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INVERTED FINITE ELEMENTS: A NEW METHOD FOR SOLVING ELLIPTIC
PROBLEMS IN UNBOUNDED DOMAINS
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Abstract. In this paper, we propose a new numerical method for solving elliptic equations in un-
bounded regions of R

n. The method is based on the mapping of a part of the domain into a bounded
region. An appropriate family of weighted spaces is used for describing the growth or the decay of
functions at large distances. After exposing the main ideas of the method, we analyse carefully its
convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high
performance.
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1. Introduction

A wide class of problems encountered in physics and engineering are originally formulated in a media with
an infinite extent. Besides electromagnetic problems, these problems concern computational fluid dynamics,
acoustic, geophysics, elasticity, magnetohydrodynamics, astrophysics and several other fields of research. Con-
sequently, the conception of efficient numerical methods which are suitable for unbounded domains is of crucial
importance for the solving and the understanding of such problems. Reviewing the available strategies for solv-
ing PDEs in unbounded domains, we find a variety of methods having various degrees of accuracy, flexibility
and sophistication. However, most of the existing methods rely

– either on an integral representation of the exact solution and the use of Boundary Elements (see, e.g.,
[15, 22, 23, 32, 34–36]);

– or on replacing the unbounded domain by a sufficiently large bounded domain enclosed by a Perfectly
Matched Layer (PML) (see [5, 6]), or on the boundary of which an artificial boundary condition is
prescribed;

– or on a polar expansion of the solution like in spectral methods (see, e.g., [12,24]) or in infinite elements
methods (see, e.g., [7, 11, 16, 18, 19, 28]).

Surprisingly, little attention was given to methods which consist in mapping the unbounded domain into a
bounded one. This seems to be due to the appearance of a singularity after mapping.
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Our aim in this paper is to propose a new method which we call Inverted Finite Element Method (IFEM) for
solving elliptic PDEs in infinite domains. The IFE method relies on the partition of the infinite domain into a
bounded sub-domain, in which usual finite elements are used, and an unbounded sub-domain which is mapped
into a bounded region by means of polygonal inversions. The method is of an arbitrary degree and is exactly
conforming. The use of an adequate family of weighted Sobolev spaces for describing the behavior of functions
at large distances is at the heart of our approach. The other ideas of the method are close to those of the finite
element method. Among the advantages of the IFEM, let us underline the absence of artificial boundaries and
artificial conditions. In addition, the method offers the possibility of truncating the computational domain with
polygonal or box-like boundaries. On the other hand, there is no need to know a priori the precise behavior at
infinity of the solution, but only some simple integrability conditions. In practice, the method leads to linear
systems with sparse matrices and whose size and shape are similar to finite elements matrices.

For the sake of simplicity, the Inverted Finite Element Method will be applied here to linear elliptic problems
which admit an abstract variational formulation as follows:

Find u ∈ W such that

∀v ∈W, a(u, v) = �(v), (1)

where W denotes a weighted Sobolev space whose elements are functions defined on an unbounded region,
a(., .) is a bilinear form and �(.) a linear form. In Section 2, we show how some usual second and fourth order
problems in unbounded domains (e.g., the whole space, the half-space, exterior regions, etc.) can be written
into form (1), with a(., .) and �(.) satisfying usual well-posedness conditions. In that case, the space W is
often an adequate weighted Sobolev space whose weights are of the form (1 + |x |)α, α ∈ R. Indeed, this kind
of weighted spaces turned out to be natural for solving successfully elliptic problems and for describing their
solutions in unbounded domains (see [3, 4, 8–10,22, 25, 29]). This is due to multiple reasons. The first reason is
the possibility of describing and classifying easily the decay or growth of functions at infinity. Another reason
lies in the fact that they allow to retrieve most of the fine functional properties of Sobolev spaces in bounded
domains, and which are in general lost when the domain is unbounded: Poincaré’s inequality, Green’s formula,
compact imbeddings (see, e.g., [1, 13]), etc.

This paper is organized as follows:

– In Section 2, we review the definitions and the basic properties of a family of weighted spaces in un-
bounded domains. Some weighted spaces in bounded regions containing a singularity are also presented.
The treatment of some typical elliptic problems in unbounded domains is displayed throughout several
examples.

– Section 3 contains a presentation of the Inverted Element Method. The notions of polygonal inversion
and polygonal Kelvin transform are particularly detailed.

– In Section 4, we deal with the analysis of the best approximation error. Firstly, we introduce an
interpolation operator corresponding to the mesh of the domain. Then, we give an estimate of the local
and the global interpolation errors.

– In Section 5, we give an estimate of the error of approximation when the method is applied to a
model elliptic problem. We prove in particular that the rate of convergence is the same as the rate of
convergence of Finite elements in a bounded domain.

– In Section 6, we give a general outline of the implementation of the method in the case of the 3D Laplace
equation in the half-space. The computation of the stiffness matrix is treated in detail. The performance
of the method, the validity of the error estimates and the influence of various parameters are investigated
throughout some computational tests.

In the sequel, the notation a � b (resp. a � b) means that there exists a constant c (resp. two constants c1
and c2) independent of the discretization parameter h and the involved functions such that a ≤ cb (resp.
c1b ≤ a ≤ c2b).
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2. Weighted Sobolev spaces

In all the paper n ≥ 1 denotes a non-negative integer. For any multi-index µ = (µ1, ..., µn) ∈ N
n we set

|µ| = µ1 + ... + µn. For any real number r > 0, Br (resp. Sr) is the open ball (resp. the sphere) of R
n

of radius r and centered at the origin. Given an integer k ≥ 0, Pk denotes the set of all the polynomials in
variables x1, . . . , xn of degree ≤ k.

◦
Pk is the subspace of Pk formed by all the polynomials p ∈ Pk such that

p(0) = 0.
Let Ω be an open set of R

n. We denote by D(Ω) the space of all C∞ functions with a compact support
included in Ω and by D ′(Ω) its dual space (the space of distributions). Given an integer m ≥ 0 and a real
number p ∈ [1,+∞[, Wm,p(Ω) denotes the usual Sobolev space of all the functions u ∈ Lp(Ω) whose generalized
derivatives for orders |µ| ≤ m satisfy Dµu = ∂µ1

1 ...∂µn
n u ∈ Lp(Ω). This space is equipped with its usual

norm ‖.‖W m,p(Ω) and with the semi-norm

|u|W m,p(Ω) =






∑

|µ|=m

∫

Ω

|Dµu|pdx






1/p

. (2)

Throughout this paper the basic weight ρ(r) is defined as

ρ(r) = (1 + |x |2)1/2, x = (x1, ..., xn) ∈ R
n, (3)

where |x | = (x2
1 + ...+ x2

n)1/2 is the distance to the origin. For any real numbers α and p ≥ 1, Hm,p
α (Ω) is the

space of all the functions u ∈ Lp(Ω) whose derivatives for orders |µ| ≤ m satisfy

ρ(r)α+|µ|Dµu ∈ Lp(Ω).

The space Hm,p
α (Ω) is a Banach space when equipped with the norm

‖u‖Hm,p
α (Ω) =




∑

|µ|≤m

∫

Ω

ρ(r)(α+|µ|)p|Dµu|pdx





1/p

.

Define also the space
◦
H

m,p

α (Ω) as the closure of D(Ω) in Hm,p
α (Ω) and let H−m,p′

−α (Ω) be its dual. The reader
can consult, e.g., [10, 22, 25, 29, 30] for a detailed study of all these spaces. Notice that the local properties of
the space Hm,p

α coincide with those of the classical Sobolev space Wm,p.
In order to define the traces of functions of Hm,p

α (Rn
+), one extends the above definitions to real values of

m. The reader can refer to [25] for such a definition which is dropped here for the sake of simplicity. We
retain only that there exists a linear continuous trace mapping γ = (γ0, γ1, ..., γm−1) from Hm,2

α (Rn
+) (m ≥ 1)

to
∏m−1

j=0 Hm−j− 1
2 ,2

α+j+1/2 (Rn−1) such that

∀u ∈ D(R
n

+), γu =
(
u(x′, 0), ∂nu(x′, 0), ..., ∂m−1

n u(x′, 0)
)
.

Moreover, for any u ∈ H1,2
α−1(R

n
+), ∀v ∈ H1,2

−α(Rn
+) the following Green’s formula holds

∫

R
n
+

∂u

∂xi
vdx = −

∫

R
n
+

u
∂v

∂xi
dx, i = 1, . . . , n− 1,

∫

R
n
+

∂u

∂xn
vdx = −

∫

R
n
+

u
∂v

∂xn
dx−

∫

Rn−1
u(x′, 0)v(x′, 0)dx′. (4)
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Now, let ω a bounded open set. We consider the space V m,p
α (ω) of all the functions u defined a.e. in ω\{0} and

whose derivatives for orders |µ| ≤ m satisfy

|x |α+|µ|Dµu ∈ Lp(ω).

This space is equipped with the norm

‖u‖V m,p
α (ω) =




∑

|µ|≤m

∫

ω

|x |(α+|µ|)p|Dµu|pdx





1/p

.

We set

|u|V m,p
α (Ω) =




∑

|µ|=m

∫

ω

|x |(α+|µ|)p|Dµu|pdx





1/p

.

In this paper, the spaces Vm,p
α (ω) are often considered when 0 ∈ ω. In that case, the origin plays the role of a

singular point. Notice that far from the origin the local properties of the space V m,p
α (ω) coincide topologically

and algebraically with those of the Sobolev space Wm,p(ω).
The following imbedding is useful in this paper (see [13, 31]): if n

p − n
q + 1 > 0 and if β + n

q ≥ α+ n
p , then

H1,q
β (Rn)↪→H0,p

α (Rn). (5)

When p = 2, the spaces Wm,p(Ω), Hm,p
α (Ω) and V m,p

α (ω) are written Hm(Ω), Hm
α (Ω) and Vm

α (ω), respectively.
A polynomial function P belongs to Hm,p

α (Rn), if and only if

degP < −α− n

p
·

Similarly, a polynomial P belongs to V m,p
β (ω), where ω is Lipschitz bounded domain and 0 ∈ ∂ω, if and only if

#P + β +
n

p
> 0,

where #P denotes the lowest degree of monomials of P . In particular,
◦
Pk ⊂ V m,p

β (ω) if

β +
n

p
> −1. (6)

In [2] it is proved that: if u ∈ H1,p
α (Rn) and

n

p
+ α 
= 0 then

lim
|x |�→+∞

|x |α+n/p‖u(|x |, .)‖Lp(S1) = 0. (7)

Here S1 refer to the unit sphere of R
n. In terms of the spaces V 1,p

β this property can be written into the form

lim
|x |�→0

|x |β+n/p‖u(|x |, .)‖Lp(S1) = 0, (8)

if u ∈ V 1,p
β (ω), ω being a bounded open set with 0 ∈ ∂ω, and β + n/p 
= 0. The latter property can be proved

using (7) and Kelvin transform (see Sect. 3.3 and Prop. 1 hereafter).
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Remark 1. In the literature, many authors use the notation

Wm,p
α (Ω) =

{
u ∈ D ′(Ω); ρ|µ|−m+αDµu ∈ Lp(Ω), ∀|µ| ≤ m

}
,

instead of the notation Hm,p
α (Ω) which we prefer here for convenience. Of course, the identity Wm,p

α (Ω) =
Hm,p

α−m(Ω) allows the comparison.

