be calculated in a priori way
independently of the problem at hand and the triangulation of the domain. This can be done by some judicious
choice of the mesh parameter he, as illustrated below.

To simplify the discussion we assume that κ is piecewise constant on Th, and define the mesh parameter he

for e ∈ EI with e = ∂T + ∩ ∂T− by (set κ+ = κ|T+ and κ− = κ|T−)

he =
(

κ+ meas(e)
meas(T +)

+ κ− meas(e)
meas(T−)

)−1

, (22)

and for e ∈ ED with e ⊂ ∂T ,

he =
(

κT
meas(e)
meas(T )

)−1

. (23)

In establishing the uniform ellipticity for the bilinear form B(·, ·), we will use the following refined form of the
inverse inequality for e ∈ ET :

1
meas(e)

‖∇vh · νT ‖2
0,e ≤ C

1
meas(T )

‖∇vh‖2
0,T ∀vh ∈ Pk+1(T ). (24)

Here it is important to observe that the constant C > 0 depends only on the reference triangle T̂ and k, the
polynomial degree of ∇vh. For example, for k = 0, we obtain

1
meas(e)

‖∇vh · νT ‖2
0,e = |∇vh · νT |2 ≤ 1

meas(T )
‖∇vh‖2

0,T ,

which yields C = 1. For k ≥ 1, by using the scaling argument, we obtain for φ ∈ Pk(T )

1
meas(e)

‖φ‖2
0,e =

1
meas(ê)

‖φ̂‖2
0,ê ≤ Cê

1
meas(T̂ )

‖φ̂‖2
0,T̂

= Cê
1

meas(T )
‖φ‖2

0,T ,

where ê is the corresponding edge of e on ∂T̂ , and

Cê = max
φ̂∈Pk(T̂ )

meas(ê)−1‖φ̂‖2
0,ê

meas(T̂ )−1‖φ̂‖2
0,T̂

·

Thus it suffices to take C = maxê∈E(T̂) Cê.
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Proposition 4.8. Let C be the constant given in the inverse inequality (24). Then the uniform ellipticity for
B(·, ·) with the mesh parameters (22)–(23) holds true if γ is chosen such that

γ >
C(n + 1)

4
·

Proof. Fix vh ∈ Pk+1. For e ∈ EI with e = ∂T + ∩ ∂T−,∫
e

Qh({κ∇vh · νe})[vh] ds ≤ ‖{κ∇vh · νe}‖0,e‖Qh[vh]‖0,e

≤ 1
2
(
κ+‖∇vh · ν|T+‖0,e + κ−‖∇vh · ν|T−‖0,e

)
‖Qh[vh]‖0,e

≤ C1/2

2

(
κ+

(
meas(e)

meas(T +)

)1/2

‖∇vh‖0,T+ + κ−
(

meas(e)
meas(T−)

)1/2

‖∇vh‖0,T−

)
× ‖Qh[vh]‖0,e

≤ C1/2

2
(
‖κ1/2∇vh‖2

0,T+ + ‖κ1/2∇vh‖2
0,T−

)1/2
h−1/2

e ‖Qh[vh]‖0,e,

where we used (24) and (22). For e ∈ ED with e ⊂ ∂T ,∫
e

Qh(κ∇vh · νe)vh ds ≤ C1/2‖κ1/2∇vh‖0,T h−1/2
e ‖Qhvh‖0,e,

where we used (24) and (23). Summing over e ∈ EI ∪ ED, we obtain

∑
e∈EI

∫
e

Qh({κ∇vh · νe})[vh] ds+S
∑

e∈ED

∫
e

Qh(κ∇vh · νe)vh ds

≤ C1/2(n + 1)1/2

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T

)1/2

×
(∑

e∈EI

h−1
e ‖Qh[vh]‖2

0,e +
∑

e∈ED

h−1
e ‖Qhvh‖2

0,e

)1/2

≤ ε

( ∑
T∈Th

‖κ1/2∇vh‖2
0,T

)

+
C(n + 1)

4ε

(∑
e∈EI

h−1
e ‖Qh[vh]‖2

0,e +
∑

e∈ED

h−1
e ‖Qhvh‖2

0,e

)
,

since there are (n + 1) faces for each element. Hence it follows that

B(vh, vh) ≥ (1 − ε)
( ∑

T∈Th

‖κ1/2∇vh‖2
0,T

)
+ ‖α1/2v̄h‖2

0,Ω

+
(

γ − C(n + 1)
4ε

)(∑
e∈EI

h−1
e ‖Qh[vh]‖2

0,e +
∑

e∈ED

h−1
e ‖Qhvh‖2

0,e

)
.

