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1. Introduction

Incompressible fluid flow differs from compressible fluid flow in that one of the equations of evolution is
replaced by the constraint that the flow be divergence-free. The mathematical theory of low Mach number flow
attempts to bridge the gap between those two different descriptions of fluid flow by determining in what sense
compressible flows tend to incompressible ones as the Mach number tends to zero. That theory will be reviewed
here using as a starting point the physically inconsistent (cf. [34], pp. 14–15) but mathematically convenient
equations

ρt + ∇ · (ρU) = 0 (1.1)

ρUt + ρU · ∇U + ∇P = µ∆U + (µ+ λ)∇(∇· U) (1.2)

St + U · S = 0 (1.3)

for compressible flow. Here ρ is the density of the fluid, U its velocity, P the pressure, and S the specific entropy.
Equations (1.1)–(1.3) must be supplemented by an equation of state giving one of the thermodynamical variables
ρ, P , or S in terms of the other two. For simplicity the viscosity coefficients µ and µ+λ have been taken to be
nonnegative constants. In essence, this framework allows us to treat simultaneously the three most commonly-
studied models: the isentropic compressible Euler equations, for which µ = 0 = λ and P depends solely on ρ so
that the equation for S is not needed, the non-isentropic compressible Euler equations, for which the viscosity
coefficients still vanish but the equation of state is generalized to ρ = ρ(P ,S), and the barotropic compressible
Navier-Stokes equations, for which the equation of state relating P to ρ is retained and the entropy equation is
again omitted but the viscosity coefficients µ and µ+ λ are positive.

After rescaling equations (1.1)–(1.3) so as to introduce a global Mach number or compressibility parameter,
taking the limit as that parameter tends to zero yields, at least formally, equations for incompressible flow.
The exact form of those equations depends on certain additional assumptions about the scales of the problem
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introduced by the rescaling procedure and the initial data. Various cases and extensions of the theory will be
described below.

2. Early history of the theory of low-Mach-number flow

The first theory of low Mach number flow, due to Janzen and Rayleigh (see [41], Sect. 47, [51]) for expositions
and references) dealt with steady irrotational flow. Their expansion in powers of the Mach number was used
both as a computational tool and as a method for proving the existence of compressible flow. Sirovich [47]
extended the use of such expansions to non-steady flows, albeit on the time scale of the fast acoustic waves
rather than the slower scale of the flow of the fluid particles. The effect of slight compressibility on that longer
scale was first considered in the context of the numerical method of artificial compressibility [9, 48], in which
the true equation(s) for the evolution of the thermodynamical variables are replaced by a simpler linear model
equation for P .

The first general proof of the convergence of compressible fluid flow to incompressible flow was given by
Ebin [14] using a differential-geometric formulation that models constraints as a limit of large potentials in dy-
namical systems. This incompressible limit and other singular limits were formulated directly in terms of partial
differential equations by Kreiss [7, 32] using the bounded derivative method, which employs transformations to
normal forms and places severe restrictions on the initial data, although those restrictions were later relaxed [6].
Finally, Klainerman & Majda [28] proved the convergence of compressible to incompressible flow by directly
obtaining estimates for the scaled form of the partial differential equations; their approach has been followed in
most subsequent work.

3. Scaling

3.1. Dimensional scaling

The Mach number can be introduced into the equations in at least two different ways. First, we may consider
fluids having varying equations of state (e.g. [14]) and, for viscous fluids, also varying viscosity coefficients. From
this point of view one thinks of a particular fluid, such as water perhaps, as being “nearly incompressible”.
Alternatively or in addition, we can consider flows of varying sizes on varying time and spatial scales. One
then thinks of certain flows as having a low global Mach number, although other flows of the same fluid may
be quite compressible. We shall use the latter procedure here since it shows that any fluid may exhibit nearly
incompressible behavior.

Furthermore, introducing the Mach number via scaling is a richer procedure that can accommodate more
complex flows because it is possible to include more than one scale for any dimension. In particular, follow-
ing [30, 37] we shall consider flows that may have two length scales L1 and L2, where

δ :=
L1

L2
� 1. (3.1)

For the moment a single velocity scale U will be used; adding additional velocity scales is essentially equivalent
to making an asymptotic expansion in the dependent variables, which will be considered later. Although,
anticipating that U will be small, we could consider velocities of the form U = U0 + Uu(t,x) rather than just

U = Uu(t,x), (3.2)

the added constant velocity U0 can be eliminated by using the Galilean invariance of system (1.1)–(1.3). For
the pressure, however, a leading constant term cannot be eliminated, so we will take the pressure to have the
form

P = P0 + Pp(t,x). (3.3)
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Although we shall soon see that P should be small, (3.3) still allows for the possibilities that P = 1 with
P0 > max |p| or even that P is large, in which case P0 may as well be taken to equal to zero. However,
to the extent that we are still concerned with the physical accuracy of the system under discussion, scalings
for which P , and hence also ρ, takes small or large values cause difficulties because the viscosity coefficients
then become pressure-dependent [50]. Taking P0 nonzero and P sufficiently small so that the pressure remains
bounded away from zero avoids this problem. Since the sound speed is then of order one, the Mach number M ,
defined as the maximum of the ratio of absolute fluid velocity to sound speed, then satisfies

M = O(U). (3.4)

All the preceding scalings of the independent and dependent variables are essentially conditions on sequences of
initial data. For example, for the case of a single length scale L and velocity scale U , the initial velocity U0(X )
should be such that the non-dimensionalized velocity u0(x) := U0(Lx)

U is uniformly bounded in some appropriate
space. In contrast, the appropriate time scale(s) are determined not just by the initial data but by the system
of PDEs.