Remark 2. Another family of spaces which is often used for treating problems in infinite regions are homoge-
neous spaces Dm,p. Recall that Dm,p(Ω) is defined as the closure of D(Ω) with respect to the semi-norm

‖u‖Dm,p(Ω) =
∑

|µ|=m

‖Dµu‖Lp(Ω).

The algebraic and topological identity (see [25])

Dm,p(Rn) = Hm,p
−m(Rn) if

1
p
− m

n
> 0

shows that the spaces Dm,p
α are a particular case of the spaces Hm,p

−m(Rn) (notice that the elements of Dm,p are
not necessarily distributions if 1

p − m
n ≤ 0. For example, Dm,2(Rn) 
⊂ D ′(Rn) if n ≤ 2m, see [27]).

As we said earlier, usual second and fourth order elliptic problems in unbounded regions of spaces can often
lead to a problem of form (1), with W a weighted space and a(., .) satisfying the classical assumptions of
Lax-Milgram theorem. Let us sketch some illustrative examples:

Example 1 (the Laplace equation with a Dirichlet or a Neumann boundary condition). Let Ω be the half-space
R

n
+ = {xn > 0} or the exterior of a bounded Lipschitz open set ω. Let us consider the Laplace problem:
Find u ∈ H1

−1(Ω) such that

∆u = f in Ω, u = 0 on ∂Ω, (9)

where f ∈ H−1
1 (Ω) is given. The latter equation can be written into the variational form (1) with W =

◦
H

1

−1 (Ω)
and

a(u, v) =
∫

Ω

∇u.∇v dx , �(v) = 〈f, v〉. (10)

The linear form �(.) and the bilinear form a(., .) are clearly continuous on H1
−1(Ω). Using an adequate Hardy

inequality (see [3] or [10]) we can prove that if n 
= 2 then

∀w ∈
◦
H

1

−1 (Ω),
∫

Ω

w2

ρ2
dx �

∫

Ω

|∇w|2dx . (11)

Hence if n 
= 2, a(., .) is coercive. Existence and Uniqueness of the solution stem from Lax-Milgram theorem.
Moreover, it can be proven (see [22] when Ω is an exterior domain and [10] when Ω is the half-space) that
if f ∈ Hm

1 (Ω) for some integer m ≥ 0, then u belongs to Hm+2
−1 (Ω) (the boundary of Ω is assumed sufficiently

smooth).
The same results hold when Ω is whole the space R

n (see [22]).
Similarly, let us consider the Neumann problem:
Find u ∈ H1

−1(Ω) such that

∆u = f in Ω,
∂u

∂n
= g on ∂Ω, (12)
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where f ∈ H0
1(Ω) and g ∈ H−1/2(∂ω) if Ω = R

n\ω and g ∈ H−1/2
1/2 (Rn−1) if Ω = R

n
+. This problem is equivalent

to a weak problem of the form (1) with W = H1
−1(Ω) and

a(u, v) =
∫

Ω

∇u.∇v dx , �(v) =
∫

Ω

fv + 〈g, v〉∂Ω. (13)

Since the inequality (11) remains valid in the space H1
−1(Ω) (see the references cited above), this problem

satisfies also the well-posedness assumptions of Lax-Milgram theorem (observe that the constants do not belong
to the space H1

−1(Ω)).

Remark 3. The above results on the Laplace equation can be extended to second order equations of the form

∂

∂xj

(

aij(x )
∂u

∂xi

)

+ c(x )u = f in Ω, u = 0 on ∂Ω,

where the coefficients aij and c are such that

aij ∈ L∞(Ω),

aijξiξj ≥ η0|ξ|2, ∀ξ = (ξ1, ..., ξn) ∈ R
n,

−c0 ≤ ρ2c(x ) ≤ c1 a.e. in Ω.

Here η0 > 0, c0 > 0 and c1 ≥ 0 are three constants with c0 sufficiently small.

Remark 4. In studying the Laplace equation in unbounded domains, the case n = 2 arises often as a critical
case for which the weighted space H1

−1(Ω) is not really adequate (see [3, 22]). Indeed, when n = 2 it appears
more convenient to use the modified space

H1
−1,0(Ω) =

{

u ∈ D′(Ω);
u

ρ(r) log(2 + r2)
∈ L2(Ω), ∇u ∈ L2(Ω)

}

.

This particularity is inherent to Laplace equation itself (and also to some related problems) and to the functional
framework. The method we propose here is general and is without any restriction on the dimension. However,
to avoid fastidious notations, we consider only the spaces Hm,p

α (Ω). In fact, the addition of a logarithmic factor
to the weight does not affect seriously the method and could be taken into account without major modifications.
The author will treat this particularity in a forthcoming work.

Example 2 (a vector potential problem). Let w ∈ L2(R3
+)3 such that

divw = 0 in R
3
+.

We look for a vector function v ∈ H1
−1(R

3
+)3 satisfying

curl v = w in R
3
+, divv = 0 in R

3
+, v .e3 = 0 at x3 = 0. (14)

Consider the space
X(R3

+) =
{
u ∈ H1

−1(R
3
+)3;u .e3 = 0 at x3 = 0

}
.

Problem (14) can be written into the form:
Find v ∈ X(R3

+) such that

∫

R
3
+

curl v .curludx +
∫

R
3
+

divv .divudx =
∫

R
3
+

w .curludx , (15)
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for each u ∈ X(R3
+). Indeed, it is quite clear that each solution of (14) is also a solution of (15). Conversely,

let v ∈ X(R3
+) be a solution of (15). Then, choosing u = ∇ϕ with ϕ ∈ H2

−2(R
3
+) solution of the Neumann

problem (see [10])

∆ϕ = divv in R
3
+,

∂ϕ

∂x3
= 0 at x3 = 0,

gives divv = 0. It follows that ∫

R
3
+

(curl v −w).curludx = 0,

for each u ∈ X(R3
+). Hence,

curl (curl v −w) = 0 in D ′(R3
+)3

which implies that the vector function curl v −w belongs to the space

H1(curl ; R
3
+) =

{
ϕ ∈ L2(R3

+)3; ρcurl ϕ ∈ L2(R3
+)3

}
.

Then, by means of the Green’s formula (see [10])

(curlϕ,u) − (ϕ, curlu) = 〈ϕ ∧ e3,u〉x3=0

which is valid for each u ∈ H1
−1(R

3
+)3 and ϕ ∈ H1(curl ; R

3
+), we get

(curl v −w) × e3 = 0 at x3 = 0.

Hence, the vector field v∗ = curl v −w satisfies

curl v∗ = 0 in R
3
+, divv∗ = 0 in R

3
+, v∗ × e3 = 0 at x3 = 0.

Lemma 13 in [10] implies that v∗ = 0. We conclude that v is solution of (14).
Now, according to ([10], Cor. 8), the semi-norm

u −→
(∫

R
3
+

|curlu |2dx +
∫

R
3
+

|divu |2dx
)1/2

,

is a norm on the space X(R3
+), equivalent to the norm ‖.‖H1

−1(R
3
+)3 . Consequently, the problem (15) admits one

and only one solution in X(R3
+), thanks to Lax-Milgram lemma.

Notice that the same results hold when Ω is an exterior domain (see [20, 21]).

Example 3 (the biharmonic equation). In this last example, we consider the fourth order problem:
Find u ∈ H2

−2(R3
+) such that

∆2u = f in R
3
+, u = 0 at x3 = 0,

∂u

∂x3
= 0 at x3 = 0, (16)

where f ∈ H−2
2 (R3

+). This problem can be written into the weak form:

Find u ∈
◦
H

2

−2 (R3
+) such that ∫

R
3
+

∆u.∆vdx = 〈f, v〉, (17)

for each v ∈
◦
H

2

0 (R3
+). It is proven in [9, 10] that the semi-norm

v −→ ‖∆v‖L2(R3
+),
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is a norm on the space
◦
H

2

−2 (R3
+) which is equivalent to the norm ‖.‖W 2

−2(R
3
+). We conclude that problem (17)

admits one and only one solution u and this solution depends continuously on the data.

Remark 5. The choice of the weight is crucial for getting a well posed variational formulation. In fact, the
uniqueness of the solution can be lost if the weighted space contains polynomial functions (the case of the
Neumann problem is detailed in Sect. 6). Similarly, the existence of strongly decreasing (at infinity) solutions
could be lost, unless some compatibility conditions are satisfied by the data. However, there is often an
intermediate case for which existence and uniqueness hold without any condition. In this case, the problem can
in general be written in a weak form satisfying the assumptions of classical theorems (Lax-Milgram theorem,
Babuska-Brezzi theorem, etc.). This is often the case for which the solution has also an integral representation.
The reader can look at the case of the Laplace equation with a Neumann condition treated in Proposition 4
hereafter.

3. Inverted element method

The purpose of this section is to expose the main ideas of the Inverted Finite Element Method. In the
remaining of this paper, Ω denotes an unbounded domain. Some geometrical assumptions on Ω are made in
Section 3.2 hereafter.

Consider a continuous problem written into the abstract form:
Find u ∈ W such that

∀v ∈W, a(u, v) = �(v), (18)

where W is a given space. Here, we suppose that W is a closed sub-space of H1
α(Ω)s for some integer s,

equipped with the induced norm. This is often the situation when one deals with elliptic equations of second
order. Moreover, the bilinear form a(., .) and the linear form � are supposed continuous on W and satisfying
the ellipticity condition

∀v ∈ W, a(v, v) ≥ µ0‖v‖2
H1

α(Ω)s , (with µ0 > 0).

The Galerkin method for approximating u consists in replacing problem (18) by the finite-dimensional problem:
Find uh ∈ Wh such that

∀vh ∈ Wh, a(uh, vh) = �(vh), (19)

where Wh is finite-dimensional. For simplicity, we shall restrict ourselves to continuous Inverted Elements which
are similar to the classical conforming finite elements. Namely, we require that

Wh ⊂W.

The first idea for constructing the space Wh is to divide the domain Ω into two sub-domains; a finite sub-
domain Ω0 and an infinite sub-domain Ω∞. Then, a usual finite element method is used in Ω0, while the
unbounded region Ω∞ is transformed into a bounded region by means of an adequate (but necessarily singular)
mapping. Naturally, it is tempting to consider Ω∞ as the exterior region of a sphere, and to map it into the
interior of sphere by means of a classical inversion of the form x �→ x

|x |2 . The drawback of this choice is the
difficulty of ensuring the exact continuity of the method. The use of curved elements near to the spherical
intersection Ω∞ ∩ Ω0 can be of course a solution to this problem. Here, we prefer another approach based on
the notions of polygonal inversion and polygonal radius introduced in the next subsections. The objective is to
ensure the exact conformity at the intersection Ω∞ ∩ Ω0 which will be chosen polygonal.
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a

1

2 3

a

a

T

a 0

Figure 1. An example of a 3D infinite simplex.