Thus we can take 0 < ε < 1 to ensure the uniform ellipticity, if γ > C(n+1)
4 . �
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5. Extension to other elements

In this section we will discuss some extension of Method II to rectangular and prismatic elements. Since the
arguments in Section 4 directly carry over to these cases, we concentrate on describing how the methods are
constructed.

5.1. Rectangular elements

We will consider the RT and BDFM spaces for the vector approximation. We begin with a brief review of
the definitions of RT and BDFM spaces and their local degrees of freedom which are necessary to define our
methods. More details on these spaces can be found in [7, 10, 35].

Let Qr1,r2(T ) be the space of all polynomials on a rectangle T whose degrees are less than or equal to r1 in
x1 and r2 in x2, and Q̃r1,r2(T ) its subspace consisting of polynomials whose degree is exactly equal to r1 in x1

or r2 in x2. It is easy to see that

Qr1,r2(T ) = Qr1−1,r2−1(T ) ⊕ Q̃r1,r2(T ).

We set Qr := Qr,r and Q̃r(T ) := Q̃r,r. Similar definitions can be made for n = 3.
The rectangular RT space is defined to be

RT r(T ) =

{
Qr+1,r(T ) ×Qr,r+1(T ) for n = 2,

Qr+1,r,r(T ) ×Qr,r+1,r(T ) ×Qr,r,r+1(T ) for n = 3.

The degrees of freedom for ξh ∈ RT r(T ) are given by the moments which completely determine ξh · νe ∈ Qr(e)
on each e ∈ ET and the moments of ξh on T{∫

T

ξh · τ dx : τ ∈ Φr(T )
}

,

where

Φr(T ) =

{
Qr−1,r(T ) ×Qr,r−1(T ) for n = 2,

Qr−1,r,r(T ) ×Qr,r−1,r(T ) ×Qr,r,r−1(T ) for n = 3.

The BDFM space is defined as follows: for n = 2

BDFMr(T ) = (Pr+1(T ) \ {xr+1
2 }) × (Pr+1(T ) \ {xr+1

1 }),

and for n = 3

BDFMr(T ) = (Pr+1(T ) \ Homr+1(x2, x3)) × (Pr+1(T ) \ Homr+1(x1, x3)) × (Pr+1(T ) \ Homr+1(x1, x2)),

where Homr+1(·, ·) denotes the set of homogeneous polynomials of degree r + 1. The degrees of freedom for
ξh ∈ BDFMr(T ) are given by the moments which completely determine ξh · νe ∈ Pr(e) on each e ∈ ET and the
moments of ξh on T {∫

T

ξh · τ dx : τ ∈ (Pr−1(T ))n

}
.

Now we present the following methods which are the analogues of Method II for the RT and BDFM spaces
over rectangular grids:
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Find (σh, uh) ∈ RT k ×Qk+1 such that∫
T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ Φk(T ) ⊕∇Q̃k+1(T ), (25a)∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ Qk(T ) (25b)

and

σh · νe|e =

⎧⎪⎨⎪⎩
−Qh({κ∇uh} · νe) + γh−1

e Qh([uh]) for e ∈ EI ,

−Qh(κ∇uh · νe) + γh−1
e Qh(uh − gD) for e ∈ ED,

−QhgN for e ∈ EN ,

(25c)

where Qh is the L2-projection onto Qk(e).

Find (σh, uh) ∈ BDFMk × Pk+1 such that∫
T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ (Pk−1(T ))n ⊕∇P̃k+1(T ), (26a)∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ Pk(T ) (26b)

and

σh · νe|e =

⎧⎪⎨⎪⎩
−Qh({κ∇uh} · νe) + γh−1

e Qh([uh]) for e ∈ EI ,

−Qh(κ∇uh · νe) + γh−1
e Qh(uh − gD) for e ∈ ED,

−QhgN for e ∈ EN ,

(26c)

where Qh is the L2-projection onto Pk(e).

Remark 5.1. We note that uh is sought in Qk+1 for the RT space, whereas Pk+1 is used for the BDFM space.

Remark 5.2. The formulation (25), based on the RT space, can be applied to quadrilateral or hexahedral
elements as well. On these elements, we define

Qr1,r2(T ) = {v̂ ◦ F−1
T : v̂ ∈ Qr1,r2(T̂ )},

RT r(T ) = {(detBT )−1BT τ̂ ◦ F−1
T : τ̂ ∈ RT r(T̂ )},

where T̂ is the unit cube in R
n and FT : T̂ → T is the invertible bilinear or trilinear mapping with BT = DFT .