3.2. Determination of the time scales

Although substituting the scalings of all the variables into (1.1)–(1.3) would lead to rather long equations,
we only need to know the sizes of the resulting terms in order to determine the appropriate time scales. Because
the scaling of the density depends on the form assumed for the equation of state, it is convenient to consider
instead the scaling of the pressure equation

1
ρ

∂ρ

∂P [Pt + U · ∇P ] + ∇ · U = 0 (3.5)

derived from (1.1) and (1.3). Although it is usually most convenient to non-dimensionalize equations when
scaling them, since we are trying to discover the appropriate time scales it is more convenient here to rescale the
equations to all have the same dimension time−1. For the momentum equation (1.2) this can be accomplished
by multiplying by 1

ρU , where ρ = O(1) is a typical density and U is given by (3.2). Although the pressure (3.5)
has already been formulated so as to have that dimensionality, it will nevertheless be convenient to multiply
it by the non-dimensional factor P0

P , where P0 and P are given in (3.3). The non-dimensional factor P0
ρ

∂ρ
∂P

appearing in the resulting pressure equation is of order one, and the dimensional factors P0, 1/ρ, and ν := µ/ρ
appearing in the resulting pressure or momentum equations have independent dimensions, whose units may
therefore be chosen to make them all also of order one. In the following, any equation between quantities of
different dimensions is understood to hold after multiplying one side by an appropriate combination of thoseO(1)
dimensional quantities. The terms appearing in the rescaled equations then have the following sizes:

Type of Term: Time Derivative Convection Pressure Compression Dissipation

Original Form: 1
ρ

∂ρ
∂PPt, ρUt

1
ρ

∂ρ
∂P U · ∇P , ρU · ∇U ∇P ∇ · U µ∆U , (µ+ λ)∇(∇· U)

Scaled Sizes: O
(

1
Tj

)
O
(

U
Lj

)
O
(

P
ULj

)
O
(

U
PLj

)
O
(

1
LjLk

)

Since every rescaled term has the dimension time−1, each of the last four sizes in the table determines a time
scale, at least after normalizing by the O(1) dimensional constants as discussed above. In particular, let us
define T1 to be the convective time

T1 :=
L1

U
,

T2 to be the pressure, or acoustic time

T2 :=
UL1

P
,
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and ε to be the ratio of those time scales, i.e.,

ε :=
T2

T1
=
U2

P
· (3.6)

After non-dimensionalizing the pressure and momentum equations by multiplying by T1, the terms in those
equations have the sizes:

Type of Term: Time Derivative Convection Pressure Compression Dissipation

Normalized Sizes: 1, 1
ε 1, δ 1

ε , δ
ε

1
P , δ

P
1

UL1
, δ

UL1
, δ2

UL1

where δ and ε are defined in (3.1) and (3.6), respectively.

3.3. Rich scaling

As noted above, as long as P0 = O(1) and P is at most O(1), the Mach number is essentially the velocity
scale U , and these together imply that for low Mach number flow ε � 1. The non-dimensionalized equations
therefore formally yield separate equations on at least the two scales O(1

ε ) and O(1). As for the terms whose
size in relation to powers of ε has not yet been fixed, any term that is � O(1) but not exactly O(1

ε ) would
produce a separate equation requiring a new time scale, while any term that is � O(1) is negligible to leading
order.

The most interesting choices of the remaining parameters are the “rich limits”, which have as many terms
as possible having sizes O(1

ε ) or O(1), since those terms are then included in the equations on those scales. In
particular, in order to make the term O( δ

ε ) be of order one, we choose the length ratio to be

δ = ε. (3.7)

The richest choice of the pressure variation scale is then

P = ε, (3.8)

which makes each of the pressure scales equal one of the scales O(1
ε ) or O(1) already present. Moreover, the

alternative scaling P = O(1), which would make one pressure scale equal a scale already present, seems to make
the initial value problem not be uniformly well posed, because the symmetrizer of the resulting equations is
O(1

ε ) rather than O(1).
Since (3.6) plus (3.8) imply that

U = ε, (3.9)
(3.4) then shows that ε equals the Mach number up to an O(1) factor.

Turn next to the choice of the length scale: Although the choices L1 = 1 or L1 = ε are the richest since in
view of (3.7) and (3.9) they makes viscous terms appear on both the O(1

ε ) and O(1) scales, the presence of
viscosity on the fast O(1

ε ) time scale would make the solution dissipate to zero before the convective O(1) time
scale was reached. We therefore take

L1 =
1
ε

(3.10)

if viscosity is present. In the inviscid case the basic length scale L1 remains arbitrary.

3.4. Multiple-scale scaled equations

Assuming for convenience that (3.10) holds even in the inviscid case, the above rescalings of the dependent
and independent variables all have the form

V(T ,X ) = V0 + εṽ(ε2T , εX ), ṽ(t, x) = v

(
t,
t

ε
,x, εx

)
= v(t, τ,x,y)

∣∣
τ= t

ε ,y=εx
. (3.11)
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In order to obtain the scaled equations we will not only substitute rescalings of the form (3.11) into the original
PDEs, but we will also assume that the resulting equations hold for all values of y and all nonnegative values of τ ,
not only when those variables equal εx and t/ε, respectively. As a consequence, the rescaled PDEs so obtained
involve multiple time and spatial variables. Although the validity of those rescaled equations is therefore not
necessary in order for the original equations to hold, it is certainly sufficient.

Since the set of dependent variables used in the barotropic and non-isentropic cases differ, we consider the
resulting equations separately for those two cases.

3.4.1. Barotropic viscous flow

When the equation of state has the form P = P(ρ), then (3.3) and (3.8) imply that the density has the form

ρ = ρ0 + εr(t, x), (3.12)

and it is then convenient to take ρ to equal ρ0. Substituting (3.9) into (3.2), extending the result and (3.12) to
multiple independent variables of the form (3.11), and substituting the results into (1.1)–(1.2) yields

1
ε
rτ + rt + u · ∇x r + εu · ∇y r +

(ρ0 + εr)
ε

∇x · u + (ρ0 + εr)∇y · u = 0 (3.13)

and

(ρ0 + εr)
[
1
ε
uτ + ut + u · ∇x u + εu · ∇y u

]
+

P ′(ρ0 + εr)
ε

∇x r + P ′(ρ0 + εr)∇y r

= µ
[
∆xu + 2ε∇x · ∇y u + ε2∆yu

]
+ (µ+ λ)

[
∇x∇x · u + ε

(
∇x∇y · u + ∇y ∇x · u

)
+ ε2 ∇y∇y · u

]
. (3.14)

3.4.2. Non-isentropic inviscid flow

Since the equation for the entropy is linear in S, the scale S of the entropy variation is arbitrary, and will be
assumed here to be S = 1 so that the transformation for the entropy corresponding to (3.3) or (3.2) is simply
S = s. Substituting (3.8) and (3.9) into those relations, extending as in (3.11), and substituting the results and
the equation of state ρ = ρ(P ,S) into (3.5) and (1.2)–(1.3) yields

1
ρ

∂ρ

∂P

[
1
ε
∂τp+ ∂tp+ u · ∇x p+ εu · ∇y p

]
+

1
ε
∇x · u + ∇y · u = 0 (3.15)

ρ

[
1
ε
∂τu + ∂tu + u · ∇x u + εu · ∇y u

]
+

1
ε
∇x p+ ∇y p = 0 (3.16)

1
ε
∂τs+ ∂ts+ u · ∇x s+ εu · ∇y s = 0, (3.17)

where ρ and its derivative are evaluated at (P0 + εp, s).