Figure 2. An illustration of the altitude vector, the finite simplex and the supporting hyper-
plane associated to a 2D infinite simplex.

3.1. Some geometrical definitions and properties

Definition 1. Let aj = (aij)n
i=0, j = 0, ..., n, be a collection of n+ 1 points of R

n which do not belong to the
same hyperplane. Then, the infinite simplex whose vertices are a0,a1, ...,an is defined as

T (a0,a1, ...,an) =

{

x =
n∑

i=0

λia i, λ0 ≤ 0, λi ≥ 0 for i = 1, ..., n,
n∑

i=0

λi = 1

}

.

Figures 1 and 2 show examples of infinite simplices when n = 3 and when n = 2, respectively.
The reference infinite and finite simplices are defined as

T̂ =

{

x = (λ̂1, ..., λ̂n) ∈ R
n, λ̂k ≥ 0 for k = 1, ..., n,

n∑

k=1

λ̂k ≥ 1

}

,

K̂ = Ŝ =

{

x = (λ̂1, ..., λ̂n) ∈ R
n, 0 ≤ λ̂k ≤ 1 for k = 1, ..., n,

n∑

k=1

λ̂k ≤ 1

}

.

Now, let T (a0,a1, ...,an) be an infinite simplex. Then
– The vertices a1, ...,an are called the real vertices of T .
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– The vertex a0 is called the fictitious vertex of T .
– The finite simplex associated to T is given by

ST (a0,a1, ...,an) =

{

x =
n∑

i=0

λia i, 0 ≤ λi ≤ 1, 0 ≤ i ≤ n,

n∑

i=0

λi = 1

}

.

– For each i ∈ {0, ..., n}, P i(T ) denotes the hyperplane containing the vertices (aj)0≤j≤n, j �=i. The hyper-
plane P0(T ) will be called the supporting hyperplane of T (a0,a1, ...,an). Observe that
a0 
∈ P0(T ).

– The (n− 1)-faces of T are defined as

Γi(T ) = T ∩ P i(T ), 0 ≤ i ≤ n.

Note that Γ1(T ), ...,Γn(T ) are the unbounded faces of T while Γ0(T ) is the only bounded face of T . The
face Γ0(T ) is called the supporting face of T . More generally, for each integer k such that 0 ≤ k ≤ n−2,
we call a k-face of T a k-dimensional intersection of two (k + 1)-faces of T . It follows that 0-faces are
nothing but the real vertices of T . A face of T is a k-face of T for some integer 0 ≤ k ≤ n− 1.

– The altitude vector of T , denoted by hT , is defined as hT = πT a0 − a0 where πT a0 is the orthogonal
projection of the fictitious vertex a0 on the supporting hyperplane P0(T ). Notice that |hT | is the
distance between a0 and P0(T ), and hT is a vector normal to P0(T ) that points to the half-space
containing T (see Fig. 2).

– The quasi-inversion mapping associated to T is defined as

φT : (T ∪ ST )\{a0} −→ (T ∪ ST )\{a0},

x �→ |hT |4

[(x − a0)t.hT ]2
(x − a0) + a0. (20)

This mapping keeps the supporting face of T invariant and transforms T into ST \{a0} and conversely.
Moreover, φT is invertible and involutive (i.e. φ−1

T = φT ].
– We denote by FT the affine mapping which maps the reference infinite simplex T̂ into T . The map-

ping FT maps also the reference simplex Ŝ into the finite simplex ST associated to T .
The altitude vector of reference infinite simplex T̂ and its associated quasi-inversion are given by ĥ = n−1(1, ..., 1)
and φ̂(x̂) = 1

(x̂1+...+x̂n)2 x̂, respectively.
The following lemma is useful in the remaining of this paper.

Lemma 1. Let T (a0, ...,an) be an infinite simplex. Then,

F−1
T ◦ φT = φ̂ ◦ F−1

T . (21)

| det(∇φT )| =
(

|hT |2
(x− a0)t.hT

)2n

· (22)

Proof.
1. We suppose without loss of generality that a0 = 0. The affine mapping FT can be written in the form

FT (x̂) = Bx̂, for any x̂ ∈ T̂ ∪ Ŝ,

where B is a n× n constant matrix. The altitude vector hT is given by

hT = cTB
−tĥ with cT =

|ĥ |2

|B−tĥ |2
·
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Let x ∈ T ∪ ST − {0} and set x̂ = F−1
T (x ) = B−1x . Then,

φT (x ) =
|hT |4

[x t.hT ]2
x =

|hT |4

c2T

[
x̂tBt.B−tĥ

]2Bx̂ =
|ĥ |4

(x̂t.ĥ)2
Bx̂.

Hence,

F−1
T ◦ φT (x ) = B−1φT (x ) =

|ĥ |4

(x̂t.ĥ)2
x̂ = φ̂(x̂),

which ends the proof of (21).
2. We have

det(∇φT ) = det
(

|hT |4
(x t.hT )2

e1 − 2
|hT |4

(x t.hT )3
h1x , ...,

|hT |4
(x t.hT )2

en − 2
|hT |4

(x t.hT )3
hn x

)

=
|hT |4n

(x t.hT )2n
Jn,

where hi = hT .ei, 1 ≤ i ≤ n, and

Jn = det
(

e1 − 2
h1

(x t.hT )
x , ..., en − 2

hn

(x t.hT )
x

)

.

Then, by induction we prove that
Jn = −1,

which ends the proof. �

3.2. The sub-division and the mesh of the domain

We suppose that Ω satisfies the following geometrical assumption:
(H) There exists at least two sub-domains Ω0 and Ω∞ such that

– Ω = Ω0 ∪ Ω∞;
– Ω0 is a bounded polygonal domain;
– Ω∞ is unbounded and can be decomposed into the union of a finite number of infinite simplices T1, ..., TM

such that
1. Ω∞ = ∪M

�=1T�;
2. T1, ..., TM have the same fictitious vertex a0. Without loss of generality, we suppose that a0 = 0;
3. for any �,m ≤M with � 
= m, the intersection of T� and Tm is either the empty set or a whole face.

The assumption (H) is satisfied by most standard unbounded domains, namely the whole space, the half-space
and the exterior regions of bounded (polygonal) domains (see Figs. 3 and 4 hereafter). Of course, such a
decomposition is not unique in general.

For each i ≤M , we denote by h i, φi, Si and Γi respectively the altitude vector, the quasi-inversion, the finite
simplex and the supporting face of Ti. The affine mapping which transforms the reference infinite simplex T̂
into Ti is denoted by Fi. We set

Ω∗ =
◦

(∪M
i=1Si) − {0}, Gi = (Ti ∪ Si) − {0}, i = 1, ...,M,

Γ = Γ1 ∪ Γ2 ∪ .... ∪ ΓM = Ω∗ ∩ Ω∞.

The polygonal domain Ω∗ will be called the fictitious sub-domain of Ω. It is important to distinguish it from Ω0.
We have

∪M
i=1Gi = Ω∗ ∪ Ω∞ − {0}.
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Figure 3. The partition of the 2D half-space into the union of two infinite simplices T1 and T2

and a bounded region Ω0. Here Ω0 = S1 ∪ S2 − {0} = Ω∗, where S1 and S2 are the associated
finite simplices.

T

Ω

T

T

T

1

2

3

4

0

Figure 4. The case of an exterior domain Ω = R
2 − ω. Here Ω is decomposed into the union

of four finite simplices T1, T2, T3 and T4. We have Ω∗ = S1 ∪ S2 ∪ S3 ∪ S4 and Ω0 = Ω∗ − ω.

3.3. The polygonal inversion and polygonal Kelvin transform

The objective of this section is to introduce some tools which will be used for defining the discrete space.
Firstly, we consider the functions

ri(x ) =
x t.h i

|h i|2
, i = 1, ...,M. (23)

Then, the quasi-inversion mappings associated to the infinite simplices T1, . . . , TM are given by

φi(x ) = ri(x )−2x .

Observe that
ri(x ) = 1 if x ∈ Γi.

Some simple but useful properties of these functions are stated in the following lemma.

Lemma 2. Let i, j ∈ {1, ...,M} such that Gi ∩Gj 
= ∅. Then, for each x ∈ Gi ∩Gj

ri(x) = rj(x), φi(x) = φj(x). (24)

We have also
ri(x) � |x| in Gi, i = 1, ...,M. (25)
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Proof. Suppose that i 
= j and Gi ∩ Gj 
= ∅. Let a1, ...,ak (k ≤ n) be the common real vertices of Ti and Tj .
We have on the one hand

a�.h i = |h i|2, a�.hj = |hj |2, ∀ 1 ≤ � ≤ k,

since the points a1, ...,ak belong to the supporting hyperplane of Ti.
On the other hand, any x ∈ Gi ∩Gj can be written into the form x =

∑k
�=1 λ�a�, with λ� ≥ 0 for each � ≤ k

and
∑k

�=1 λ� > 0. Hence,

∀x ∈ Gi ∩Gj , x .h i =

(
k∑

�=1

λ�

)

|h i|2, x .hj =

(
k∑

�=1

λ�

)

|hj |2.

Thus,

ri(x ) =
k∑

�=1

λ� = rj(x ),

and φi(x ) = φj(x ). This ends the proof of (24).
Now, let a1, ...,an be the real vertices of Ti and h i its altitude vector. Let x =

∑n
�=1 λ�a� ∈ Gi. Then,

ri(x ) =
∑n

�=1 λ� and

|h i|ri(x ) ≤ |x | ≤ max
1≤�≤n

|a�|
n∑

�=1

λ� = cri(x ),

which gives (25). �

With help of assertions of Lemma 2 one can define the polygonal radius r(x ) in Ω∞ ∪ Ω∗ as follows

r(x ) = ri(x ) if x ∈ Gi. (26)

The polygonal inversion associated to the T1, ..., TM is defined on ∪M
i=1Gi by

∀x ∈ G, φ(x ) = φi(x ), ∀i ∈ {1, ...,M}.

According to Lemma 2, we have
– the function r(x ) is globally continuous on Ω∞ ∪ Ω∗ − {0} and is C∞ in each sub-domain Gi;
– r(x ) � |x | in Ω∞ ∪ Ω∗ − {0};
– r(x ) = 1 for each x ∈ Γ = ∪M

i=1Γi;
– r(x ).r(φ(x )) = 1;
– φ is continuous and one to one from Ω∞ into Ω∗ and φ−1 = φ. Moreover, φ preserves the points of the

polygonal interface Γ since r(x ) = 1 if x ∈ Γ.
Given a real number γ, we define the polygonal Kelvin transform Λγ as the operator which assigns to each
function u defined on Ω∞ ∪ Ω∗ − {0} the function Λγu defined on the same set by

(Λγu)(x ) = r(x )−γu(φ(x )). (27)

Observe that
u(x ) = r(φ(x ))γΛγu(φ(x )). (28)

Hence,
u(x ) = (Λγu)(x ) if x ∈ Γ.