The interior degrees of freedom for RT r(T ) are provided by the moments with respect to the set

Φr(T ) = {B−t
T τ̂ ◦ F−1

T : τ̂ ∈ Φr(T̂ )}.

In particular, since
∇v = B−t

T ∇̂v̂ ◦ F−1
T where v = v̂ ◦ F−1

T ,

we have
Φk(T ) ⊇ ∇Qk(T ),

which implies that the condition (C1) (modified in a suitable way) is satisfied.
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5.2. Prismatic elements

We consider the space introduced by Nedelec [33]. The spaces developed by Chen and Douglas [16] can be
similarly treated.

Let T be a prism whose base is a triangle in the (x1, x2)-plane, with three vertical edges parallel to the x3

axis. By Pl,m(T ) we denote the space of all polynomials whose degrees are at most l in (x1, x2) and at most m

in x3, and by P̃l,m(T ) its subspace consisting of polynomials whose degrees are exactly equal to l in (x1, x2) or
to m in x3. It is easy to see that

Pl,m(T ) = Pl−1,m−1(T ) ⊕ P̃l,m(T ).
Let RT l,m(T ) denote the space of pairs of polynomials which belong to the triangular RT space of order l,
(Pl(T ))2 ⊕ (x1, x2)P̃l(T ), for x3 fixed, and are of degree at most m in x3.

We define the Nedelec space NEr(T ) to be

NEr(T ) = {τ = (τ1, τ2, τ3) : τ1, τ2 ∈ RT r,r(T ), τ3 ∈ Pr,r+1}.

As for the degrees of freedom, we have

ξh · νe ∈ Pr(e) for the two horizontal faces;

ξh · νe ∈ Qr(e) for the three vertical edges,

and the interior degrees of freedom are provided by the moments{∫
T

ξh · τ dx : τ ∈ Φr(T )
}

,

where Φr(T ) = (Pr−1,r(T ))2 × Pr,r−1(T ).
Now we propose the following method: find (σh, uh) ∈ NEk × Pk+1,k+1 satisfying∫

T

(σh + κ∇uh) · τ dx = 0 ∀τ ∈ Φk(T ) ⊕∇P̃k+1,k+1(T ), (27a)∫
T

(∇ · σh + αuh)w dx =
∫

T

fw dx ∀w ∈ Pk,k(T ), (27b)

and

σh · νe|e =

⎧⎪⎨⎪⎩
−Qh({κ∇uh} · νe) + γh−1

e Qh([uh]) for e ∈ EI ,

−Qh(κ∇uh · νe) + γh−1
e Qh(uh − gD) for e ∈ ED,

−QhgN for e ∈ EN ,

(27c)

where Qh is the L2-projection onto Pk(e) for the two horizontal faces and onto Qk(e) for the three vertical
edges.

6. Numerical results

In this section we present numerical results for two test problems on the unit square Ω = (0, 1)2 in order to
demonstrate the performance of our mixed finite volume methods. For each test problem the true solution is
specified together with the corresponding problem data and compared with the computed numerical solutions.
Numerical experiments are carried out with polynomials of degree k = 1, 2, 3 for the scalar variable, that is,

Method I with RT 1 × P1, RT 2 × P2, RT 3 × P3

Method II with RT 0 × P1, RT 1 × P2, RT 2 × P3.
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h

Figure 1. Uniform triangular grid of size h.

The stabilization parameter γ is chosen to be 5, 10 and 15 for k = 1, 2 and 3, respectively. We only consider
a sequence of uniform triangular grids generated by partitioning Ω into the squares of equal size h and then
dividing each square into two triangles by the diagonal from the lower left corner to the upper right corner, as
shown in Figure 1.

The stiffness matrices and the load vectors for the variational formulation (12) or (18) are calculated exactly
by means of high order quadrature rules. For the solution method of the resulting linear systems, we use the
generalized minimum residual method (GMRES) with the variable V-cycle multigrid preconditioner (cf. [30])
to compute the scalar solution uh. The stopping criterion is that the residual norm should be less than 10−15.
The vector solution σh is then recovered in a local manner from (11a), (11c) for Method I and from (17a), (17c)
for Method II. We found that this postprocessing is virtually cost-free.

Below we report the scalar errors measured in the broken H1 and L2 norms and the vector errors and their
divergence measured in the L2 norm, where the broken H1 norm is obviously defined by

|u − uh|1,h =
( ∑

T∈Th

‖∇(u − uh)‖2
0,T

)1/2

.