4. Ansatz and formal limit

4.1. Multiple-scale expansion formalism

The simplest way to derive the equations satisfied in the limit when ε→ 0 is to first expand all the dependent
variables in powers of ε as functions of the multiple independent variables (cf. [4, 29, 37, 40, 52]):

v = v0(t, τ, y, x) + εv1(t, τ, y, x) + . . . , (4.1)

and then expand the resulting equations in powers of ε as well. Even though the expansion (4.1) may not always
be valid (due to small-divisor or other problems), it is, as noted in [26], still useful for deriving the correct limit
equations . In particular, it will not be sufficient to consider only the zeroth-order term v0.
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To simplify the presentation, the barotropic, possibly viscous, equations (3.13)–(3.14) will be considered first.
Substituting expansions of the form (4.1) for r and u into those equations yields

r0τ + ρ0∇x · u0 = 0 (4.2)

ρ0u0
τ + P ′(ρ0)∇x r

0 = 0 (4.3)

as the O(1
ε ) equations, and

r1τ + ρ0∇x · u1 + r0t + u0 · ∇x r
0 + r0 ∇x · u0 + ρ0∇y · u0 = 0 (4.4)

ρ0u1
τ + P ′(ρ0)∇x r

1 + r0u0
τ + ρ0

[
u0

t + u0 · ∇x u0
]
+ P ′′(ρ0)r0∇x r

0 + P ′(ρ0)∇y r
0 (4.5)

= µ∆xu
0 + (µ+ λ)∇x ∇x · u0 (4.6)

as the O(1) equations.

4.2. Sublinear growth condition

As is typical of singular perturbation problems, the O(1) equations involve the first-order perturbations r1

and u1, which therefore need to be eliminated in order to obtain a closed set of equations for the limit solution r0

and u0. The standard method to do so is by the sublinear growth condition, i.e., the condition that the first-order
perturbation terms be o(τ), so that the ordering of the expansion remain correct up through the value O(1

ε ) of
the fast time τ actually occurring in the expansion (3.11). Even when the zeroth-order solution is independent
of τ , which is known as the slow case, the first-order perturbations generally will depend on that variable, so
that the sublinear growth condition remains relevant.

In order to calculate the sublinear growth condition, define the full vector of solution components

v :=
(
r
u

)
,

the “fast” operator

L := −
(

0 ρ0∇x·
P′(ρ0)

ρ0
∇x 0

)

that allows the O(1
ε ) equations (4.2)–(4.3) to be written succinctly as

v0
τ = Lv0, (4.7)

the solution operator

S(τ) := eτL = F
−1
x e

τ

(
0 −iρ0k·

−i
P′(ρ0)

ρ0
k 0

)

Fx, (4.8)
of (4.7), where Fx denotes the Fourier transform with respect to x with dual variable k, and the averaging
operator

Mτ [f ] := lim
τ→∞

1
τ

∫ τ

0

f(t, τ ′, x, y) dτ ′.

Then the O(1) equations (4.4)–(4.5) have the form

v1
τ − Lv1 = f0, (4.9)

where

f0 := −
(

r0t + u0 · ∇x r
0 + r0 ∇x · u0 + ρ0∇y · u0

r0

ρ0
u0

τ + u0
t + u0 · ∇x u0 + P′′(ρ0)

ρ0
r0∇x r

0 + P′(ρ0)
ρ0

∇y r
0 − µ

ρ0
∆xu

0 − µ+λ
ρ0

∇x∇x · u0

)
. (4.10)
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The solution v1 to (4.9) can be written as

v1 = S(τ)v1(t, 0,x,y) +
∫ τ

0

S(τ − τ ′)f(t, τ ′,x,y) dτ ′

= S(τ)
[
v1(t, 0,x,y) +

∫ τ

0

S(−τ ′)f(t, τ ′,x,y) dτ ′
]
.

Since ÃL is antisymmetric, where

Ã =

( 1
ρ0

0

0 ρ0
P′(ρ0)I

)
,

the solution operator S is unitary with respect to the inner product

(g, Ãh) :=
∫

gTÃh dx,

which implies that v1 is sublinear if S(−τ)v1 is. In addition, v(t, 0, x, y) does not depend on τ , so the sublinearity
condition limτ→∞ 1

τ v1 = 0 reduces to the condition that

0 = lim
τ→∞

1
τ

∫ τ

0

S(−τ ′)f0(t, τ ′,x,y) dτ ′ = Mτ [S(−τ)f0]. (4.11)

Using once more the fact that S is unitary, condition (4.11) can be written in the form

0 = E[f0] := S(τ)Mτ [S(−τ)f0], (4.12)

which is convenient because the operator E is a projection. Specifically [44], E is the projection operator onto
terms of the form

S(τ)f(t,x,y) (4.13)

with respect to the inner product

〈g,h〉 := lim
τ→∞

1
τ

∫ τ

0

(g, Ãh) dτ ′.

Since the O(1
ε ) equations (4.7) say that v0 has the form (4.13), this alternative characterization of E yields

v0 = Ev0, (4.14)

while combining (4.12) with (4.10) yields

(
0
0

)
= E

(
r0t + u0 · ∇x r

0 + r0 ∇x · u0 + ρ0∇y · u0

r0

ρ0
u0

τ + u0
t + u0 · ∇x u0 + P′′(ρ0)

ρ0
r0∇x r

0 + P′(ρ0)
ρ0

∇y r
0 − µ

ρ0
∆xu

0 − µ+λ
ρ0

∇x∇x · u0

)
(4.15)

as the equation satisfied by the limit solution (r0, u0).