The next proposition describes the image of the weighted space Hm,p
α (Ω∞) by the operator Λγ .
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Proposition 1. Let α, γ and p be three real numbers with 1 < p < +∞. Let u be a function defined in Ω∞.
We set

δ = γ − α− 2
n

p
·

1. If m ∈ {0, 1} and u ∈ Hm,p
α (Ω∞) then Λγu ∈ V m,p

δ (Ω∗). Moreover

‖u‖Hm,p
α (Ω∞) � ‖Λγu‖V m,p

δ
(Ω∗). (29)

2. If m ≥ 0 and u ∈ Hm,p
α (Ω∞). Then, Λγu satisfies

Λγu|Si
∈ V m,p

δ (Si), for i = 1, ...,M,

and
‖u‖Hm,p

α (Ti) � ‖Λγu‖V m,p
δ (Si), for i = 1, ...,M. (30)

The proof of this proposition is given in appendix A.

3.4. The mesh of the FEM domain and the fictitious sub-domain

The last step in constructing the discrete space Wh is the mesh of the domain. More precisely, this consists
in triangulating the bounded sub-domain Ω0 and the fictitious subdomain Ω∗ separately. Thus, we consider two
families of triangulations

1. A classical finite element triangulation {K; K ∈ Th} of the region Ω0 into the union of simplices K
satisfying the usual regularity conditions:
(a) the intersection of two adjacent simplices is a whole k-dimensional face, with 0 ≤ k ≤ n− 1, or is

empty;
(b) there exists a constant σ such that

∀K ∈ Th,
hK

�K
≤ σ for every h, (31)

where hK denotes the diameter of K and �K the radius of the inscribed sphere in K.
The (classical) discretization parameter associated to this triangulation is defined as

h = max
K∈Th

diam(K). (32)

2. A graded triangulation {K; K ∈ T̃h} of the fictitious domain Ω∗ satisfying the regularity conditions
above and, in addition, the following refinement assumptions:
(a) for any K ∈ T̃ ∗

h = {K ∈ T̃h; 0 
∈ K}

hK � hd1−µ
K ,

h1/µ � dK . (33)

Here dK denotes the distance between the origin 0 and K, and µ > 0 is the gradation parameter
which will be chosen subsequently;

(b) for any K ∈ T̃h − T̃ ∗
h

hK � h1/µ; (34)

(c) for any K ∈ T̃h, there exists i ∈ {1, ...,M} such that K ⊂ Si.
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The last condition means that each triangulation of Ω∗ is a conforming union of triangulations of the
sub-domains Si, i = 1, ...,M . Namely, we can write

T̃h = ∪M
i=1T̃ i

h ,

where for each i ≤M , T̃ i
h is a graded triangulation of Si. Moreover, if Si ∩ Sj 
= ∅ then the meshes T̃ i

h

and T̃ j
h must have the same trace on the intersection Si ∩ Sj .

All the above assumptions are intrinsic to Th or to T̃h. In order to ensure that the tringulations Th and T̃h

induces the same trace on the interface Γ = Ω∞ ∩ Ω0 = Ω∞ ∩ Ω∗, we assume the following:
If K1 ∈ Th and K2 ∈ T̃h, then K1 ∩K2 ∩ Γ is either empty or a whole face of both of K1 and K2.

3.5. The discrete space and the interpolation operator

Now, we are in position to construct the discrete space corresponding to the mesh of the domain. This space
depends mainly on

– the choice of the sub-domains Ω0 and Ω∞;
– the mesh parameters h, µ;
– the exponent γ of the polygonal Kelvin transform;
– the degree k of the shape functions.

Namely, given an integer k ∈ N
∗ and a parameter γ, we associate to the above mesh, the following finite

dimensional space

Hh,k,γ(Ω) =
{
u ∈ C0(Ω); u|K ∈ Pk(K), ∀K ∈ Th

Λγu|K ∈ Pk(K), ∀K ∈ T̃ ∗
h , Λγu|K ∈

◦
Pk(K), ∀K ∈ T̃h − T̃ ∗

h

}
.

A main feature of the IFE method is to consider h as the only discretization parameter. The parameters, µ, γ
and the subdomains Ω0, T0,...,TM are a priori fixed. Since their choice has a serious influence on the quality of
approximation, we shall call them the adjustment parameters. The choice of the adjustment parameters is not
arbitrary since they are subject to some constraints. Most of these constraints come from the analysis of the
best approximation error. The following lemma gives a first condition on γ:

Lemma 3. Suppose that 1 < p < +∞ and that α+
n

p
< 1 + γ. Then,

Hh,k,γ(Ω)↪→H1,p
α (Ω). (35)

Proof. We set δ = γ − α− 2n
p . Then, δ + n

p > −1. Let uh ∈ Hh,k,γ(Ω). Then, (Λγuh)|K ∈ V 1,p
δ (K) for each

K ∈ Th∪T̃h, thanks to (6). The continuity of the functions uh and r(.) implies that Λγuh ∈ V 1,p
δ (Ω∗). We deduce

that uh|Ω∞ ∈ H1,p
α (Ω∞), thanks to Proposition 1. We have also uh|Ω0 ∈ W 1,p(Ω0). Since uh(x ) = Λγuh(x )

if x ∈ Γ, we conclude that uh ∈ H1,p
α (Ω). �

In the sequel, we shall suppose that the condition

γ > α+
n

p
− 1,

is always fulfilled.
It remains to define the interpolation operator corresponding to the space Hh,k,γ(Ω). The first step consists

in defining a family of local interpolation operators as follows: let K be an element of Th or T̃h and a0
K , ...,a

n
K
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its vertices and consider the set of nodes

ΣK =

{

x =
n∑

i=0

λia
i
K ;

n∑

i=0

λi = 1 and λi ∈
{

0,
1
k
,
2
k
, ...,

k − 1
k

, 1
}}

.

We denote by ΠK the local Pk-interpolation operator of type (k) defined as follows: for each function v ∈ C0(K),
ΠKv is the only element of Pk such that

ΠKv(a) = v(a),

for any vertex a ∈ ΣK .
If K ∈ T̃h − T̃ ∗

h (0 ∈ K), we consider also the local
◦
Pk-interpolation operator

◦
ΠK of type (k) defined as: for

each v ∈ C0(K − {0}), ΠKu is the only element of
◦
Pk such that

◦
ΠKv(a) = v(a),

for any node a ∈ ΣK − {0}.
Under these considerations, one can associate to each function v ∈ C0

loc(Ω) its global interpolant vh defined by

vh|K = ΠKv|K for each K ∈ Th,

(Λγvh)|K = ΠK [(Λγv)|K ] for each K ∈ T̃ ∗
h ,

(Λγvh)|K =
◦
ΠK [(Λγv)|K ] for each K ∈ T̃h − T̃ ∗

h . (36)

The global interpolation operator Πh is the operator which assigns to each function v ∈ C0
loc(Ω), its interpolant vh.

This interpolant is continuous, thanks to the construction above.
Notice that the interpolation operator Πh depends on the mesh and on parameters k and γ.
Notice also that Πhv belongs to the space Hh,k,γ(Ω) for each function v ∈ C0

loc(Ω). The objective of the next
section is to derive an estimate of the interpolation error v − Πhv.

4. The best approximation error

We state the following:

Theorem 1. Let p, q > 1, α, β four real numbers such that

n

p
− n

q
+ 1 > 0 and β +

n

q
≥ α+

n

p
, (37)

β +
n

q
− 1 < γ < β +

n

q
, (38)

k + 1 >
n

q
· (39)

Let

µm =
β − α+ n(1

q − 1
p )

k + 1 −m+ n( 1
p − 1

q )
, τm =

µm

µ
, for 0 ≤ m ≤ k. (40)

Then, for each function u ∈ Hk+1,q
β (Ω) the following estimate holds

‖u− Πhu‖H1,p
α (Ω) � h[k+n(1/p−1/q)] min(1,τ1)‖u‖Hk+1,q

β (Ω∞)+h
k+n(1/p−1/q)‖u‖W k+1,q(Ω0). (41)
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Further, for any nonegative integer m ≤ k, we have
∑

K∈T̃h

‖u− Πα
hu‖Hm,p

α (K) � h[k+1−m+n(1/p−1/q)] min(1,τm)‖u‖Hk+1,q
β (Ω∞) (42)

∑

K∈Th

‖u− Πα
hu‖Hm,p

α (K) � hk+1−m+n(1/p−1/q)‖u‖Hk+1,q
β (Ω0). (43)

Notice that condition (37) implies the injection Hk+1,q
β (Ω) ⊂ H1,p

α (Ω), thanks to (5). The second condition (38)
combined with the first one implies in particular that γ > α+ n

p − 1, which ensures the conformity injection (35).
The third condition (39) is imposed to ensure the inclusion

Hk+1,q
β (Ω) ⊂ C0

loc(Ω), (44)

where C0
loc(Ω) is the space of continuous functions on Ω. Note that the inclusion (44) stems from the inclusion

W k+1,q(ω) ↪→C0(ω) which is valid when ω is a bounded domain with a Lipschitz continuous boundary.
As for the finite element method, the proof of Theorem 1 is based on an analysis of the local interpolation

operators.

Proof of Theorem 1

Throughout the proof, assumptions (37)–(39) are supposed valid.
First step. The local interpolation error. The next proposition gives an estimate of the interpolation error in
each inverted element.

Proposition 2. Let i ∈ {1, ...,M}. Let m ≤ k be an integer, 1 < p, q < ∞, and δ, θ two real numbers such
that

−1 < θ +
n

q
< 0, (45)

and
V k+1,q

θ (K̂)↪→V m,p
δ (K̂).

Let

µm =
δ − θ + (1/p− 1/q)n

k + 1 −m+ (1/p− 1/q)n
, τm =

µm

µ
· (46)

Then, for each function u ∈ V k+1,q
θ (K) the following estimates hold

|u− ΠKu|V m,p
δ (K) � h[k+1−m+n(1/p−1/q)] min(1,τm)|u|V k+1,q

θ (K) if K ∈ T̃ ∗
h , (47)

|u−
◦
ΠKu|V m,p

δ (K) � h[k+1−m+n(1/p−1/q)]τm |u|V k+1,q
θ (K) if K ∈ T̃h − T̃ ∗

h , (48)

where, for each K, the operators ΠK and
◦
ΠK are defined as in Section 3.5.

Proof of Proposition 2. Let K ∈ T̃h be a fixed finite simplex and let FK the affine mapping which transforms
the reference element K̂ into K, and chosen such that FK(0) = 0 if 0 ∈ K. This mapping is of the form

x̂ ∈ K̂ �→ BK x̂ + aK ∈ K,

with aK = 0 if K ∈ T̃h − T̃ ∗
h . If �K (resp. �̂) denotes the radius of the inscribed sphere in K (resp. in K̂).

Then (see, e.g., [14])

‖BK‖ ≤ diam(K)
�̂

� hK , ‖B−1
K ‖ ≤ diam(K̂)

�K
� h−1

K . (49)
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Now, let u be a function in V k+1,q
θ (K) and set

û = u ◦ FK .