Assuming that the errors are of the form Chβ , we also estimate the values of β, the order of convergence, by
using the least-squares fit to the computed errors.

6.1. Simple Poisson problem

Our first test problem is the simple Poisson problem with the homogeneous Dirichlet boundary condition

−∆u = f in Ω,

u = 0 on ∂Ω,

where we chose the smooth solution
u(x, y) = sin(πx) sin(πy)

and the corresponding right-hand side f(x, y) = 2π2 sin(πx) sin(πy).
The numerical results for Method I are reported in Tables 1–3. We first observe the optimal orders of

convergence in the broken H1 error of the scalar and in the L2 error of the divergence of the vector for all
k = 1, 2, 3, as predicted by the theory. Note that the latter error is, in fact, a priori determined by the right-
hand side f , since α ≡ 0. For the L2 error of the scalar (not handled in this work), we see that the convergence
is optimal for the odd degrees k = 1, 3, whereas it is one order less for the even degree k = 2. On the other
hand, for the L2 error of the vector, one order less convergence is observed for all degrees k = 1, 2, 3, which
indicates that our theoretical prediction (cf. Thm. 3.9) cannot be improved.
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Table 1. Method I: RT 1 × P1 for simple Poisson problem.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 3.225e–1 7.263e–3 2.521e–1 9.772e–2

1/16 1.635e–1 1.939e–3 1.314e–1 2.453e–2

1/32 8.216e–2 5.005e–4 6.679e–2 6.139e–3

1/64 4.118e–2 1.271e–4 3.364e–2 1.535e–3

1/128 2.062e–2 3.203e–5 1.688e–2 3.838e–4

order 0.992 1.958 0.976 1.998

Table 2. Method I: RT 2 × P2 for simple Poisson problem.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 2.583e–2 1.359e–3 2.437e–2 5.422e–3

1/16 6.520e–3 3.128e–4 6.309e–3 6.804e–4

1/32 1.636e–3 7.533e–5 1.601e–3 8.513e–5

1/64 4.097e–4 1.852e–5 4.027e–4 1.065e–5

1/128 1.025e–4 4.593e–6 1.010e–4 1.331e–6

order 1.994 2.049 1.979 2.998

Table 3. Method I: RT 3 × P3 for simple Poisson problem.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 1.471e–3 2.204e–5 1.295e–3 2.369e–4

1/16 1.845e–4 1.348e–6 1.620e–4 1.486e–5

1/32 2.309e–5 8.322e–8 2.023e–5 9.293e–7

1/64 2.886e–6 5.170e–9 2.527e–6 5.810e–8

1/128 3.605e–7 3.205e–10 3.158e–7 3.631e–9

order 2.998 4.016 3.000 3.998

Tables 4–6 contain the corresponding numerical results for Method II. By comparing them with those of
Method I, we observe that both methods display the same orders of convergence for the scalar error and for the
L2 error of the vector, when applied to the same-degree polynomials for the scalar variable. More specifically,
Method II achieves the optimal order of convergence for the L2 error of the vector with one lower degree for
the vector variable than Method I, although Method I gains one higher order of convergence in the divergence
of the vector.

6.2. Discontinuous coefficient

In the second test problem we deal with the discontinuous coefficient given by

κ(x, y) =

{
1.0 if (x − 1/2)(y − 1/2) > 0,

100.0 if (x − 1/2)(y − 1/2) < 0.
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Table 4. Method II: RT 0 × P1 for simple Poisson problem.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 3.236e–1 8.215e–3 2.517e–1 1.286e+0

1/16 1.624e–1 2.087e–3 1.259e–1 6.452e–1

1/32 8.126e–2 5.252e–4 6.296e–2 3.229e–1

1/64 4.064e–2 1.317e–4 3.148e–2 1.615e–1

1/128 2.032e–2 3.298e–5 1.574e–2 8.075e–2

order 0.998 1.990 0.999 0.998

Table 5. Method II: RT 1 × P2 for simple Poisson problem.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 2.448e–2 1.012e–3 1.475e–2 9.772e–2

1/16 6.144e–3 2.168e–4 3.599e–3 2.453e–2

1/32 1.538e–3 5.072e–5 8.903e–4 6.139e–3

1/64 3.846e–4 1.234e–5 2.215e–4 1.535e–3

1/128 9.614e–5 3.046e–6 5.526e–5 3.838e–4

order 1.998 2.088 2.014 1.998

Table 6. Method II: RT 2 × P3 for simple Poisson problem.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 1.440e–3 2.040e–5 7.101e–4 5.422e–3

1/16 1.799e–4 1.242e–6 8.425e–5 6.804e–4

1/32 2.246e–5 7.669e–8 1.025e–5 8.513e–5

1/64 2.806e–6 4.766e–9 1.264e–6 1.065e–5

1/128 3.506e–7 2.964e–10 1.570e–7 1.331e–6

order 3.001 4.016 3.034 2.998

The true solution is continuous and piecewise smooth which is chosen as follows:

u(x, y) =
1

κ(x, y)
sin(2πx) sin(2πy).