4.3. Calculation of the projection operator

In order to write equation (4.15) more explicitly, note that the zero eigenspace of L is spanned by the
x-independent density components and the divergence-free velocity vectors. The restriction of S to that subspace
is the identity operator, so by (4.12) the restriction of E to that subspace is simply Mτ . Since this part of E

projects onto functions that do not depend on the fast time τ , it is called the slow part of E. The slow part
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of E is thus the projection onto functions r that are independent of x and τ and onto functions u that are
independent of τ and divergence-free:

Eslow =
(

Mτ,x 0
0 Mτ Px

)
, (4.16)

where Mz denotes the average with respect to the variables z and Pxw := w − ∇x ∆−1
x ∇x · w is the usual

projection onto divergence-free vector fields.
In order to calculate the “fast” part of E that projects onto functions that do depend on τ , return to

the Fourier-space representation of the solution operator S in (4.8), and note that for each nonzero k the
matrix L̂(k) := FxLF

−1
x has exactly two nonzero eigenvalues. The union of the corresponding eigenvectors over

all k spans a “fast” space on which the solution to (4.7) truly depends on τ . Those nonzero eigenvalues and
corresponding eigenvectors w(±)

(k) are

L̂w(±)
(k) =

(
0 −ρ0ik·

−P′(ρ0)
ρ0

ik 0

)(
∓ iρ0|k|√

P′(ρ0)

ik

)
= ±i√P′(ρ0)|k|

(
∓ iρ0|k|√

P′(ρ0)

ik

)
. (4.17)

Restricted to the span of those eigenvectors, the projection E singles out those functions of the form

c(±)(t,k,y)e±i
√

P′(ρ0) |k|τw(±)
(k) . (4.18)

Note that for each k the two vectors w(±)
(k) are orthogonal with respect to the inner product gT Ãh. Also, for

functions r0 having the τ -dependence indicated in (4.18), ∓ iρ0√
P′(ρ0)

|k|r0 = − ρ0
P′(ρ0)∂τ r

0. Hence the fast part of

the projection E is

Efast = F
−1
x




∑
±

1

(w(±)
(k) )TÃw

(±)
(k)

w
(±)
(k) e±i

√
P′(ρ0) |k|τ

Mτ

[
e∓i

√
P′(ρ0) |k|τ (w(±)

(k) )TÃFx(I − Mx) ·
]




=
P ′(ρ0)
2ρ0

(
− ρ0

P′(ρ0)∂τ

∇x

)
∆−1

x E∂2
τ−P′(ρ0)∆x

(
− 1

P′(ρ0)∂τ
ρ0

P′(ρ0)∇x·
)

=
1
2

(
− ρ0

P′(ρ0)
∂τ

∇x

)
∆−1

x E∂2
τ−P′(ρ0)∆x

(
− 1

ρ0
∂τ ∇x·

)
,

(4.19)

where E∂2
τ−P′(ρ0)∆x

denotes the projection onto solutions of the scalar wave equation
[
∂2

τ − P ′(ρ0)∆x

]
w = 0,

i.e.,

FxE∂2
τ−P′(ρ0)∆x

F
−1
x =

∑
±

e±i
√

P′(ρ0) |k|τ
Mτ

[
e∓i

√
P′(ρ0)|k|τ ·

]
. (4.20)

Note that the projection I −Mx is not needed in the later formulas in (4.19) since applying the operators there
in the order indicated annihilates the x-independent functions. To verify formula (4.19), note that it annihilates
constant densities r and divergence-free velocities u, and when restricted to the span of the w(±)

(k) it reproduces
functions of the form (4.18) but annihilates functions having different τ -dependence.

4.4. Explicit limit equations

4.4.1. Separation into fast and slow parts

The formulas just derived allow us to write the limit equations (4.15) more explicitly. Since the slow and fast
projections are mutually orthogonal, (4.15) remains valid when the full projection E is replaced by either its fast



THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS 449

or slow part. Similarly, (4.14) implies that v0 equals the sum v0
fast + v0

slow of its fast and slow projections, i.e.

(
r0

u0

)
=

(
r0fast
u0

fast

)
+

(
r0slow
u0

slow

)
. (4.21)

By (4.19) the fast part satisfies

Mτ

(
r0fast
u0

fast

)
=

(
0
0

)
(4.22)

and (
r0fast
u0

fast

)
=

(
− ρ0

P′(ρ0)∂τ

∇x

)
φ0, (4.23)

where

φ0 :=
1
2
∆−1

x

(
∇x · u0 − 1

ρ0
r0τ

)
(4.24)

satisfies the wave equation [
∂2

τ − P ′(ρ0)∆x

]
φ0 = 0. (4.25)

By (4.16), the slow part satisfies

r0slow = Mxr
0
slow = r0slow(t,y), u0

slow = u0
slow(t,x,y), ∇x · u0

slow = 0. (4.26)

In addition, (4.23) implies that

Px

[
u0

fast · ∇xu
0
fast

]
= Px

[
∇xφ

0 · ∇x

(
∇xφ

0
)]

=
1
2

Px

[
∇x|∇xφ

0|2
]

= 0, (4.27)

and (4.22) and (4.26) imply that
Mτ [wfastwslow] = 0 (4.28)

for any fast wfast and slow wslow.

4.4.2. The slow equations

Replacing the full projection E in (4.15) by its slow part (4.16) and using (4.3), (4.21), (4.22), (4.23), (4.26),
(4.27), and (4.28) yields

(
0
0

)
= E slow

(
r0t + u0 · ∇x r

0 + r0 ∇x · u0 + ρ0∇y · u0

r0

ρ0
u0

τ + u0
t + u0 · ∇x u0 + P′′(ρ0)

ρ0
r0∇x r

0 + P′(ρ0)
ρ0

∇y r
0 − µ

ρ0
∆xu

0 − µ+λ
ρ0

∇x∇x · u0

)

= ∂t

(
r0slow
u0

slow

)
+

(
Mτ,x

[
∇x ·

[
r0u0

]
+ ρ0∇y · u0

]

Mτ Px

[
∇x

{
1
2

[
P′′(ρ0)

ρ0
− P′(ρ0)

ρ2
0

]
(r0)2

}
+
[
u0 · ∇x u0

]
+ P′(ρ0)

ρ0
∇y r

0 − µ
ρ0

∆xu
0
]
)

= ∂t

(
r0slow
u0

slow

)
+

(
ρ0∇y · Mxu0

slow

Mτ Px

[(
u0

slow + ∇x φ
0
)
· ∇x

(
u0

slow + ∇x φ
0
)]

+ P′(ρ0)
ρ0

∇y r
0
slow − µ

ρ0
∆xu

0
slow

)

= ∂t

(
r0slow
u0

slow

)
+

(
ρ0∇y · Mxu0

slow

Px

[
u0

slow · ∇x u0
slow

]
+ P′(ρ0)

ρ0
∇y r

0
slow − µ

ρ0
∆xu

0
slow

)
.