Two cases are distinguished:

Case 1. If K ∈ T̃ ∗
h . Then, Assumptions (33) and (34) give

|x | � dK for x ∈ K. (50)

Hence, for any integer m, we have

|u− ΠKu|pV m,p
δ (K)

=
∑

|µ|=m

∫

K

|x |p(δ+m)|Dµ(u− ΠKu)|pdx

� d
p(δ+m)
K

∑

|µ|=m

∫

K

|Dµ(u− ΠKu)|pdx

� d
p(δ+m)
K ‖B−1

K ‖mp| detB||û− ΠK̂ û|
p

W m,p(K̂)

� d
p(δ+m)
K h−mp+n

K |û− ΠK̂ û|
p

W m,p(K̂)

� d
p(δ+m)
K h−mp+n

K inf
p̂∈Pk

‖û− p̂‖p

W k+1,p(K̂)
,

where we used the identity ΠK p̂ = p̂ for each p̂ ∈ Pk. Using the classical inequality (see [17])

inf
p̂∈Pk

‖û− p̂‖W k+1,p(K̂) � |û|W k+1,q(K̂), (51)

and the inequality

|û|W k+1,q(K̂) ≤ ‖BK‖k+1| det(BK)|−1/q|u|W k+1,q(K),

we get

|u− ΠKu|V m,p
δ (K) � dδ+m

K h
k+1−m+(1/p−1/q)n
K |u|W k+1,q(K).

Moreover,

|u− ΠKu|V m,p
δ (K) � dδ+m

K h
k+1−m+(1/p−1/q)n
K |u|W k+1,q(K)

� dδ+m−θ−k−1
K h

k+1−m+(1/p−1/q)n
K |u|V k+1,q

θ (K)

� d
(µm−µ)[k+1−m+( 1

p− 1
q )n]

K hk+1−m+(1/p−1/q)n|u|V k+1,q
θ (K).

Finally, assumption (33) gives

|u− ΠKu|V m,p
δ (K) � h[k+1−m+n(1/p−1/q)] min(τm,1)|u|V k+1,q

θ (K).
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Case 2. If K ∈ T̃h − T̃ ∗
h . Then for each integer s ≤ m

|u−
◦
ΠKu|pV s,p

δ (K)
=

∑

|µ|=s

∫

K

|x |p(δ+s)|Dµ
(
u−

◦
ΠKu

)
|pdx

≤
∑

|µ|=s

‖B−1
K ‖ps| detBK |

∫

K̂

|BK x̂|p(δ+s)
∣
∣
∣Dµ

(
û−

◦
ΠK̂ û

)∣
∣
∣
p

dx̂

≤ ‖B−1
K ‖ps‖BK‖max(0,s+δ)p‖B−1

K ‖−min(0,s+δ)p| detBK |

×
∑

|µ|=s

∫

K̂

|x̂|p(δ+s)|Dµ(û−
◦
ΠK̂ û)|pdx̂.

Thus,
∣
∣
∣u−

◦
ΠKu

∣
∣
∣
p

V s,p
δ (K)

� hpδ+n
K

∣
∣
∣û−

◦
ΠK̂ û

∣
∣
∣
p

V s,p
δ (K̂)

. (52)

Let p̂ be an arbitrary element of
◦
Pk(K̂). Then, since

◦
ΠK̂ p̂ = p̂, we get

∥
∥
∥û−

◦
ΠK̂ û

∥
∥
∥

V m,p
δ (K̂)

=
∥
∥
∥(û− p̂) − Π̂(û− p̂)

∥
∥
∥

V m,p
δ (K̂)

�
∥
∥
∥I −

◦
ΠK̂

∥
∥
∥
L(V k+1,q

θ (K̂),V m,p
δ (K̂))

‖û− p̂‖V k+1,q
θ

(K̂).

The extension of the Deny-Lions inequality (51) to the space V k+1,q
θ (K̂)/

◦
Pk, required at this stage, is given in

the following proposition

Proposition 3. Let k ≥ 0, 1 < q <∞ and θ such that

−1 < θ +
n

q
< 0. (53)

Then,
inf

p∈
◦
Pk

‖u− p‖V k+1,q
θ

(K̂) � |u|V k+1,q
θ

(K̂). (54)

We prove Proposition 3 afterward. Proposition 3 is used here as follows:

‖û−
◦
ΠK̂ û‖V m,p

δ (K̂) �




∑

|ν|=k+1

∫

K̂

|x̂|q(θ+k+1)|Dν û|qdx̂





1/q

� ‖BK‖k+1| det(BK)|−1/q




∑

|ν|=k+1

∫

K

|B−1
K x |q(θ+k+1)|Dνu|qdx





1/q

� ‖BK‖k+1−min(0,θ+k+1)‖B−1
K ‖max(0,θ+k+1)| det(BK)|−1/q|u|V k+1,q

θ (K)

� h
−θ−n/q
K |u|V k+1,q

θ
(K),

where we used (49). Replacing in (52) gives

‖u−
◦
ΠK̂u‖V m,p

δ (K) ≤ h
δ−θ+n(1/p−1/q)
K |u|V k+1,q

θ (K).
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With assumption (34) we get

‖u−
◦
ΠKu‖V m,p

δ (K) � h[k+1−m+n(1/p−1/q)]µm/µ|u|V k+1,q
θ (K).

This ends the proof of Proposition 2. It remains to prove Proposition 3 used here. �

Proof of Proposition 3. The starting point is the following lemma (see [26, 30]).

Lemma 4. (Hardy’s inequality) Let 1 < q < +∞ and θ ∈ R−{−1}. Let f be a continuous function on [0,+∞[
such that ∫ +∞

0

tθ+q|f(t)|qdt < +∞.

Set

F (t) =






−
∫ +∞

t

f(t)dt if θ > −1,
∫ t

0

f(t)dt if θ < −1.

Then,
∫ +∞

0

tθ|F (t)|qdt ≤
(

q

|θ + 1|

)q ∫ +∞

0

tθ+q|f(t)|qdt. (55)

Now, For any real δ > 0, we set
K̂δ = (K̂ ∪ T̂ ) ∩Bδ − {0},

where Bδ is the ball of radius δ. There exists δ0 > 0 sufficiently small such that

K̂δ ⊂ K̂ if δ < δ0.

Consider the space
◦
V

k+1,q

θ (K̂δ) =
{
v ∈ V k+1,q

θ (K̂δ); v = 0 on ∂Bδ ∩ K̂
}
.

We state the following:

Lemma 5. Let k ≥ 0, 0 < δ < δ0, and suppose that

θ +
n

q

∈ {−k, ..., 0}.

Then, the semi-norm
u �−→ |u|V k+1,q

θ (K̂δ) =
∑

|µ|=k+1

‖Dµu‖Lq(K̂δ),

is a norm on the space
◦
V

k+1,q

θ (K̂δ) which is equivalent to the norm ‖.‖V k+1,q
θ (K̂δ).

Proof. Let ϕ be a function in C∞(K̂δ)∩
◦
V

k+1,q

θ (K̂δ). Then, necessarily ϕ(0) = 0, since |x |θϕ ∈ Lq(K̂δ) and
θ + n

q < 0. For any x ∈ K̂δ, we set x = rσ with r ∈ [0, δ] and σ ∈ S1. Here S1 is unit sphere of R
n. For each

multi-index µ such that |µ| ≤ k we set
ϕµ = Dµϕ.

We have

ϕµ(x ) = ϕµ(rσ) = −
∫ δ

r

Dtϕµ(tσ)dt =
∫ r

0

Dtϕµ(tσ)dt+ ϕµ(0).
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If θ + |µ| + n

q

= 0, then

∫

K̂δ

|x |q(θ+|µ|)|Dµϕ|qdx =
∫

K̂δ

|x |q(θ+|µ|)|ϕµ|qdx

=
∫

ω

(∫ δ

0

rq(θ+|µ|)+n−1|ϕµ(rσ)|qdr
)

dσ,

where ω = S1 ∩ K̂δ. Using Hardy’s inequality (55) leads to

∫

K̂δ

|x |q(θ+|µ|)|Dµϕ|qdx �
∫

ω

(∫ δ

0

rq(θ+|µ|+1)+n−1|Drϕµ(rσ)|qdr
)

dσ

�
∑

|ν|=|µ|+1

∫

K̂δ

|x |q(θ+|µ|+1)|Dνϕ(x )|qdx .

The proof of Lemma 5 is ended by induction and by the density of the space of all the functions ϕ ∈
C∞(K̂δ)∩

◦
V

k+1,q

θ (K̂δ) in
◦
V

k+1,q

θ (K̂δ) (see [25, 30, 33]). �

Lemma 6. Let m ≥ 1 be an integer and θ and δ two real numbers such that

−1 < θ +
n

q
< 0, δ < δ0

and set
O = K̂ − K̂δ/2.

Then, the semi-norm

[u]V k+1,q
θ (K̂) = |u|V k+1,q

θ (K̂) +
∑

1≤|µ|≤k+1

∣
∣
∣
∣

∫

O
Dµudx

∣
∣
∣
∣ ,

is a norm on V k+1,q
θ (K̂) equivalent to the norm ‖.‖V k+1,q

θ (K̂).

Proof. We prove the lemma by contradiction; suppose that there exists a sequence (um) such that

∀m ≥ 1, ‖um‖V k+1,q
θ (K̂) = 1 and [un]V k+1,q

θ (K̂) ≤
1
m
·

Since V k+1,q
θ (K̂) is a reflexive Banach space, there exists a subsequence still denoted (um) which converges

weakly in V k+1,q
θ (K̂) to an element u. The lower semi-continuity of the norm [.]V k+1,q

θ
(K̂) implies that

[u]V k+1,q
θ (K̂) = 0. Hence u = 0 since the condition θ +

n

q
< 0 yields R ∩ V k+1,q

θ (K̂) = {0}.
In the remaining part of this proof, the constants involved in the symbols � and � (defined before) do not

depend on m and the functions.
Now, let ξ0 and ξ1 two functions of class C∞ on R

n such that

ξ0(x ) + ξ1(x ) = 1,
supp(ξ0) ⊂ Bδ,

supp(ξ1) ⊂ R
n −Bδ/2.
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Then, for each m,

um = u(1)
m + u(2)

m with u(1)
m (x ) = ξ0(x )um(x ), u(2)

m (x ) = ξ1(x )um(x ).

Notice that u(2)
m (x ) = 0 on Bδ/2 ∩ K̂. Hence,

‖u(2)
m ‖V k+1,q

θ (K̂) � ‖u(2)
m ‖V k+1,q

θ (O).

Since dist(0,O) > 0, the space V k+1,q
θ (O) is isomorphic to W k+1,q(O). It follows that the sequence um

converges weakly to zero in W k+1,q(O). The compactness of the imbedding W k+1,q(O)↪→W k,q(O) implies
that um converges strongly to zero in W k,q(O). Since in addition |um|V k+1,q

θ (K̂) tends to zero, we deduce that

um converges strongly to 0 in V k+1,q
θ (O).