We again set α ≡ 0 and impose the homogeneous Dirichlet boundary condition on ∂Ω. Note that σ = −κ∇u is
smooth on the whole domain, in spite of the discontinuity of κ.

To take account of the discontinuity of κ, the penalty parameter γh−1
e is multiplied by the additional factor

κ+ + κ−

2
for e = ∂T + ∩ ∂T− and κT for e = ∂T ∩ ∂Ω

which is similar to the one defined in Section 4.3.
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Table 7. Method I: RT 1 × P1 for discontinuous coefficient.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 9.647e–1 2.385e–2 1.390e+0 1.539e+0

1/16 4.795e–1 6.032e–3 6.587e–1 3.909e–1

1/32 2.373e–1 1.497e–3 3.067e–1 9.812e–2

1/64 1.178e–1 3.715e–4 1.453e–1 2.456e–2

1/128 5.864e–2 9.246e–5 7.029e–2 6.140e–3

order 1.010 2.004 1.079 1.993

Table 8. Method I: RT 2 × P2 for discontinuous coefficient.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 1.511e–1 4.234e–3 2.367e–1 1.709e–1

1/16 3.773e–2 9.006e–4 5.649e–2 2.169e–2

1/32 9.374e–3 2.124e–4 1.361e–2 2.722e–3

1/64 2.333e–3 5.210e–5 3.325e–3 3.406e–4

1/128 5.818e–4 1.294e–5 8.210e–4 4.258e–5

order 2.005 2.081 2.042 2.993

Numerical results with k = 1, 2 are presented in Tables 7–8 for Method I and in Tables 9–10 for Method
II which show the same convergence behavior obtained for the simple Poisson problem. Finally, we note that
Method II yields slightly better results in the L2 error of the vector.

7. Conclusions

In the present work we have introduced and analyzed new mixed finite volume methods on non-staggered grids
in which H(div)-conforming approximations are used for the vector variable and discontinuous approximations
are used for the scalar variable. The construction is general enough to cover all the existing vector approximation
spaces.

Our new methods have some distinct advantages over other mixed methods such as the same local mass
conservation property of mixed finite element methods and local elimination and recovery of the vector variable.
In particular, one can obtain discontinuous finite element methods for the scalar variable only in which the usual
symmetrizing or anti-symmetrizing terms are missing. In doing so, it has turned out that the L2 projection
of the interface averages and jumps onto the lower-order normal trace space plays a crucial role in recovering
optimal vector approximations.

Although our method gives rise to a nonsymmetric matrix system even for the symmetric problem, this is no
drawback when applied to the convection-diffusion problem, and we can solve it in an efficient way by means
of the Krylov subspace method like GMRES with preconditioners, e.g., from [29, 30]. This will be the subject
of a forthcoming paper.
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Table 9. Method II: RT 0 × P1 for discontinuous coefficient.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 9.025e–1 2.323e–2 1.013e+0 1.014e+1

1/16 4.577e–1 5.928e–3 5.043e–1 5.143e+0

1/32 2.297e–1 1.490e–3 2.519e–1 2.581e+0

1/64 1.150e–1 3.730e–4 1.260e–1 1.292e+0

1/128 5.747e–2 9.327e–5 6.296e–2 6.460e–1

order 0.993 1.991 1.001 0.993

Table 10. Method II: RT 1 × P2 for discontinuous coefficient.

h |u − uh|1,h ‖u − uh‖0 ‖σ − σh‖0 ‖∇ · (σ − σh)‖0

1/8 1.379e–1 3.480e–3 1.346e–1 1.539e+0

1/16 3.479e–2 6.404e–4 3.142e–2 3.909e–1

1/32 8.710e–3 1.427e–4 7.471e–3 9.812e–2

1/64 2.177e–3 3.450e–5 1.817e–3 2.456e–2

1/128 5.442e–4 8.548e–6 4.476e–4 6.140e–3

order 1.996 2.155 2.057 1.993
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