(4.29)
Note that when the initial data, and hence also the solution, have no dependence on y then the second equation
of (4.29) plus the last part of (4.26) yield the standard incompressible Navier-Stokes equations. In particular,
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this holds even though the zeroth-order solution may have a nonzero fast part. In fact, even when y-dependence
is present the zeroth-order slow equations are independent of the fast part of the solution.

4.4.3. The fast equation

As noted in (4.23), the fast part of the zeroth-order solution is determined uniquely by φ0, so it suffices to
derive an equation for the latter. Moreover, (4.15) with E replaced by its fast part (4.19) reduces to a scalar
equation, which can be simplified by using (4.24)–(4.25), (4.3), (4.21), (4.23), (4.26), (4.27), and (4.28):

0 =
1
2
∆−1

x E∂2
τ−P′(ρ0)∆x

(
− 1

ρ0
∂τ ∇x·

)
·

(
r0t + u0 · ∇x r

0 + r0 ∇x · u0 + ρ0∇y · u0

r0

ρ0
u0

τ + u0
t + u0 · ∇x u0 + P′′(ρ0)

ρ0
r0∇x r

0 + P′(ρ0)
ρ0

∇y r
0 − µ

ρ0
∆xu

0 − µ+λ
ρ0

∇x∇x · u0

)

= φ0
t +

1
2
∆−1

x E∂2
τ−P′(ρ0)∆x

{
− 1
ρ0
∂τ

[
u0 · ∇x r

0
fast + r0 ∇x · u0

fast + ρ0∇y · u0
]

+ ∇x ·
[
u0 · ∇x u0 +

1
2

(
P ′′(ρ0)
ρ0

− P ′(ρ0)
ρ2
0

)
∇x (r0)2 +

P ′(ρ0)
ρ0

∇y r
0 − µ

ρ0
∆xu

0 − µ+ λ

ρ0
∇x∇x · u0

fast

]}

= φ0
t +

1
2
∆−1

x E∂2
τ−P′(ρ0)∆x

{
− 1
ρ0
∂τ

[
u0 · ∇x r

0
fast + r0 ∇x · u0

fast

]
+ ∇y ·

[
−u0

τ +
P ′(ρ0)
ρ0

∇x r
0

]

+ ∆x

[
1
2

(
P ′′(ρ0)
ρ0

− P ′(ρ0)
ρ2
0

)[
(r0fast)

2 + 2r0slowr
0
fast

]
− 2µ+ λ

ρ0
∇x · u0

fast

]
+ ∇x ·

[
u0 · ∇x u0

]
}

= φ0
t +

1
2
∆−1

x E∂2
τ−P′(ρ0)∆x

{
− 1
ρ0
∂τ

[
− ρ0

P ′(ρ0)
(
u0

slow + ∇x φ
0
)
· ∇x φ

0
τ +

(
r0slow − ρ0

P ′(ρ0)
φ0

τ

)
∆xφ

0

]

+ ∆x

[
1
2

(
P ′′(ρ0)
ρ0

− P ′(ρ0)
ρ2
0

)[(
ρ0

P ′(ρ0)

)2

(φ0
τ )2 − 2ρ0

P ′(ρ0)
r0slowφ

0
τ

]
− 2µ+ λ

ρ0
∆xφ

0

]

+ ∇x ·
[
1
2
∇x |∇x φ

0|2 +
(
u0

slow · ∇x

)
∇x φ

0 +
(
∇x φ

0 · ∇x

)
u0

slow − 2∇y φ
0
τ

]}
.

(4.30)
To simplify (4.30) further, note that by (4.26) and (4.25),

− 1
ρ0
∂τ

[
− ρ0

P ′(ρ0)
u0

slow · ∇x φ
0
τ

]
= u0

slow · ∇x

1
P ′(ρ0)

∂2
τφ

0 = u0
slow · ∇x ∆xφ

0,

and combining this with the term ∇x ·
[(
∇x φ

0 · ∇x

)
u0

slow

]
from (4.30) yields another copy of the term

∇x ·
[(

u0
slow · ∇x

)
∇x φ

0
]

(4.31)

already present in (4.30), because u0
slow is divergence-free. Similarly,

− 1
ρ0
∂τ

[
− ρ0

P ′(ρ0)
∇x φ

0 · ∇x φ
0
τ +

(
r0slow − ρ0

P ′(ρ0)
φ0

τ

)
∆xφ

0

]

=
1

P ′(ρ0)
∂τ∇x ·

[
φ0

τ∇x φ
0
]
− ∆x

[
r0slow
ρ0

φ0
τ

]

= ∇x ·
[
∆xφ

0∇x φ
0
]
+ ∆x

[
1

2P ′(ρ0)
(
φ0

τ

)2]− ∆x

[
r0slow
ρ0

φ0
τ

]
.

(4.32)
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Since the terms involving ∆x in the final expression in (4.32) cancel terms already present in (4.30), substitut-
ing (4.31) and (4.32) into (4.30) and noting that ∆−1

x ∆x = I − Mx and that the projection E∂2
τ−P′(ρ0)∆x

is
superfluous when applied to terms linear in φ0 with coefficients either constant or at most depending on r0slow
yields

0 = φ0
t −

P ′′(ρ0)
P ′(ρ0)

r0slowφ
0
τ − 2µ+ λ

ρ0
∆xφ

0 +
1
4

E∂2
τ−P′(ρ0)∆x

(1 − Mx)
[
P ′′(ρ0)ρ0

P ′(ρ0)2
(φ0

τ )2 + |∇x φ
0|2
]

+ ∆−1
x E∂2

τ−P′(ρ0)∆x

{
∇x ·

[
1
2
∆xφ

0∇x φ
0 +

(
u0

slow · ∇x

)
∇x φ

0

]}
− ∆−1

x ∇x · ∇y φ
0
τ .