Hence, u(2)
m converges strongly to 0 in V k+1,q

θ (O) = W k+1,q(O). Now, we deal with the sequence (u(1)
m ). Since

u
(1)
m = 0 on ∂Bδ ∩ K̂δ and by virtue of Lemma 5, we get

‖u(1)
m ‖V k+1,q

θ (K̂) � |u(1)
m |V k+1,q

θ (K̂).

But,

|u(1)
m |q

V k+1,q
θ (K̂)

=
∑

|µ|=k+1

∫

K̂δ/2

|x |q(θ+k+1)|Dµu(1)
m |qdx

+
∑

|µ|=k+1

∫

O
|x |q(θ+k+1)|Dµu(1)

m |qdx ,

�
∑

|µ|=k+1

∫

K̂δ/2

|x |q(θ+k+1)|Dµum|qdx

+
∑

|µ|=k+1

∫

O
|x |q(θ+k+1)|Dµu(1)

m |qdx .

Hence,
‖u(1)

m ‖V k+1,q
θ (K̂) � |um|V k+1,q

θ (K̂δ/2)
+ ‖um‖V k+1,q

θ (O).

It follows that
u(1)

m converges strongly to 0 in V k+1,q
θ (K̂)

since um converges strongly to zero in V k+1,q
θ (O). We deduce that um converges strongly to zero in V k+1,q

θ (K̂)
and we reach the contradiction with the equality ‖um‖V k+1,q

θ (K̂) = 1.

We end the proof of Proposition 3 as follows; let u ∈ V k+1,q
θ (K̂). Since θ + n

q > −1, we have
◦
Pk ⊂ V k+1,q

θ (K̂).

Moreover, for each p ∈
◦
Pk we have

‖u− p‖V k+1,q
θ (K̂) � [u− p]V k+1,q

θ (K̂).

Choosing p ∈
◦
Pk such that

∀1 ≤ |µ| ≤ k + 1
∫

O
Dµpdx =

∫

O
Dµudx

ends the proof. �
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Second step. Global interpolation error. We are now in position to prove Theorem 1. Let k, p, q, α and β

satisfying the assumptions of that theorem and let u ∈ Hk+1,p
β (Ω). We have

‖u− Πhu‖H1,p
α (Ω) � ‖u− Πhu‖W 1,p(Ω0) +

M∑

i=1

‖u− Πhu‖H1,p
α (Ti)

. (56)

From the classical theory of the Finite element Method (see [14]), we know that

‖u− Πα
hu‖W 1,p(Ω0) � hk+n(1/p−1/q)‖u‖W k+1,p(Ω0).

On the other hand, Proposition 1 implies that for each i ≤M

M∑

i=1

‖u− Πhu‖H1,p
α (Ti)

�
M∑

i=1

‖Λγ(u− Πhu)‖p

V 1,p
δ (Si)

,

�
∑

K∈Th−T ∗
h

‖Λγu− ΠK(Λγu)‖p

V 1,p
δ (K)

+
∑

K∈T ∗
h

‖Λγu− ΠK(Λγu)‖p

V 1,p
δ (K)

with δ = γ − α− 2n
p

. Taking θ = γ − β − 2n
q

in Proposition 2 leads to

‖u− Πhu‖H1,p
α (Ω∞) � h[k+n(1/p−1/q)] min(τ1,1)

M∑

i=1

|Λγu|V k+1,q
θ (Si)

,

� h[k+n(1/p−1/q)] min(τ1,1)
M∑

i=1

‖u‖Hk+1,q
β (Ti)

,

where τ1 =
µ1

µ
and

µm =
δ − θ + n(p−1 − q−1)

k + 1 −m+ n(p−1 − q−1)
=

β − α+ n(q−1 − p−1)
k + 1 −m+ n(p−1 − q−1)

,

for each m ≤ k. This ends the proof of estimate (41). The second estimate (42) is also a direct consequence of
Propositions 1 and 2. �

5. Application to a model problem

Let us come back to the model variational problem (18). Recall that W is supposed to be a closed subspace
of H1

α(Ω)s for some real α and some integer s, and equipped with the norm ‖.‖H1
α(Ω) (s = 1 if the problem is

scalar, and s = n if the problem involves vector fields). Consider also the corresponding discrete problem (19)
with

Wh = W ∩Hh,k,γ(Ω)s,

and
γ > α+

n

2
− 1. (57)

The error u− uh can be estimated in the norm ‖.‖H1
α(Ω) using Céa’s lemma

‖u− uh‖H1
α(Ω)s � inf

vh∈Wh

‖u− vh‖H1
α(Ω)s . (58)
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If we suppose in addition that u is continuous, and that its interpolant Πhu is also in W , then we get

‖u− uh‖H1
α(Ω)s � ‖u− Πhu‖H1

α(Ω)s .

Combining the latter with Theorem 1 yields

Theorem 2. Let u ∈ W be a solution of the problem (18) and uh solution of the corresponding discrete
problem (19). Suppose that u belongs to Hk+1,q

β (Ω) for some real β such that the Assumptions (38), (37)
and (39) are fulfilled with p = 2. Suppose also that W is such that

∀v ∈ W ∩ C0
loc(Ω)s, Πhv ∈ W.

Then, the following estimate holds

‖u− uh‖H1
α(Ω) � h[k+n(1/2−1/q)] min(1,τ1)‖u‖Hk+1,q

β (Ω∞)+h
k+n(1/2−1/q)‖u‖W k+1,q(Ω0), (59)

with τ1 is given by (40) with p = 2 and m = 1. In particular, if 0 < µ < µ1 then

‖u− uh‖H1
α(Ω) � hk+n(1/2−1/q)‖u‖Hk+1

β (Ω). (60)

Remark 6. Making an analogy with the finite element method, one can suspect the weighted L2 error
‖u−uh‖H0

α(Ω) to converge faster than the error ‖u−uh‖H1
α(Ω) (under some usual regularity assumptions). Unfor-

tunately, an examination of this question reveals that the classical duality argument of the Aubin-Nietsche lemma
(see, e.g., [14]) does not give any additional information on the convergence of the error ‖u−uh‖H0

α(Ω). The com-
putational tests shown in Section 6.3 seem to confirm the absence of a superconvergence of the weighted L2 error.

6. Implementation of the method and computational results

To assess the validity of the method, we now proceed to use it for solving numerically a 3D test problem.
The problem we choose here is the Laplace equation in the upper half-space of R

3
+ with a Neumann boundary

condition at x3 = 0: Find u ∈ H1
−1(R

3
+) solution of

−∆u = f in R
3
+,

∂u

∂x3
= 0 at x3 = 0, (61)

where f is given in H0
1(R3

+). As it is underlined in Section 2, this problem admits one and only one solution
and can be written into the variational form (see [10]): Find u ∈ H1

−1(R
3
+) such that

∀v ∈ H1
−1(R

3
+),

∫

R
3
+

∇u.∇vdx =
∫

R
3
+

fvdx. (62)

Given an integer k ≥ 0, we denote by N∆
k the space of harmonic polynomials of degree less than or equal to k

and whose normal derivative vanishes at x3 = 0. When k < 0 we set N∆
k = {0}. It can be easily proven

that N∆
k is the space of harmonic polynomials which are even with respect to the variable x3.

The half-space satisfies clearly the geometrical assumption of Section 3.2. Consider an integer k ≥ 0, a
parameter γ ∈ R and a gradation parameter µ > 0, and define the discrete space Hh,γ,k(R3

+) as in Section 3.5.
The inclusion Hh,γ,k(R3

+) ⊂ H1
−1(R

3
+) holds if γ > −1/2.

The corresponding interpolation operator Πh satisfies clearly

∀v ∈ H1
−1(R

3
+) ∩ C0

loc(R
3

+); Πhv ∈ H1
−1(R

3
+),



INVERTED FINITE ELEMENTS 133

for any real α. We set Wh = Hh,γ,k(R3
+). The discrete problem associated to (61) is: find uh ∈Wh such that

∀v ∈Wh,

∫

R
3
+

∇uh.∇vhdx =
∫

R
3
+

fvhdx. (63)

We need the following result:

Proposition 4 ([10]). Let k ≥ 0 be an integer. For each f in H0
s+1(R

3
+), the problem (61) has a solution in

H1
s−1(R

3
+) if and only if f satisfies

∀q ∈ N∆
s−1, 〈f, q〉 = 0. (64)

When it exists, the solution is unique up to an element of N∆
−s−1. Moreover, if f ∈ Hk−1

s+1 (R3
+) for some integer

k ≥ 1, then u ∈ Hk+1
s−1 (R3

+). In all the cases, the solution depends continuously on the data (with respect to the
quotient norm).

Remark 7. Note on the one hand that if s ≤ 0 then N∆
s−1 = {0} and the orthogonality condition (64) is trivial.

On the other hand, if s ≥ 0, then N∆
−s−1 = {0} and the uniqueness holds. The case s = 0 corresponds to the

well posed weak formulation (62) for which existence and uniqueness hold.

Combining Corollary 2 and Proposition 4 yields

Theorem 3. Suppose that k ≥ 1. Let u be a solution of (61) and uh solution of (63). If f ∈ Hk−1
s+1 (R3

+) for
some integer s ≥ 0, and if f satisfies the orthogonality condition (64). Then u belongs to Hk+1

s−1 (R3
+). If in

addition
s− 1

2
< γ < s+

1
2
,

then
‖u− uh‖H1

−1(R
3
+) � hk min(1,τ)‖u‖Hk+1

s−1(R
3
+), (65)

where τ =
s

kµ
·

Now, let us sketch some details concerning the numerical computation of some integrals appearing in the
discretization of (62).

6.1. Sub-division of the domain and generation of the mesh

As explained in Section 3.2, we decompose the half space into the union of a bounded domain Ω0 and three
infinite simplices T1, T2 and T3. We choose Ω0 = RΩ̂0 where Ω̂0 is the tetrahedron whose vertices are (1, 0, 0),
(
√

3/2,−1/2, 0), (−
√

3/2,−1/2, 0) and (0, 0, 1) (RΩ̂0 is the set of all the points y of the form Rx with x ∈ Ω̂0).
The parameter R is fixed. The infinite simplices T1, T2 and T3 are given by T1 = RT̂1, T2 = RT̂2, T3 = RT̂3

where T̂1, T̂2 and T̂3 are three infinite simplices whose real vertices are given by

T̂1 : (1, 0, 0), (
√

3/2,−1/2, 0), (0, 0, 1),

T̂2 : (
√

3/2,−1/2, 0), (−
√

3/2,−1/2, 0), (0, 0, 1),

T̂3 : (1, 0, 0), (−
√

3/2,−1/2, 0), (0, 0, 1).

Figure 5 gives an illustration of this decomposition.
Here R is a free parameter which describes the size of the bounded domain Ω0. Namely, the smaller is R the

smaller is the finite elements region Ω0. However, inverted elements method does not use R as a discretization
parameter. In others terms, the bounded domain Ω0, the sub-domains T1, ..., TM , the parameters γ and µ are a
priori fixed. According to Theorem 2, the error of approximation and the convergence of the method are, indeed,
controlled by h which is the unique discretization parameter. However, it could be interesting to investigate
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Figure 5. The decomposition of the upper half-space into the union of a finite simplex and
three infinite simplices.

the influence of the adjustment parameters γ, µ and the radius of Ω0 on the convergence of the method. Recall
that Theorem 2 suggests some restrictive indications on the choice of γ and µ. All these questions are discussed
in Section 6.3 hereafter.

Now, let us display how the graded mesh of a tetrahedron could be generated.
For the sake of simplicity, we expose here the construction of this mesh in a two dimensional reference triangle

K̂2 = {(x, y) ∈ R+ × R+; x+ y ≤ 1}. This construction remains valid in the 3D case in which we consider the
test problem (62) and the forthcoming numerical results.

The first step consists to consider the increasing sequence (αi)i≥1 defined by

α1 = 1, αi+1 = αi + α1−µ
i .

Then, given an integer N ≥ 2, we set hN = α−µ
N , and we consider the finite sequence

di = αih
1/µ
N , 1 ≤ i ≤ N.

It is worth observing that hN ≤ CµN
−1.

The next step consists to consider the segments

Di = {(x, y) ∈ K̂2; x+ y = di}, 1 ≤ i ≤ N.

Then, given an index i ≤ N , we subdivide the segment Di into i equal segments. The final mesh of K̂0 is
obtained by linking the vertices as in Figure 6. Observe that the diameter of a small triangle K, whose vertices
are on the segments Di and Di+1, satisfies hK � di+1 − di = α1−µ

i h
1/µ
N = d1−µ

i hN .
Figure 6 shows the triangulations of K̂2 with N = 10 and µ = 1, µ = 0.5 and µ = 0.3.
The method is extended without any serious difficulty to the three dimensional reference tetrahedron Ŝ. The

mesh of the three virtual simplices S1, S2, S3 associated to the infinite simplices T1, T2 and T3 is then obtained
by mapping the mesh of Ŝ via an affine transformation. It is worth noting that the parameters µ and N take
the same values for T1, T2 and T3. The mesh of the finite element domain Ω0 is obtained by a similar manner
and with the same value of N but without any gradation (µ = 1). Note that h � RN−1. The total number of
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Figure 6. The graded mesh of the reference simplex when N = 10; µ = 1 (left) (in this case
there is no gradation), µ = 0.5 (center), µ = 0.3 (right).

degrees of freedom (DOF) we get by such a construction in the case of the 3D half-space is

DOF =
2
3
(N + 1)(N + 2)(N + 3) − (3N2 + 5N + 3) � 2

3
N3. (66)

6.2. Computation of the stiffness matrix

Inspecting the various stages of the inverted element method, one can notice that its implementation is quite
similar to that of the finite element method. In particular, it leads to a linear system with a sparse matrix. The
only significant difference relies in the computation of the stiffness matrix which contain some additional but
not fastidious complications. Our purpose here is to show how this matrix could be computed in practice.

Let (Mi)1≤i≤DOF be the nodes of the total mesh. Define the family (ψi)1≤i≤DOF of the basic functions of
Wh as

– ψi ∈ Wh;
– ψi(Mj) = δi,j if Mj ∈ K for some K ⊂ Ω0;
– Λγψi(Mj) = δi,j if Mj ∈ K for some K ⊂ Ω∗.

Each element u ∈Wh can be decomposed into the form

u(x ) =
DOF∑

i=1

uiψi, (67)

where the coefficients are given by

ui =
{
u(Mi) if Mj ∈ K for some K ⊂ Ω0,
(Λγu)(Mi) if Mi ∈ K for some K ⊂ Ω∗.

The computation of the left hand side of (63) leads to the calculation of the matrix Aγ whose coefficients are
given by

aij =
∫

Ω

[∇ψi]t.∇ψjdx .

This matrix is sparse since aij = 0 if the nodes Mi and Mj do not belong to the same element.
Further, we can write

aij =
∫

Ω0

[∇ψi]t.∇ψjdx +
M∑

m=1

∫

Tm

[∇ψi]t.∇ψjdx .
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The first term in this expression is a Finite Element term whose computation is quite easy. Hence, we deal only
with the other terms which concern Inverted Elements. For each sub-domain Tm, m = 1, ...,M , we have

∫

Tm

[∇ψi]t.∇ψjdx =
∑

K⊂Sm

∫

φ(K)

[∇ψi]t.∇ψjdx

=
∑

K⊂Sm

| det(Bm)|
∫

(F−1
m ◦φ)(K)

[∇ξψ̃i]tB−1
m .B−t

m .∇ξψjdξ

where for each integer i,

ψ̃i(ξ) = ψi(Fm(ξ)), ξ ∈ T̂ .

Here Bm the denotes the Jacobian matrix of the affine transformation Fm which maps T̂ into Tm. Now, we set
ψ̂�(x̂) = ψ̃�(φ̂(x̂)) for � = i or � = j. According to the chain rule, we have

(∇ξψ̃�) ◦ φ̂(x̂) = [Jξ(φ̂−1) ◦ φ̂(x̂)]∇x̂ψ̂�(x̂),

where Jξ(φ̂−1) = (
∂φ̂−1

j

∂ξi
)1≤i,j≤n is the Jacobian matrix of φ̂−1. Since r(x̂) = x̂1 + x̂2 + x̂3 and φ̂(x ) = r(x̂)−2x̂,

we deduce that φ̂−1 = φ̂ and

Jξ(φ̂−1) ◦ φ̂(x̂) = r(x̂)2(I − 2cx̂t
∗),

where c = (1, 1, 1)t and x̂t
∗ =

1
r(x̂)

x̂. Thus, det(Jξ(φ̂−1)) = r(x̂)−6 (see Lem. 1). It follows that for each

tetrahedron K ⊂ Sm, we have

∫

(F−1
m ◦φ)(K)

[∇ξψ̃i]tB−1
m .B−t

m .∇ξψ̃jdξ =
∫

F−1
m (K)

r(x̂)−2[∇x̂ψ̂i]tA(x̂∗)∇x̂ψ̂jdx̂,

where A(x̂∗) is the symmetric matrix given by

A(x̂∗) = (I − 2x̂∗.c
t)B−1

m .B−t
m (I − 2cx̂t

∗).

Here, we used the identity φ̂ ◦ F−1
m ◦ φ = F−1

m proved in Lemma 2.
The function ψ̂i can be written into the form

ψ̂i(x̂) = r(x̂)γwi(x̂),

where wi is the only function of Pk(F−1
m (K)) which satisfies wi(Mi) = 1 and wi(x̂) = 0 if x̂ is another node

of F−1
m (K). When k = 1, this function is of the form wi(x ) = ai + αt

i.x̂, where ai ∈ R and αi ∈ R
3 are

constants. It is worth noting that ai = 0 if 0 ∈ F−1
m (K).

Consequently, the integral

IK =
∫

F−1
m (K)

r(x̂)−2[∇ψ̂i]tA(x̂∗)∇ψ̂jdx̂

can be decomposed into three terms

IK =
3∑

s=1

IK,s,
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with

IK,1 =
∫

F−1
m (K)

r(x̂)2(γ−1)
{

αt
iA(x̂∗)αj+γ2(αt

i.x̂∗)(αt
j .x̂∗) ctA(x̂∗)c

+γ(αj .x̂∗)αt
iA(x̂∗)c+γ(αi.x̂∗)ctA(x̂∗)αt

j

}
dx̂,

IK,2 = γ

∫

F−1
m (K)

r(x̂)2γ−3
{
ajα

t
iA(x̂∗)c dx̂+aic

tA(x̂∗)αjdx̂

+γai(αt
j .x̂∗)ctA(x̂∗).cdx̂+γaj(αt

i.x̂∗) ctA(x̂∗)c dx̂
}
,

IK,3 = γ2aiaj

∫

F−1
m (K)

r(x̂)2γ−4 ctA(x̂∗)c dx̂.

The expression of these integrals can be simplified since

A(x̂∗)c = −(I − 2x̂∗c
t)B−1

m B−t
m c.

Now, we consider the new variables

δ = r(x̂) = x̂1 + x̂2 + x̂3, σ1 =
x̂1

δ
, σ2 =

x̂2

δ
·

Notice that each one of the integrals IK,s, s = 1, ..., 3 is of the form
∫

F−1
m (K)

r(x )τf(σ1(x̂), σ2(x̂))dx̂,

where f is a polynomial function of total degree less than or equal to 2. In order to compute these integrals
we set

δ−K = inf
x∈F−1

m (K)
r(x ), δ+K = sup

x∈F−1
m (K)

r(x ).

These two parameters are easy to compute numerically since their values are reached at one of the vertices
of F−1

m (K). For each real δ, such that δ−K ≤ δ ≤ δ+K , we set

QK,δ =
{
(σ1, σ2) ∈ R

2; x̂ = (δσ1, δσ2, δ(1 − σ1 − σ2)) ∈ F−1
m (K)

}
.

The set QK,δ is convex and is in general either a vertex of the tetrahedron F−1
m (K) or an edge or a triangle or

a quadrilateral (see Fig. 7).
The mapping (x̂1, x̂2, x̂3) �→ (δ, σ1, σ2) is clearly one to one from Ŝ onto U = [0, |ĥ |] × K̂2 = [0, 1/3] × K̂2

where
K̂2 = {(σ1, σ2) ∈ R

2; σ1 ≥ 0, σ2 ≥ 0, σ1 + σ2 ≤ 1}
is the 2D reference triangle. It is also a diffeomorphism between their interiors. Hence, we can write

∫

F−1
m (K)

r(x )τf(σ1(x̂), σ2(x̂))dx̂ =
∫ δ+

K

δ−
K

δτ+2

(∫

QK,δ

f(σ1, σ2)dσ1dσ2

)

dδ.

The integrals ∫

QK,δ

f(σ1, σ2)dσ1dσ2

are calculated exactly since f(σ1, σ2) is a polynomial function of degree less than or equal 2. The integration
with respect to the variable δ is done by means of a Gauss-Lobatto quadrature formula.
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Figure 7. The intersection of a tetrahedron and a plane is either a vertex, an edge a triangle
or a quadrilateral.

6.3. Computational results

In this section, we show some numerical experiments obtained with a 3D code written for solving the Neumann
problem (61). The aim of these tests is to compare the numerical results with the predictions of Theorem 2
and to demonstrate the efficiency of the method. In particular, we study the dependence of the numerical error
with respect to h. The influence of the adjustment parameters µ, γ and the radius of Ω0 (here R) on the rate
of convergence is also investigated. The implemented method corresponds to the case k = 1 (P1-IFEM).

Define the relative errors on u and on its gradient with respect to the norms ‖.‖H0
−1(R

3
+) and ‖.‖L2(R3

+) as
follows

e0 =
‖u− uh‖H0

−1(R
3
+)

‖u‖H0
−1(R

3
+)

, e1 =
|∇u−∇uh|L2(R3

+)

|∇u|L2(R3
+)

·

We consider two examples for the tests

Example 1. f = −∆uε and u = uε where

uε(x, y, z) =
z2

(1 + x2 + y2 + z2)ε+2
·

Here ε is a fixed parameter on which depends the behavior at infinity. Notice that f ∈ H0
1(R

3
+) and u ∈ H1

−1(R
3
+)

if ε > −3/4. More generally, f belongs to H0
β+2(R

3
+), while u belongs to H2

β(Rn
+) for each β <

1
2

+ 2ε.