(4.33)

4.4.4. Average over smaller spatial scale

Whenever several spatial scales are present in a single problem it is of interest to consider how motions on
the different scales interact. More specifically, the question is whether small-scale motions produce large-scale
effects. Now (4.23) plus (4.24) show that average Mx over the small scale variable x of the fast part of the
lowest-order solution vanishes identically. As for the slow part, since the equation ∇x ·u0

slow = 0 in (4.26) implies
that the term u0

slow · ∇x u0
slow in (4.29) is an x derivative, applying Mx to the slow equations (4.29) yields the

linear acoustics equations

∂t

(
Mxr

0
slow

Mxu0
slow

)
+

(
ρ0∇y Mxu0

slow

P′(ρ0)
ρ0

∇y Mxr
0
slow

)
=
(

0
0

)
,

for the average over the faster spatial scale, which shows that the small-scale motion does not affect the large-
scale flow.

5. The convergence theorem and remarks on its proof

The equations to which the convergence theorem applies are obtained from the scaled barotropic, possibly
viscous, equations (3.13)–(3.14) by omitting the derivatives with respect to the additional time variable τ , i.e.,

rt + u · ∇x r + εu · ∇y r +
(ρ0 + εr)

ε
∇x · u + (ρ0 + εr)∇y · u = 0 (5.1)

and

(ρ0 + εr)
[
ut + u · ∇x u + εu · ∇y u

]
+

P ′(ρ0 + εr)
ε

∇x r + P ′(ρ0 + εr)∇y r

= µ
[
∆xu + 2ε∇x · ∇y u + ε2∆yu

]
+ (µ+ λ)

[
∇x∇x · u + ε

(
∇x∇y · u + ∇y ∇x · u

)
+ ε2 ∇y ∇y · u

]
. (5.2)

This does not mean that the τ time scale is not present in the solution but only that since the solution of
equations (3.13)–(3.14) depends on ε directly, not just through the variables y and τ , those equations do not
truly determine the division of the time-dependence between the two variables t and τ . It is therefore necessary
either to add some condition that will determine the τ dependence or, as done in (5.1)–(5.2), to lump all the
time-dependence into a single time variable. This problem does not arise for the multiple spatial variables
because it can be assumed that the division of the spatial dependence into dependence on the two variables x
and y has been performed on the initial data.

The case for which the asymptotics derived above apply most directly is when the initial data, and hence
also the solution, are periodic in the small-scale spatial variable x:

Theorem 5.1. Suppose that the initial data (r0,ε(x,y),u0,ε(x,y)) for (5.1)–(5.2) are periodic in x and either
periodic in y or defined for that variable in the whole space R

d, are uniformly bounded in Hs for s sufficiently



452 S. SCHOCHET

large, and converge in Hs as ε → 0 to (r0,0(x,y),u0,0(x,y)). Then the corresponding solution to (5.1)–(5.2)
exists for a time independent of ε, and

(
rε(t,x,y)
uε(t,x,y)

)
−
(
r0(t, τ,x,y)
u0(t, τ,x,y)

)
∣∣

τ= t
ε

→ 0 (5.3)

in Hs−δ
loc as ε → 0 for any δ > 0, where the “limit profile”

(
r0

u0

)
is the sum (4.21) of slow and fast parts that

are the solutions of (4.29) and (4.23), (4.25), and (4.33), respectively, with initial data

u0
slow(0,x,y) = Pxu0,0(x,y), r0slow(0,y) = Mxr0,0(x,y)

and

φ0(0, 0,x,y) = ∆−1
x ∇x · u0,0(x,y), φ0

τ (0, 0,x,y) = −P ′(ρ0)
ρ0

(I − Mx)r0,0(x,y).

For the relevant values of s, convergence in Hs−δ
loc implies convergence in C2, and the convergence of (5.3) in

the latter space remains valid when y is set equal to εx as is done in the transformation (3.11) from the original
equations (3.5) and (1.2) to the scaled equations (5.1)–(5.2). Theorem 5.1 therefore implies an analogous result
in terms of the solution of the original equations.

Theorem 5.1 follows from the general convergence theorem for singular perturbations in [25]. An alternative
proof and explicit calculation of the limit with only one spatial scale was given in [44]. Although only the inviscid
case was treated there, adding viscosity in an essentially diagonal form as in (5.1)–(5.2) causes no problems for
smooth solutions in domains without boundaries, except that the proof may require the initial data to have one
more derivative since the smoothing effect of the viscous terms is not made use of in the proof.

There are two general approaches for proving “convergence” results like (5.3) for singular perturbation prob-
lems: in the direct approach one first obtains estimates for solutions v0 of the limit problem and/or uniform
estimates for the solutions vε of the full problem, and then estimates the difference between the two [25]. Alter-
natively, in the compactness method one obtains uniform estimates for both vε and ∂tvε, then applies Ascoli’s
theorem or some extension thereof to obtain convergence to a limit for a sequence of values of ε, and finally
shows uniqueness of the limit v0 to obtain convergence without restriction to a sequence [44].

To see how the compactness approach works for system (5.1)–(5.2), note that after multiplying the first
equation by P′(ρ0+εr)

ρ0+εr those equations take the form

A0(εv)vt +
∑

j

Aj(v, ε)vxj +
∑

j

Bj(v, ε)vyj +
1
ε

∑
j

Cjvxj =
∑
m≤n

Km,n [∂xm + ε∂ym ] [∂xn + ε∂yn ]v, (5.4)

where all the matrices are symmetric,

A0(εv) :=

(
P′(ρ0+εr)

ρ0+εr 0
0 (ρ0 + εr) I

)

is also positive definite, and the matrices Cj multiplied by 1
ε and Km,n in the second-derivative terms are con-

stant. Uniform estimates for solutions of (5.4) can therefore be obtained by taking some derivative
∂α
x := ∂α1

x1
· · · ∂αd

xd
of the equation (5.4), multiplying by ∂α

xv, and integrating over space, since the large terms
1
ε

∫
v ·Cjvxj equal 1

2ε

∫
∂xj (v · Cjv) and so vanish identically, while terms involving the O(1

ε ) expression vt are
always multiplied by a factor of ε on account of the ε in A0(εv), and so are actually of order one. Adding the
resulting estimates for d

dt (∂α
xv, A0(εv)∂α

xv) over 0 ≤ |α| :=
∑

j |αj | ≤ s with s sufficiently large yields a closed
uniform set of estimates for a quantity equivalent to the Hs norm.
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In the “slow” case in which the initial data are “well-prepared”, i.e., satisfy ∇x r0,ε = O(ε) = ∇x · u0,ε, or
more generally

∑
j Cj∂xjv0,ε = O(ε), so that vt is uniformly bounded at time zero, uniform bounds are also

obtained for the time derivative of
(∂α

xvt, A0∂
α
xvt) (5.5)

for |α| ≤ s− 1, thereby completing the required set of estimates. In this case the limit profile v0 is purely slow,
so that (5.3) is a convergence result in the ordinary sense.