Example 2. We consider the problem (61) with f = −∆u, where

u(x, y, z) =
2
π

arctan(10r2)
(
e−0.1r2

+ e−0.1(r−3)2
)
.

Notice that f ∈ H0
β(Rn

+) and u ∈ H2
β(Rn

+) for any real β.

6.3.1. Convergence of the method and influence of the parameter µ

In this paragraph we fix γ = 1 and R = 1 and we study the convergence of the error when h → 0 and its
dependence with respect to the parameter µ. It is worth noting that the value of R is taken relatively small
in order to show that the method converges even if the FEM region Ω0 is small (the accuracy of the numerical
errors e0 and e1 can be improved a little bit if R is well chosen. See Paragraph 6.3.3).

In Table 1, we display the relative errors for several values of h and µ when γ = 1 and R = 1 (Ex. 1).
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Table 1. The relative errors e0 and e1 when R = 1 and γ = 1.

µ µ
1 0.7 0.5 0.4 1 0.7 0.5 0.4

N h DOF The relative error e0 The relative error e1
10 0.30 791 0.328 0.255 0.220 0.204 0.866 0.720 0.565 0.481
20 0.15 5781 0.207 0.130 0.087 0.076 0.654 0.359 0.205 0.158
30 0.10 18971 0.146 0.070 0.040 0.038 0.463 0.204 0.104 0.082
40 0.075 44361 0.107 0.041 0.025 0.026 0.345 0.133 0.067 0.054
50 0.06 85951 0.081 0.028 0.020 0.020 0.270 0.095 0.049 0.040
60 0.05 147741 0.064 0.022 0.018 0.219 0.074 0.039

The log. slope 0.86 1.37 1.48 1.48 0.76 1.30 1.49 1.54

Figure 8 shows in a logarithmic scale the errors e0 and e1 versus h for several values of µ. Notice that log(e0)
and log(e1) decrease quasi-linearly with respect of logh. Average values of the slope of the curves log(e0)
and log(e1) versus log h are presented in Table 1. One can notice on the one hand that these slopes increase
when µ decreases, which confirms the predictions of Theorem 1. On the other hand, the values of the slope
for the error e0 are quite close to the values of the slope for the error e1, even though e0 is smaller than e1.
Namely, the weighted L2 error ‖u− uh‖H0

−1(R
3
+) does not converge faster than the error ‖u− uh‖H1

−1(R
3
+). This

fact confirms the lack of superconvergence of error in weighted L2: ‖u− uh‖H0
−1(R

3
+).

On the other hand, in order to show that the method is efficient for several kinds of behaviors at infinity, we
display in Figure 9 the exact and the computed solutions for various values of ε (Ex. 2). Recall that u ∼ ρ−2(1+ε)

when |x | �→ +∞ and that u ∈ H1
−1 iff ε < 0.75.

6.3.2. Influence of the parameter γ

The only effective constraint on the parameter γ is the condition (57) which ensures the conformity. Since
α = −1, n = 3 and p = 2, this condition reduces here to

γ > −1
2
·

The condition (38) of Theorem 1 (which is more restrictive than (57)), indicates a manner of choosing γ, once
one knows that the solution belong to the space Hk+1

β (Ω) for some real β. In Table 2 is given the numerical
error for several values of γ when all the other parameters are fixed (R = 1, h = 0.075 (N = 40), µ = 0.5. Ex. 1
with ε = 0). One can observe that the error varies slowly with γ. However, the number of iterations necessary
for the convergence of the CG algorithm (without preconditioning) depends strongly on γ. That means that γ
has a serious influence on the spectral properties of the matrix Aγ . Further, one can observe that there exists
an optimal value of γ � 0.7 for which both the error of approximation and the convergence of the CG algorithm
are optimal.

6.3.3. Influence of the size of the FEM region

Despite the fact that the size of the FEM region R is not meant to be large, it could be useful to study
its influence on the error of approximation. Here, we made some computational tests with the parameters γ,
µ and DOF fixed and with R varying from 1 to 14. Example 2 is used in all these tests. Since the number
of degrees of freedom is fixed, the discretization parameter h increases linearly with R. Despite that fact, the
global error of approximation decreases when R is smaller than a value Ropt. It increases with R when R ≥ Ropt.
Here Ropt is an optimal radius for which the error is minimal. This radius depends slightly on the total number
of degrees of freedom. In Figure 10 shows the relative error e1 versus R for N = 40 (DOF = 44361) and
for N = 60 (DOF = 147741) (µ = 0.5 and γ = 1 in both the cases). On the other hand, it is worth noting
that the distribution of the error between the FEM region and the IFEM region depends also on the choice of
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Figure 8. The relative errors e0 and e1 versus h for several values of µ (in a logarithmic scale)
(R = 1, γ = 1 and ε = 0. Example 1 with ε = 0).
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Figure 9. The exact and the approximate solutions for several behaviors at infinity. Here
R = 1, γ = 1 + 2ε, µ = 0.5 and N = 50 (h = 0.06).
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Table 2. The relative errors and the number of iterations necessary for the convergence of
CG algorithm versus the parameter γ.

γ e0 e1 Number of iterations (CG))
-0.5 0.032 0.080 85 489
0 0.025 0.071 7689

0.5 0.022 0.066 853
0.7 0.023 0.066 464
1. 0.025 0.067 537
1.5 0.032 0.072 1805
2 0.046 0.081 15 333

2.5 0.071 0.095 >100 000
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Figure 10. The relative error e1 versus the shape parameter R when N = 40 and when N = 60.

the parameter R. In Figure 11 the exact and the approximate solutions are plotted versus the radius r when
x = y = 0 for three values of R: R = 2, R = 4 and R = 9.

A. Appendix. The proof of Proposition 1

Proof. Let u be a function in Hm,p
α (Ω∞). We set ũ = Λγ u. Then, for each i ∈ {1, ..,M} we have the formula

∫

Ti

r(y)pα|u(y)|pdy =
∫

Si

r(x )p(γ−α)−2n|ũ(x )|pdx ,

which follows from (22) and (28). Hence,

∫

Ti

|y |pα|u(y)|pdy �
∫

Ti

r(y )pα|u(y)|pdy

�
∫

Si

r(x )p(γ−α)−2n|ũ(x )|pdx

�
∫

Si

|x |pδ|ũ(x )|pdx



142 T.Z. BOULMEZAOUD

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

u

R = 2, µ = 0.5, γ = 1, N = 60

FEM 

region region 

IFEM solid     :   exact solution 
dashed : comput. solution    

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

r

u

R = 5, µ = 0.5, γ = 1, N = 60

FEM 

region 

region 

IFEM 

solid     :   exact solution 
dashed : comput. solution    

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
R = 9, µ = 0.5, γ = 1, N = 60

r

u

FEM 

region 
region 

IFEM 

solid     :   exact solution 
dashed : comput. solution    

Figure 11. The exact and the approximate solution versus r when R = 2 (left), R = 5 (center)
and R = 9 (right) (Ex. 2 with N = 60, µ = 0.5 and γ = 1).
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where δ = γ − α− 2n/p. We have also

∂ũ

∂xk
(x ) = −γr(x )−γ−1h i.ek

|h i|2
u ◦ φi(x )

+ r(x )−γ

(
|h i|4

(x .h i)2

(
∂u

∂xk

)

◦ φi(x )) − 2
|h i|4

(x .h i)3
h i.ekx .(∇u ◦ φi(x ))

)

for each i ∈ {1, ...,M} and x ∈ Si. Thus,

∣
∣
∣
∣
∂ũ

∂xk
(x )

∣
∣
∣
∣ � |x |−γ−1|u(y)| + |x |−γ−2|∇u(y)|,

where y = φ(x ). It follows that

∫

Si

|x |p(δ+1)|∇ũ|pdx �
∫

Ti

(|y |pα|u|p + |y |p(α+1)|∇u|p)dy .

We deduce that
‖ũ‖V 1,p

δ (Si)
� ‖u‖H1,p

α (Ti)
.

Similarly, we prove that
‖u‖H1,p

α (Ti)
� ‖ũ‖V 1,p

δ (Si)
.

The proof can be extended by induction to the cases m ≥ 2:

‖ũ‖V m,p
δ (Si) � ‖u‖Hm,p

α (Ti).

Now, suppose that m = 1 and let us prove that ũ belongs to V 1,p
δ (Ω∗). This is mainly due to the continuity

of r(x ). Indeed, let ϕ ∈ D(Ω∗). We set

χ(x ) = ϕ(φ(x )) for x ∈ Ω∞.

Then, χ has compact support in Ω∞ and its restriction to each sub-domain Ti is C∞. Note that

ϕ(x ) = χ(φ(x )) for x ∈ Ω∗.

Applying the chain rule, we get

∀x ∈ Si, ∇xϕ = −2ri(y)
|h i|2

(y .∇yχ)h i + ri(y)2
∂χ

∂yk
(y),

where y = φ(x ) ∈ Ti. We get

∫

Si

ũ(x )
∂ϕ

∂xk
dx =

1
|h i|2

∫

Ti

ri(y)γ+1−2nu(y)
[

−2(y .∇yχ)(h i.ek) + |h i|2ri(y)
∂χ

∂yk

]

dy ,

=
2hi.ek

|h i|2
∫

Ti

divy [ri(y)γ+1−2nuy ]χdy − 2(h i.ek)
∫

∂Ti

ri(y)γ+1u(y)χ(y)y .n idσ

−
∫

Ti

∂

∂yk
(ri(y)γ+2u(y))χ(y)dy+2

∫

∂Ti

ri(y)γ+2u(y)χ(y)n i.ekdσ,
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where n i denotes the exterior normal of Ti. Observe that χ = 0 on ∂Ti ∩ ∂Si and that χ(y)y .n i = 0 on ∂Ti.
Since the jump of r(x ) and u(x ) across the unbounded faces of Ti is zero, we deduce easily that

∫

Ω∗
ũ(x )

∂ϕ

∂xk
dx =

∫

Ω∞
vk(y)χ(y)dy , (68)

where vk is given by

vk(y) =
2h i.ek

|h i|2
divy [ri(y)γ+1−2nuy ] − ∂

∂yk
(ri(y)γ+2u(y)), for y ∈ Ti.

Since r(y) � |y | in Ω∞ and ∇u ∈ H1,p
α (Ω∞), we deduce that

vk ∈ H0,p
α+2n−(γ+1)(Ω∞).

Hence, from (68) we get
∫

Ω∗
ũ(x )

∂ϕ

∂xk
dx =

∫

Ω∗
r(x )−2n(v ◦ φ)(x )ϕ(x )dx ,

=
∫

Ω∗
(Λ2nvk)(x )ϕ(x )dx .

As in the case m = 0, we conclude that

∂ũ

∂xk
= Λ2nvk ∈ H0,p

δ+1(Ω∞),

which ends the proof of Proposition 1. �
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