However, when the initial data are not well prepared, then (5.5) is not uniformly bounded initially, so no
uniform estimate is feasible. Fortunately, applying S(− t

ε) to (5.4), where S is the solution operator to the “fast”
equation

A0(0)vτ +
∑

j

Cjvxj = 0, (5.6)

cancels the the large term
∑

j Cjvxj so that uniform Hs−1 estimates for ∂tS(− t
ε)v are obtained directly from the

resulting PDE. More conveniently, applying S(τ − t
ε) instead yields uniform estimates for ∂tS(τ − t

ε)v, thereby
introducing the variable τ in such a way that the original solution is restored for τ = t

ε , as desired. Note that
for the rescaled barotropic Navier-Stokes equations (5.1)–(5.2), A0(0) = P ′(ρ0)Ã and

∑
j Cj∂xj = −P ′(ρ0)L, so

that (5.6) is equivalent to (4.7) and hence S is the same as defined earlier. By the unitarity of S with respect to
the inner product defined by A0(0), the uniform estimates obtained for v imply the same bounds for S(τ − t

ε )v,
which together with the estimates obtained for the time derivative of that expression yield the compactness
necessary to obtain convergence.

6. Extensions

6.1. Improved error estimate and asymptotic expansions

When can the o(1) error estimate in Theorem 5.1 or its variants be improved to vε − v0 + O(ε) or even to
an asymptotic expansion vε = v0 + εv1 + · · · + εkvk +O(εk+1)? Such results cannot be expected to hold true
in general because of small divisor problems in the periodic case or slow decay of the fast part or the pressure
in the whole-space case. Nevertheless, such results have been proven when in the slow case [29, 43], i.e., when
v0

fast = 0, and for generic values of the ratios of the spatial periods in the periodic case [16, 25, 44].

6.2. Boundaries: Euler equations

For the slow case, results analogous to Theorem 5.1 have been proven for inviscid flow in bounded domains
in [3, 15, 42]. More recently, the fast case was treated in [45].

For moving domains, the formal asymptotics of solutions have been calculated [2], while for domains with
open boundaries uniform estimates have been derived for the linearized system [17].

6.3. Fast decay of fast waves in the whole space

In dimensions larger than one, solutions of the wave equation (4.25) having initial data in Hs ∩ L1 decay
in L∞. As a consequence, the fast part of the solution decays on acoustic time scale, and so is negligible on
the convective time scale. Thus, vε converges on compact sets to a slow limit, albeit nonuniformly in time for
t near zero. This result was proven for solutions in R

d having a single spatial scale in [23, 49], and has been
extended to exterior domains [22], including the case when there is a nonvanishing steady flow at infinity [24],
and also to a half-space R

d
+ [21].

6.4. Viscous flows: weak solutions and global solutions

In the energy estimates derived above for (5.4), we only made use of the fact that the viscous terms do not
hinder the essentially hyperbolic estimates that are valid when viscosity is absent. Of course, those viscous
terms actually contribute very helpful terms to those estimates. As for the incompressible equations, estimates
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more complicated than those described above make it possible to take advantage of those helpful terms so as to
allow the initial data to be less smooth, and to obtain global existence of weak solutions for small ε when the
limit solution exists for all time [5, 10, 11, 18–20,33, 35, 36].

Surprisingly, when both fast waves and boundaries are present then the interaction of fast waves with a
boundary layer usually makes them decay fast in bounded domains, so that vε converges to the solution of the
slow equations [12].

Even in the inviscid case the limit solution sometimes exists for all time. Without viscosity one cannot expect
the full solution vε to also exist for all time, but its time of existence has been shown in various cases to tend
to infinity as ε→ 0 [13, 46].

6.5. Entropy

For non-isentropic inviscid flow with one spatial scale the rescaled equations (3.15)–(3.17) reduce to

a0
1(P0 + εp, s) [pt + u · ∇p] + 1

ε
∇ · u = 0

a0
2(P0 + εp, s) [ut + (u · ∇)u] +

1
ε
∇p = 0

st + u · ∇s = 0,

where

a0
1 :=

1
ρ

∂ρ

∂P , a0
2 := ρ. (6.1)

These equations almost have the form (5.4) with the additional spatial variable and viscous terms omitted,
except that A0 :=

(
a0
1 0

0 a0
2I

)
now depends on v as well as on εv, i.e., (5.4) is replaced by

A0(εv,v)vt +
∑

j

Aj(v, ε)vxj +
1
ε

∑
j

Cjvxj = 0. (6.2)

In general, solutions of (6.2) having uniformly bounded initial data do not exist for a time independent of ε,
as can be seen from the explicitly-solvable equation (1 + v2)vt + 1

εvx = 0. In terms of energy estimates, the
difficulty with (6.2) is that the equation for vxj has the form

A0(εv,v)vxj t +
[(

vxj · ∇v

)
A0(εv,v)

]
vt + ε

[(
vxj · ∇εv

)
A0(εv,v)

]
vt + · · · = 0,

in which the O(1
ε ) term vt is not always multiplied by a compensating factor of ε, as holds for (5.4). Of course,

in the slow case for which vt is bounded initially this problem does not arise, so that uniform estimates can be
obtained [42, 43].

The Euler equations have a special structure beyond that of (6.2). Among other features, A0 depends on v
rather than εv only through its dependence on s, whose time-derivative equation contains no large O(1

ε ) terms.
In other words, although the fast operator is nonlinear it depends only on a slow variable. Taking into account
certain other special features of the equations as well then permits a complicated set of estimates to be obtained,
which yield uniform bounds for

p, u, s, st, and P
[
a0
2u
]
t
. (6.3)

In particular, even in the fast case solutions of the Euler equations with uniformly bounded initial data exist
for a time independent of ε. Nevertheless, the equations exhibit non-uniform stability in that small changes in
s may cause an O(1) change in u. Furthermore, on account of the nonlinearity of the fast operator, explicit
Fourier-space computations like those of Section 4 are not possible.



THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS 455

The uniform bounds for the quantities in (6.3) imply that, after restricting to a sequence of values of ε, uε

converges weakly to some u0
slow, pε converges weakly to some p0

slow, sε converges strongly to some s0, and
P
[
a0
2(P0 + εpε, sε)uε

]
converges strongly to P

[
a0
2(P0, s

0)u0
slow

]
.

In all R
d, if the initial data decay sufficiently rapidly at infinity then the fast waves still decay quickly, so

that the limit satisfies the “stratified” incompressible Euler equations in which the entropy, and hence also the
density, remain non-constant [38]. An extension of this result to exterior domains has recently been obtained
[1].

In the periodic case, the above convergence results suffice to obtain the equations

∇p0
slow = 0 = ∇ · u0

slow

s0t + u0
slow · ∇s0 = 0

∂tp
0
slow = 0

for the limit variables [39]. However, in order to obtain a closed set of equations we still need to find the
equation satisfied by u0

slow, which turns out not to be just the incompressible Euler equation in general. Rather,
a formal calculation of the equation for u0

slow shows that that equation includes an extra term involving the
limit of quadratic expressions in the fast part of the solution, which tends weakly to zero.

In the very special case of only one spatial dimension, the limit can be both calculated completely and
justified [39]. The limit equation for u0

slow turns out to be simply

∂tu
0
slow = 0.

However, this result depends on the fact that

a0
1 =

1
a0
2

∂a0
2

∂P , (6.4)

as follows from (6.1). If we consider general positive functions a0
j depending on (P0 + εp, s) then complicated

equations link u0
slow to the weak limits of e±iαj t/ε

(
pε

uε

)
, where the α2

j are the nonzero eigenvalues of the operator

− 1
a0
1(P0, s(0, x))

∂x

[
1

a0
2(P0, s(0, x))

∂x

]
.

The key point allowing the formula so obtained to be justified is that, after an appropriate transformation, the
spectral decomposition of the corresponding operator for non-zero ε is independent of ε and t.

In the multi-dimensional case the formal calculation of the extra term in the limit, which once again involves
the spectral decomposition of the fast operator, assumes that the spectrum of that fast operator is simple and
non-resonant. For certain finite-dimensional truncations of the equations those assumptions can be shown to
be generic and to ensure convergence to the limit equations.

7. Some open problems

7.1. Uniformly locally bounded initial data

The uniformly local Sobolev space Hs
ul is the space of functions having a finite value of the norm

‖f‖
Hs

ul

:=

√√√√sup
x0

∑
0≤|α|≤s

∫

Rd

ψ(x − x0) [Dαf(x)]2 dx,
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where it is convenient to choose ψ(x) := e−
√

1+|x|2 instead of being a C∞
0 function as is customary. Symmetric

hyperbolic equations are well-posed in these spaces [27]. Suppose that the initial data for (5.1)–(5.2) only belong
to Hs

ul rather than Hs. Are there cases for which the corresponding solutions exist for a time independent of ε
and satisfy uniform estimates? The difficulty in extending previous results to this case is that the large O(1

ε )
terms are no longer anti-symmetric with respect to weighted L2 norms, and so do not automatically drop out
of the energy estimates.

In the one-dimensional case, some analogous results for more general systems have been proven for the BV
norm in [8]. Furthermore, uniform bounds in Hs norms can be obtained by using the explicit solution of the
fast operator: For simplicity, consider the slightly simplified equations

rt + urx +
1
ε
ux = 0, ut + uux +

1
ε
rx = 0. (7.1)

In terms of the transformed variables

v±(t, x) := r

(
t, x± t

ε

)
± u

(
t, x± t

ε

)

occurring in the formula for the fast solution operator, (7.1) becomes

v±t + u(t, x± t

ε
)v±x = 0. (7.2)

Since u can be recovered from v± via

u(t, x) =
1
2

[
v+

(
t, x− t

ε

)
− v−

(
t, x+

t

ε

)]
,

(7.2) yields uniform uniformly local estimates for v±, and hence also for r and u, since r can likewise be recovered
from v±.

The key to these one-dimensional estimates was that the fast solution operator is uniformly bounded in L∞.
This no longer holds true in higher dimensions, which implies that uniform estimates cannot hold in the fast
case. For example, in three dimensions the solution at any point to the wave equation with initial value zero
and initial derivative g is a constant times 1

t times the integral of g over the sphere of radius t centered at that
point. Hence if g were identically one then the solution to the wave equation would grow linearly in the fast
time. However, just as in one dimension, g cannot be identically one for solutions r for which the wave equation
is derived from the fast equations

rτ + ∇ · u = 0, uτ + ∇r = 0
because the initial value of rτ is a sum of spatial derivatives. Nevertheless, it is possible for uniformly local
initial data u(0,x) to have g := ∇·u(0,x) equal one on a series of concentric circles whose radii tend to infinity,
which still yields non-uniformly bounded solutions.

Although this shows that uniform bounds cannot hold in higher dimensions in the fast case, it does not
immediately preclude such estimates in the slow case, provided that fast waves are absent initially through
some order in ε that depends on the dimension. Do uniform bounds hold in higher dimensions for sufficiently
well-prepared initial data?

7.2. Multiple spatial scales for fast non-isentropic flow

The estimates of [38] for fast non-isentropic flow do not work with multiple spatial scales, because the
condition (1.3) there no longer holds. However, multiple spatial scales are especially interesting for such flows
because the formal asymptotics calculated in [31] shows that, unlike the barotropic case discussed here, the
small-scale flow does affect the large-scale one. Do fast non-isentropic solutions with multiple spatial scales
exist for a time independent of ε and satisfy uniform bounds?
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7.3. Genericity of simple non-resonant spectrum for fast periodic non-isentropic flow

Do the genericity and convergence results proven in [39] for finite-dimensional truncations of the non-
isentropic Euler equations also hold for the full Euler equations?
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